
Vivado Design Suite
User Guide

Model-Based DSP Design
Using System Generator

UG897 (v2016.4) November 30, 2016

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/30/2016 2016.4 For each compilation type described in Chapter 7, System Generator Compilation
Types, indicated that you can now specify the board or part for which you are
targeting the compilation.

In Chapter 5, Using Hardware Co-Simulation, added this Note:

Note: Point-to-Point Ethernet Hardware Co-Simulation requires full-duplex
Ethernet operation, including the use of Auto-Negotiation. If you are
performing Point-to-Point Ethernet Hardware Co-Simulation through a
Network Interface Card (NIC) or a USB-to-Ethernet adapter, the connection
will only operate under the following conditions:

° The NIC or USB-to-Ethernet adapter must be connected directly to the board.

° The NIC or USB-to-Ethernet adapter must support the IEEE 802.3ab Gigabit
Ethernet standard.

° The NIC or USB-to-Ethernet adapter must support full-duplex Ethernet
operation using Auto-Negotiation. Setting the speed directly without
Auto-Negotiation will cause the Point-to-Point Ethernet connection to fail.

10/05/2016 2016.3 Added a section on IP Instance Caching, a new feature that allows System Generator
to access a disk cache when a compilation target performs Vivado synthesis to
generate its output products. IP instance caching speeds up the iterative design
process.

06/08/2016 2016.2 Added a section on Clearing the Waveform Viewer Display, which describes the new
Waveform Viewer option to clear the waveform display, deleting all the waveforms
currently displayed in the Waveform Viewer.

Updated screen displays to reflect appearance of dialog boxes in 2016.2 release.
Designing with System Generator 2
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=2

04/06/2016 2016.1 In Chapter 4, Performing Analysis in System Generator, described the new Resource
Analysis feature, which helps you determine if your System Generator design will fit
into your target Xilinx device.

Reorganized Chapter 5, Using Hardware Co-Simulation, and added information
about new hardware co-simulation features introduced in the 2016.1 Vivado
release:

• In the section Compiling a Model for Hardware Co-Simulation, added a
procedure for performing the Hardware Co-Simulation compilation. When you
perform the compilation, you must now specify a Xilinx, partner, or custom test
board that you will target for the hardware co-simulation.

• Added these sections with procedures for performing hardware co-simulation:
Performing Standard Hardware Co-Simulation and Performing Burst Mode
Hardware Co-Simulation.

• Added that you can now use burst mode to speed up JTAG hardware
co-simulation.

In Chapter 4, Performing Analysis in System Generator, describes the new Resource
Analysis feature, which helps you determine your System Generator design’s
resource utilization in your target Xilinx device.

Added a section on Specifying Board Support in System Generator, which supplies
information on how you can point System Generator to the board files describing
partner and custom test boards, so these boards are available as targets for your
System Generator design.

Described new options on the System Generator token properties dialog box to
control timing and resource analysis and to specify a test board as the target for
your System Generator design.

Date Version Revision
Designing with System Generator 3
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=3

Table of Contents
Chapter 1: Introduction

Xilinx DSP Block Set . 8
FIR Filter Generation . 9
Support for MATLAB . 10
Hardware Co-Simulation . 11
System Integration Platform . 12
Operating System, MATLAB, and Simulator Support in System Generator. 12

Chapter 2: Installation
Downloading . 13
Using the Xilinx Installer . 14
Post Installation Tasks . 15

Chapter 3: Hardware Design Using System Generator
Design Flows Using System Generator . 20
System-Level Modeling in System Generator . 22
Automatic Code Generation . 39
Compiling MATLAB into an FPGA . 48
Importing a System Generator Design into a Bigger System . 69
Configurable Subsystems and System Generator . 70
Notes for Higher Performance FPGA Design . 76
Using FDATool in Digital Filter Applications. 81
Multiple Independent Clocks Hardware Design . 91
AXI Interface. 100
AXI4-Lite Interface Generation . 105
Tailor Fitting a Platform Based Accelerator Design in System Generator 118

Chapter 4: Performing Analysis in System Generator
Timing Analysis in System Generator . 124
Resource Analysis in System Generator . 131

Chapter 5: Using Hardware Co-Simulation
Compiling a Model for Hardware Co-Simulation. 141
Designing with System Generator 4
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=4

Performing Standard Hardware Co-Simulation . 146
Performing Burst Mode Hardware Co-Simulation. 150
M-Code Access to Hardware Co-Simulation . 152
Setting Up Your Hardware Board . 152
Hardware Co-Simulation Blocks . 157
Hardware Co-Simulation Clocking . 161
Point-to-Point Ethernet Hardware Co-Simulation. 163
Burst Data Transfers for Hardware Co-Simulation . 168

Chapter 6: Importing HDL Modules
Black Box HDL Requirements and Restrictions . 177
Black Box Configuration Wizard . 177
Black Box Configuration M-Function . 180
Multiple Independent Clock Support on Black Box . 196
HDL Co-Simulation . 198

Chapter 7: System Generator Compilation Types
HDL Netlist Compilation . 201
Hardware Co-Simulation Compilation . 202
IP Catalog Compilation . 203
Synthesized Checkpoint Compilation . 208
Creating Your Own Custom Compilation Target . 209

Chapter 8: Creating Custom Compilation Targets
xilinx_compilation Base Class . 210
Creating a New Compilation Target . 211
Base Class Properties and APIs . 213
Examples of Creating Custom Compilation Targets. 217

Appendix A: System Generator GUI Utilities
Xilinx BlockAdd. 224
Xilinx Tools > Save as blockAdd default . 226
Xilinx BlockConnect . 227
Xilinx Tools > Terminate . 229
Xilinx Waveform Viewer . 232

Appendix B: Migrating ISE Designs to the Vivado IDE
Introduction . 242
Upgrade Methodology. 242
Designing with System Generator 5
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=5

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 254
Solution Centers. 254
Documentation Navigator and Design Hubs . 254
References . 255
Training Resources. 256
Please Read: Important Legal Notices . 256
Designing with System Generator 6
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=6

Designing with System Generator 7
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Chapter 1

Introduction
System Generator is a DSP design tool from Xilinx that enables the use of the MathWorks
model-based Simulink® design environment for FPGA design. Previous experience with
Xilinx FPGAs or RTL design methodologies are not required when using System Generator.
Designs are captured in the DSP friendly Simulink modeling environment using a Xilinx
specific blockset. The System Generator design can then be imported into a Vivado IDE
project using the IP Catalog.

Note: Refer to the document Vivado Design Suite Tutorial: Model-Based DSP Design Using System
Generator (UG948) for hands-on lab exercises and step-by-step instruction on how to create a
System Generator for DSP model and then import that model into a Vivado IDE project.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug948-vivado-sysgen-tutorial.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=7

Designing with System Generator 8
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Chapter 1: Introduction

Xilinx DSP Block Set
Over 90 DSP building blocks are provided in the Xilinx DSP blockset for Simulink. These
blocks include the common DSP building blocks such as adders, multipliers and registers.
Also included are a set of complex DSP building blocks such as forward error correction
blocks, FFTs, filters and memories. These blocks leverage the Xilinx IP core generators to
deliver optimized results for the selected device.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=8

Designing with System Generator 9
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Chapter 1: Introduction

FIR Filter Generation
System Generator includes a FIR Compiler block that targets the dedicated DSP48E1 and
DSP48E2 hardware resources in the 7 series and UltraScale devices to create highly
optimized implementations. Configuration options allow generation of single rate,
interpolation, decimation, Hilbert, and interpolated implementations. Standard MATLAB
functions such as fir2 or the MathWorks FDAtool can be used to create coefficients for the
Xilinx FIR Compiler.

FIR Compiler

FDA Tool

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=9

Designing with System Generator 10
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Chapter 1: Introduction

Support for MATLAB
Included in System Generator is an MCode block that allows the use of non-algorithmic
MATLAB for the modeling and implementation of simple control operations.

The MATLAB releases supported in this release of System Generator are described in the
Compatible Third-Party Tools section of the Vivado Design Suite User Guide: Release Notes,
Installation, and Licensing (UG973).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=10

Designing with System Generator 11
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Chapter 1: Introduction

Hardware Co-Simulation
System Generator provides accelerated simulation through hardware co-simulation. System
Generator will automatically create a hardware simulation token for a design captured in the
Xilinx DSP blockset that will run on supported hardware platforms. This hardware will
co-simulate with the rest of the Simulink system to provide up to a 1000x simulation
performance increase.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=11

Designing with System Generator 12
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Chapter 1: Introduction

System Integration Platform
System Generator provides a system integration platform for the design of DSP FPGAs that
allows the RTL, Simulink, MATLAB and C/C++ components of a DSP system to come
together in a single simulation and implementation environment. System Generator
supports a black box block that allows RTL to be imported into Simulink and co-simulated
with either ModelSim or Xilinx® Vivado simulator, and provides a Vivado HLS block that
allows integration and simulation of C/C++ sources.

Operating System, MATLAB, and Simulator Support
in System Generator
The operating systems supported in this release of System Generator are described in the
Operating Systems section of the Vivado Design Suite User Guide: Release Notes,
Installation, and Licensing (UG973).

The MATLAB releases and simulation tools supported in this release of System Generator
are described in the Compatible Third-Party Tools section of the Vivado Design Suite User
Guide: Release Notes, Installation, and Licensing (UG973).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug973-vivado-release-notes-install-license.pdf;a=xOperatingSystems
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug973-vivado-release-notes-install-license.pdf;a=CompatibleThirdPartyTools
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=12

Chapter 2

Installation

Downloading
System Generator is part of the Vivado® Design Suite and may be downloaded from the
Xilinx web page. You may purchase, register, and download the System Generator software
from the System Generator for DSP page on the Xilinx website.

Note: In special circumstances, System Generator can be delivered on a CD. Please contact your
Xilinx distributor if your circumstances prohibit you from downloading the software via the web.

Hardware Co-Simulation Support
If you have an FPGA development board, you may be able to take advantage of System
Generator’s ability to use FPGA hardware co-simulation with Simulink simulations. The
System Generator software includes support for all Xilinx Development Boards. System
Generator board support packages can be downloaded from the Boards and Kits page on
the Xilinx website.

UNC Paths Not Supported
System Generator does not support UNC (Universal Naming Convention) paths. For
example System Generator cannot operate on a design that is located on a shared network
drive without mapping to the drive first.
Designing with System Generator 13
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/boards_kits/index.htm
https://www.xilinx.com/tools/sysgen.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=13

Chapter 2: Installation
Using the Xilinx Installer
System Generator for DSP is part of the Vivado® Design Suite. You must use the Xilinx
Design Tools installer to install System Generator.

Before invoking the Xilinx Design Tools installer, it is a good idea to make sure that all
instances of MATLAB are closed. When all instances of MATLAB are closed, launch the
installer and follow the directions on the screen.

Choosing MATLAB for System Generator

Windows Installations

This dialog box allows you to associate any supported MATLAB installation with this version
of System Generator.

Click the check box of the MATLAB installation(s) you wish to associate with this version of
System Generator, select the Xilinx Design Suite you wish to associate with, then click Apply.
Once the Apply operation is completed, the value in the Status column changes from “Not
Configured” to “Configured”.

The application lists all the available MATLAB installations. The Status field shows one of the
following values:

Unsupported: This version of MATLAB is not supported with this version of System
Generator.

Not Configured: This version of MATLAB is not yet associated with this version of System
Generator. To associate this version of MATLAB with System Generator, click the check box
and then click Apply.

Configured: System Generator is now ready to be used with this version of MATLAB.
Designing with System Generator 14
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=14

Chapter 2: Installation
If you don’t see a version of MATLAB listed, click Find MATLAB to browse for a valid
version.

If you wish to change the MATLAB configuration, select the following Windows menu item:

Start > All Programs > Xilinx Design Tools > Vivado 2016.4 > System Generator >
System Generator MATLAB Configurator.

If MATLAB is configured for a Design Suite, for example, the ISE Design Suite, and you wish
to re-configure MATLAB for another Design Suite, for example, Vivado, you must select the
Configured MATLAB version box and click Remove before you re-configure for Vivado.

Linux Installations

Launching System Generator under Linux is handled via a shell script called sysgen located
in the <Vivado_install_dir>/bin directory. Before launching this script, you must
make sure the MATLAB executable can be found in the PATH environment variable. Once
the MATLAB executable can be found, executing sysgen will launch the first MATLAB
executable found in PATH and attach System Generator to that session of MATLAB. Also, the
sysgen shell script supports all the options that MATLAB supports and can be passed as
command line arguments to the sysgen script.

Post Installation Tasks

Post-Installation Tasks on Linux
After following the directions of the main Xilinx Installation Wizard, you are ready to launch
System Generator by typing: sysgen

This will invoke MATLAB and dynamically add System Generator to that MATLAB session. At
the top of the MATLAB command window, you will see the following:

Type xlDoc to open the Xilinx System Generator help documentation.
Type demo blockset xilinx to view the demos available for Xilinx System Generator.
>>

Compiling Xilinx HDL Libraries
The Xilinx tool that compiles libraries for use in ModelSim SE is named compile_simlib.

To compile the Xilinx HDL libraries, launch the Vivado Design Suite and then enter
compile_simlib in the Vivado Tcl console.

Note: You can enter compile_simlib -help in the Vivado Tcl Console for more details on
executing this Tcl command.
Designing with System Generator 15
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=15

Chapter 2: Installation
Example Designs Associated with this User Guide
Example Designs that are used for illustration in this document are contained in a ZIP file
that may be downloaded from the Web. This ZIP file is named
ug897-example-files.zip and is physically located near the place where the User
Guide is located. This document assumes that you have downloaded the example designs
to the location C:/ug897-example-files.

Managing the System Generator Cache
System Generator Incorporates a disk cache to speed up the iterative design process. The
cache does this by tagging and storing files related to simulation and generation, then
recalling those files during subsequent simulation and generation rather than rerunning the
time consuming tools used to create those files.

Specifying Board Support in System Generator
When System Generator is installed on your system as part of a Vivado Design Suite
installation, System Generator will have access to any Xilinx development boards installed
with the Vivado Design Suite.

Additional boards from Xilinx partners are available and a Board Interface file that defines
a board (board.xml) can be downloaded from a partner website and installed as part of
the Vivado Design Suite. You can also create custom Board Interface files, as detailed in
Appendix A, Board Interface File, in the Vivado Design Suite User Guide: System-Level Design
Entry (UG895). Both the Vivado Design Suite and System Generator must be configured to
add partner boards and custom boards to the repository of boards available for use.

The procedure for configuring the Vivado Design Suite for board awareness is detailed in
Using the Vivado Design Suite Board Flow in the Vivado Design Suite User Guide:
System-Level Design Entry (UG895).

To configure System Generator for using a partner board or custom board, you must add
commands to MATLAB’s startup.m file, a file you create for commands to be executed
when MATLAB starts up.

To make a board available to your Simulink models in System Generator:

1. At the MATLAB command line, enter the command which startup.m to determine if
your MATLAB installation already has a startup.m file.

The which startup.m command searches through the folders in the MATLAB search
path to find a startup.m file. If there is a startup.m file in the search path, which
startup.m displays the full path for the file.
Designing with System Generator 16
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug895-vivado-system-level-design-entry.pdf;a=xBoardInterfaceFile
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug895-vivado-system-level-design-entry.pdf;a=xUsingTheVivadoDesignSuiteBoardFlow
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=16

Chapter 2: Installation
2. Proceed as follows:

° If your MATLAB installation does have a startup.m file, enter the command edit
startup.m at the command line to open the startup.m file for editing.

OR

° If your MATLAB installation does not have a startup.m file, create a startup.m
file in a folder in the MATLAB search path and open the file for editing.

The command path prints a listing of the folders in the search path.

3. Enter the following commands in your startup.m file:

addpath([getenv('XILINX_VIVADO') '/scripts/sysgen/matlab']);
xilinx.environment.setBoardFileRepos({'<path1>', '<path2>', '...'}];

where the addpath command specifies the location of the setBoardFileRepos
utility and setBoardFileRepos points MATLAB to the location of Board Interface
files. <path> is the path to a folder containing a Board Interface file (board.xml)
and files referenced by the board.xml file, such as part0_pins.xml and
preset.xml. The <path> can also specify a folder with multiple subdirectories,
each containing a separate Board Interface file.

For example:

addpath([[getenv('XILINX_VIVADO')] '/scripts/sysgen/matlab']);
xilinx.environment.setBoardFileRepos({'C:/Data/userBoards', 'C:/Data/otherBoards'});

4. Close the startup.m file (which is in a directory in the MATLAB search path) and close
System Generator.

When you open System Generator, each of the partner or custom boards is available as a
target board (and target Xilinx device) for your System Generator design.

To determine what partner or custom boards are available in System Generator, enter this
command in the MATLAB command window:

xilinx.environment.getboardFiles

A listing of Board Interface files will display in the command window.

>> xilinx.environment.getBoardFiles

ans =

 'C:\Data\usrBrds\arty\C.0\board.xml'
 'C:\Data\usrBrds\basys3\C.0\board.xml'
 'C:\Data\usrBrds\cmod_a7\B.0\board.xml'
 'C:\Data\usrBrds\genesys2\H\board.xml'
Designing with System Generator 17
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=17

Chapter 2: Installation
You can also determine what partner or custom boards are available in System Generator by
opening a Simulink model and double-clicking the model’s System Generator token. The
added boards will appear in the System Generator token properties dialog box as a Board
selection:

To add an additional board to your board repository, you can modify the
xilinx.environment.setBoardFileRepos line in your startup.m file to point to the location
of the new Board Interface file (board.xml). If you place the Board Interface file in a
subdirectory under a folder already specified in the xilinx.environment.setBoardFileRepos
line, the new board will be available the next time you open System Generator, without
having to make any changes to the startup.m file.

X-Ref Target - Figure 2-1

X-Ref Target - Figure 2-2
Designing with System Generator 18
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=18

Chapter 3

Hardware Design Using System Generator
System Generator is a system-level modeling tool that facilitates FPGA hardware design. It
extends Simulink in many ways to provide a modeling environment that is well suited to
hardware design. The tool provides high-level abstractions that are automatically compiled
into an FPGA at the push of a button. The tool also provides access to underlying FPGA
resources through low-level abstractions, allowing the construction of highly efficient FPGA
designs.

Design Flows Using System
Generator

Describes several settings in which constructing
designs in System Generator is useful.

System-Level Modeling in
System Generator

Discusses System Generator's ability to implement
device-specific hardware designs directly from a
flexible, high-level, system modeling environment.

Automatic Code Generation Discusses automatic code generation for System
Generator designs.

Compiling MATLAB into an
FPGA

Describes how to use a subset of the MATLAB
programming language to write functions that
describe state machines and arithmetic operators.
Functions written in this way can be attached to
blocks in System Generator and can be
automatically compiled into equivalent HDL.

Importing a System Generator
Design into a Bigger System

Discusses how to take the VHDL netlist from a
System Generator design and synthesize it in order
to embed it into a larger design. Also shows how
VHDL created by System Generator can be
incorporated into a simulation model of the overall
system.

Configurable Subsystems and
System Generator

Explains how to use configurable Subsystems in
System Generator. Describes common tasks such as
defining configurable Subsystems, deleting and
adding blocks, and using configurable Subsystems
to import compilation results into System
Generator designs.

Notes for Higher Performance
FPGA Design

Suggests design practices in System Generator that
lead to an efficient and high-performance
implementation in an FPGA.

Using FDATool in Digital Filter
Applications

Demonstrates one way to specify, implement and
simulate a FIR filter using the FDATool block.
Designing with System Generator 19
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=19

Chapter 3: Hardware Design Using System Generator
Design Flows Using System Generator
System Generator can be useful in many settings. Sometimes you may want to explore an
algorithm without translating the design into hardware. Other times you might plan to use
a System Generator design as part of something bigger. A third possibility is that a System
Generator design is complete in its own right, and is to be used in FPGA hardware. This topic
describes all three possibilities.

Algorithm Exploration
System Generator is particularly useful for algorithm exploration, design prototyping, and
model analysis. When these are the goals, you can use the tool to flesh out an algorithm in
order to get a feel for the design problems that are likely to be faced, and perhaps to
estimate the cost and performance of an implementation in hardware. The work is
preparatory, and there is little need to translate the design into hardware.

In this setting, you assemble key portions of the design without worrying about fine points
or detailed implementation. Simulink blocks and MATLAB M-code provide stimuli for
simulations, and for analyzing results. Resource estimation gives a rough idea of the cost of
the design in hardware. Experiments using hardware generation can suggest the hardware
speeds that are possible.

Once a promising approach has been identified, the design can be fleshed out. System
Generator allows refinements to be done in steps, so some portions of the design can be
made ready for implementation in hardware, while others remain high-level and abstract.
System Generator's facilities for hardware co-simulation are particularly useful when
portions of a design are being refined.

Multiple Independent Clocks
Hardware Design

The design can be partitioned into groups of
Subsystem blocks, where each Subsystem has a
common cycle period, independent of the cycle
period of other Subsystems.

AXI Interface Provides an introduction to AMBA AXI4 and draws
attention to AMBA AXI4 details with respect to
System Generator.

AXI4-Lite Interface Generation Describes features in System Generator that allow
you to create a standard AXI4-Lite interface for a
System Generator module and then export the
module to the Vivado IP catalog for later inclusion
in a larger design using IP integrator.

Tailor Fitting a Platform Based
Accelerator Design in System
Generator

Describes how to develop an accelerator in System
Generator which is part of a platform framework
developed in the Vivado IP Integrator.
Designing with System Generator 20
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=20

Chapter 3: Hardware Design Using System Generator
Implementing Part of a Larger Design
Often System Generator is used to implement a portion of a larger design. For example,
System Generator is a good setting in which to implement data paths and control, but is less
well suited for sophisticated external interfaces that have strict timing requirements. In this
case, it may be useful to implement parts of the design using System Generator, implement
other parts outside, and then combine the parts into a working whole.

A typical approach to this flow is to create an HDL wrapper that represents the entire
design, and to use the System Generator portion as a component. The non-System
Generator portions of the design can also be components in the wrapper, or can be
instantiated directly in the wrapper.

Implementing a Complete Design
Many times, everything needed for a design is available inside System Generator. For such
a design, pressing the Generate button instructs System Generator to translate the design
into HDL, and to write the files needed to process the HDL using downstream tools. The
files written include the following:

• HDL that implements the design itself;

• An HDL testbench. The testbench allows results from Simulink simulations to be
compared against ones produced by a logic simulator.

• Files that allow the System Generator HDL to be used as a Vivado IDE project.

For details concerning the files that System Generator writes, see the topic Compilation
Results.

Note to the DSP Engineer
System Generator extends Simulink to enable hardware design, providing high-level
abstractions that can be automatically compiled into an FPGA. Although the arithmetic
abstractions are suitable to Simulink (discrete time and space dynamical system simulation),
System Generator also provides access to features in the underlying FPGA.

The more you know about a hardware realization (e.g., how to exploit parallelism and
pipelining), the better the implementation you’ll obtain. Using IP cores makes it possible to
have efficient FPGA designs that include complex functions like FFTs. System Generator also
makes it possible to refine a model to more accurately fit the application.

Scattered throughout the System Generator documentation are notes that explain ways in
which system parameters can be used to exploit hardware capabilities.
Designing with System Generator 21
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=21

Chapter 3: Hardware Design Using System Generator
Note to the Hardware Engineer
System Generator does not replace hardware description language (HDL)-based design, but
does makes it possible to focus your attention only on the critical parts. By analogy, most
DSP programmers do not program exclusively in assembler; they start in a higher-level
language like C, and write assembly code only where it is required to meet performance
requirements.

A good rule of thumb is this: in the parts of the design where you must manage internal
hardware clocks (e.g., using DDR or phased clocking), you should implement using HDL. The
less critical portions of the design can be implemented in System Generator, and then the
HDL and System Generator portions can be connected. Usually, most portions of a signal
processing system do not need this level of control, except at external interfaces. System
Generator provides mechanisms to import HDL code into a design (see Importing HDL
Modules) that are of particular interest to the HDL designer.

Another aspect of System Generator that is of interest to the engineer who designs using
HDL is its ability to automatically generate an HDL testbench, including test vectors. This
aspect is described in the topic HDL Testbench.

Finally, the hardware co-simulation interfaces described in the topic Using Hardware
Co-Simulation allow you to run a design in hardware under the control of Simulink,
bringing the full power of MATLAB and Simulink to bear for data analysis and visualization.

System-Level Modeling in System Generator
System Generator allows device-specific hardware designs to be constructed directly in a
flexible high-level system modeling environment. In a System Generator design, signals are
not just bits. They can be signed and unsigned fixed-point numbers, and changes to the
design automatically translate into appropriate changes in signal types. Blocks are not just
stand-ins for hardware. They respond to their surroundings, automatically adjusting the
results they produce and the hardware they become.

System Generator allows designs to be composed from a variety of ingredients. Data flow
models, traditional hardware design languages (VHDL and Verilog), and functions derived
from the MATLAB programming language, can be used side-by-side, simulated together,
and synthesized into working hardware. System Generator simulation results are bit and
cycle-accurate. This means results seen in simulation exactly match the results that are seen
in hardware. System Generator simulations are considerably faster than those from
traditional HDL simulators, and results are easier to analyze.
Designing with System Generator 22
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=22

Chapter 3: Hardware Design Using System Generator
System Generator Blocksets
A Simulink blockset is a library of blocks that can be connected in the Simulink block editor
to create functional models of a dynamical system. For system modeling, System Generator
blocksets are used like other Simulink blocksets. The blocks provide abstractions of
mathematical, logic, memory, and DSP functions that can be used to build sophisticated
signal processing (and other) systems. There are also blocks that provide interfaces to other
software tools (e.g., FDATool, ModelSim) as well as the System Generator code generation
software.

System Generator blocks are bit-accurate and cycle-accurate. Bit-accurate blocks produce
values in Simulink that match corresponding values produced in hardware; cycle-accurate
blocks produce corresponding values at corresponding times.

Xilinx Blockset

The Xilinx Blockset is a family of libraries that contain basic System Generator blocks. Some
blocks are low-level, providing access to device-specific hardware. Others are high- level,
implementing (for example) signal processing and advanced communications algorithms.
For convenience, blocks with broad applicability (e.g., the Gateway I/O blocks) are members

System Generator Blocksets Describes how System Generator's blocks are
organized in libraries, and how the blocks can be
parameterized and used.

Xilinx Commands that Facilitate
Rapid Model Creation and
Analysis

Introduces Xilinx commands that have been added
to the Simulink popup menu that facilitate rapid
System Generator model creation and analysis.

Signal Types Describes the data types used by System Generator
and ways in which data types can be automatically
assigned by the tool.

Bit-True and Cycle-True
Modeling

Specifies the relationship between the
Simulink-based simulation of a System Generator
model and the behavior of the hardware that can
be generated from it.

Timing and Clocking Describes how clocks are implemented in
hardware, and how their implementation is
controlled inside System Generator. Explains how
System Generator translates a multirate Simulink
model into working clock-synchronous hardware.

Synchronization Mechanisms Describes mechanisms that can be used to
synchronize data flow across the data path
elements in a high-level System Generator design,
and describes how control path functions can be
implemented.

Block Masks and Parameter
Passing

Explains how parameterized systems and
Subsystems are created in Simulink.
Designing with System Generator 23
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=23

Chapter 3: Hardware Design Using System Generator
of several libraries. Every block is contained in the Index library. The libraries are described
below.

Note: It is important that you don’t name your design the same as a Xilinx block. For example, if you
name your design black box.mdl, it may cause System Generator to issue an error message.

Xilinx Reference Blockset

The Xilinx Reference Blockset contains composite System Generator blocks that implement
a wide range of functions. Blocks in this blockset are organized by function into different
libraries. The libraries are described below.

Each block in this blockset is a composite, i.e., is implemented as a masked Subsystem, with
parameters that configure the block.

Library Description

AXI4 Blocks with interfaces that conform to the AXI™4 specification

Basic Elements Standard building blocks for digital logic

Communication Forward error correction and modulator blocks, commonly used
in digital communications systems

Control Logic Blocks for control circuitry and state machines

Data Types Blocks that convert data types (includes gateways)

DSP Digital signal processing (DSP) blocks

Floating-Point Blocks that support the Floating-Point data type

Index Every block in the Xilinx Blockset

Math Blocks that implement mathematical functions

Memory Blocks that implement and access memories

Tools “Utility” blocks, e.g., code generation (System Generator token),
resource estimation, HDL co-simulation, etc.

Library Description

Communication Blocks commonly used in digital communications systems

Control Logic LogicBlocks used for control circuitry and state machines

DSP Digital signal processing (DSP) blocks

Imaging Image processing blocks

Math Blocks that implement mathematical functions
Designing with System Generator 24
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=24

Chapter 3: Hardware Design Using System Generator
You can use blocks from the Reference Blockset libraries as is, or as starting points when
constructing designs that have similar characteristics. Each reference block has a
description of its implementation and hardware resource requirements.
Designing with System Generator 25
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=25

Chapter 3: Hardware Design Using System Generator
Xilinx Commands that Facilitate Rapid Model Creation and
Analysis
Xilinx has added graphics commands to the Simulink popup menu that will help you rapidly
create and analyze your System Generator design. As shown below, you can access these
commands by right-clicking on the Simulink model canvas and selecting the appropriate
Xilinx command:

Details on how to use these additional Xilinx commands are provided in the topic .

Signal Types
In order to provide bit-accurate simulation of hardware, System Generator blocks operate
on Boolean, floating-point, and arbitrary precision fixed-point values. By contrast, the
fundamental scalar signal type in Simulink is double precision floating point. The
connection between Xilinx blocks and non-Xilinx blocks is provided by gateway blocks. The
Gateway In converts a double precision signal into a Xilinx signal, and the Gateway Out
converts a Xilinx signal into double precision. Simulink continuous time signals must be
sampled by the Gateway In block.

Most Xilinx blocks are polymorphic, i.e., they are able to deduce appropriate output types
based on their input types. When full precision is specified for a block in its parameters
dialog box, System Generator chooses the output type to ensure no precision is lost. Sign
extension and zero padding occur automatically as necessary. User-specified precision is
usually also available. This allows you to set the output type for a block and to specify how
quantization and overflow should be handled. Quantization possibilities include unbiased
Designing with System Generator 26
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=26

Chapter 3: Hardware Design Using System Generator
rounding towards plus or minus infinity, depending on sign, or truncation. Overflow
options include saturation, truncation, and reporting overflow as an error.

Note: System Generator data types can be displayed by selecting Display > Signals & Ports > Port
Data Types in Simulink. Displaying data types makes it easy to determine precision throughout a
model. If, for example, the type for a port is Fix_11_9, then the signal is a two's complement signed
11-bit number having nine fractional bits. Similarly, if the type is Ufix_5_3, then the signal is an
unsigned 5-bit number having three fractional bits.

In the System Generator portion of a Simulink model, every signal must be sampled. Sample
times may be inherited using Simulink's propagation rules, or set explicitly in a block
customization dialog box. When there are feedback loops, System Generator is sometimes
unable to deduce sample periods and/or signal types, in which case the tool issues an error
message. Assert blocks must be inserted into loops to address this problem. It is not
necessary to add assert blocks at every point in a loop; usually it suffices to add an assert
block at one point to “break” the loop.

Note: Simulink can display a model by shading blocks and signals that run at different rates with
different colors (Display > Sample Time > Colors in the Simulink pulldown menus). This is often
useful in understanding multirate designs.

Floating-Point Data Type
System Generator blocks found in the Floating-Point library support the floating-point data
type.

System Generator uses the Floating-Point Operator v6.0 IP core to leverage the
implementation of operations such as addition/subtraction, multiplication, comparisons
and data type conversion.

The floating-point data type support is in compliance with IEEE-754 Standard for
Floating-Point Arithmetic. Single precision, Double precision and Custom precision
floating-point data types are supported for design input, data type display and for data rate
and type propagation (RTP) across the supported System Generator blocks.

IEEE-754 Standard for Floating-Point Data Type

As shown below, floating-point data is represented using one Sign bit (S), X exponent bits
and Y fraction bits. The Sign bit is always the most-significant bit (MSB).

According to the IEEE-754 standard, a floating-point value is represented and stored in the
normalized form. In the normalized form the exponent value E is a biased/normalized value.

S X Exponent bits
E0 to Ex-1

Y Fraction Bits
F0 to FY-1
Designing with System Generator 27
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=27

Chapter 3: Hardware Design Using System Generator
The normalized exponent, E, equals the sum of the actual exponent value and the exponent
bias. In the normalized form, Y-1 bits are used to store the fraction value. The F0 fraction bit
is always a hidden bit and its value is assumed to be 1.

S represents the value of the sign of the number. If S is 0 then the value is a positive
floating-point number; otherwise it is negative. The X bits that follow are used to store the
normalized exponent value E and the last Y-1 bits are used to store the fraction/mantissa
value in the normalized form.

For the given exponent width, the exponent bias is calculated using the following equation:

 Exponent_bias = 2(X - 1) - 1, where X is the exponent bit width.

According to the IEEE standard, a single precision floating-point data is represented using
32 bits. The normalized exponent and fraction/mantissa are allocated 8 and 24 bits,
respectively. The exponent bias for single precision is 127. Similarly, a double precision
floating-point data is represented using a total of 64 bits where the exponent bit width is 11
and the fraction bit width is 53. The exponent bias value for double precision is 1023.

The normalized floating-point number in the equation form is represented as follows:

 Normalized Floating-Point Value = (-1)S x F0.F1F2 …. FY-2FY-1 x (2)E

The actual value of exponent (E_actual) = E - Exponent_bias. Considering 1 as the value for
the hidden bit F0 and the E_actual value, a floating-point number can be calculated as
follows:

 FP_Value = (-1)S x 1.F1F2 …. FY-2FY-1 x (2)(E_actual)

Floating-Point Data Representation in System Generator

The System Generator Gateway In block previously only supported the Boolean and
Fixed-point data types. As shown below, the Gateway In block GUI and underlying mask
parameters now support the Floating-point data type as well. You can select either a Single,
Double or Custom precision type after specifying the floating-point data type.

For example, if Exponent width of 9 and Fraction width of 31 is specified then the
floating-point data value will be stored in total 40 bits where the MSB bit will be used for
sign representation, the following 9 bits will be used to store biased exponent value and the
30 LSB bits will be used to store the fractional value.
Designing with System Generator 28
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=28

Chapter 3: Hardware Design Using System Generator
In compliance with the IEEE-754 standard, if Single precision is selected then the total bit
width is assumed to be 32; 8 bits for the exponent and 24 bits for the fraction. Similarly
when Double precision is selected, the total bit width is assumed to be 64 bits; 11 bits for
the exponent and 53 bits for the fraction part. When Custom precision is selected, the
Exponent width and Fraction width fields are activated and you are free to specify values
for these fields (8 and 24 are the default values). The total bit width for Custom precision
data is the summation of the number of exponent bits and the number of fraction bits.
Similar to fraction bit width for Single precision and Double precision data types the
fraction bit width for Custom precision data type must include the hidden bit F0

Displaying the Data Type on Output Signals

As shown below, after a successful rate and type propagation, the floating-point data type
is displayed on the output of each System Generator block.To display the signal data type as
shown in the diagram below, you select the pulldown menu item Display > Signals & Ports
> Port Data Types.
Designing with System Generator 29
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=29

Chapter 3: Hardware Design Using System Generator
A floating-point data type is displayed using the format:
XFloat_<exponent_bit_width>_<fraction_bit_width>. Single and Double precision data
types are displayed using the string “XFloat_8_24” and “XFloat_11_53”, respectively.

If for a Custom precision data type the exponent bit width 9 and the fraction bit width 31
are specified, then it will be displayed as “XFloat_9_31”. A total of 40 bits will be used to
store the floating-point data value. Since floating-point data is stored in a normalized form,
the fractional value will be stored in 30 bits.

In System Generator the fixed-point data type is displayed using format
XFix_<total_data_width>_<binary_point_width>. For example, a fixed-point data type with
the data width of 40 and binary point width of 31 is displayed as XFix_40_31.

It is necessary to point out that in the fixed-point data type the actual number of bits used
to store the fractional value is different from that used for floating-point data type. In the
example above, all 31 bits are used to store the fractional bits of the fixed-point data type.

System Generator uses the exponent bit width and the fraction bit width to configure and
generate an instance of the Floating-Point Operator core.

Rate and Type Propagation

During data rate and type propagation across a System Generator block that supports
floating-point data, the following design rules are verified. The appropriate error is issued
if one of the following violations is detected.

1. If a signal carrying floating-point data is connected to the port of a System Generator
block that doesn’t support the floating-point data type.
Designing with System Generator 30
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=30

Chapter 3: Hardware Design Using System Generator
2. If the data input (both A and B data inputs, where applicable) and the data output of a
System Generator block are not of the same floating-point data type. The DRC check will
be made between the two inputs of a block as well as between an input and an output
of the block.

If a Custom precision floating-point data type is specified, the exponent bit width and
the fraction bit width of the two ports are compared to determine that they are of the
same data type.

Note: The Convert and Relational blocks are excluded from this check. The Convert block
supports Float-to-float data type conversion between two different floating-point data types.
The Relational block output is always the Boolean data type because it gives a true or false result
for a comparison operation.

3. If the data inputs are of the fixed-point data type and the data output is expected to be
floating-point and vice versa.

Note: The Convert and Relational blocks are excluded from this check. The Convert block
supports Fixed-to-float as well as Float-to-fixed data type conversion. The Relational block
output is always the Boolean data type because it gives a true or false result for a comparison
operation.

4. If User Defined precision is selected for the Output Type of blocks that support the
floating-point data type. For example, for blocks such as AddSub, Mult, CMult, and
MUX, only Full output precision is supported if the data inputs are of the floating-point
data type.

5. If the Carry In port or Carry Out port is used for the AddSub block when the operation
on a floating-point data type is specified.

6. If the Floating-Point Operator IP core gives an error for DRC rules defined for the IP.

AXI Signal Groups
System Generator blocks found in the AXI4 library contain interfaces that conform to the
AXI™ 4 specification. Blocks with AXI interfaces are drawn such that ports relating to a
particular AXI interface are grouped and colored in similarly. This makes it easier to identify
data and control signals pertaining to the same interface. Grouping similar AXI ports
together also make it possible to use the Simulink Bus Creator and Simulink Bus Selector
blocks to connect groups of signals together. More information on AXI can be found in the
section titled AXI Interface. For more detailed information on the AMBA AXI4 specification,
please refer to the Xilinx AMBA AXI4 documents found at the AMBA AXI4 Interface Protocol
page on the Xilinx website.

Bit-True and Cycle-True Modeling
Simulations in System Generator are bit-true and cycle-true. To say a simulation is bit-true
means that at the boundaries (i.e., interfaces between System Generator blocks and
non-System Generator blocks), a value produced in simulation is bit-for-bit identical to the
corresponding value produced in hardware. To say a simulation is cycle-true means that at
Designing with System Generator 31
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/ipcenter/axi4
https://www.xilinx.com/ipcenter/axi4
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=31

Chapter 3: Hardware Design Using System Generator
the boundaries, corresponding values are produced at corresponding times. The
boundaries of the design are the points at which System Generator gateway blocks exist.
When a design is translated into hardware, Gateway In (respectively, Gateway Out) blocks
become top-level input (resp., output) ports.

Timing and Clocking

Discrete Time Systems

Designs in System Generator are discrete time systems. In other words, the signals and the
blocks that produce them have associated sample rates. A block’s sample rate determines
how often the block is awoken (allowing its state to be updated). System Generator sets
most sample rates automatically. A few blocks, however, set sample rates explicitly or
implicitly.

Note: For an in-depth explanation of Simulink discrete time systems and sample times, consult the
Using Simulink reference manual from the MathWorks, Inc.

A simple System Generator model illustrates the behavior of discrete time systems.
Consider the model shown below. It contains a gateway that is driven by a Simulink source
(Sine Wave), and a second gateway that drives a Simulink sink (Scope).

The Gateway In block is configured with a sample period of one second. The Gateway Out
block converts the Xilinx fixed-point signal back to a double (so it can analyzed in the
Simulink scope), but does not alter sample rates. The scope output below shows the
unaltered and sampled versions of the sine wave.
Designing with System Generator 32
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=32

Chapter 3: Hardware Design Using System Generator
Multirate Models

System Generator supports multirate designs, i.e., designs having signals running at several
sample rates. System Generator automatically compiles multirate models into hardware.
This allows multirate designs to be implemented in a way that is both natural and
straightforward in Simulink.

Rate-Changing Blocks

System Generator includes blocks that change sample rates. The most basic rate changers
are the Up Sample and Down Sample blocks. As shown in the figure below, these blocks
explicitly change the rate of a signal by a fixed multiple that is specified in the block’s
dialog box.

Other blocks (e.g., the Parallel To Serial and Serial To Parallel converters) change rates
implicitly in a way determined by block parameterization.

Consider the simple multirate example below. This model has two sample periods, SP1 and
SP2. The Gateway In dialog box defines the sample period SP1. The Down Sample block
causes a rate change in the model, creating a new rate SP2 which is half as fast as SP1.
Designing with System Generator 33
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=33

Chapter 3: Hardware Design Using System Generator
Hardware Oversampling

Some System Generator blocks are oversampled, i.e., their internal processing is done at a
rate that is faster than their data rates. In hardware, this means that the block requires more
than one clock cycle to process a data sample. In Simulink such blocks do not have an
observable effect on sample rates.

Although blocks that are oversampled do not cause an explicit sample rate change in
Simulink, System Generator considers the internal block rate along with all other sample
rates when generating clocking logic for the hardware implementation. This means that you
must consider the internal processing rates of oversampled blocks when you specify the
Simulink system period value in the System Generator token dialog box.

Asynchronous Clocking

System Generator focuses on the design of hardware that is synchronous to a single clock.
It can, under some circumstances, be used to design systems that contain more than one
clock. This is possible provided the design can be partitioned into individual clock domains
with the exchange of information between domains being regulated by dual port memories
and FIFOs. The remainder of this topic focuses exclusively on the clock-synchronous aspects
of System Generator. This discussion is relevant to both single-clock and multiple-clock
designs.

Synchronous Clocking

By default, System Generator creates designs with synchronous clocking, where multiple
rates are realized using clock enables. When System Generator compiles a model into
hardware, System Generator preserves the sample rate information of the design in such a
way that corresponding portions in hardware run at appropriate rates. In hardware, System
Generator generates related rates by using a single clock in conjunction with clock enables,
one enable per rate. The period of each clock enable is an integer multiple of the period of
the system clock.

Inside Simulink, neither clocks nor clock enables are required as explicit signals in a System
Generator design. When System Generator compiles a design into hardware, it uses the
sample rates in the design to deduce what clock enables are needed. To do this, it employs
two user-specified values from the System Generator token: the Simulink system period
and FPGA clock period. These numbers define the scaling factor between time in a
Simulink simulation, and time in the actual hardware implementation. The Simulink system
period must be the greatest common divisor (gcd) of the sample periods that appear in the
model, and the FPGA clock period is the period, in nanoseconds, of the system clock. If p
represents the Simulink system period, and c represents the FPGA system clock period, then
something that takes kp units of time in Simulink takes k ticks of the system clock (hence kc
nanoseconds) in hardware.

To illustrate this point, consider a model that has three Simulink sample periods 2, 3, and 4.
The gcd of these sample periods is 1, and should be specified as such in the Simulink
Designing with System Generator 34
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=34

Chapter 3: Hardware Design Using System Generator
system period field for the model. Assume the FPGA clock period is specified to be 10ns.
With this information, the corresponding clock enable periods can be determined in
hardware.

In hardware, we refer to the clock enables corresponding to the Simulink sample periods 2,
3, and 4 as CE2, CE3, and CE4, respectively. The relationship of each clock enable period to
the system clock period can be determined by dividing the corresponding Simulink sample
period by the Simulink System Period value. Thus, the periods for CE2, CE3, and CE4 equal
2, 3, and 4 system clock periods, respectively. A timing diagram for the example clock
enable signals is shown below:

Synchronization Mechanisms
System Generator does not make implicit synchronization mechanisms available. Instead,
synchronization is the responsibility of the designer, and must be done explicitly.

Valid Ports

System Generator provides several blocks (in particular, the AXI FIFO) that can be used for
synchronization. Several blocks provide optional AXI signaling interfaces to denote when a
sample is valid (TValid) and when the interface is ready for data (TReady). Note that the
tvalid / tready ports may not be visible based on the configuration of the IP. Color
association denotes a collection of ports for each interface on the block as shown below.
Blocks with interfaces can be chained, affording a primitive form of flow control. Examples
of such blocks with AXI interfaces include the FFT, FIR, and DDS.
Designing with System Generator 35
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=35

Chapter 3: Hardware Design Using System Generator
Indeterminate Data

Indeterminate values are common in many hardware simulation environments. Often they
are called “don’t cares” or “Xs”. In particular, values in System Generator simulations can be
indeterminate. A dual port memory block, for example, can produce indeterminate results
if both ports of the memory attempt to write the same address simultaneously. What
actually happens in hardware depends upon effectively random implementation details that
determine which port sees the clock edge first. Allowing values to become indeterminate
gives the system designer greater flexibility. Continuing the example, there is nothing
wrong with writing to memory in an indeterminate fashion if subsequent processing does
not rely on the indeterminate result.

HDL modules that are brought into the simulation through HDL co-simulation are a
common source for indeterminate data samples. System Generator presents indeterminate
values to the inputs of an HDL co-simulating module as the standard logic vector 'XXX . . .
XX'.

Indeterminate values that drive a Gateway Out become what are called NaNs. (NaN
abbreviates “not a number”.) In a Simulink scope, NaN values are not plotted. Conversely,
NaNs that drive a Gateway In become indeterminate values. System Generator provides an
Indeterminate Probe block that allows for the detection of indeterminate values. This probe
cannot be translated into hardware.

In System Generator, any arithmetic signal can be indeterminate, but Boolean signals cannot
be. If a simulation reaches a condition that would force a Boolean to become indeterminate,
the simulation is halted and an error is reported. Many Xilinx blocks have control ports that
only allow Boolean signals as inputs. The rule concerning indeterminate Booleans means
that such blocks never see an indeterminate on a control port

A UFix_1_0 is a type that is equivalent to Boolean except for the above restriction
concerning indeterminate data.

Block Masks and Parameter Passing
The same scoping and parameter passing rules that apply to ordinary Simulink blocks apply
to System Generator blocks. Consequently, blocks in the Xilinx Blockset can be
parameterized using MATLAB variables and expressions. This capability makes possible
highly parametric designs that take advantage of the expressive and computational power
of the MATLAB language.

Block Masks

In Simulink, blocks are parameterized through a mechanism called masking. In essence, a
block can be assigned mask variables whose values can be specified by a user through
dialog box prompts or can be calculated in mask initialization commands. Variables are
stored in a mask workspace. A mask workspace is local to the blocks under the mask and
cannot be accessed by external blocks.
Designing with System Generator 36
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=36

Chapter 3: Hardware Design Using System Generator
Note: It is possible for a mask to access global variables and variables in the base workspace. To
access a base workspace variable, use the MATLAB evalin function. For more information on the
MATLAB and Simulink scoping rules, refer to the manuals titled Using MATLAB and Using Simulink
from The MathWorks, Inc.

Parameter Passing

It is often desirable to pass variables to blocks inside a masked Subsystem. Doing so allows
the block’s configuration to be determined by parameters on the enclosing Subsystem. This
technique can be applied to parameters on blocks in the Xilinx blockset whose values are
set using a listbox, radio button, or checkbox. For example, when building a Subsystem that
consists of a multiply and accumulate block, you can create a parameter on the Subsystem
that allows you to specify whether to truncate or round the result. This parameter will be
called trunc_round as shown in the figure below.

As shown below, in the parameter editing dialog for the accumulator and multiplier blocks,
there are radio buttons that allow either the truncate or round option to be selected.

In order to use a parameter rather than the radio button selection, right click on the radio
button and select: “Define With Expression”. A MATLAB expression can then be used as the
parameter setting. In the example below, the trunc_round parameter from the Subsystem
Designing with System Generator 37
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=37

Chapter 3: Hardware Design Using System Generator
mask can be used in both the accumulator and multiply blocks so that each block will use
the same setting from the mask variable on the Subsystem.
Designing with System Generator 38
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=38

Chapter 3: Hardware Design Using System Generator
Automatic Code Generation
System Generator automatically compiles designs into low-level representations. The ways
in which System Generator compiles a model can vary, and depend on settings in the
System Generator token. In addition to producing HDL descriptions of hardware, the tool
generates auxiliary files. Some files (e.g., project files, constraints files) assist downstream
tools, while others (e.g., VHDL testbench) are used for design verification.

Compiling and Simulating Using the System Generator Token
System Generator automatically compiles designs into low-level representations. Designs
are compiled and simulated using the System Generator token. This topic describes how to
use the block.

Before a System Generator design can be simulated or translated into hardware, the design
must include a System Generator token. When creating a new design, it is a good idea to
add a System Generator token immediately. The System Generator token is a member of the
Xilinx Blockset’s Basic Elements and Tools libraries. As with all Xilinx blocks, the System
Generator token can also be found in the Index library.

A design must contain at least one System Generator token, but can contain several System
Generator tokens on different levels (one per level). A System Generator token that is
underneath another in the hierarchy is a slave; one that is not a slave is a master. The scope
of a System Generator token consists of the level of hierarchy into which it is embedded and
all Subsystems below that level. Certain parameters (e.g. Simulink System Period) can be
specified only in a master.

Compiling and Simulating
Using the System Generator
Token

Describes how to use the System Generator token
to compile designs into equivalent low-level HDL.

Compilation Results Describes the low-level files System Generator
produces when HDL Netlist is selected on the
System Generator token and Generate is pushed.

Vivado Project Describes the example project System Generator
produces when HDL Netlist or IP Catalog is
selected on the System Generator token and
Generate is pushed.

HDL Testbench Describes the VHDL testbench that System
Generator can produce.
Designing with System Generator 39
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=39

Chapter 3: Hardware Design Using System Generator
Once a System Generator token is added, it is possible to specify how code generation and
synthesis should be handled. The token’s dialog box is shown below:

Compilation Type and the Generate Button

Pressing the Generate button instructs System Generator to compile a portion of the design
into equivalent low-level results. The portion that is compiled is the sub-tree whose root is
the Subsystem containing the block. (To compile the entire design, use a System Generator
token placed at the top of the design.) The compilation type (under Compilation) specifies
the type of result that should be produced. The possible types are:

• IP Catalog - packages the design as an IP core that can be added to the Vivado IP
catalog for use in another design.

• Hardware Co-Simulation (JTAG or Point-to-point Ethernet)

• Synthesized Checkpoint - Creates a design checkpoint file (synth_1.dcp) that can then
be used in any Vivado IDE project.

• HDL Netlist
Designing with System Generator 40
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=40

Chapter 3: Hardware Design Using System Generator
Control Description

Board Specifies a Xilinx, Partner, or Custom board you will use to test your design.

For a Partner board or a custom board to appear in the Board list, you must
configure System Generator to access the board files that describe the
board. Board awareness in System Generator is detailed in Specifying Board
Support in System Generator.

When you select a Board, the Part field displays the name of the Xilinx
device on the selected Board, and this part name cannot be changed.

Part Defines the Xilinx part to be used. If you have selected a Board, the Part
field will display the name of the Xilinx device on the selected Board, and
this part name cannot be changed.

Hardware description
language

Specifies the language to be used for HDL netlist of the design. The
possibilities are VHDL and Verilog.

VHDL library Specifies the name of VHDL work library for code generation. The default
name is xil_defaultlib.

Use STD_LOGIC type for
Boolean or 1 bit wide
gateways

If your design's Hardware Description Language (HDL) is VHDL, selecting
this option will declare a Boolean or 1-bit port (Gateway In or Gateway Out)
as a STD-LOGIC type. If this option is not selected, System Generator will
interpret Boolean or 1-bit ports as vectors.

Target Directory Defines where System Generator should write compilation results. Because
System Generator and the FPGA physical design tools typically create many
files, it is best to create a separate target directory, i.e., a directory other
than the directory containing your Simulink model files. The directory can
be an absolute path (e.g. c:\netlist) or a path relative to the directory
containing the model (e.g. netlist).

Synthesis strategy Choose a Synthesis strategy from the pre-defined strategies in the
drop-down list.

Implementation
strategy

Choose an Implementation strategy from the pre-defined strategies in the
drop-down list.

Create interface
document

When this box is checked and the Generate button is activated for netlisting,
System Generator creates an HTM document that describes the design being
netlisted. This document is placed in a “documentation” subfolder under the
netlist folder.

Create testbench This instructs System Generator to create an HDL testbench. Simulating the
testbench in an HDL simulator compares Simulink simulation results with
ones obtained from the compiled version of the design. To construct test
vectors, System Generator simulates the design in Simulink, and saves the
values seen at gateways. The top HDL file for the testbench is named
<name>_tb.vhd/.v, where <name> is a name derived from the portion of the
design being tested and the extension is dependent on the hardware
description language.

FPGA clock period Defines the period in nanoseconds of the system clock. The value need not
be an integer. The period is passed to the Xilinx implementation tools
through a constraints file, where it is used as the global PERIOD constraint.
Multicycle paths are constrained to integer multiples of this value.

Clock pin location Defines the pin location for the hardware clock. This information is passed
to the Xilinx implementation tools through a constraints file.
Designing with System Generator 41
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=41

Chapter 3: Hardware Design Using System Generator
Simulink System Period

You must specify a value for Simulink system period in the System Generator token dialog
box. This value tells the underlying rate, in seconds, at which simulations of the design
should run. The period must evenly divide all sample periods in the design. For example, if
the design consists of blocks whose sample periods are 2, 6, and 8, then the largest
acceptable sample period is 2, though other values such as 1 and 0.5 are also acceptable.
Sample periods arise in three ways: some are specified explicitly, some are calculated
automatically, and some arise implicitly within blocks that involve internal rate changes. For
more information on how the system period setting affects the hardware clock, refer to
Timing and Clocking.

Before running a simulation or compiling the design, System Generator verifies that the
period evenly divides every sample period in the design. If a problem is found, System
Generator opens a dialog box suggesting an appropriate value. Clicking the button labeled
Update instructs System Generator to use the suggested value. To see a summary of period
conflicts, click the button labeled View Conflict Summary. If you allow System Generator to
update the period, you must restart the simulation or compilation.

It is possible to assemble a System Generator model that is inconsistent because its periods
cannot be reconciled. (For example, certain blocks require that they run at the system rate.
Driving an up-sampler with such a block produces an inconsistent model.) If, even after
updating the system period, System Generator reports there are conflicts, then the model is
inconsistent and must be corrected.

The period control is hierarchical; see the discussion of hierarchical controls below for
details.

Block Icon Display

The options on this control affect the display of the block icons on the model. After
compilation (which occurs when Generating, Simulating, or by pressing Control-D) of the
model various information about the block in your model can be displayed, depending on
which option is chosen.

• Default—basic information about port directions are shown

• Sample rates—the sample rates of each port are shown

• Pipeline stages—the number of pipeline stages are shown

• HDL port names—the names of the ports are shown

• Input data types—the input data types for each port are shown

• Output data types—output data types for each port are shown
Designing with System Generator 42
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=42

Chapter 3: Hardware Design Using System Generator
Hierarchical Controls

The Simulink System Period control (see the topic Simulink System Period above) on the
System Generator token is hierarchical. A hierarchical control on a System Generator token
applies to the portion of the design within the scope of the token, but can be overridden on
other System Generator tokens deeper in the design. For example, suppose Simulink
System Period is set in a System Generator token at the top of the design, but is changed
in a System Generator token within a Subsystem S. Then that Subsystem will have the
second period, but the rest of the design will use the period set in the top level.

Compilation Results
This topic discusses the low-level files System Generator produces when HDL Netlist is
selected on the System Generator token and Generate is clicked. The files consist of HDL
that implement the design. In addition, System Generator organizes the HDL files and other
hardware files into a Vivado IDE Project. All files are written to the target directory specified
on the System Generator token. If no testbench is requested, then the key files produced by
System Generator are the following:

If a testbench is requested, then, in addition to the above, System Generator produces files
that allow simulation results to be compared. The comparisons are between Simulink
simulation results and corresponding results from ModelSim. The additional files are the
following:

File Name or Type Description

<design_name>.vhd/.v This file contains a hierarchical structural netlist
along with clock/clock enable controls

<design_name_entity_declarations>.vhd/.v This file contains the entity of module definitions of
System Generator blocks in the design.

<design_name>.xpr This file is the Vivado IDE project file that describes
all of the attributes of the Vivado IDE design.

File Name or Type Description

Various .dat files These contain the simulation results from Simulink.

<design_name>_tb.vhd/.v This is a testbench that wraps the design. When simulated,
this testbench compares simulation results from the digital
simulator against those produced by Simulink.
Designing with System Generator 43
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=43

Chapter 3: Hardware Design Using System Generator
Using the System Generator Constraints File

When a design is compiled, System Generator produces constraints that tell downstream
tools how to process the design. This enables the tools to produce a higher quality
implementation, and to do so using considerably less time. Constraints supply the
following:

• The period to be used for the system clock;

• The speed, with respect to the system clock, at which various portions of the design
must run;

• The pin locations at which ports should be placed;

• The speed at which ports must operate.

The system clock period (i.e., the period of the fastest hardware clock in the design) can be
specified in the System Generator token. System Generator writes this period to the
constraints file. Downstream tools use the period as a goal when implementing the design.

Multicycle Path Constraints

Many designs consist of parts that run at different clock rates. For the fastest part, the
system clock period is used. For the remaining parts, the clock period is an integer multiple
of the system clock period. It is important that downstream tools know what speed each
part of the design must achieve. With this information, efficiency and effectiveness of the
tools are greatly increased, resulting in reduced compilation times and improved hardware
realizations. The division of the design into parts, and the speed at which each part must
run, are specified in the constraints file using multicycle path constraints.

IOB Timing and Placement Constraints

When translated into hardware, System Generator's Gateway In and Gateway Out blocks
become input and output ports. The locations of these ports and the speeds at which they
must operate can be entered in the Gateway In and Out parameter dialog boxes. Port
location and speed are specified in the constraints file by IOB timing.

This topic describes how System Generator handles hardware clocks in the HDL it generates.
Assume the design is named <design>, and <design> is an acceptable HDL identifier.
When System Generator compiles the design, it writes a collection of HDL entities or
modules, the topmost of which is named <design>, and is stored in a file named
<design>.vhd/.v.

The “Clock Enables” Multirate Implementation

Clock and clock enables appear in pairs throughout the HDL. Typical clock names are clk_1,
clk_2, and clk_3, and the names of the companion clock enables are ce_1, ce_2, and ce_3
respectively. The name tells the rate for the clock/clock enable pair; logic driven by clk_1
and ce_1 runs at the system (i.e., fastest) rate, while logic driven by (say) clk_2 and ce_2 runs
Designing with System Generator 44
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=44

Chapter 3: Hardware Design Using System Generator
at half the system rate. Clocks and clock enables are not driven in the entity or module
named <design> or any subsidiary entities; instead, they are exposed as top-level input
ports

The names of the clocks and clock enables in System Generator HDL suggest that clocking
is completely general, but this is not the case. To illustrate this, assume a design has clocks
named clk_1 and clk_2, and companion clock enables named ce_1 and ce_2 respectively. You
might expect that working hardware could be produced if the ce_1 and ce_2 signals were
tied high, and clk_2 were driven by a clock signal whose rate is half that of clk_1. For most
System Generator designs this does not work. Instead, clk_1 and clk_2 must be driven by the
same clock, ce_1 must be tied high, and ce_2 must vary at a rate half that of clk_1 and clk_2.

IP Instance Caching

For compilation targets that perform Vivado synthesis to generate their output products,
System Generator incorporates a disk cache to speed up the iterative design process.

With the cache enabled for your design, whenever your compilation generates an IP
instance for synthesis, and the Vivado synthesis tool creates synthesis output products, the
tools create an entry in the cache area.

After the cache is populated, when a new customization of the IP is created which has the
exact same properties, the IP is not synthesized again; instead, the cache is referenced and
the corresponding synthesis output in the cache is copied to your design’s output directory.
Because the IP instance is not synthesized again, and this process is repeated for every IP
referenced in your design, generation of the output products is completed more quickly.

The following compilation targets invoke Vivado synthesis; these compilation targets will
access the cache to synthesize IP in your design.

• Hardware Co-Simulation

• Synthesized Checkpoint

Also, when you compile your design and Perform analysis is selected for either Timing or
Resource analysis, Vivado synthesis always runs, regardless of the compilation target. Since
timing analysis or resource analysis may be performed several times for a design, enabling
IP caching will improve overall performance. For a description of the Perform analysis
compilation option, see Performing Timing Analysis or Performing Resource Analysis.

The IP cache is shared across multiple Simulink models on your system. If you reuse an IP in
one design by including it in another design, and the IP is customized identically and has
the same part and language settings in both Simulink models, you can gain the benefit of
caching when you compile either of the designs.
Designing with System Generator 45
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=45

Chapter 3: Hardware Design Using System Generator
You can enable IP caching for your design by selecting Remote IP cache in the System
Generator token dialog box. The cache will then be referenced for every compilation
performed afterwards.

CAUTION! The IP Cache can grow large, depending on the number of IP present in your design.

You can clear the cache to save disk space by clicking Clear cache in the System Generator
token dialog box.

To find the location of the IP cache directory on your system, enter the command
xilinx.environment.getipcachepath on the MATLAB command line. The full path to
the IP cache directory will display in the MATLAB command window.

>> xilinx.environment.getipcachepath

ans =

C:/Users/your_id/AppData/Local/Xilinx/Sysgen/SysgenVivado/win64.o/ip

IP caching in System Generator is similar to IP caching in the Vivado Design Suite, described
at this link in the Vivado Design Suite User Guide: Designing with IP (UG896). However, the
IP cache for System Generator designs is in a different location than the IP cache for Vivado
projects.
Designing with System Generator 46
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug896-vivado-ip.pdf;a=xSettingTheIPCache
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=46

Chapter 3: Hardware Design Using System Generator
Vivado Project
The HDL Netlist and IP Catalog compilation targets also generate an example Vivado
project, which represents an integration of the results of Code Generation.

In the case of the HDL Netlist compilation target, the Vivado project sets the module
designed in System Generator as the top level and includes instances of IP. Also, if Create
testbench is selected in the System Generator token, a testbench and stimulus files (*.dat)
are also added to the project.

In the case of the IP Catalog compilation target, an example project is created with the
following features :

• The IP generated from System Generator is already added to the IP Catalog associated
with the project and available for the RTL flow as well as the IP Integrator-based flow.

• The design includes an RTL instantiation of IP called <ip>_0 underneath <design>_stub
that indicates how to instanciate such an IP in the RTL flow

• The design includes an RTL testbench called <design>_tb that also instantiates the
same IP in the RTL flow.

Note: A testbench is not created if AXI4-Lite interface generation is selected in a Gateway In or
Gateway Out block.

• The project also includes an example IP Integrator diagram with a Zynq-7000
subsystem if the part selected in this example is a Zynq-7000 AP SoC part. For all other
parts, a MicroBlaze-based subsystem is created.

HDL Testbench
Ordinarily, System Generator designs are bit and cycle-accurate, so Simulink simulation
results exactly match those seen in hardware. There are, however, times when it is useful to
compare Simulink simulation results against those obtained from an HDL simulator. In
particular, this makes sense when the design contains black boxes. The Create Testbench
checkbox in the System Generator token makes this possible.

Suppose the design is named <design>, and a System Generator token is placed at the top
of the design. Suppose also that in the token the Compilation field is set to HDL Netlist,
and the Create Testbench checkbox is selected. When the Generate button is clicked,
System Generator produces the usual files for the design, and in addition writes the
following:

1. A file named <design>_tb.vhd/.v that contains a testbench HDL entity;

2. Various .dat files that contain test vectors for use in an HDL testbench simulation.

3. You can perform RTL simulation using the Vivado Integrated Design Environment (IDE).
For more details, refer to the document Vivado Design Suite User Guide: Logic Simulation
(UG900).
Designing with System Generator 47
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=47

Chapter 3: Hardware Design Using System Generator
System Generator generates the .dat files by saving the values that pass through gateways.
In the HDL simulation, input values from the .dat files are stimuli, and output values are
expected results. The testbench is simply a wrapper that feeds the stimuli to the HDL for the
design, then compares HDL results against expected ones.

Compiling MATLAB into an FPGA
System Generator provides direct support for MATLAB through the MCode block. The
MCode block applies input values to an M-function for evaluation using Xilinx's fixed-point
data type. The evaluation is done once for each sample period. The block is capable of
keeping internal states with the use of persistent state variables. The input ports of the
block are determined by the input arguments of the specified M-function and the output
ports of the block are determined by the output arguments of the M-function. The block
provides a convenient way to build finite state machines, control logic, and computation
heavy systems.

In order to construct an MCode block, an M-function must be written. The M-file must be
in the directory of the model file that is to use the M-file or in a directory in the MATLAB
path.

The following text provides examples that use the MCode block:

• Example 1 Simple Selector shows how to implement a function that returns the
maximum value of its inputs;

• Example 2 Simple Arithmetic Operations shows how to implement simple arithmetic
operations;

• Example 3 Complex Multiplier with Latency shows how to build a complex multiplier
with latency;

• Example 4 Shift Operations shows how to implement shift operations;

• Example 5 Passing Parameters into the MCode Block shows how to pass parameters
into a MCode block;

• Example 6 Optional Input Ports shows how to implement optional input ports on an
MCode block;

• Example 7 Finite State Machines shows how to implement a finite state machine;

• Example 8 Parameterizable Accumulator shows how to build a parameterizable
accumulator;

• Example 9 FIR Example and System Verification shows how to model FIR blocks and
how to do system verification;

• Example 10 RPN Calculator shows how to model a RPN calculator – a stack machine;

• Example 11 Example of disp Function shows how to use disp function to print variable
values.
Designing with System Generator 48
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=48

Chapter 3: Hardware Design Using System Generator
The first two examples are in the mcode_block_tutorial.mdl file of the
examples/mcode_block directory in your installation of the System Generator software.
Examples 3 and 4 are in the mcode_block_tutorial2.mdl file. Examples 5 and 6 are in the
mcode_block_tutorial3.mdl file. Examples 7 and 8 are in the mcode_block_tutorial4.mdl file.
Example 9 is mcode_block_verify_fir.mdl. Example 10 is in mcode_block_rpn_calculator.mdl.

Simple Selector
This example is a simple controller for a data path, which assigns the maximum value of two
inputs to the output. The M-function is specified as the following and is saved in an M-file
xlmax.m:

function z = xlmax(x, y)
 if x > y
 z = x;
 else
 z = y;
 end

The xlmax.m file should be either saved in the same directory of the model file or should be
in the MATLAB path. Once the xlmax.m has been saved to the appropriate place, you should
drag a MCode block into your model, open the block parameter dialog box, and enter xlmax
into the MATLAB Function field. After clicking the OK button, the block has two input
ports x and y, and one output port z.

The following figure shows what the block looks like after the model is compiled. You can
see that the block calculates and sets the necessary fixed-point data type to the output
port.
Designing with System Generator 49
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=49

Chapter 3: Hardware Design Using System Generator
Simple Arithmetic Operations
This example shows some simple arithmetic operations and type conversions. The following
shows the xlSimpleArith.m file, which specifies the xlSimpleArith M-function.

function [z1, z2, z3, z4] = xlSimpleArith(a, b)
 % xlSimpleArith demonstrates some of the arithmetic operations
 % supported by the Xilinx MCode block. The function uses xfix()
 % to create Xilinx fixed-point numbers with appropriate
 % container types.%
 % You must use a xfix() to specify type, number of bits, and
 % binary point position to convert floating point values to
 % Xilinx fixed-point constants or variables.
 % By default, the xfix call uses xlTruncate
 % and xlWrap for quantization and overflow modes.
 % const1 is Ufix_8_3
 const1 = xfix({xlUnsigned, 8, 3}, 1.53);
 % const2 is Fix_10_4
 const2 = xfix({xlSigned, 10, 4, xlRound, xlWrap}, 5.687);
 z1 = a + const1;
 z2 = -b - const2;
 z3 = z1 - z2;
 % convert z3 to Fix_12_8 with saturation for overflow
 z3 = xfix({xlSigned, 12, 8, xlTruncate, xlSaturate}, z3);
 % z4 is true if both inputs are positive
 z4 = a>const1 & b>-1;

This M-function uses addition and subtraction operators. The MCode block calculates these
operations in full precision, which means the output precision is sufficient to carry out the
operation without losing information.

One thing worth discussing is the xfix function call. The function requires two arguments:
the first for fixed-point data type precision and the second indicating the value. The
precision is specified in a cell array. The first element of the precision cell array is the type
value. It can be one of three different types: xlUnsigned, xlSigned, or xlBoolean. The second
element is the number of bits of the fixed-point number. The third is the binary point
position. If the element is xlBoolean, there is no need to specify the number of bits and
binary point position. The number of bits and binary point position must be specified in
pair. The fourth element is the quantization mode and the fifth element is the overflow
mode. The quantization mode can be one of xlTruncate, xlRound, or xlRoundBanker. The
overflow mode can be one of xlWrap, xlSaturate, or xlThrowOverflow. Quanitization mode
and overflow mode must be specified as a pair. If the quantization-overflow mode pair is
not specified, the xfix function uses xlTruncate and xlWrap for signed and unsigned
numbers. The second argument of the xfix function can be either a double or a Xilinx
fixed-point number. If a constant is an integer number, there is no need to use the xfix
function. The Mcode block converts it to the appropriate fixed-point number automatically.
Designing with System Generator 50
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=50

Chapter 3: Hardware Design Using System Generator
After setting the dialog box parameter MATLAB Function to xlSimpleArith, the block shows
two input ports a and b, and four output ports z1, z2, z3, and z4.

M-functions using Xilinx data types and functions can be tested in the MATLAB Command
Window. For example, if you type: [z1, z2, z3, z4] = xlSimpleArith(2, 3) in the MATLAB
Command Window, you'll get the following lines:

UFix(9, 3): 3.500000
Fix(12, 4): -8.687500
Fix(12, 8): 7.996094
Bool: true

Notice that the two integer arguments (2 and 3) are converted to fixed-point numbers
automatically. If you have a floating-point number as an argument, an xfix call is required.
Designing with System Generator 51
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=51

Chapter 3: Hardware Design Using System Generator
Complex Multiplier with Latency
This example shows how to create a complex number multiplier. The following shows the
xlcpxmult.m file which specifies the xlcpxmult function.

function [xr, xi] = xlcpxmult(ar, ai, br, bi)
 xr = ar * br - ai * bi;
 xi = ar * bi + ai * br;

The following diagram shows the sub-system:

Two delay blocks are added after the MCode block. By selecting the option Implement
using behavioral HDL on the Delay blocks, the downstream logic synthesis tool is able to
perform the appropriate optimizations to achieve higher performance.

Shift Operations
This example shows how to implement bit-shift operations using the MCode block. Shift
operations are accomplished with multiplication and division by powers of two. For
example, multiplying by 4 is equivalent to a 2-bit left-shift, and dividing by 8 is equivalent
to a 3-bit right-shift. Shift operations are implemented by moving the binary point position
and if necessary, expanding the bit width. Consequently, multiplying a Fix_8_4 number by 4
results in a Fix_8_2 number, and multiplying a Fix_8_4 number by 64 results in a Fix_10_0
number.

The following shows the xlsimpleshift.m file which specifies one left-shift and one
right-shift:

function [lsh3, rsh2] = xlsimpleshift(din)
 % [lsh3, rsh2] = xlsimpleshift(din) does a left shift
 % 3 bits and a right shift 2 bits.
 % The shift operation is accomplished by
 % multiplication and division of power
Designing with System Generator 52
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=52

Chapter 3: Hardware Design Using System Generator
 % of two constant.
 lsh3 = din * 8;
 rsh2 = din / 4;

The following diagram shows the sub-system after compilation:

Passing Parameters into the MCode Block
This example shows how to pass parameters into the MCode block. An input argument to
an M-function can be interpreted either as an input port on the MCode block, or as a
parameter internal to the block.

The following M-code defines an M-function xl_sconvert is contained in file xl_sconvert.m:

function dout = xl_sconvert(din, nbits, binpt)
 proto = {xlSigned, nbits, binpt};
 dout = xfix(proto, din);

The following diagram shows a Subsystem containing two MCode blocks that use
M-function xl_sconvert. The arguments nbits and binpt of the M-function are specified
differently for each block by passing different parameters to the MCode blocks. The
parameters passed to the MCode block labeled signed convert 1 cause it to convert the
input data from type Fix_16_8 to Fix_10_5 at its output. The parameters passed to the
Designing with System Generator 53
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=53

Chapter 3: Hardware Design Using System Generator
MCode block labeled signed convert2 causes it to convert the input data from type Fix_16_8
to Fix_8_4 at its output.
Designing with System Generator 54
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=54

Chapter 3: Hardware Design Using System Generator
To pass parameters to each MCode block in the diagram above, you can click the Edit
Interface button on the block GUI then set the values for the M-function arguments. The
mask for MCode block signed convert 1 is shown below:
Designing with System Generator 55
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=55

Chapter 3: Hardware Design Using System Generator
The above interface window sets the M-function argument nbits to be 10 and binpt to be 5.
The mask for the MCode block signed convert 2 is shown below:

The above interface window sets the M-function argument nbits to be 8 and binpt
to be 4.
Designing with System Generator 56
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=56

Chapter 3: Hardware Design Using System Generator
Optional Input Ports
This example shows how to use the parameter passing mechanism of MCode blocks to
specify whether or not to use optional input ports on MCode blocks.

The following M-code, which defines M-function xl_m_addsub is contained in file
xl_m_addsub.m:

function s = xl_m_addsub(a, b, sub)
 if sub
 s = a - b;
 else
 s = a + b;
 end

The following diagram shows a Subsystem containing two MCode blocks that use
M-function xl_m_addsub.
Designing with System Generator 57
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=57

Chapter 3: Hardware Design Using System Generator
The Block Interface Editor of the MCode block labeled add is shown in below.

As a result, the add block features two input ports a and b; it performs full precision
addition. Input parameter sub of the MCode block labeled addsub is not bound with any
value. Consequently, the addsub block features three input ports: a, b, and sub; it performs
full precision addition or subtraction based on the value of input port sub.
Designing with System Generator 58
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=58

Chapter 3: Hardware Design Using System Generator
Finite State Machines
This example shows how to create a finite state machine using the MCode block with
internal state variables. The state machine illustrated below detects the pattern 1011 in an
input stream of bits.

The M-function that is used by the MCode block contains a transition function, which
computes the next state based on the current state and the current input. Unlike example 3
though, the M-function in this example defines persistent state variables to store the state
of the finite state machine in the MCode block. The following M-code, which defines
function detect1011_w_state is contained in file detect1011_w_state.m:

function matched = detect1011_w_state(din)
% This is the detect1011 function with states for detecting a
% pattern of 1011.

 seen_none = 0; % initial state, if input is 1, switch to seen_1
 seen_1 = 1; % first 1 has been seen, if input is 0, switch
 % seen_10
 seen_10 = 2; % 10 has been detected, if input is 1, switch to
 % seen_1011
 seen_101 = 3; % now 101 is detected, is input is 1, 1011 is
 % detected and the FSM switches to seen_1

 % the state is a 2-bit register
 persistent state, state = xl_state(seen_none, {xlUnsigned, 2, 0});

 % the default value of matched is false
 matched = false;

 switch state
 case seen_none
 if din==1
 state = seen_1;
 else
 state = seen_none;
 end
 case seen_1 % seen first 1
Designing with System Generator 59
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=59

Chapter 3: Hardware Design Using System Generator
 if din==1
 state = seen_1;
 else
 state = seen_10;
 end
 case seen_10 % seen 10
 if din==1
 state = seen_101;
 else
 % no part of sequence seen, go to seen_none
 state = seen_none;
 end
 case seen_101
 if din==1
 state = seen_1;
 matched = true;
 else
 state = seen_10;
 matched = false;
 end
 end

The following diagram shows a state machine Subsystem containing a MCode block after
compilation; the MCode block uses M-function detect1101_w_state.

Parameterizable Accumulator
This example shows how to use the MCode block to build an accumulator using persistent
state variables and parameters to provide implementation flexibility. The following M-code,
which defines function xl_accum is contained in file xl_accum.m:

function q = xl_accum(b, rst, load, en, nbits, ov, op, feed_back_down_scale)
% q = xl_accum(b, rst, nbits, ov, op, feed_back_down_scale) is
% equivalent to our Accumulator block.
 binpt = xl_binpt(b);
 init = 0;
 precision = {xlSigned, nbits, binpt, xlTruncate, ov};
 persistent s, s = xl_state(init, precision);
 q = s;
 if rst
 if load
 % reset from the input port
Designing with System Generator 60
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=60

Chapter 3: Hardware Design Using System Generator
 s = b;
 else
 % reset from zero
 s = init;
 end
 else
 if ~en
 else
 % if enabled, update the state
 if op==0
 s = s/feed_back_down_scale + b;
 else
 s = s/feed_back_down_scale - b;
 end
 end
 end

The following diagram shows a Subsystem containing the accumulator MCode block using
M-function xl_accum. The MCode block is labeled MCode Accumulator. The Subsystem also
contains the Xilinx Accumulator block, labeled Accumulator, for comparison purposes. The
MCode block provides the same functionality as the Xilinx Accumulator block; however, its
mask interface differs in that parameters of the MCode block are specified with a cell array
in the Function Parameter Bindings parameter.
Designing with System Generator 61
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=61

Chapter 3: Hardware Design Using System Generator
Optional inputs rst and load of block Accum_MCode1 are disabled in the cell array of the
Function Parameter Bindings parameter. The block mask for block MCode Accumulator is
shown below:
Designing with System Generator 62
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=62

Chapter 3: Hardware Design Using System Generator
The example contains two additional accumulator Subsystems with MCode blocks using the
same M-function, but different parameter settings to accomplish different accumulator
implementations.

FIR Example and System Verification
This example shows how to use the MCode block to model FIRs. It also shows how to do
system verification with the MCode block.

The model contains two FIR blocks. Both are modeled with the MCode block and both are
synthesizable. The following are the two functions that model those two blocks.

function y = simple_fir(x, lat, coefs, len, c_nbits, c_binpt, o_nbits, o_binpt)
 coef_prec = {xlSigned, c_nbits, c_binpt, xlRound, xlWrap};
 out_prec = {xlSigned, o_nbits, o_binpt};

 coefs_xfix = xfix(coef_prec, coefs);
 persistent coef_vec, coef_vec = xl_state(coefs_xfix, coef_prec);
 persistent x_line, x_line = xl_state(zeros(1, len-1), x);
 persistent p, p = xl_state(zeros(1, lat), out_prec, lat);

 sum = x * coef_vec(0);
 for idx = 1:len-1
 sum = sum + x_line(idx-1) * coef_vec(idx);
 sum = xfix(out_prec, sum);
 end
 y = p.back;
 p.push_front_pop_back(sum);
 x_line.push_front_pop_back(x);
function y = fir_transpose(x, lat, coefs, len, c_nbits, c_binpt, o_nbits, o_binpt)
 coef_prec = {xlSigned, c_nbits, c_binpt, xlRound, xlWrap};
 out_prec = {xlSigned, o_nbits, o_binpt};
 coefs_xfix = xfix(coef_prec, coefs);
 persistent coef_vec, coef_vec = xl_state(coefs_xfix, coef_prec);
 persistent reg_line, reg_line = xl_state(zeros(1, len), out_prec);
 if lat <= 0
 error('latency must be at least 1');
Designing with System Generator 63
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=63

Chapter 3: Hardware Design Using System Generator
 end
 lat = lat - 1;
 persistent dly,
 if lat <= 0
 y = reg_line.back;
 else
 dly = xl_state(zeros(1, lat), out_prec, lat);
 y = dly.back;
 dly.push_front_pop_back(reg_line.back);
 end
 for idx = len-1:-1:1
 reg_line(idx) = reg_line(idx - 1) + coef_vec(len - idx - 1) * x;
 end
 reg_line(0) = coef_vec(len - 1) * x;

The parameters are configured as following:

In order to verify that the functionality of two blocks is equal, we also use another MCode
block to compare the outputs of two blocks. If the two outputs are not equal at any given
time, the error checking block will report the error. The following function does the error
checking:

function eq = error_ne(a, b, report, mod)
 persistent cnt, cnt = xl_state(0, {xlUnsigned, 16, 0});
 switch mod
 case 1
 eq = a==b;
 case 2
 eq = isnan(a) || isnan(b) || a == b;
 case 3
 eq = ~isnan(a) && ~isnan(b) && a == b;
Designing with System Generator 64
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=64

Chapter 3: Hardware Design Using System Generator
 otherwise
 eq = false;
 error(['wrong value of mode ', num2str(mod)]);
 end
 if report
 if ~eq
 error(['two inputs are not equal at time ', num2str(cnt)]);
 end
 end
 cnt = cnt + 1;

The block is configured as following:
Designing with System Generator 65
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=65

Chapter 3: Hardware Design Using System Generator
RPN Calculator
This example shows how to use the MCode block to model a RPN calculator which is a stack
machine. The block is synthesizable:

The following function models the RPN calculator.

function [q, active] = rpn_calc(d, rst, en)
 d_nbits = xl_nbits(d);
 % the first bit indicates whether it's a data or operator
 is_oper = xl_slice(d, d_nbits-1, d_nbits-1)==1;
 din = xl_force(xl_slice(d, d_nbits-2, 0), xlSigned, 0);
 % the lower 3 bits are operator
 op = xl_slice(d, 2, 0);
 % acc the the A register
 persistent acc, acc = xl_state(0, din);
 % the stack is implemented with a RAM and
 % an up-down counter
 persistent mem, mem = xl_state(zeros(1, 64), din);
 persistent acc_active, acc_active = xl_state(false, {xlBoolean});
Designing with System Generator 66
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=66

Chapter 3: Hardware Design Using System Generator
 persistent stack_active, stack_active = xl_state(false, ...
 {xlBoolean});
 stack_pt_prec = {xlUnsigned, 5, 0};
 persistent stack_pt, stack_pt = xl_state(0, {xlUnsigned, 5, 0});
 % when en is true, it's action
 OP_ADD = 2;
 OP_SUB = 3;
 OP_MULT = 4;
 OP_NEG = 5;
 OP_DROP = 6;
 q = acc;
 active = acc_active;
 if rst
 acc = 0;
 acc_active = false;
 stack_pt = 0;
 elseif en
 if ~is_oper
 % enter data, push
 if acc_active
 stack_pt = xfix(stack_pt_prec, stack_pt + 1);
 mem(stack_pt) = acc;
 stack_active = true;
 else
 acc_active = true;
 end
 acc = din;
 else
 if op == OP_NEG
 % unary op, no stack op
 acc = -acc;
 elseif stack_active
 b = mem(stack_pt);
 switch double(op)
 case OP_ADD
 acc = acc + b;
 case OP_SUB
 acc = b - acc ;
 case OP_MULT
 acc = acc * b;
 case OP_DROP
 acc = b;
 end
 stack_pt = stack_pt - 1;
 elseif acc_active
 acc_active = false;
 acc = 0;
 end
 end
 end
 stack_active = stack_pt ~= 0;
Designing with System Generator 67
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=67

Chapter 3: Hardware Design Using System Generator
Example of disp Function
The following MCode function shows how to use the disp function to print variable values.

function x = testdisp(a, b)
 persistent dly, dly = xl_state(zeros(1, 8), a);
 persistent rom, rom = xl_state([3, 2, 1, 0], a);
 disp('Hello World!');
 disp(['num2str(dly) is ', num2str(dly)]);
 disp('disp(dly) is ');
 disp(dly);
 disp('disp(rom) is ');
 disp(rom);
 a2 = dly.back;
 dly.push_front_pop_back(a);
 x = a + b;
 disp(['a = ', num2str(a), ', ', ...
 'b = ', num2str(b), ', ', ...
 'x = ', num2str(x)]);
 disp(num2str(true));
 disp('disp(10) is');
 disp(10);
 disp('disp(-10) is');
 disp(-10);
 disp('disp(a) is ');
 disp(a);
 disp('disp(a == b)');
 disp(a==b);

The Enable print with disp option must be checked.

Here are the lines that are displayed on the MATLAB console for the first simulation step.

mcode_block_disp/MCode (Simulink time: 0.000000, FPGA clock: 0)
Hello World!
num2str(dly) is [0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000]
Designing with System Generator 68
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=68

Chapter 3: Hardware Design Using System Generator
disp(dly) is
 type: Fix_11_7,
 maxlen: 8,
 length: 8,
 0: binary 0000.0000000, double 0.000000,
 1: binary 0000.0000000, double 0.000000,
 2: binary 0000.0000000, double 0.000000,
 3: binary 0000.0000000, double 0.000000,
 4: binary 0000.0000000, double 0.000000,
 5: binary 0000.0000000, double 0.000000,
 6: binary 0000.0000000, double 0.000000,
 7: binary 0000.0000000, double 0.000000,
disp(rom) is
 type: Fix_11_7,
 maxlen: 4,
 length: 4,
 0: binary 0011.0000000, double 3.0,
 1: binary 0010.0000000, double 2.0,
 2: binary 0001.0000000, double 1.0,
 3: binary 0000.0000000, double 0.0,
a = 0.000000, b = 0.000000, x = 0.000000
1
disp(10) is
 type: UFix_4_0, binary: 1010, double: 10.0
disp(-10) is
 type: Fix_5_0, binary: 10110, double: -10.0
disp(a) is
 type: Fix_11_7, binary: 0000.0000000, double: 0.000000
disp(a == b)
 type: Bool, binary: 1, double: 1

Importing a System Generator Design into a Bigger
System
A System Generator design is often a sub-design that is incorporated into a larger HDL
design. This topic shows how to embed two System Generator designs into a larger design
and how VHDL created by System Generator can be incorporated into the simulation model
of the overall system.

HDL Netlist Compilation
Selecting the HDL Netlist compilation target from the System Generator token instructs
System Generator to generate HDL along with other related files that implement the design.
In addition, System Generator produces auxiliary files that simplify downstream processing
such as simulating the design using an Vivado simulator, and performing logic synthesis
using Vivado synthesis. See System Generator Compilation Types for more details.
Designing with System Generator 69
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=69

Chapter 3: Hardware Design Using System Generator
Integration Design Rules
When a System Generator model is to be included into a larger design, the following two
design rules must be followed.

Rule 1: No Gateway or System Generator token should specify an IOB/CLK location.

Also, IOB timing constraints should be set to "none".

Rule 2: If there are any I/O ports from the System Generator design that are required to be
bubbled up to the top-level design, appropriate buffers should be instantiated in the
top-level HDL code.

Configurable Subsystems and System Generator
A configurable Subsystem is a kind of block that is made available as a standard part of
Simulink. In effect, a configurable Subsystem is a block for which you can specify several
underlying blocks. Each underlying block is a possible implementation, and you are free to
choose which implementation to use. In System Generator you might, for example, specify
a general-purpose FIR filter as a configurable Subsystem whose underlying blocks are
specific FIR filters. Some of the underlying filters might be fast but require much hardware,
while others are slow but require less hardware. Switching the choice of the underlying filter
allows you to perform experiments that trade hardware cost against speed.

Defining a Configurable Subsystem
A configurable Subsystem is defined by creating a Simulink library. The underlying blocks
that implement a configurable Subsystem are organized in this library. To create such a
library, do the following:

• Make a new empty library.
Designing with System Generator 70
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=70

Chapter 3: Hardware Design Using System Generator
• Add the underlying blocks to the library.

• Drag a template block into the library. (Templates can be found in the Simulink library
browser under Simulink/Ports & Subsystems/Configurable Subsystem.)

• Rename the template block if desired.

• Save the library.

• Double click to open the template for the library.
Designing with System Generator 71
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=71

Chapter 3: Hardware Design Using System Generator
• In the template GUI, turn on each checkbox corresponding to a block that should be an
implementation.

• Press OK, and then save the library again.

Using a Configurable Subsystem
To use a configurable Subsystem in a design, do the following:

• As described above, create the library that defines the configurable Subsystem.

• Open the library.

• Drag a copy of the template block from the library to the appropriate part of the
design.
Designing with System Generator 72
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=72

Chapter 3: Hardware Design Using System Generator
• The copy becomes an instance of the configurable Subsystem.

• Right-click on the instance, and under Block choice select the block that should be
used as the underlying implementation for the instance.

Deleting a Block from a Configurable Subsystem
To delete an underlying block from a configurable Subsystem, do the following:

• Open and unlock the library for the Subsystem.

• Double click on the template, and turn off the checkbox associated to the block to be
deleted.
Designing with System Generator 73
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=73

Chapter 3: Hardware Design Using System Generator
• Press OK, and then delete the block.

• Save the library.

• Compile the design by typing Ctrl-d.

• If necessary, update the choice for each instance of the configurable Subsystem.

Adding a Block to a Configurable Subsystem
To add an underlying block to a configurable Subsystem, do the following:

• Open and unlock the library for the Subsystem.

• Drag a block into the library.
Designing with System Generator 74
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=74

Chapter 3: Hardware Design Using System Generator
• Double click on the template, and turn on the checkbox next to the added block.

• Press OK, and then save the library.

• Compile the design by typing Ctrl-d.

• If necessary, update the choice for each instance of the configurable Subsystem.
Designing with System Generator 75
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=75

Chapter 3: Hardware Design Using System Generator
Notes for Higher Performance FPGA Design
If you focus all your optimization efforts using the back-end implementation tools, you may
not be able to achieve timing closure because of the following reasons:

• The more complex IP blocks in a System Generator design like FIR Compiler and FFT are
generated under the hood. They are provided as highly-optimized netlists to the
synthesis tool and the implementation tools, so further optimization may not be
possible.

• System Generator netlisting produces HDL code with many instantiated primitives such
as registers, BRAMs, and DSP48E1s. There is not much a synthesis tool can do to
optimize these elements.

The following tips focus on what you can do in System Generator to increase the
performance of your design before you start the implementation process.

• Review the Hardware Notes Included with Each Block Dialog Box

• Register the Inputs and Outputs of Your Design

• Insert Pipeline Registers

• Use Saturation Arithmetic and Rounding Only When Necessary

• Set the Data Rate Option on All Gateway Blocks

• Other Things to Try

Review the Hardware Notes Included with Each Block Dialog
Box
Pay close attention to the Hardware Notes included in the block dialog boxes. Many blocks
in the Xilinx Blockset library have notes that explain how to achieve the most hardware
efficient implementation. For example, the notes point out that the Scale block costs
nothing in hardware. By contrast, the Shift block (which is sometimes used for the same
purpose) can use hardware.
Designing with System Generator 76
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=76

Chapter 3: Hardware Design Using System Generator
Register the Inputs and Outputs of Your Design
Register the inputs and outputs of your design. As shown below, this can be done by
placing one or more Delay blocks with a latency 1 or Register blocks after the Gateway In
and before Gateway Out blocks. Selecting any of the Register block features adds hardware.

Double registering the I/Os may also be beneficial. This can be performed by instantiating
two separate Register blocks, or by instantiating two Delay blocks, each having latency 1.
This allows one of the registers to be packed into the IOB and the other to be placed next
to the logic in the FPGA fabric. A Delay block with latency 2 does not give the same result
because the block with a latency of 2 is implemented using an SRL16 and cannot be packed
into an IOB.

Insert Pipeline Registers
Insert pipeline registers wherever possible and reasonable. Deep pipelines are efficiently
implemented with the Delay blocks since the SRL16 primitive is used. If an initial value is
needed on a register, the Register block should be used. Also, if the input path of an SRL16
is failing timing, you should place a Register block before the related Delay block and
reduce the latency of the Delay block by one. This allows the router more flexibility to place
Designing with System Generator 77
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=77

Chapter 3: Hardware Design Using System Generator
the Register and Delay block (SRL + Register) away from each other to maximize the margin
for the routing delay of this path.

As shown below, the Convert block can be pipelined with embedded register stages to
guarantee maximum performance.

To achieve a more efficient implementation on some Xilinx blocks, you can select the
Implement using behavioral HDL option. As shown below, if the delay on a Delay block is
Designing with System Generator 78
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=78

Chapter 3: Hardware Design Using System Generator
32 or greater, Xilinx synthesis infers a SRLC32E (32-bit Shift-Register) which maps into a
single LUT.

For BRAMS (Block RAMS), use the internal output register. You do this by setting the latency
from 1 (the default) to 2. This enables the BRAM output register.

When you are using DSP48E1s, use the input, output and internal registers; for FIFOs, use
the embedded registers option. Also, check all the high-level IP blocks for pipelining
options.

Use Saturation Arithmetic and Rounding Only When Necessary
Saturation arithmetic and rounding have area and performance costs. Use only if necessary.
For example a Reinterpret block doesn‘t cost any logic. A Convert (cast) block doesn‘t cost
any logic if Quantization is set to Truncate and if Overflow is set to Wrap. If the data type
requires the use of the Rounding and Saturation options, then pipeline the Convert block
with embedded register stages. If you are using a DSP48E1, the rounding can be done
within the DSP48E1.

Set the Data Rate Option on All Gateway Blocks
Select the IOB timing constraint option Data Rate on all Gateway In and Gateway Out
blocks. When Data Rate is selected, the IOBs are constrained at the data rate at which the
IOBs operate. The rate is determined by the Simulink system period(sec) field in the
Designing with System Generator 79
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=79

Chapter 3: Hardware Design Using System Generator
System Generator token and the sample rate of the Gateway relative to the other sample
periods in the design.

Other Things to Try
• Change the Source Design

° Use Additional Pipelining

Use the Output and Pipeline registers inside BRAM and DSP48s.

° Run Functions in Parallel

Run functions in parallel at a slower clock rate

° Use Retiming Techniques

Move existing registers through combinational logic.

° Use Hard Cores where Possible

Use Block RAM instead of distributed RAM.

° Use a Different Design Approach for Functions

• Avoid Over-Constraining the Design

Don’t over-constrain the design and use up/down sample blocks where appropriate.

• Consider Decreasing the Frequency of Critical Design Modules

• Squeeze Out the Implementation Tools

° Try Different Synthesis Options.

° Floorplan Critical Modules
Designing with System Generator 80
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=80

Chapter 3: Hardware Design Using System Generator
Using FDATool in Digital Filter Applications
The following example demonstrates one way of specifying, implementing, and simulating
a FIR filter using the FDATool block. The FDATool block is used to define the filter order and
coefficients and the Xilinx Blocksets are used to implement a MAC-based FIR filter using a
single MAC (Multiply-Accumulate) engine. The quality of frequency response is then
validated by comparing it to a double-precision Simulink filter model.

Although a single MAC engine FIR filter is used for this example, we strongly recommend
that you look at the DSP Reference Library provided as a part of the Xilinx Reference
Blockset. The DSP Reference Library consists of multi-MAC, as well as, multi-channel
implementation examples with variations on the type of memory used.
Designing with System Generator 81
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=81

Chapter 3: Hardware Design Using System Generator
A demo included in the System Generator demos library also shows an efficient way to
implement a MAC-based interpolation filter. To see the demo, type the following in the
MATLAB Command Window:

>> demo blockset xilinx

then select Digital filtering: Polyphase 1:8 filter using SRL16Es from the list of demo
designs.

Design Overview
This design uses the random number source block from the DSP Blockset library to drive
two different implementations of a FIR filter:

• The first filter is the one that could be implemented in a Xilinx device. It is a fixed-point
FIR filter implemented with a dual-port Block memory and a single
multiply-accumulator.

• The second filter is what is referred to as reference filter. It is a double-precision,
direct-form II transpose filter.

The frequency response of each filter is then plotted in a transfer function scope.
Designing with System Generator 82
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=82

Chapter 3: Hardware Design Using System Generator
Open and Generate the Coefficients for this FIR Filter
1. From the MATLAB console window, cd into the directory

C:/ug897-example-files/mac_df2t.

2. Open the design model by typing mac_df2t from your MATLAB Command Window.

For the purpose of this exercise, the variables coef, coef_width, coef_binpt, data_width,
data_binpt and Fs are not defined. You will first use these variables as mask parameters to
the MAC Based FIR block and then design and assign the filter coefficients using the
FDATool. The fully functional model is available in the current directory and is called
mac_df2t_soln.mdl.

Parameterize the MAC-Based FIR Block
1. Right Click on the MAC-Based FIR block and select Edit Mask as shown in the figure

below.
Designing with System Generator 83
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=83

Chapter 3: Hardware Design Using System Generator
2. Double-click on the Parameters tab and add the parameters coef, data_width and
data_binpt as shown below.
Designing with System Generator 84
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=84

Chapter 3: Hardware Design Using System Generator
Generate and Assign Coefficients for the FIR Filter
1. Drag and drop the FDATool block into your model from the DSP Xilinx Blockset Library.

2. Double-click on the FDATool block and enter the following specifications in the Filter
Design & Analysis Tool for a low-pass filter designed to eliminate high-frequency noise
in audio systems:

° Response Type: Lowpass

° Filter Order: Minimum order

° Frequency Specifications

- Units: Hz

- Fs: 44100

- Fpass: 6000

- Fstop: 7725

° Magnitude Specifications

- Units: dB

- Apass: 1

- Astop: 48

3. Click on Design Filter at the bottom of the tool window to find out the filter order and
observe the magnitude response.
Designing with System Generator 85
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=85

Chapter 3: Hardware Design Using System Generator
You can also view the phase response, impulse response, coefficients and more by
selecting the appropriate icon at the top-right of the GUI. Based on the FDATool, a
43-tap FIR filter (order 0-42) is required in order to meet the design specifications listed
above.

The filter coefficients can be displayed in the MATLAB workspace by typing:

>> xlfda_numerator('FDATool')

These useful functions help you find the maximum and minimum coefficient value in
order to adequately specify the coefficient width and binary point:

>> max(xlfda_numerator('FDATool'))
>> min(xlfda_numerator('FDATool'))

For this exercise, the coefficient type has been set to be Fix_12_12, which is a 12-bit
number with the binary point to the left of the twelfth bit. The result of the max()
function above shows that the largest coefficient is 0.3022, which means that the binary
point may be positioned to the left of the most significant bit. How do you reason that?
A Fix_12_12 number has a range of -0.5 to 0.4998, meaning the dynamic range is
maximized by putting the binary point left of the most significant bit. If you moved the
binary point to the right (by using a Fix_12_11 number) you would lose one bit of
dynamic range because a Fix_12_11 number has a range of -1 to 0.9995, which is more
than you require to represent the coefficients.

4. Click on the Reference Filter block and the MAC Based FIR block and verify the
parameter values for coef, coef_width, coef_binpt, data_width, data_binpt and Fs as
shown below.

Click OK on each dialog box
Designing with System Generator 86
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=86

Chapter 3: Hardware Design Using System Generator
Browse Through and Understand the Xilinx Filter Block
The following block diagram showing how the MAC-based FIR filter has been implemented
for this exercise.

At this point, the MAC filter is set up for a 10-bit signed input data (Fix_10_8), a 12-bit
signed coefficient (Fix_12_12), and 43 taps. All these parameters can be modified directly
from the MAC block GUI. The coefficients and data need to be stored in a memory system.
For the exercise, you choose to use a dual-port memory to store the data and coefficients,
with the data being captured and read out using a circular RAM buffer. The RAM is used in
a mixed-mode configuration: values are written and read from port A (RAM mode), and the
coefficients are only read from port B (ROM mode).

The multiplier is set up to use the embedded multiplier resource available in Xilinx 7 series
devices as well as three levels of latency in order to achieve the fastest performance
possible. The precision required for the multiplier and the accumulator is a function of the
filter taps (coefficients) and the number of taps. Since these are fixed at design time, it is
possible to tailor the hardware resources to the filter specification. The accumulator need
only have sufficient precision to accumulate maximal input against the filter taps, which is
calculated as follows:

acc_nbits = ceil(log2(sum(abs(coef*2^coef_width_bp)))) + data_width+ 1;

Upon reset, the accumulator re-initializes to its current input value rather than zero, which
allows the MAC engine to stream data without stalling. A capture register is required for
streaming operation since the MAC engine reloads its accumulator with an incoming
sample after computing the last partial product for an output sample.

Finally, a downsampler reduces the capture register sample period to the output sample
period. The block is configured with latency to obtain the most efficient hardware
implementation. The downsampling rate is equal to the coefficient array length.
Designing with System Generator 87
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=87

Chapter 3: Hardware Design Using System Generator
Run the Simulation
1. Change the simulation time to 0.05, then run the simulation

You should get the message shown in the figure below.

System Generator gets its input sample period from the din Gateway In block which has
1/Fs specified as the data input sample period. As the MAC-based FIR filter is
over-sampled according to the number of taps, the System Clock Period will always be
equal to 1/(Filter Taps * Fs).

2. Double click on the System Generator token and change the Simulink system period to
specify the System Clock Period as 5.273427e-007 = 1/(43 * 44100) as shown below.

3. Run the simulation again and notice that the Xilinx implementation of the MAC-based
FIR filter meets the original filter specifications and that its frequency response is
almost identical to the double precision Simulink models.

As you can see, the filter passband response measurement as well as zeros can clearly be
seen. You should get similar frequency responses as shown in the following figure.
Designing with System Generator 88
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=88

Chapter 3: Hardware Design Using System Generator
It is possible to increase or decrease the precision of the Xilinx Filter in order to reach the
perfect area/performance/quality trade off required by your design specifications.

Stop the simulation and modify the coefficient width to FIX_10_10 and the data width to
FIX_8_6 from the block GUI. Update the model (Ctrl-d) and push into the MAC engine
block. You should now notice that the datapath has been automatically updated to only
eighteen bits on the output of the multiplier and twenty on the output of the accumulator.
Designing with System Generator 89
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=89

Chapter 3: Hardware Design Using System Generator
Restart the simulation and observe how the frequency response has been affected. The
attenuation has indeed degraded (less than 40dB) due to the fixed-wordlength effects.
Designing with System Generator 90
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=90

Chapter 3: Hardware Design Using System Generator
Multiple Independent Clocks Hardware Design

Introduction
System Generator for DSP is a cycle accurate, high-level hardware modeling and
implementation tool where the notion of a cycle is analogous to that of clock in hardware.
The design can be partitioned into groups of Subsystem blocks, where each Subsystem has
a common cycle period, independent of the cycle period of other Subsystems. This section
details how blocks can be grouped into one cycle or clock domain and how data can be
transferred between these cycle domains. In the rest of this section, the terms cycle and
clock are used interchangeably.

Grouping Blocks within a Clock Domain
Blocks are grouped together in System Generator by using a Subsystem. Grouping blocks
within a clock domain is no different except that a System Generator token has to be placed
in the Subsystem you want to “mark” as a Clock Domain. This is shown in the figure below.

In this figure, a clock domain Subsystem called src_domain has been created and a System
Generator token added. Notice that the clocking tab of the System Generator token is
selected. In this tab, the FPGA clock period has been set to (1000/368) ns (368 MHz) and the
Simulink system period to 1. This implies that an advance of 1 Simulink second corresponds
to (1000/368) ns of FPGA clock.
Designing with System Generator 91
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=91

Chapter 3: Hardware Design Using System Generator
Similarly, another group of blocks representing another clock domain is included in a
Subsystem called dest_domain, as shown in the figure below.

In this design, the dest_domain Subsystem is configured to run at an FPGA clock period of
1000/245 ns(245MHz). The Simulink system period is set to 368/245. This is done because
the Simulink system period of the src_domain Subsystem is set to 1. Hence, you normalize
with the System period from the src_domain which is faster.

System Generator Blocks used to Create Asynchronous Clock
Domains

To pass data between the src_domain and dest_domain Subsystems, you can use any one of
the following logics

1. FIFO block

2. Dual Port RAM block

3. Register block

4. Black Box block, which allows existing VHDL, Verilog, and EDIF to be brought into a design.
For more information about Black Box utility, please refer to Importing HDL Modules.
Designing with System Generator 92
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=92

Chapter 3: Hardware Design Using System Generator
These blocks configure themselves to be either Synchronous single clock blocks or Multiple
clock blocks based on their context in the design. In this design, the FIFO block is used to
cross the clock domains as shown in the figure below.

To complete the design, the FIFO block and an additional System Generator block at the top
level of the design is included to enable Code Generation.
Designing with System Generator 93
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=93

Chapter 3: Hardware Design Using System Generator
Configuring the Top-Level System Generator Token
The top-level System Generator token has to be configured to indicate that the Code
Generation must proceed for a multiple clock design. This is indicated by turning on the
Enable multiple clocks check box in the top-level System Generator token. This indicates to
the Code Generation engine that the clock information for the Subsystems src_domain and
dest_domain must be obtained from the System Generator tokens contained in those
Subsystems. If this check box is not enabled, then the design will be treated as a Single
Clock design where all the Clock information is inherited from the top-level System
Generator block.

Clock Propagation Algorithm
For all System Generator blocks in the src_domain, the clocking is governed by the System
Generator token in the src_domain Subsystem. Similarly for the dest_domain Subsystem. For
the FIFO block, the clocks are derived from its context in the design. Since the we and din
ports are driven by signals emanating from the src_domain Subsystem, the wr_clk of the
FIFO is tied to the src_domain clock. Since the dout, %full and re ports either drive or load
signals from dest_domain, the rd_clk of the FIFO is tied to the dest_domain clock. Mixing
and matching these signals across clock domains or using any other block (other than FIFO
or Dual Port RAM) to cross clock domains will result in a DRC error.
Designing with System Generator 94
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=94

Chapter 3: Hardware Design Using System Generator
Debugging Clock Propagation
The top-level System Generator token can be used to control the display of all System
Generator Block Icons using the Block icon display control in the General Tab. From this
tab, you can either select Normalized sample periods or Sample frequencies to help
understand how clocks get propagated in the design.

For multiple clock designs, the behavior of Normalized sample periods, is that the
smallest Simulink system period is used to normalize all the sample periods in the design.

To enable the above display, set the Block icon display of the top-level System Generator
token to Normalized Sample Periods and press Apply.

For Sample Frequencies, the port icon text display is the result of the following
computation:

(1e6/FPGA clock period) * Simulink system period/Port sample period
Where
FPGA clock period: The FPGA clock period specified in ns in the domain’s System Generator token
Simulink system period: The Simulink system period in seconds specified in the domain’s System Generator
token
Designing with System Generator 95
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=95

Chapter 3: Hardware Design Using System Generator
The Sample Frequencies can also be used to ratify correct clock propagation as shown in
the following figure:

To ensure that the simulation models the hardware behavior relatively with respect to the
clocks, the ratio of Simulink system period to FPGA clock period in each domain must be
the same. If this relationship is not complied with the correct ratio, a warning is thrown to
indicate this problem as shown in the figure below:
Designing with System Generator 96
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=96

Chapter 3: Hardware Design Using System Generator
Simulation
After performing the simulation, the following results are obtained as seen in the
dest_domain scope.

As shown above, the simulation results indicate that the data obtained is the data expected.

Note: This cross-clock domain simulation behavior is NOT cycle accurate.

Debugging Multiple Clock Domain Signals
In System Generator, the popup menu item Xilinx View Signal options can support the
display of signals from multiple different clock domains. This can ease the task of viewing
signals from a variety of different subsystems in one view. Additionally, the cross probing
between the signal in the Waveform Viewer and the Simulink diagram aids the debugging
process as well.
Designing with System Generator 97
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=97

Chapter 3: Hardware Design Using System Generator
To add a signal to the Waveform viewer, you right click on the signal in the model and select
Xilinx Add To Viewer. Simulating the design should launch the Waveform Viewer as shown
below.

All signals in same clock domain are colored similarly. In the figure above,
src_domain/Slice/Out1 and dest_domain/Relational/Out1 are in different clock
domains.

Code Generation
Code generation for a Multiple Clock design supports the following compilation targets:

• HDL Netlist

• IP Catalog

• Synthesized Checkpoint

A screen shot of the top-level hardware is shown in the figure below.
Designing with System Generator 98
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=98

Chapter 3: Hardware Design Using System Generator
As many clock ports as there are clock domains are exposed at the top level and can be
driven by a variety of Xilinx clocking constructs like MMCM, PLL etc. It is assumed that these
clocks are completely asynchronous and the following period constraints are created:

These are the only constraints that are required because only FIFO or Dual Port RAM are
allowed which have any additional clock domain constraints embedded in the IP.

Migrating a Multiple-Clock ISE Design into the Vivado IDE
For information on how to migrate an ISE Design with multiple asynchronous clocks into the
Vivado environment, refer to the topic Migrating Multiple-Clock ISE Designs into the
Vivado IDE.

Known Issues
The following are some of the known issues:

• The HWCosim Compilation Target is not supported for Multiple Clock Designs.

• Only FIFO & Dual Port RAM blocks can be in the top-level of the design when using
multiple clocks.

• The Behavior of blocks that aid in the crossing of Multiple clock domains is NOT cycle
accurate.

• Unconnected or terminated output ports cannot be viewed in the Waveform Viewer.
Designing with System Generator 99
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=99

Chapter 3: Hardware Design Using System Generator
AXI Interface

Introduction
AMBA® AXI™4 (Advanced eXtensible Interface 4) is the fourth generation of the AMBA
interface defined and controlled by ARM®, and has been adopted by Xilinx as the
next-generation interconnect for FPGA designs. Xilinx and ARM worked closely to ensure
that the AXI4 specification addresses the needs of FPGAs.

AXI is an open interface standard that is widely used by many 3rd-party IP vendors since it
is public, royalty-free and an industry standard.

The AMBA AXI4 interface connections are point-to-point and come in three different
flavors: AXI4, AXI4-Lite and AXI4-Stream.

• AXI4 is a memory-mapped interface which support burst transactions

• AXI4-Lite is a lightweight version of AXI4 and has a non-bursting interface

• AXI4-Stream is a high-performance streaming interface for unidirectional data transfers
(from master to slave) with reduced signaling requirements (compared to AXI4).
AXI4-Stream supports multiple channels of data on the same set of wires.

In the following documentation, AXI4 refers to the AXI4 memory map interface, and
AXI4-Lite and AXI4-Stream each refer to their respective flavor of the AMBA AXI4 interface.
When referring to the collection of interfaces, the term AMBA AXI4 shall be used.

The purpose of this section is to provide an introduction to AMBA AXI4 and to draw
attention to AMBA AXI4 details with respect to System Generator. For more detailed
information on the AMBA AXI4 specification please refer to the Xilinx AMBA-AXI4
documents found on the AMBA AXI4 Interface Protocol page on the Xilinx website.

AXI4-Stream Support in System Generator
The 3 most common AXI4-Stream signals are TVALID, TREADY and TDATA. Of all the
AXI4-Stream signals, only TVALID is denoted as mandatory, all other signals are optional. All
information-carrying signals propagate in the same direction as TVALID; only TREADY
propagates in the opposite direction.

Since AXI4-Steam is a point-to-point interface, the concept of master and slave interface is
pertinent to describe the direction of data flow. A master produces data and a slave
consumes data.
Designing with System Generator 100
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/ipcenter/axi4.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=100

Chapter 3: Hardware Design Using System Generator
Naming conventions

AXI4-Stream signals are named in the following manner:

<Role>_<ClassName>[_<BusName>]_[<ChannelName>]<SignalName>

For example:

m_axis_tvalid

Here m denotes the Role (master), axis the ClassName (AXI4-Stream) and tvalid the
SignalName

s_axis_control_tdata

Here s denotes the Role (slave), axis the ClassName, control the BusName which
distinguishes between multiple instances of the same class on a particular IP, and tdata the
SignalName.

Notes on TREADY/TVALID handshaking

The TREADY/TVALID handshake is a fundamental concept in AXI to control how data is
exchanged between the master and slave allowing for bidirectional flow control. TDATA,
and all the other AXI-Streaming signals (TSTRB, TUSER, TLAST, TID, and TDEST) are all
qualified by the TREADY/TVALID handshake. The master indicates a valid beat of data by
the assertion of TVALID and must hold the data beat until TREADY is asserted. TVALID once
asserted cannot be de-asserted until TREADY is asserted in response (this behavior is
referred to as a “sticky” TVALID). AXI also adds the rule that TREADY can depend on
TVALID, but the assertion of TVALID cannot depend on TREADY. This rule prevents
circular timing loops. The timing diagram below provides an example of the
TREADY/TVALID handshake.

Handshaking Key Points

• A transfer on any given channel occurs when both TREADY and TVALID are high in the
same cycle.

• TVALID once asserted, may only be de-asserted after a transfer has completed (TREADY
is sampled high). Transfers may not be retracted or aborted.

• Once TVALID is asserted, no other signals in the same channel (except TREADY) may
change value until the transfer completes (the cycle after TREADY is asserted).
Designing with System Generator 101
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=101

Chapter 3: Hardware Design Using System Generator
• TREADY may be asserted before, during or after the cycle in which TVALID is asserted.

• The assertion of TVALID may not be dependent on the value of TREADY. But the
assertion of TREADY may be dependent on the value of TVALID.

• There must be no combinatorial paths between input and output signals on both
master and slave interfaces:

° Applied to AXI4-Stream IP, this means that the TREADY slave output cannot be
combinatorially generated from the TVALID slave input. A slave that can
immediately accept data qualified by TVALID, should pre-assert its TREADY signal
until data is received. Alternatively TREADY can be registered and driven the cycle
following TVALID assertion.

° The default design convention is that a slave should drive TREADY independently or
pre-assert TREADY to minimize latency.

° Note that combinatorial paths between input and output signals are permitted
across separate AXI4-Stream channels. It is however a recommendation that
multiple channels belonging to the same interface (related group of channels that
operate together) should not have any combinatorial paths between input and
output signals.

• For any given channel, all signals propagate from the source (typically master) to the
destination (typically slave) except for TREADY. Any other information-carrying or
control signals that need to propagate in the opposite direction must either be part of
a separate channel (“back-channel” with separate TREADY/TVALID handshake) or be an
out-of-band signal (no handshake). TREADY should not be used as a mechanism to
transfer opposite direction information from a slave to a master.

• AXI4-Stream allows TREADY to be omitted which defaults its value to 1. This may limit
interoperability with IP that generates TREADY. It is possible to connect an AXI4-Stream
master with only forward flow control (TVALID only)

AXI4-Stream Blocks in System Generator
System Generator blocks that present an AXI4-Stream interface can be found in the Xilinx
Blockset Library entitled AXI4. Blocks in this library are drawn slightly differently from
regular (non AXI4-Stream) blocks.
Designing with System Generator 102
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=102

Chapter 3: Hardware Design Using System Generator
Port Groupings

Blocks that offer AXI4-Stream interfaces have AXI4-Stream channels grouped together and
color coded. For example, on the DDS Compiler 5.0 block shown above, the top-most input
port data_tready and the top two output ports, data_tvalid and data_tdata belong in the
same AXI4-Stream channel. As does phase_tready, phase_tvalid and phase_tdata.

Signals that are not part of any AXI4-Stream channels are given the same background color
as the block; rst is an example.

Port Name Shortening

In the example shown below, the AXI4-Stream signal names have been shortened to
improve readability on the block. Name shortening is purely cosmetic and when netlisting
occurs, the full AXI4-Stream name is used. Name shorting is turned on by default; you can
uncheck the Display shortened port names option in the block parameter dialog box to
reveal the full name.
Designing with System Generator 103
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=103

Chapter 3: Hardware Design Using System Generator
Breaking Out Multi-Channel TDATA

In AXI4-Stream, TDATA can contain multiple channels of data. In System Generator, the
individual channels for TDATA are broken out. So for example, the TDATA of port dout
below contains both real and imaginary components.

The breaking out of multi-channel TDATA does not add additional logic to the design and
is done in System Generator as a convenience to the users. The data in each broken out
TDATA port is also correctly byte-aligned.
Designing with System Generator 104
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=104

Chapter 3: Hardware Design Using System Generator
AXI4-Lite Interface Generation

Introduction
Design modules that are developed using System Generator usually form a Subsystem of a
larger DSP or Video system. These System Generator modules are typically algorithmic and
data path heavy modules that are best created in the visually-rich environment like
MATLAB/Simulink. The larger system is typically assembled from IP from the Vivado IP
catalog. These IP typically use standard stream and control interfaces like AXI4-Lite and the
larger system is typically assembled using a tool like the Vivado IP integrator.

This topic describes features in System Generator that allow you to create a standard
AXI4-Lite interface for a System Generator module and then export the module to the
Vivado IP catalog for later inclusion in a larger design using IP integrator. System Generator
also allows creation of multiple AXI4-Lite interfaces across multiple clock domains.

AXI4-Lite Interface Synthesis in System Generator
Design creation and verification is exactly the same as any other System Generator design
that does not include an AXI4-Lite interface. Consider the example_dds design shown
below.

This design contains a DDS Compiler where the two input ports, phase_valid and
phase_data are used to control the output frequency.

The simulation results of this design are shown below which indicate that the output
frequency is increasing over time.
Designing with System Generator 105
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=105

Chapter 3: Hardware Design Using System Generator
Configuring the Design for an AXI4-Lite Interface
In the example_dds design, Gateway In and Gateway Out blocks mark the boundary of the
Cycle and Bit accurate FPGA portion of the Simulink design. Control of the DDS Compiler
frequency is accomplished by “injecting” the correct value on the signals attached to the
output port of Gateway In’s called phase_valid and phase_data. This is accomplished by
modifying the Interface Options, as shown below for the phase_valid block.

As you can see, the Interface is specified as a slave AXI4-Lite Interface in System Generator,
which means that it will be transformed to a top-level AXI4-Lite interface.
Designing with System Generator 106
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=106

Chapter 3: Hardware Design Using System Generator
The following options are also of particular interest :

Auto assign address offset (Enabled): Each Gateway is associated with a register within the
AXI4-Lite Interface and this control specifies that Automatic assignment of address offsets
will take place in the design based on number of different Gateway Ins mapped to the
AXI4-Lite interface. Addresses are byte aligned to a 32-bit data width.

Address offset (Disabled): This option is only enabled if Auto assign address offset is
unchecked. It allows the user to manually override of Address Offset.

Interface Name: Assigns a unique name to this interface. This name can be used to
differentiate between multiple AXI4-Lite interfaces in the design.

IMPORTANT: The Interface Name must be composed of alphanumeric characters (lowercase
alphabetic) or an underscore (_) only, and must begin with a lowercase alphabetic character. axi4_lite1
is acceptable, 1Axi4-Lite is not.

Description: The text you enter here is captured in the “Interface Documentation” that is
automatically created when the design is exported to the Vivado IP catalog.

The other Gateways in the design are also configured in a similar fashion.

Packaging the Design for Use in Vivado IP Integrator
Now that verification in System Generator is completed, the design can be packaged for use
in IP Integrator.
Designing with System Generator 107
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=107

Chapter 3: Hardware Design Using System Generator
The System Generator block must first be configured to a Compilation target of IP Catalog
(the default generation target). This compilation target will consolidate all hardware source
created from System Generator (RTL + IP + Constraints) into an IP.

The part selected is the same part as that available on the Xilinx Zynq-7000 ZC702
Evaluation Board. In addition, you may also use the Settings button on the System
Generator token to change the information that goes along with the IP. In this case, the
default values shown below are used.

When you click on the Generate button in System Generator token GUI, RTL+IP+Constraints
generation, as well as packaging takes place.
Designing with System Generator 108
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=108

Chapter 3: Hardware Design Using System Generator
Description of the Generated Results
Based on the System Generator settings shown above, the following folders and files are
created.

1. <target directory>/ip : This directory contains all the IP-related hardware files, as well
as the software drivers. It is this directory that you must add to the IP Catalog.

2. <target directory>/ip_catalog : this directory contains an example Vivado IDE project
called example_dds.xpr
Designing with System Generator 109
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=109

Chapter 3: Hardware Design Using System Generator
Mapping to AXI4-Lite Interfaces
Gateway Ins and Gateway Outs that are tagged as AXI4-Lite registers are mapped to
different 32-bit registers within a Memory Map as shown in the Schematic below.

Note: The schematic below is an example of mapping to a single AXI4-Lite interface, assuming all
gateways have the same interface name. In a schematic with multiple AXI4-Lite interfaces, for each
group of gateways having the same interface name you would see a separate AXI4-Lite Interface.

As you can see in the diagram, a module called axi_lite_interface_example_dds is inserted
into the design RTL and drives the phase_valid and phase_data ports of the System
Generator design. And at the top level, a slave AXI4-Lite Interface is exposed. It is within this
module that address decoding is done and the phase_valid or phase_data ports are driven
based on the address obtained from the processor.

The number of bits required for addressing (s_axi_araddr and s_axi_awaddr) is determined
by the number of AXI4-Lite interface registers and the offset specifications of each
AXI4-Lite register. Enough bits are provided during module generation to uniquely decode
each register. In this example, there are two Gateways – phase_data and phase_valid. Each
port is assigned an address offset of 0x0000 & 0x0004. Hence three address bits are
allocated.
Designing with System Generator 110
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=110

Chapter 3: Hardware Design Using System Generator
Managing Multiple AXI4-Lite Interfaces
System Generator supports creation of IP with multiple AXI4-Lite interfaces. You can group
Gateway In and Gateway Out blocks into different AXI4-Lite interfaces. This feature can be
used in Multiple Clock designs as well. Software drivers will also be provided.

To assign a name to an AXI4-Lite interface, you use the Interface Name control for the
Gateway In and Gateway Out blocks associated with the interface.

All Gateway Ins and Gateway Outs with the same Interface Name are grouped into one
AXI4-Lite Interface. An Interface Name must begin with a lower case alphabetic character,
and can only contain alphanumeric characters (lowercase alphabetic) or an underscore (_).
Having the same Interface Name across multiple clock domains is not supported.

To generate the netlist you can use the IP Catalog or the HDL Netlist compilation target.

If you specify the HDL Netlist compilation target in the System Generator token and then
elaborate the design in Vivado, two AXI Lite Decoders will be created.
Designing with System Generator 111
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=111

Chapter 3: Hardware Design Using System Generator
If you specify the IP Catalog compilation target in the System Generator token, the flow will
also generate an example BD with multiple AXI4-Lite interfaces and an aresetn signal.

The naming convention for an interface is:

<clock domain name/design name>_<interface name>_s_axi

To generate a document describing the IP, select the Create interface document option on
the Sysgen Token Compilation tab before you perform the compilation.

Each AXI4-Lite interface

A single aresetn for all
AXI4-Lite interfaces in the
same clock domain
Designing with System Generator 112
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=112

Chapter 3: Hardware Design Using System Generator
You access the document the same way you access the document for any other Vivado IP.
Double-click the IP in the Vivado schematic, then select Documentation > Product Guide.

A document (HTML file) will open up (see example below).
Designing with System Generator 113
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=113

Chapter 3: Hardware Design Using System Generator
This document contains a section on the Memory Map for the IP. If you selected Auto
assign address offset in the Gateway In or Gateway Out port for the AXI4-Lite interfaces,
you can find out the address offset the different interfaces are mapped to.

Software Drivers are automatically generated and packaged as well in SDK. The
documentation for the software drivers can be found in SDK.

X-Ref Target - Figure 3-1

X-Ref Target - Figure 3-2
Designing with System Generator 114
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=114

Chapter 3: Hardware Design Using System Generator
Address Generation
The following assumptions are made in the automatic address-generation process:

1. Each AXI4-Lite gateway is associated with a unique address offset that is aligned with a
32-bit word boundary (i.e. will be a multiple of 4)

2. Addressing begins at zero

3. Addressing is incrementally assigned in the lexicographical order of the gateways. In the
event two gateways have the same name – disambiguation will be arbitrary

4. All AXI4-Lite gateways must be less than 32-bits wide else an error is issued

5. If an AXI4-Lite gateway is less than 32-bits wide, then from the internal register, LSBs will
be assigned into the DUT (Design Under Test)

6. The following criteria is used to manage the user-specified offset addresses:

a. All user-specified addresses are allocated to AXI4-Lite gateways before automatic
allocation

b. If two user-specified addresses are the same, an error is issued only during
generation (otherwise it will be ignored)

c. If the remaining AXI4-Lite gateways that are set to allocate address automatically,
System Generator attempts to fill the “holes” left behind by user-specified
addressing.

X-Ref Target - Figure 3-3
Designing with System Generator 115
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=115

Chapter 3: Hardware Design Using System Generator
Features of the Vivado IDE Example Project
The Vivado IDE example project (example_dds.xpr) is created to help you jump start your
usage of the IP created from System Generator. This project is configured as follows:

1. The IP generated from System Generator is already added to the IP Catalog associated
with the project and available for the RTL flow as well as the IP Integrator-based flow.

2. The design includes an RTL instantiation of IP called example_dds_0 underneath
example_dds_stub that indicates how to instance such an IP in RTL flow.

3. The design includes a testbench called example_dds_tb that also instances the same IP
in RTL flow.

4. The design includes an example IP integrator diagram with a Zynq-7000 Subsystem as
the part selected in this example is a Zynq-7000 AP SoC part. For all other parts, a
MicroBlaze-based Subsystem is created.

5. If the part selected is the same as one of the supported boards, the project is set to the
first board encountered with the same part setting.

6. A wrapper instancing the block design is created and set as Top.

TIP: The interface documentation associated with the IP is accessible through the block GUI. To access
this documentation, double click on the System Generator IP and click on the Documentation button
in the GUI.
Designing with System Generator 116
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=116

Chapter 3: Hardware Design Using System Generator
Software Drivers
Bare-metal software drivers are created based on the address offsets assigned to the
gateways. These drivers are located in the folder called <target_directory>/ip/drivers.
<target_directory>/ip must be added to the SDK search paths to use these drivers.

For each Gateway In mapped to an AXI4-Lite interface, the following two APIs are created

/**
* Write to <Gateway In id> of <design name>. Assignments are LSB-justified.
*
* @paramInstancePtr is the <Gateway In id> instance to operate on.
* @paramData is value to be written to gateway <Gateway In id>.
*
* @returnNone.
*
* @note <Text from Description control of the Gateway In GUI>
*
*/
void <Gateway In id>_write(example_dds *InstancePtr, u32 Data);

/**
* Read from <Gateway In id> of <design name>. Assignments are LSB-justified.
*
* @paramInstancePtr is the phase_valid instance to operate on.
*
* @returnu32
*
* @note Phase Valid Port That Must Be Asserted.
*
*/
u32 <Gateway In id>_read(example_dds *InstancePtr);

<Gateway In id> : <design_name>_<gateway_name> where design_name is the
VHDL/Verilog top-level name of the design and <gateway_name> is the scrubbed name of
the gateway.

Gateway Outs generate a similar driver, but are read-only.

Known Issue in AXI4-Lite Interface Generation
Testbench generation is not supported for designs that have gateways (Gateway In or
Gateway Out) configured as an AXI4-Lite Interface.
Designing with System Generator 117
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=117

Chapter 3: Hardware Design Using System Generator
Tailor Fitting a Platform Based Accelerator Design
in System Generator
Platform based accelerators use a bottom-up design methodology to ease the
development of larger systems. Two distinct design portions are created: the connectivity
platform which connects board level interfaces to a processing system, and the
differentiated logic accelerator(s) which represent the data path internal to the SoC and are
controlled and/or fed by the connectivity platform design. DSP data paths or accelerators
can take advantage of automation to tie into the connectivity platform and its interfaces to
external devices.

To speed up creating a design in the Vivado IP Integrator in which the accelerator portion
of the design will be developed in System Generator, the following procedure can be used:

1. Create a Block Diagram (BD) of your design in the Vivado IP Integrator. This will act as
your connectivity platform.

2. Import the connectivity platform into System Generator.

3. Enter the accelerator portion of the design in System Generator.

4. In System Generator, compile the accelerator model using the IP Catalog flow, to create
a Vivado project containing the original design (from the Vivado BD file) and the
circuitry in the System Generator model.

Step 1: Create a connectivity platform in Vivado as an IP
Integrator Block Diagram (.bd)
First, you must create a block diagram containing your platform design in the Vivado IP
Integrator. You may use a configurable example design, a reference design, or a
custom-built design as the platform based system that will contain the accelerator part of
the design.

In the example below, the platform design contains a Zynq-7000 Processing System and AXI
DMA. The connectivity platform designer intends to transfer data to and from the DDR
memory using the DMA, perform DES Encryption on the data received from the DDR, and
then send the encrypted data back into the DDR. The AXI Streaming ports M_AXIS_MM2S
and S_AXIS_S2MM (Data Path) are made external to the Block Diagram (BD). It shows the
intent of the platform designer that these interfaces are available for System Generator to
use during the System Generator BD import process. An AXI4-Lite interface, M00_AXI, is
also made external, indicating that there will be a control interface on the accelerator IP.
Designing with System Generator 118
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=118

Chapter 3: Hardware Design Using System Generator
These are requirements for the design in the IP Integrator:

• This system has to be built for a specific board or part. This ensures that certain ports
and interfaces have known location attributes assigned to them.

• The AXI Interfaces that you want to bring into the accelerator portion of the design
have to be made external.

Currently we support the following interfaces from the platform framework point of view:

Step 2: Parse the BD file and import un-located ports and
interfaces into System Generator
You can now use the xilinx.utilities.importBD utility in System Generator to import the
BD (Block Diagram) that you created in the Vivado IP Integrator.

This utility takes in the platform framework Vivado project and the name of the new model
to be created in System Generator. It parses the platform design for potential System
Generator ports and external interfaces (that is, interfaces whose ports do not have location
attributes, based on the board connectivity and automation) and creates a sample stub in
System Generator representing the accelerator portion of the design.

COMMAND USAGE:

xilinx.utilities.importBD takes in the platform Vivado project and the name of the new
model to be created. It parses the platform for potential System Generator ports and
interfaces and creates a sample stub for the user to make development easy. If the new
model name is not specified an untitled model will be opened.

X-Ref Target - Figure 3-4

Interface Master Slave

AXI4 Yes No

AXI4-Lite Yes No

AXI4-Stream Yes Yes
Designing with System Generator 119
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=119

Chapter 3: Hardware Design Using System Generator
Inputs are: The Vivado project and the model_name (optional)

USAGE:

xilinx.utilities.importBD('<full_or_relative_path_to_vivado_project_directory>/
<project_name>.xpr', 'mynewmodel')

EXAMPLES

xilinx.utilities.importBD('C:\test_importBD\platform.xpr', 'mynewmodel')

xilinx.utilities.importBD('C:\test_impportBD\platform.xpr')

In System Generator, the resulting model will look like the example below.

X-Ref Target - Figure 3-5
Designing with System Generator 120
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=120

Chapter 3: Hardware Design Using System Generator
The model in System Generator will have these features:

• For each AXI4-Lite interface, a Gateway In and a Gateway Out block will appear. You can
then replicate and add as many AXI4-Lite gateways as your design requires.

• For an AXI4-Stream interface, the associated TDATA, TVALID, TREADY, and other
AXI4-Stream ports will appear.

• The model’s System Generator token is set to a Compilation target of IP Catalog and
the Part or Board will be set to the same Xilinx device or board as that of the Vivado
project.

Step 3: In System Generator, connect logic to the BD socket
At this point you can create the accelerator in System Generator. In the example below we
have connected to some other logic, and renamed the gateways.

Step 4: Compile the accelerator model (IP Catalog flow) to
create a complete design
You can now use the IP Catalog compilation flow to create a complete design. When you
double-click the System Generator token in IP Catalog flow and click the Settings button,
the Use Plug-in project directory must point to the Vivado IP Integrator project from which
the design was imported (see below). When you click the Generate button, a new Vivado
project based on the original Vivado platform framework/system plus the accelerator IP
created in System Generator, along with a software driver, will be created. This project will
be located in an ip_catalog directory under the System Generator token’s Target directory,
and can also be placed into a common IP repository.

X-Ref Target - Figure 3-6
Designing with System Generator 121
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=121

Chapter 3: Hardware Design Using System Generator
You can open this new project in Vivado to complete the implementation of your design, as
in the sample below. Note the block with the System Generator symbol, which indicates a
block developed in the System Generator.

X-Ref Target - Figure 3-7

X-Ref Target - Figure 3-8
Designing with System Generator 122
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=122

Chapter 4

Performing Analysis in System Generator
System Generator is a bit and cycle accurate modeling tool. You can verify the functionality
of your designs by simulating in Simulink. However, to ensure that your System Generator
design will work correctly when it is implemented in your target Xilinx device, these analysis
tools have been integrated into System Generator:

• Timing Analysis: To ensure that the HDL files generated by System Generator operate
correctly in hardware, you must close timing. To help accelerate this process, timing
analysis has been integrated into System Generator.

• Resource Analysis: To ensure that the HDL files generated by System Generator will fit
into your target device, you may need to analyze the resources being used. To help
accelerate this process, resource analysis has been integrated into System Generator.

Timing Analysis in System
Generator

Presents an overview of timing analysis in System
Generator.

Performing Timing Analysis Describes how to perform timing analysis on your
model.

Cross Probing from the
Timing Analysis Results to
the Model

Describes how you can cross probe from a row in the
Timing Analyzer table to the Simulink model,
highlighting the corresponding System Generator blocks
in the path.

Accessing Existing Timing
Analysis Results

Describes how to re-launch the Timing Analyzer table on
pre-existing Timing Analysis results.

Recommendations For
Troubleshooting Timing
Violations

Describes methods to help you discover the source of
timing violations in your design.

Resource Analysis in System
Generator

Presents an overview of resource analysis in System
Generator.

Performing Resource Analysis Describes how to perform resource analysis on your
model.

Cross Probing from the
Resource Analysis Results to
the Model

Describes how you can cross probe from a row in the
Resource Analyzer table to the Simulink model,
highlighting the corresponding block or subsystem in
the design.

Accessing Existing Resource
Analysis Results

Describes how to re-launch the Resource Analyzer table
on pre-existing Resource Analysis results.

Recommendations For
Optimizing Resource Analysis

Describes methods to help you use the Resource
Analyzer to optimize resource utilization in the design.
Designing with System Generator 123
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=123

Chapter 4: Performing Analysis in System Generator
Timing Analysis in System Generator
To ensure that the HDL files generated by System Generator work correctly in hardware, you
must close timing. To help accelerate this process, timing analysis has been integrated into
System Generator.

Timing analysis allows you to perform static timing analysis on the HDL files generated
from System Generator, either Post-Synthesis or Post-Implementation. It also provides a
mechanism to correlate the results of running the Vivado Timing Engine on either the
Post-Synthesized netlist or the Post Implementation netlist with the System Generator
model in Simulink. Thus, you do not have to leave the Simulink modeling environment to
close timing on the DSP sub-module of the design.

Invoking timing analysis on a compilation target (for example, HDL Netlist) results in a
tabulated display of paths with columns showing information such as timing slack, path
delay, etc. This is the Timing Analyzer table. You can sort the contents of the table using any
of the column metrics such as slack, etc. Also, cross probing is enabled between the table
entries and the Simulink model to accelerate finding and fixing timing failures in the model.
Cross probing between the Timing Analyzer table and the Simulink model is accomplished
by selecting/clicking a row in the table. The corresponding path in the model will be
highlighted. The path is highlighted in red if the path corresponds to a timing violation;
otherwise it is highlighted in green.

Performing Timing Analysis
Timing analysis can be invoked whenever you generate any of the following compilation
targets:

• IP Catalog

• Hardware Co-Simulation

• Synthesized Checkpoint

• HDL Netlist

To perform timing analysis in System Generator:

1. Double-click the System Generator token in the Simulink model.

2. Enter the following in the System Generator token dialog box:

° In the Compilation tab, specify a Target Directory.

° In the Clocking tab, set the Perform Analysis field to Post Synthesis or Post
Implementation based on the runtime vs. accuracy tradeoff.

° In the Clocking tab, set the Analyzer Type field to Timing.
Designing with System Generator 124
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=124

Chapter 4: Performing Analysis in System Generator
3. In the System Generator token dialog box, click Generate.

When you generate, the following occurs:

a. System Generator generates the required files for the selected compilation target.
For timing analysis System Generator invokes Vivado in the background for the
design project, and passes design timing constraints to Vivado.

b. Depending on your selection for Perform Analysis (Post Synthesis or Post
Implementation), the design runs in Vivado through synthesis or through
implementation.

c. After the Vivado tools run is completed, timing paths information is collected and
saved in a specific file format from the Vivado timing database. At the end of the
timing paths data collection the Vivado project is closed and control is passed to the
MATLAB/System Generator process.

d. System Generator processes the timing information and displays a Timing Analyzer
table with timing paths information (see below).

X-Ref Target - Figure 4-1
Designing with System Generator 125
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=125

Chapter 4: Performing Analysis in System Generator
In the timing analyzer table:

• Only unique paths from the Simulink model are reported.

• The 50 paths with the lowest Slack values are displayed, with the worst Slack at the top
and increasing Slack below.

• Paths with timing violations have a negative Slack and display in red.

• The display order can be sorted for any column’s values by clicking the column head.

• If you want to hide a column in the table, right-click any column head in the table and
deselect the column to hide in the list that appears.

X-Ref Target - Figure 4-2

X-Ref Target - Figure 4-3
Designing with System Generator 126
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=126

Chapter 4: Performing Analysis in System Generator
• For a design with multiple clock cycle constraints, the Timing Analyzer can identify
multicycle path constraints and show them in the Path Constraints column. In that
case, the Source Clock and Destination Clock columns display clock enable signals to
reflect different sampling rates.

• You can cross probe from the table to the Simulink model by selecting a path in the
table, which will highlight the corresponding System Generator blocks in the Simulink
model. See Cross Probing from the Timing Analysis Results to the Model.

Cross Probing from the Timing Analysis Results to the Model
You can cross probe from the Timing Analyzer table to the Simulink model by clicking any
path (row) in the Timing Analyzer table, which highlights the corresponding System
Generator blocks in the model. This allows you to troubleshoot timing violations by
analyzing the path on which they occur.

X-Ref Target - Figure 4-4
Designing with System Generator 127
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=127

Chapter 4: Performing Analysis in System Generator
When you cross probe, the following will display in the model:

• Blocks in a path with a timing violation are highlighted in red in the model, whereas
blocks that belong to a path with no timing violation (that is, a path with a positive
Slack value) are highlighted in green in the model.

• If blocks in a highlighted path are inside a subsystem, then the subsystem is
highlighted in red so you may expand the subsystem to inspect the blocks underneath.

X-Ref Target - Figure 4-5
Designing with System Generator 128
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=128

Chapter 4: Performing Analysis in System Generator
• When you select a path (row in the table) to cross probe, this normally highlights the
destination block at the end of the path. That brings the subsystem containing the
destination block to the front in the model. As a result, you may not be able to see the
highlighted source block if the source block is in a different subsystem. If you want to
see the source block, click the path in the Source column in the table. This will bring
the subsystem containing the source block to the front of the model. Selecting the path
in any other column will bring the subsystem containing the destination block to the
front.

Accessing Existing Timing Analysis Results
A Launch button is provided under the Clocking tab of the System Generator token dialog
box to relaunch the Timing Analyzer table using the existing timing analysis results for the
model. Make sure the Target directory specified on the Compilation tab of the dialog box
is readable by the Timing Analyzer, and the Analyzer Type field is set to Timing. This will
only work if you already ran timing analysis on the Simulink model and haven't changed the
Simulink model since the last run.

When you click the Launch button, the Timing Analyzer table will display the timing
analysis results stored in the specified Target directory, regardless of the option selected
for Perform analysis (Post Synthesis or Post Implementation).

X-Ref Target - Figure 4-6
Designing with System Generator 129
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=129

Chapter 4: Performing Analysis in System Generator
Recommendations For Troubleshooting Timing Violations
The following are recommended for troubleshooting timing violations:

• For quicker timing analysis iterations, post-synthesis analysis is preferred over
post-implementation analysis.

• After logic optimization during the Vivado Synthesis process the tool doesn't keep
information about merged logic in the Vivado database. Merged and shared logic may
make it difficult to accurately cross probe from Vivado timing paths to the Simulink
model. Hence, it is recommended that you create a custom Vivado Synthesis strategy
to control merged and shared logic.

For information about how to create a custom Synthesis strategy in Vivado, see this link
in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

To control merged and shared logic in the Vivado IDE, make the following changes to
the default Vivado Synthesis strategy.

1. In Vivado:

X-Ref Target - Figure 4-7
Designing with System Generator 130
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug893-vivado-ide.pdf;a=xCreatingRunStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug893-vivado-ide.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=130

Chapter 4: Performing Analysis in System Generator
- Select the Synthesis option -keep_equivalent_registers.

- Set the Synthesis option -resource_sharing to the value “off”.

2. Save the new Synthesis strategy and exit Vivado.

3. In System Generator, select the new custom Synthesis strategy in the System
Generator token dialog box before generating the design.

Resource Analysis in System Generator
To ensure that the HDL files generated by System Generator will fit into you target device,
you may need to analyze the resources being used. To help accelerate this process, resource
analysis has been integrated into System Generator.

Resource analysis allows you to determine the number of look-up tables (LUTs), registers,
DSP48s (DSPs), and block RAMs (BRAMs) used by your model. The analysis is performed
either Post-Synthesis or Post-Implementation and provides a mechanism to correlate the
resources used in the Vivado tools with the System Generator model in Simulink. Thus, you

X-Ref Target - Figure 4-8
Designing with System Generator 131
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=131

Chapter 4: Performing Analysis in System Generator
do not have to leave the Simulink modeling environment to investigate and determine
areas where excessive resources are being used in your design.

Invoking resource analysis on a compilation target (for example, IP Catalog) results in a
tabulated display of blocks and hierarchies showing LUT, Register, DSP, and BRAM resource
usage. This is the Resource Analysis table. You can sort the contents of the table using any
of the column metrics such as DSPs, etc. Also, cross probing is enabled between the table
entries and the Simulink model to accelerate finding and fixing excessive resource usage in
the model. Cross probing between the Resource Analysis table and the Simulink model is
accomplished by selecting (clicking) a row in the table. The corresponding block or
hierarchy in the model will be highlighted in yellow.

Performing Resource Analysis
Resource analysis can be performed whenever you generate any of the following
compilation targets:

• IP Catalog

• Hardware Co-Simulation

• Synthesized Checkpoint

• HDL Netlist

To perform resource analysis in System Generator:

1. Double-click the System Generator token in the Simulink model.

2. Select the following in the System Generator token dialog box:

a. In the Compilation tab:

- Specify the Part in which your design will be implemented.

Note: If you select a Board instead of a Part, the Part field will be filled in with the name
of the part on the selected Board.

- Select one of the Compilation targets.

System Generator can perform resource analysis for any Compilation target you
select.

- Specify a Target Directory.

b. In the Clocking tab:

- Set the Perform Analysis field to Post Synthesis or Post Implementation
based on the runtime vs. accuracy tradeoff.

- Set the Analyzer type field to Resource.
Designing with System Generator 132
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=132

Chapter 4: Performing Analysis in System Generator
3. In the System Generator token dialog box, click Generate.

When you generate, the following occurs:

a. System Generator generates the required files for the selected compilation target.
For resource analysis System Generator invokes Vivado in the background for the
design project.

b. Depending on your selection for Perform analysis (Post Synthesis or Post
Implementation), the design runs in Vivado through synthesis or through
implementation.

c. After the Vivado tools run is completed, resource utilization data is collected is
collected from the Vivado resource utilization database and saved in a specific file
format under the target directory. At the end of the resource utilization data
collection the Vivado project is closed and control is passed to the MATLAB/System
Generator process.

d. System Generator processes the resource utilization data and displays a Resource
Analyzer table with resource utilization information (see below).

X-Ref Target - Figure 4-9
Designing with System Generator 133
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=133

Chapter 4: Performing Analysis in System Generator
In the resource analyzer table:

• The header section of the dialog box indicates the Vivado design stage after which
resource utilization data was collected from Vivado. This will be either Post Synthesis
or Post Implementation.

• The local toolbar contains the following commands to change the display of resource
counts:

° Hierarchical/Flat Display: Toggles the display between a hierarchical tree and a
flattened list.

° Collapse All: Collapses the design hierarchy to display only the top-level objects.

° Expand All: Expands the design hierarchy at all levels to display resources used by
each subsystem and each block in the design.

• Each column heading (label) in the table shows the total number of a each type of
resources available in the Xilinx device for which you are targeting your design. In the
example below, the design is targeting a Kintex-7 FPGA.

X-Ref Target - Figure 4-10
Designing with System Generator 134
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=134

Chapter 4: Performing Analysis in System Generator
• The table displays a hierarchical listing of each subsystem and block in the design, with
the count of these resource types:

° BRAMs - Block RAM and FIFO primitives.

BRAMs are counted in this way:

Variations of Primitives (for example, RAM36E1 and RAM36E2) are all counted in the
same way.

Total BRAMs = (Number of RAMB36E) + (Number of FIFO36E) + 0.5 (Number of
RAMB18E + Number of FIFO18E)

° DSPs - DSP48 primitives (DSP48E, DSP48E1, or DSP48E2).

° Registers - Registers and Flip-Flops. All primitive names that start with FD* (FDCE,
FDPE, FDRE, FDSE, etc.) and LD* (LDCE, LDPE, etc.) are considered as Registers.

° LUTs - All LUT types combined.

• The display order can be sorted for any column’s values by clicking the column head.

• You can cross probe from the table to the Simulink model by selecting a row in the
table, which will highlight the corresponding System Generator blocks in the Simulink
model. See Cross Probing from the Resource Analysis Results to the Model.

Cross Probing from the Resource Analysis Results to the Model
You can cross probe from the Resource Analyzer table to the Simulink model by clicking a
block or subsystem name in the Resource Analyzer table, which highlights the
corresponding System Generator block or subsystem in the model. The cross probing is
useful to identify blocks and subsystems that are implemented using a particular type of
resource.

X-Ref Target - Figure 4-11

Primitive Type # BRAMs

RAMB36E 1

FIFO36E 1

RAMB18E 0.5

FIFO18E0 0.5
Designing with System Generator 135
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=135

Chapter 4: Performing Analysis in System Generator
When you cross probe, the following will display in the model:

• The block you have selected in the table will be highlighted in yellow and outlined in
red.

• If the block or subsystem you have selected in the table is within an upper-level
subsystem, then the parent subsystem is highlighted in red in addition to the
underlying block.

X-Ref Target - Figure 4-12
Designing with System Generator 136
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=136

Chapter 4: Performing Analysis in System Generator
Accessing Existing Resource Analysis Results
A Launch button is provided under the Clocking tab of the System Generator token dialog
box to launch the Resource Analyzer table using the existing resource utilization results for
the model. Make sure the Target directory specified on the Compilation tab of the dialog
box is readable by the Resource Analyzer, and the Analyzer type field is set to Resource.
This will only work if you already ran analysis on the Simulink model and haven't changed
the Simulink model since the last run.

When you click the Launch button, the Resource Analyzer table will display the resource
utilization results stored in the Target directory specified on the Compilation tab,

X-Ref Target - Figure 4-13
Designing with System Generator 137
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=137

Chapter 4: Performing Analysis in System Generator
regardless of the option selected for Perform analysis (the Post Synthesis or Post
Implementation option).

Recommendations For Optimizing Resource Analysis
The following are recommended for using the Resource Analyzer to optimize resource
utilization in the design:

• For quicker resource analysis iterations, post-synthesis analysis is preferred over
post-implementation analysis.

• After logic optimization during the Vivado Synthesis process the tool doesn't keep
information about merged logic in the Vivado database. Merged and shared logic may
make it difficult to accurately cross probe from Vivado resource data to the Simulink
model. Hence, it is recommended that you create a custom Vivado Synthesis strategy
to control merged and shared logic.

For information about how to create a custom Synthesis strategy in Vivado, see this link
in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

X-Ref Target - Figure 4-14
Designing with System Generator 138
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug893-vivado-ide.pdf;a=xCreatingRunStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug893-vivado-ide.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=138

Chapter 4: Performing Analysis in System Generator
To control merged and shared logic in the Vivado IDE, make the following changes to
the default Vivado Synthesis strategy.

1. In Vivado:

- Select the Synthesis option -keep_equivalent_registers.

- Set the Synthesis option -resource_sharing to the value “off”.

2. Save the new Synthesis strategy and exit Vivado.

3. In System Generator, select the new custom Synthesis strategy in the System
Generator token dialog box before generating the design.

X-Ref Target - Figure 4-15
Designing with System Generator 139
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=139

Chapter 5

Using Hardware Co-Simulation
System Generator provides hardware co-simulation, making it possible to incorporate a
design running in an FPGA directly into a Simulink simulation. This allows all (or a portion)
of the System Generator design that had been simulating in Simulink as sequential software
to be executed in parallel on the FPGA, and can speed up simulation dramatically. Users of
this flow can send larger data sets, or more test vectors, doing an exhaustive functional test
of the implemented logic. This increased code coverage allows more corner cases to be
verified to help identify design bugs in the logic. Data at the input to the compiled
co-simulation block on the Simulink model is sent to the target FPGA, either as one
transaction or a burst of transactions, executed for a given number of clock cycles in
parallel, and read back to the model’s co-simulation outputs.

Hardware co-simulation has two compilation types: burst or non-burst (standard). The
burst mode provides much higher performance. Channels to each input of the compiled
co-simulation target are opened and packets of data are sent to the open channel, followed
by bursting to all of the remaining inputs. The FPGA design is executed in parallel for
enough cycles to consume the data, and the target outputs are burst read in a channelized
fashion. Bursting provides for less overhead to send and receive large amounts of data from
the FPGA. However, burst mode is only supported through MATLAB script-based hardware
co-simulation of the Hardware Co-Simulation target and is not used within Simulink.
Exhaustive data vectors can be scripted to test the functionality of the co-simulation target,
and an example script is returned as part of the compilation. Non-burst mode has lower
performance but allows a compiled co-simulation block to be used within Simulink in place
of the original System Generator design hierarchy.

Board support allows two types of physical interfaces to communicate with the
co-simulation target: JTAG and Ethernet. JTAG-based communication is available for any
JTAG aware board that exists as a project target in the Vivado tool suite. Boards from Xilinx
partners are available and can be downloaded from the partner websites and installed as
part of the Vivado Design Suite. Custom boards can also be created as detailed in Appendix
A, Board Interface File, in the Vivado Design Suite User Guide: System-Level Design Entry
(UG895). Setting up board awareness in System Generator and the minimum tags needed in
the board.xml file are detailed in the section Specifying Board Support in System
Generator. Ethernet based communication, which enables a faster co-simulation, is
supported for the KC705 and the VC707 boards from Xilinx.

Hardware Co-Simulation compilation targets automatically create a bitstream based on the
selected communication interface and associate it to a block. System Generator currently
provides support for the following boards:
Designing with System Generator 140
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug895-vivado-system-level-design-entry.pdf;a=xBoardInterfaceFile
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=140

Chapter 5: Using Hardware Co-Simulation
* Boards from Xilinx partners are available and can be downloaded from the partner
websites and installed as part of the Vivado Design Suite.

** Custom boards can be created in the Vivado Design Suite as detailed in Appendix A,
Board Interface File, in the Vivado Design Suite User Guide: System-Level Design Entry
(UG895)

Compiling a Model for Hardware Co-Simulation
The starting point for hardware co-simulation is the System Generator model or subsystem
you would like to run in hardware. A model can be co-simulated if it meets the requirements
of the underlying hardware board. The model must include a System Generator token; this
block defines how the model should be compiled into hardware.

For information on how to use the System Generator token, see Compiling and Simulating
Using the System Generator Token.

To compile your System Generator model for hardware co-simulation, perform the
following:

1. Double-click the System Generator token to open the System Generator token dialog
box.

Table 5-1: System Generator Hardware Co-Simulation Board Support

Board Device Family Support

AC701 Artix-7 • JTAG

KC705 Kintex-7 • JTAG

• Point-to-point Ethernet

KCU105 Kintex UltraScale • JTAG

VC707 Virtex-7 • JTAG

• Point-to-point Ethernet

VC709 Virtex-7 • JTAG

VCU108 Virtex UltraScale • JTAG

VCU110 Virtex UltraScale • JTAG

ZC702 Zynq-7000 • JTAG

ZC706 Zynq-7000 • JTAG

ZedBoard Zynq-7000 • JTAG

Partner Board-specific • JTAG*

Custom Board-specific • JTAG**
Designing with System Generator 141
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug895-vivado-system-level-design-entry.pdf;a=xBoardInterfaceFile
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=141

Chapter 5: Using Hardware Co-Simulation
2. In the Compilation tab, select a Board and a version of the board.

The boards appearing in the Board list are:

° All of the boards installed as part of the Vivado Design Suite.

° Any custom boards you have created in the Vivado Design Suite.

° Any Partner boards you have purchased and enabled in the Vivado Design Suite.

For a Partner board or a custom board to appear in the Board list, you must configure
System Generator to access the board files that describe the board. Board awareness in
System Generator is detailed in Specifying Board Support in System Generator.

To compile for hardware co-simulation, you must select a Board. You cannot set the
Board field to None and select a Part instead of a Board.

When you select a Board, the Part field displays the name of the Xilinx device on the
selected Board, and the Part setting cannot be changed.

X-Ref Target - Figure 5-1
Designing with System Generator 142
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=142

Chapter 5: Using Hardware Co-Simulation
3. In the Compilation field, select Hardware Co-Simulation and, where applicable, select
whether you will perform the hardware co-simulation using the JTAG interface or the
Point-to-Point Ethernet interface.

Currently, you can perform a JTAG hardware co-simulation on any boards supported in
Vivado, and a Point-to-Point Ethernet hardware co-simulation on the KC705 and the
VC707 boards from Xilinx.

4. If you will use burst mode for a faster hardware co-simulation run, click the Settings
button next to the Compilation field, select Burst mode, and enter a FIFO depth for
the burst mode operation. Then click OK to close the Hardware Co-Simulation Settings
dialog box.

For a description of the burst mode, see Burst Data Transfers for Hardware
Co-Simulation.

IMPORTANT: To perform a burst mode hardware co-simulation, you must create a testbench by
checking the Create Testbench box in the System Generator token dialog box (see step 5 below).

X-Ref Target - Figure 5-2
Designing with System Generator 143
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=143

Chapter 5: Using Hardware Co-Simulation
5. If you want to create a testbench as part of the compilation, select the Create
Testbench option.

If you select Create Testbench, the compilation will automatically create an example
testbench for you. You can also create your own testbench for hardware co-simulation
(see M-Code Access to Hardware Co-Simulation).

If you will be performing a burst mode hardware co-simulation (see step 4 above), you
must create a test bench as part of the hardware co-simulation compilation.

6. Click the Generate button.

The code generator produces an FPGA configuration bitstream for your design that is
suitable for hardware co-simulation. System Generator not only generates the HDL and
netlist files for your model during the compilation process, but it also runs the
downstream tools necessary to produce an FPGA configuration file.

The configuration bitstream contains the hardware associated with your model, and also
contains additional interfacing logic that allows System Generator to communicate with
your design using a physical interface between the board and the PC. This logic includes
a memory map interface over which System Generator can read and write values to the
input and output ports on your design. It also includes any board-specific circuitry that
is required for the target FPGA board to function correctly.

When the Compilation finishes:

° If you have not selected Burst mode in step 4 above (standard mode), a JTAG
Cosim or Point-to-Point Ethernet hardware co-simulation block will appear in a
separate window. Drag (or Copy and Paste) the Hardware Cosim block into your
Simulink model. The Hardware Cosim block will enable you to perform hardware
co-simulation from within the Simulink window.

For a description of the hardware co-simulation block, see Hardware Co-Simulation
Blocks.
Designing with System Generator 144
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=144

Chapter 5: Using Hardware Co-Simulation
If you selected the Create Testbench option for compilation, an M-Code HWCosim
example testbench will also be generated (see M-Code Access to Hardware
Co-Simulation) by the compilation. You can use this testbench to perform hardware
co-simulation, or customize this testbench to develop a testbench of your own.

° If you have selected Burst mode in step 4 above (burst mode), no hardware
co-simulation block will appear. When you perform the burst mode co-simulation,
you will use the MATLAB M-code testbench placed in the target directory during
compilation.

- If you compiled the top-level design the testbench will be named:

<design_name>_hwcosim_test.m

- If you compiled a subsystem of the design the testbench will be named:

<design_name>_<sub_system>_hwcosim_test.m
Designing with System Generator 145
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=145

Chapter 5: Using Hardware Co-Simulation
The compilation has prepared the Simulink model for performing hardware co-simulation.

To perform the hardware co-simulation, proceed as follows:

• To perform the standard (non-burst mode) hardware co-simulation, see Performing
Standard Hardware Co-Simulation.

• To perform the burst mode hardware co-simulation, see Performing Burst Mode
Hardware Co-Simulation.

Performing Standard Hardware Co-Simulation
If you are performing the standard (non-burst mode) hardware co-simulation, your
Simulink model will contain a JTAG or Point-to-Point Ethernet hardware co-simulation
block. This block was created automatically when System Generator finished compiling your
design into an FPGA bitstream (see Compiling a Model for Hardware Co-Simulation). The
block is stored in a Simulink library with this file name:

<design_name>_hwcosim_lib.slx

The hardware co-simulation block was moved into your Simulink model at the end of the
compilation procedure. In the following procedure, you will have to wire up this block in
your Simulink model to perform hardware co-simulation.

Note: If your board contains a Zynq AP SoC device, you must install the Xilinx Software
Development Kit (SDK) with the Vivado Design Suite to perform hardware co-simulation.
Designing with System Generator 146
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=146

Chapter 5: Using Hardware Co-Simulation
To perform the standard hardware co-simulation:

1. Connect the hardware co-simulation block to the Simulink blocks that supply its inputs
and receive its outputs.
Designing with System Generator 147
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=147

Chapter 5: Using Hardware Co-Simulation
2. Double-click the hardware co-simulation block to display the properties dialog box for
the block.

Note: There are different block properties for JTAG hardware co-simulation and for
Point-to-Point Ethernet hardware co-simulation.
Designing with System Generator 148
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=148

Chapter 5: Using Hardware Co-Simulation
3. Fill out the block parameters in the properties dialog box.

The properties are described in Block Parameters for the JTAG Hardware Co-Simulation
Block or Block Parameters for the Ethernet Hardware Co-Simulation Block.

4. Set up the board for performing hardware co-simulation.

° For JTAG hardware co-simulation, you will connect a cable to the board’s JTAG port.

For a description of the setup procedure for a JTAG hardware co-simulation, using a
KC705 board as an example, see Setting Up a KC705 Board for JTAG Hardware
Co-Simulation.

° For Point-to-Point Ethernet hardware co-simulation, you will connect a cable to the
board’s JTAG port and another cable to the board’s Ethernet port. When you
perform the hardware co-simulation, the Xilinx device on the board is programmed
using the JTAG port, and the programmed device is then simulated using the
Ethernet port.

For a description of the board setup procedure for a Point-to-Point Ethernet
hardware co-simulation, using a KC705 or VC707 board as an example, see Setting
Up a KC705 Board for Point-to-Point Ethernet Hardware Co-Simulation or Setting Up
a VC707 Board for Point-to-Point Ethernet Hardware Co-Simulation.

5. If you are performing point-to-point Ethernet hardware co-simulation:

a. Set up the Local Area Network on the PC to allow you to perform hardware
co-simulation.

This procedure is described in Setting Up the Local Area Network on the PC.

X-Ref Target - Figure 5-3
Designing with System Generator 149
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=149

Chapter 5: Using Hardware Co-Simulation
b. If your PC is operating behind a firewall, disable the firewall while the hardware
co-simulation runs.

c. Optionally, disable any virus protection program running on the PC while the
hardware co-simulation runs.

6. In the Simulink model, simulate the model and the hardware by selecting Simulation >
Run or clicking the Run simulation button.

Running the simulation will simulate both the System Generator design (or subsystem) in
your Simulink model and the Xilinx device on your target board. You can then examine the
results of the two simulations and compare the results to determine if the design
implemented in hardware will operate as expected.

Performing Burst Mode Hardware Co-Simulation
To perform the burst mode hardware co-simulation, you will execute the MATLAB M-code
testbench that was generated automatically during compilation (see Compiling a Model for
Hardware Co-Simulation).

This testbench resides in the Target directory specified when the design was compiled for
the hardware co-simulation compilation target.

The testbench is named as follows:

° If you compiled the top-level design the testbench will be named:

<design_name>_hwcosim_test.m

° If you compiled a subsystem of the design the testbench will be named:

<design_name>_<sub_system>_hwcosim_test.m

Note: If your board contains a Zynq AP SoC device, you must install the Xilinx Software
Development Kit (SDK) with the Vivado Design Suite to perform hardware co-simulation.

To perform burst mode hardware co-simulation:

1. Set up the board for performing hardware co-simulation.

° For JTAG hardware co-simulation, you will connect a cable to the board’s JTAG port.

X-Ref Target - Figure 5-4
Designing with System Generator 150
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=150

Chapter 5: Using Hardware Co-Simulation
For a description of the setup procedure for a JTAG hardware co-simulation, using a
KC705 board as an example, see Setting Up a KC705 Board for JTAG Hardware
Co-Simulation.

° For Point-to-Point Ethernet hardware co-simulation, you will connect a cable to the
board’s JTAG port and another cable to the board’s Ethernet port. When you
perform the hardware co-simulation, the Xilinx device on the board is programmed
using the JTAG port, and the programmed device is then simulated using the
Ethernet port.

2. If you are performing point-to-point Ethernet hardware co-simulation:

a. Set up the Local Area Network on the PC to allow you to perform hardware
co-simulation.

This procedure is described in Setting Up the Local Area Network on the PC.

As part of this procedure, you can specify that the PC’s Ethernet adapter can use
jumbo frames (frames larger than 1500 bytes) for data transfers. Using jumbo frames
can speed up the Point-to-Point Ethernet hardware co-simulation. Jumbo frames are
described in Using Jumbo Frames for Point-to-Point Ethernet Hardware
Co-Simulation.

b. If your PC is operating behind a firewall, disable the firewall while the hardware
co-simulation runs.

c. Optionally, disable any virus protection program running on the PC while the
hardware co-simulation runs.

3. Run the testbench script from the MATLAB console. To run the testbench script, you can
open the MATLAB console, change directory to the Target Directory and run the script
by name.

The script runs the Simulink model to determine the stimulus data driven to the Xilinx
Gateway In blocks (from the other Simulink source blocks or MATLAB variables), and
captures the expected output produced by the Xilinx Block Design (BD), and exports the
data to the Target directory as these separate data files:

<design_name>_<sub_system>_<port_name>.dat.

The testbench then compares actual to expected outputs.

If the test fails this will be printed on the console, and the failing comparisons will be
listed in this file:

<design_name>_<sub_system>_hwcosim_test.result.

.

Designing with System Generator 151
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=151

Chapter 5: Using Hardware Co-Simulation
M-Code Access to Hardware Co-Simulation
It is possible to programmatically control the hardware created through the System
Generator hardware co-simulation flow using MATLAB M-code (M-Hwcosim). The
M-Hwcosim interfaces allow for MATLAB objects that correspond to the hardware to be
created in pure M-code, independent of the Simulink framework. These objects can then be
used to read and write data into hardware. This capability is useful for providing a scripting
interface to hardware co-simulation, allowing for the hardware to be used in a scripted
testbench or deployed as hardware acceleration in M-code.

For more information on this subject, refer to the topic M-Code Access to Hardware
Co-Simulation in the Vivado Design Suite Reference Guide: Model-Based DSP Design Using
System Generator (UG958).

Setting Up Your Hardware Board
The first step in performing hardware co-simulation is to set up your hardware board. The
hardware setup for JTAG hardware co-simulation and Point-to-point Ethernet hardware
co-simulation is as follows:

• JTAG Hardware Co-Simulation - For JTAG-based hardware co-simulation, you will
connect a cable to the board’s JTAG port.

Consult your board’s documentation for the location of the board’s JTAG port.
Documentation for Xilinx boards can be downloaded from the Boards and Kits page on
the Xilinx website.

For a description of the setup procedure for a JTAG hardware co-simulation, using a
KC705 board as an example, see Setting Up a KC705 Board for JTAG Hardware
Co-Simulation.

• Point-to-Point Ethernet Hardware Co-Simulation - For Point-to-point Ethernet
hardware co-simulation, you will connect a cable to the board’s JTAG port and another
cable to the board’s Ethernet port. When you perform the hardware co-simulation, the
Xilinx device on the board is programmed using the JTAG port, and the programmed
device is then simulated using the Ethernet port.

Consult your board’s documentation for the location of the board’s JTAG and Ethernet
ports. Documentation for Xilinx boards can be downloaded from the Boards and Kits
page on the Xilinx website.

For a description of the setup procedure for a Point-to-point Ethernet hardware
co-simulation, using a KC705 board or a VC707 board as an example, see Setting Up a
Designing with System Generator 152
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/products/boards_kits/index.htm
https://www.xilinx.com/products/boards_kits/index.htm
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf;a=MCodeAccesstoHardwareCoSimulation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf;a=MCodeAccesstoHardwareCoSimulation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=152

Chapter 5: Using Hardware Co-Simulation
KC705 Board for Point-to-Point Ethernet Hardware Co-Simulation or Setting Up a VC707
Board for Point-to-Point Ethernet Hardware Co-Simulation.

Setting Up a KC705 Board for JTAG Hardware Co-Simulation
The following procedure describes how to set up the hardware required to run JTAG
hardware co-simulation on a KC705 board.

For detailed information about the KC705 board, see the KC705 Evaluation Board for the
Kintex-7 FPGA User Guide (UG810).

Assemble the Required Hardware

1. Xilinx Kintex®-7 KC705 board which includes the following:

a. Kintex-7 KC705 board

b. 12V Power Supply bundled with the KC705 kit

c. Micro USB-JTAG cable

Set Up the KC705Board

The figure below illustrates the KC705 components of interest in this JTAG setup procedure:

JTAG Connector

Power Connector

Power Switch
Designing with System Generator 153
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=153

Chapter 5: Using Hardware Co-Simulation
1. Position the KC705 board as shown above.

2. Make sure the power switch, located in the upper-right corner of the board, is in the OFF
position.

3. Connect the AC power cord to the power supply brick. Plug the power supply adapter
cable into the KC705 board. Plug in the power supply to AC power.

4. Connect the small end of the Micro USB-JTAG cable to the JTAG socket.

5. Connect the large end of the Micro USB-JTAG cable to a USB socket on your PC.

6. Turn the KC705 board Power switch ON.

Setting Up a KC705 Board for Point-to-Point Ethernet Hardware
Co-Simulation
The following procedure describes how to install the hardware required to run an KC705
board Point-to-Point Ethernet hardware co-simulation.

For detailed information about the KC705 board, see the KC705 Evaluation Board for the
Kintex-7 FPGA User Guide (UG810).

Note: Point-to-Point Ethernet Hardware Co-Simulation requires full-duplex Ethernet operation,
including the use of Auto-Negotiation. If you are performing Point-to-Point Ethernet Hardware
Co-Simulation through a Network Interface Card (NIC) or a USB-to-Ethernet adapter, the connection
will only operate under the following conditions:

• The NIC or USB-to-Ethernet adapter must be connected directly to the board.

• The NIC or USB-to-Ethernet adapter must support the IEEE 802.3ab Gigabit Ethernet standard.

• The NIC or USB-to-Ethernet adapter must support full-duplex Ethernet operation using
Auto-Negotiation. Setting the speed directly without Auto-Negotiation will cause the
Point-to-Point Ethernet connection to fail.

Assemble the Required Hardware

• Xilinx KC705 board
• Power Supply for the board
• Ethernet network Interface Card (NIC) for the host PC.
• Ethernet RJ45 Male/Male Cable. (May be a Network or Crossover cable)
• Digilent USB Cable or the Platform USB Cable to download the bitstream.
Designing with System Generator 154
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=154

Chapter 5: Using Hardware Co-Simulation
Set Up the KC705 Board

To set up the KC705 board for Point-to-Point Ethernet hardware co-simulation:

1. Position the KC705 board as shown above.

2. Make sure the power switch, located in the upper-right corner of the board, is in the OFF
position.

3. Connect the power cable to the right. Plug in the power supply to AC power.

4. Connect the Digilent USB cable to the top left and the other end to the host PC.

5. Connect the Ethernet cable to the KC705 board to the lower left and the other end to the
host PC.

6. Turn the KC705 board Power switch ON.

Setting Up a VC707 Board for Point-to-Point Ethernet Hardware
Co-Simulation
The following procedure describes how to install the hardware required to run a VC707
board Point-to-Point Ethernet hardware co-simulation.

For detailed information about the VC707 board, see the VC707 Evaluation Board for the
Virtex-7 FPGA User Guide (UG885).

Note: Point-to-Point Ethernet Hardware Co-Simulation requires full-duplex Ethernet operation,
including the use of Auto-Negotiation. If you are performing Point-to-Point Ethernet Hardware
Co-Simulation through a Network Interface Card (NIC) or a USB-to-Ethernet adapter, the connection
will only operate under the following conditions:

• • • • • • •• • • • • •

JTAG Connector Power Switch

Ethernet Connector Power Connector
Designing with System Generator 155
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=155

Chapter 5: Using Hardware Co-Simulation
• The NIC or USB-to-Ethernet adapter must be connected directly to the board.

• The NIC or USB-to-Ethernet adapter must support the IEEE 802.3ab Gigabit Ethernet standard.

• The NIC or USB-to-Ethernet adapter must support full-duplex Ethernet operation using
Auto-Negotiation. Setting the speed directly without Auto-Negotiation will cause the
Point-to-Point Ethernet connection to fail.

Assemble the Required Hardware

• Xilinx VC707 board
• Power Supply for the board
• Ethernet network Interface Card (NIC) for the host PC.
• Ethernet RJ45 Male/Male Cable. (May be a Network or Crossover cable)
• Digilent USB Cable or Platform USB Cable to download the bitstream.

Set Up the VC707 Board

To set up the VC707 board for Point-to-Point Ethernet hardware co-simulation:

1. Position the VC707 board as shown above.

2. Make sure the power switch, located in the upper-right corner of the board, is in the OFF
position.

3. Connect the power cable to the right. Plug in the power supply to AC power.

4. Connect the Digilent USB cable to the top left and the other end to the host PC.

5. Connect the Ethernet cable to the VC707 board to the lower left and the other end to
the host PC.

6. Turn the VC707 board Power switch ON.

JTAG Connector Power Switch

Ethernet Connector Power Connector
Designing with System Generator 156
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=156

Chapter 5: Using Hardware Co-Simulation
Hardware Co-Simulation Blocks
System Generator automatically creates a new hardware co-simulation block once it has
finished compiling your design into an FPGA bitstream. A Simulink library is also created in
order to store the hardware co-simulation block. At this point, you can copy the block out
of the library and use it in your System Generator design as you would other Simulink and
System Generator blocks.

The hardware co-simulation block assumes the external interface of the model or
Subsystem from which it is derived. The port names on the hardware co-simulation block
match the ports names on the original Subsystem. The port types and rates also match the
original design.
Designing with System Generator 157
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=157

Chapter 5: Using Hardware Co-Simulation
Hardware co-simulation blocks are used in a Simulink design the same way other blocks are
used. During simulation, a hardware co-simulation block interacts with the underlying FPGA
board, automating tasks such as device configuration, data transfers, and clocking. A
hardware co-simulation block consumes and produces the same types of signals that other
System Generator blocks use. When a value is written to one of the block's input ports, the
block sends the corresponding data to the appropriate location in hardware. Similarly, the
block retrieves data from hardware when there is an event on an output port.

hardware co-simulation blocks may be driven by Xilinx fixed-point signal types, Simulink
fixed-point signal types, or Simulink doubles. Output ports assume a signal type that is
appropriate for the block they drive. If an output port connects to a System Generator
block, the output port produces a Xilinx fixed-point signal. Alternatively, the port produces
a Simulink data type when the port drives a Simulink block directly.

Note: When Simulink data types are used as the block signal type, quantization of the input data is
handled by rounding, and overflow is handled by saturation.

Like other System Generator blocks, hardware co-simulation blocks provide parameter
dialog boxes that allow them to be configured with different settings. The parameters that
a hardware co-simulation block provides depend on the FPGA board the block is
implemented for (i.e., different FPGA boards provide their own customized hardware
co-simulation blocks).

Block Parameters for the JTAG Hardware Co-Simulation Block
The block parameters dialog box for the JTAG hardware co-simulation block can be invoked
by double-clicking the block icon in your Simulink model.

Parameters specific to the block are as follows:

Basic tab

Has combinational path: Select this if your circuit has any combinational paths. A
combinational path is one in which a change propagates from input to output without any
Designing with System Generator 158
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=158

Chapter 5: Using Hardware Co-Simulation
clock event. There is no latch, flip-flop, or register in the path. Enabling this option causes
System Generator to read the outputs immediately after writing inputs, before clocking the
design. This ensures that value changes on combinational paths extending from the
hardware co-simulation block into the Simulink Model get propagated correctly.

Bitstream file: This is the FPGA configuration bitstream. By default this field contains the
path to the bitstream generated by System Generator during the last Generate triggered
from the System Generator Token.

Advanced tab

Skip device configuration: When selected, the configuration bitstream will not be loaded
into the FPGA or AP SoC. This option can be used if another program is configuring the
device (for example, the Vivado Hardware Manager and the Vivado Logic Analyzer).

Display Part Information: This option toggles the display of the device part information
string (for example, xc7k325tffg900-2 for a Kintex device) in the center of the hardware
co-simulation block.

Cable tab

Cable Settings

• Type: Currently, Auto Detect is the only setting for this parameter. System Generator
will automatically detect the cable type.

Block Parameters for the Ethernet Hardware Co-Simulation
Block
The block parameters dialog box for the Ethernet hardware co-simulation block can be
invoked by double-clicking the block icon in your Simulink model.

Parameters specific to the block are as follows:

Basic tab

Clocking

• Clock source: Specifies the clocking mode (Single stepped or Free running) used to
synchronize the System Generator hardware co-simulation block with its associated
FPGA or AP SoC hardware. For a description of the two clock sources, see Clocking
Modes.

Has combinational path: Select this if your circuit has any combinational paths. A
combinational path is one in which a change propagates from input to output without any
clock event. There is no sequential logic (latches, flip-flops, or registers) in the path.
Enabling this option causes System Generator to read the outputs immediately after writing
Designing with System Generator 159
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=159

Chapter 5: Using Hardware Co-Simulation
inputs, before clocking the design. This ensures that value changes on combinational paths
extending from the hardware co-simulation block into the Simulink Model get propagated
correctly.

Bitstream file: This is the FPGA configuration bitstream. By default this field contains the
path to the bitstream generated by System Generator during the last Generate triggered
from the System Generator Token.

Advanced tab

Skip device configuration: When selected, the configuration bitstream will not be loaded
into the FPGA or AP SoC. This option can be used if another program is configuring the
device (for example, the Vivado Hardware Manager and the Vivado Logic Analyzer).

Display Part Information: This option toggles the display of the device part information
string (for example, xc7k325tffg900-2 for a Kintex device) in the center of the hardware
co-simulation block.

Ethernet tab

Host Interface

Ethernet Interface: This drop-down list contains all the Ethernet interfaces detected in the
host computer. Select the interface which is connected to the target board. The selected
interface must be configured correctly to perform the Point-to-Point Ethernet hardware
co-simulation. For a description of the host interface configuration, see Setting Up the
Local Area Network on the PC.

Refresh button: the Refresh button gives you the ability to re-enumerate the available
Ethernet interfaces. The button can be used to display Ethernet interfaces that can be
hot-plugged (for example, USB-to-Ethernet adapters) or interfaces that are disabled when
you open the block parameters dialog box but are enabled afterwards.

FPGA Interface

MAC Address: This is the Ethernet MAC address assigned to the target board. If left blank,
the default value is da:02:03:04:05:06. This value should never be the same as the host's
MAC address.

Configuration tab

Cable

• Type: Currently, Auto Detect is the only setting for this parameter. System Generator
will automatically detect the cable type.

Configuration timeout (ms): This is the timeout value for the initial Ethernet handshake
after configuration.
Designing with System Generator 160
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=160

Chapter 5: Using Hardware Co-Simulation
Hardware Co-Simulation Clocking
If you are performing a standard hardware co-simulation, you will have to select a clocking
mode when you configure the co-simulation block. included in your Simulink model.

Clocking Modes
There are several ways in which a System Generator hardware co-simulation block can be
synchronized with its associated FPGA hardware. In single-step clock mode, the FPGA is in
effect clocked from Simulink, whereas in free-running clock mode, the FPGA runs off an
internal clock, and is sampled asynchronously when Simulink wakes up the hardware
co-simulation block.

Single-Step Clock

In single-step clock mode, the hardware is kept in lock step with the software simulation.
This is achieved by providing a single clock pulse (or some number of clock pulses if the
FPGA is over-clocked with respect to the input/output rates) to the hardware for each
simulation cycle. In this mode, the hardware co-simulation block is bit-true and cycle-true
to the original model.

Because the hardware co-simulation block is in effect producing the clock signal for the
FPGA hardware only when Simulink awakes it, the overhead associated with the rest of the
Simulink model's simulation, and the communication overhead (e.g. bus latency) between
Simulink and the FPGA board can significantly limit the performance achieved by the
hardware. As a general rule of thumb, as long as the amount of computation inside the
FPGA is significant with respect to the communication overhead (e.g. the amount of logic is
large, or the hardware is significantly over-clocked), the hardware will provide significant
simulation speed-up.

Free-Running Clock

In free-running clock mode, the hardware runs asynchronously relative to the software
simulation. Unlike the single-step clock mode, where Simulink effectively generates the
FPGA clock, in free-running mode, the hardware clock runs continuously inside the FPGA
itself. In this mode, simulation is not bit and cycle true to the original model, because
Simulink is only sampling the internal state of the hardware at the times when Simulink
awakes the hardware co-simulation block. The FPGA port I/O is no longer synchronized with
events in Simulink. When an event occurs on a Simulink port, the value is either read from
or written to the corresponding port in hardware at that time. However, since an unknown
number of clock cycles have elapsed in hardware between port events, the current state of
the hardware cannot be reconciled to the original System Generator model. For many
streaming applications, this is in fact highly desirable, as it allows the FPGA to work at full
speed, synchronizing only periodically to Simulink.
Designing with System Generator 161
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=161

Chapter 5: Using Hardware Co-Simulation
In free-running mode, you must build explicit synchronization mechanisms into the System
Generator model. A simple example is a status register, exposed as an output port on the
hardware co-simulation block, which is set in hardware when a condition is met. The rest of
the System Generator model can poll the status register to determine the state of the
hardware.

Selecting the Clock Mode

Not every hardware board supports a free-running clock. However, for those that do, the
parameters dialog box for the hardware co-simulation block provides a means to select the
desired clocking mode. You may change the co-simulation clocking mode before simulation
starts by selecting either the Single stepped or Free running radio button for Clock
Source in the parameters dialog box.

Note: The clocking options available to a hardware co-simulation block depend on the FPGA board
being used (i.e., some boards may not support a free-running clock source, in which case it is not
available as a dialog box parameter).

For a description of a way to programmatically turn on or off a free-running clock using
M-Hardware Cosim, see the description of the Run operation under M-Hwcosim MATLAB
Class in the Vivado Design Suite Reference Guide: Model-Based DSP Design Using System
Generator (UG958).
Designing with System Generator 162
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf;a=MHwcosimMATLABClass
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf;a=MHwcosimMATLABClass
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=162

Chapter 5: Using Hardware Co-Simulation
Point-to-Point Ethernet Hardware Co-Simulation
The following affect hardware co-simulation performed through a Point-to-Point Ethernet
interface:

• Setting Up the Local Area Network on the PC

• Point-to-Point Ethernet Hardware Co-Simulation on Linux

• Using Jumbo Frames for Point-to-Point Ethernet Hardware Co-Simulation

Setting Up the Local Area Network on the PC
For Ethernet Point-to-Point hardware co-simulation, you are required to have a 10/100 Fast
Ethernet or a Gigabit Ethernet Adapter on your PC. To configure the settings do the
following:

1. From the Windows Start menu, select Control Panel, then under Network and
Internet, click on View network status and tasks. On the left hand side, click on
Change Adapter settings.

2. Right-click on Local Area Connection, then select Properties.
Designing with System Generator 163
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=163

Chapter 5: Using Hardware Co-Simulation
3. In the Local Area Connection Properties dialog box, enable Internet Protocol Version
4 (TCP/IPv4). Disable everything else.

4. Select Internet Protocol Version 4 (TCP/IPv4). Click on Properties and set the IP
Address to 192.168.1.11 and Subnet mask to 255.255.255.0, then click OK.
Designing with System Generator 164
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=164

Chapter 5: Using Hardware Co-Simulation
5. In the Local Area Connection Properties dialog box, click on Configure. Click Yes. Click
on the Advanced Tab. Click on Flow Control. Set the Value to Rx and Tx Enabled.

6. If you will want to speed up the Ethernet Point-to-Point hardware co-simulation by
using jumbo frames (that is, packets larger than 1500 bytes), click on Jumbo Packet and
set the Value to the desired frame size. See Using Jumbo Frames for Point-to-Point
Ethernet Hardware Co-Simulation for a description of jumbo frames.

7. Click OK to close the Properties dialog box.

Using Jumbo Frames for Point-to-Point Ethernet Hardware
Co-Simulation
Jumbo frames are Ethernet frames that are larger than 1500 bytes. You can speed up the
data transfers needed for Point-to-Point Ethernet hardware co-simulation by specifying
that the Ethernet adapter can use jumbo frames for these data transfers.

You can enable jumbo frames when you first set up the local area network for Point-to-Point
Ethernet hardware co-simulation (see Setting Up the Local Area Network on the PC).

If you have already set up the local area network, you can enable the use of jumbo frames
afterwards as follows:

1. In the Windows Control Panel, select Network and Internet > Network and Sharing
Center > Change Adapter Settings.

The Network Connections folder opens.
Designing with System Generator 165
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=165

Chapter 5: Using Hardware Co-Simulation
2. In the Network Connections folder, right-click the Local Area Connection you will use
for the Ethernet hardware co-simulation and select Properties in the right click menu.

3. In the Properties dialog box for your network connection, click the Configure button.

X-Ref Target - Figure 5-5

X-Ref Target - Figure 5-6
Designing with System Generator 166
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=166

Chapter 5: Using Hardware Co-Simulation
4. In the Advanced tab of the Properties dialog box for your adapter, select the Jumbo
Packet entry and enable using jumbo packets by setting the Value to the desired frame
size.

X-Ref Target - Figure 5-7
Designing with System Generator 167
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=167

Chapter 5: Using Hardware Co-Simulation
5. Click OK to close the Properties dialog box for your adapter.

6. Click OK to close the Properties dialog box for your network connection.

Point-to-Point Ethernet Hardware Co-Simulation on Linux
To perform Point-to-Point Ethernet hardware co-simulation on Linux, you need to have
sudo access on the Linux Machine. System Generator has to be launched as a sudo user. In
case you do not have multiple Network Interface cards on your machine, a Network switch
can be used.

Burst Data Transfers for Hardware Co-Simulation
Hardware co-simulation (HWCosim) is a methodology by which a user can offload, either
partially or whole, the most compute intensive portion of a model into the actual target
FPGA platform. The host system provides the stimulus to the model via the co-simulation
interface (typically JTAG and/or point-to-point Ethernet) and post-processes the response.
This methodology is useful for validating the correctness of the generated hardware design
on the target platform itself, as well as for speeding up the simulation time during
verification of the model in a hardware co-verification scenario.

MATLAB/Simulink in conjunction with System Generator for DSP currently supports two
variants of HWCosim: GUI-based and MATLAB M-script based. The first is run under the
control of the Simulink scheduler, and can only progress one clock cycle at a time, due to
the potential for feedback loops in the model.

The second variant is MATLAB M-script based simulation under System Generator control
(M-HWCosim), which is commonly used in testbenches produced as collateral during the

X-Ref Target - Figure 5-8
Designing with System Generator 168
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=168

Chapter 5: Using Hardware Co-Simulation
bitstream generation from the System Generator token. These testbenches are typically
feedback-free and come with a-priori known input that can be transferred to the device in
larger batches.

Previous generations of System Generator for DSP (Vivado) implemented only a basic
variant of HWCosim, which did not harness the full performance potential of the interface.
Command and response packets were sent in single-cycle batches, only utilizing a small
part of the available bandwidth. This leaves a lot of performance on the table which the
latest version of System Generator for DSP aims to reclaim.

Hardware Co-Simulation Overview
A high-level overview of hardware co-simulation (HWCosim) is given in the figure below. At
the center of it is the device under test (DUT). The DUT is typically a piece of IP that is
developed and tested within a Simulink test framework providing the stimulus and
receiving (and potentially evaluating) the response. In order to allow for Simulink to
communicate with the DUT it needs to be embedded into the HWCosim wrapper consisting
of the following components:

• Communication interface (JTAG or Ethernet): used for communications with the host
PC, receiving the command messages and sending responses.

• Command processor: command messages are parsed and executed.

• Memory-mapped AXI4-Lite register bank: Write commands are used to set up the
stimulus data in the register map, which is driving the inputs to the DUT. Similarly, read
commands are used to query the memory-mapped DUT outputs. Finally, a run(x)
command to the memory-mapped clock control register triggers exactly "x" clock
pulses on the DUT's clock input. Alternatively the run(inf) command starts the
free-running clock mode and run(0) turns the clock off.

Burst Data Transfer Mode
If you enable burst data transfer mode in the System Generator token (Compilation >
Settings >Burst mode), the non-clock input and output registers will be replaced with
"n"-entry FIFOs. You can select "n" (FIFO depth), which is useful for trading off performance
versus FPGA BRAM resource use.

X-Ref Target - Figure 5-9

Communication
Interface
(JTAG or
Ethernet)
Designing with System Generator 169
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=169

Chapter 5: Using Hardware Co-Simulation
Enabling Burst mode allows the M-HWCosim scheduler to "burst write" a time-sequence of
"n" values into each input FIFO, run the clock for a number of cycles determined by the rate
of input/output ports and the FIFO depths, and capture the resulting output in the output
FIFOs. After the batch has been run, the scheduler proceeds to "burst read" the contents of
the output FIFOs into a MATLAB array, where it can be checked against expected data.

X-Ref Target - Figure 5-10
Designing with System Generator 170
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=170

Chapter 5: Using Hardware Co-Simulation
This batch processing of time samples allows to better pack data into JTAG sequences or
point-to-point Ethernet frames up to the maximum "jumbo" frame size, thereby
significantly reducing overhead.

How to Use Burst Data Transfer Mode
The simplest way for you to start using burst data transfer mode is via an automatically
generated testbench script. Advanced users can make use of the HWCosim API exposed via
the MATLAB Hwcosim objects that are shipped with System Generator for DSP.

Automatic Testbench Generation

Testbench generation is run alongside the hardware co-simulation compilation flow. Open
the System Generator token in the Simulink model and wait for the dialog box to appear.
The first tab shows the Compilation options. A drop-down list shows the available
compilation targets. After selecting one of the two hardware co-simulation flows
(depending on which one is available for the selected board), the Settings button will be
enabled and when selected it will open a secondary dialog box where burst mode and the
desired FIFO depth can be chosen. After burst mode has been turned on, you can enable
the automatic creation of an M-HWCosim testbench script by enabling Create testbench at
the bottom of the Compilation tab.

X-Ref Target - Figure 5-11
Designing with System Generator 171
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=171

Chapter 5: Using Hardware Co-Simulation
The test generator will produce this M-script file in the Target Directory:

<design_name>_<sub_system>_hwcosim_test.m

You can run this script from the MATLAB console. The script will also run the Simulink model
to determine the stimulus data driven to the Xilinx Gateway In blocks (from the other
Simulink source blocks or MATLAB variables), while also capturing the expected output
produced by the Xilinx Block Design (BD) and exporting the data to the Target directory as
these separate data files:

<design_name>_<sub_system>_<port_name>.dat.

To run the testbench, you can open the MATLAB console, change directory to the Target
Directory, and run the script by name. If the test fails this will be printed on the console, and
the failing comparisons will be listed in this file:

<design_name>_<sub_system>_hwcosim_test.result.

Burst Mode Testbench Script

The following is a testbench generated for an example design as part of the compilation
flow:

X-Ref Target - Figure 5-12
Designing with System Generator 172
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=172

Chapter 5: Using Hardware Co-Simulation
TIP: If there are multiple Ethernet adapters connected to your board, you can use
M-Hwcosim to select the desired Ethernet interface for Point-to-Point Ethernet hardware
co-simulation. The procedure for selecting the interface is described in Selecting the
Adapter for Point-to-Point Ethernet Hardware Co-Simulation with M-Hwcosim in the Vivado
Design Suite Reference Guide: Model-Based DSP Design Using System Generator (UG958).

%% project3_burst_hwcosim_test
% project3_burst_hwcosim_test is an automatically generated example MCode
% function that can be used to open a hardware co-simulation (hwcosim) target,
% load the bitstream, write data to the hwcosim target's input blocks, fetch
% the returned data, and verify that the test passed. The returned value of
% the test is the amount of time required to run the test in seconds.
% Fail / Pass is indicated as an error or displayed in the command window.

%%
% PLEASE NOTE that this file is automatically generated and gets re-created
% every time the Hardware Co-Simulation flow is run. If you modify any part
% of this script, please make sure you save it under a new name or in a
% different location.

%%
% The following sections exist in the example test function:
% Initialize Bursts
% Initialize Input Data & Golden Vectors
% Open and Simulate Target
% Release Target on Error
% Test Pass / Fail

function eta = project3_burst_hwcosim_test
eta = 0;

%%
% ncycles is the number of cycles to simulate for and should be adjusted if
% the generated testbench simulation vectors are substituted by user data.
ncycles = 10;

%%
% Initialize Input Data & Golden Vectors
% xlHwcosimTestbench is a utility function that reformats fixed-point HDL Netlist
% testbench data vectors into a double-precision floating-point MATLAB binary
% data array.
xlHwcosimTestbench('.','project3_burst');

%%
% The testbench data vectors are both stimulus data for each input port, as
% well as expected (golden) data for each output port, recorded during the
% Simulink simulation portion of the Hardware Co-Simulation flow.
% Data gets loaded from the data file ('<name>_<port>_hwcosim_test.dat')
% into the corresponding 'testdata_<port>' workspace variables using
% 'getfield(load('<name>_<port>_hwcosim_test.dat' ... ' commands.
%
% Alternatively, the workspace variables holding the stimulus and / or golden
% data can be assigned other data (including dynamically generated data) to
% test the design with. If using alternative data assignment, please make
% sure to adjust the "ncycles" variable to the proper number of cycles, as
% well as to disable the "Test Pass / Fail" section if unused.
testdata_noise_x0 = getfield(load('project3_burst_noise_x0_hwcosim_test.dat', '-mat'),
'values');
testdata_scale = getfield(load('project3_burst_scale_hwcosim_test.dat', '-mat'), 'values');
Designing with System Generator 173
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf;a=SelectingTheAdapterForPointToPointEthernetHardwareCoSimulationWithMHwcosim
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf;a=SelectingTheAdapterForPointToPointEthernetHardwareCoSimulationWithMHwcosim
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=173

Chapter 5: Using Hardware Co-Simulation
testdata_wave = getfield(load('project3_burst_wave_hwcosim_test.dat', '-mat'), 'values');
testdata_intout = getfield(load('project3_burst_intout_hwcosim_test.dat', '-mat'), 'values');
testdata_sigout = getfield(load('project3_burst_sigout_hwcosim_test.dat', '-mat'), 'values');

%%
% The 'result_<port>' workspace variables are arrays to receive the actual results
% of a Hardware Co-Simulation read from the FPGA. They will be compared to the
% expected (golden) data at the end of the Co-Simulation.
result_intout = zeros(size(testdata_intout));
result_sigout = zeros(size(testdata_sigout));

%%
% project3_burst.hwc is the data structure containing the Hardware Co-Simulation
% design information returned after netlisting the Simulink / System
% Generator model.
% Hwcosim(project) instantiates and returns a handle to the API shared library object.
project = 'project3_burst.hwc';
h = Hwcosim(project);
try
 %% Open the Hardware Co-Simulation target and co-simulate the design
 open(h);
 cosim_t_start = tic;
 h('noise_x0') = testdata_noise_x0;
 h('scale') = testdata_scale;
 h('wave') = testdata_wave;
 run(h, ncycles);
 result_intout = h('intout');
 result_sigout = h('sigout');
 eta = toc(cosim_t_start);
 % Release the handle for the Hardware Co-Simulation target
 release(h);

%% Release Target on Error
catch err
 release(h);
 rethrow(err);
 error('Error running hardware co-simulation testbench. Please refer to hwcosim.log for
details.');
end

%% Test Pass / Fail
logfile = 'project3_burst_hwcosim_test.results';
logfd = fopen(logfile, 'w');
sim_ok = true;
sim_ok = sim_ok & xlHwcosimCheckResult(logfd, 'intout', testdata_intout, result_intout);
sim_ok = sim_ok & xlHwcosimCheckResult(logfd, 'sigout', testdata_sigout, result_sigout);
fclose(logfd);
if ~sim_ok
 error('Found errors in the simulation results. Please refer to
project3_burst_hwcosim_test.results for details.');
end
disp(['Hardware Co-Simulation successful. Data matches the Simulink simulation and completed in
' num2str(eta) ' seconds.']) ;

This script first defines the number of cycles (ncycles) to run in the simulation, prepares
the testbench, and loads the stimulus data and expected output into MATLAB arrays. Then
it creates an Hwcosim object instance with a handle (h), which loads the HWCosim API
shared library. Inside the try-catch block it opens the instance, initializes the FPGA, and
opens a connection to it.
Designing with System Generator 174
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=174

Chapter 5: Using Hardware Co-Simulation
Once the setup phase is complete, the code between the tic and toc timing commands
executes the write-run-read commands. Please note that unlike in previous versions of
HWCosim, this testbench does not require a for-loop to cycle through every clock cycle.
This is due to the new smart cache layer which can buffer up nearly arbitrary size write
commands in host memory before issuing smaller cycles of write-run-read batches to the
hardware (during execution of the user-visible run(h, ncycles) command).

At the end of the execution phase the HWCosim instance is released and the testbench
compares actual to expected outputs.

Comments in the testbench code will help you understand the flow of the hardware
co-simulation and help you develop customized testbench scripts for your design.
Designing with System Generator 175
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=175

Chapter 6

Importing HDL Modules
Sometimes it is important to add one or more existing HDL modules to a System Generator
design. The System Generator Black Box block allows VHDL, Verilog, and EDIF to be brought
into a design. The Black Box block behaves like other System Generator blocks - it is wired
into the design, participates in simulations, and is compiled into hardware. When System
Generator compiles a Black Box block, it automatically wires the imported module and
associated files into the surrounding netlist. A Black Box can be configured to support
either synchronous clock designs or multiple hardware clock designs based on the context
and System Generator token settings.

The Black Box Interface

Black Box HDL Requirements
and Restrictions

Details the requirements and restrictions for VHDL,
Verilog, and EDIF associated with black boxes.

Black Box Configuration Wizard Describes how to use the Black Box Configuration
Wizard.

Black Box Configuration
M-Function

Describes how to create a black box configuration
M-function.

HDL Co-Simulation

Configuring the HDL Simulator Explains how to configure the Vivado® simulator
or ModelSim to co-simulate the HDL in the Black
Box block.

Co-Simulating Multiple Black
Boxes

Describes how to co-simulate several Black Box
blocks in a single HDL simulator session.
Designing with System Generator 176
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=176

Chapter 6: Importing HDL Modules
Black Box HDL Requirements and Restrictions
An HDL component associated with a black box must adhere to the following System
Generator requirements and restrictions:

• The entity name must not collide with any other entity name in the design.

• Bi-directional ports are supported in HDL black boxes, however they will not be
displayed in the System Generator as ports; they only appear in the generated HDL
after netlisting.

• For Verilog black boxes, the module and port names must follow standard VHDL
naming conventions.

• Any port that is a clock or clock enable must be of type std_logic. (For Verilog black
boxes, ports must be of non-vector inputs, e.g., input clk.)

• Clock and clock enable ports in black box HDL should be expressed as follows: Clock
and clock enables must appear as pairs (i.e., for every clock, there is a corresponding
clock enable, and vice-versa). A black box may have more than one clock port and its
behavior changes based on the context of the design

° In Synchronous single clock design context, a single clock source is used to drive
each clock port. Only the clock enable rates differ.

° In case of multiple independent hardware clock design context, two different clock
sources is used to drive clock and clock enable pins.

• Each clock name (respectively, clock enable name) must contain the substring clk, for
example my_clk_1 and my_ce_1.

• The name of a clock enable must be the same as that for the corresponding clock, but
with ce substituted for clk. For example, if the clock is named src_clk_1, then the
clock enable must be named src_ce_1.

• Falling-edge triggered output data cannot be used.

Black Box Configuration Wizard
System Generator provides a configuration wizard that makes it easy to associate a VHDL or
Verilog module to a Black Box block. The Configuration Wizard parses the VHDL or Verilog
module that you are trying to import, and automatically constructs a configuration
M-function based on its findings. It then associates the configuration M-function it
produces to the Black Box block in your model. Whether or not you can use the
configuration M-function as is depends on the complexity of the HDL you are importing.
Sometimes the configuration M-function must be customized by hand to specify details the
Designing with System Generator 177
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=177

Chapter 6: Importing HDL Modules
configuration wizard misses. Details on the construction of the configuration M-function
can be found in the topic Black Box Configuration M-Function.

Using the Configuration Wizard

The Black Box Configuration Wizard opens automatically when a new black box block is
added to a model.

Note: Before running the Configuration Wizard, ensure the VHDL or Verilog you are importing
meets the specified Black Box HDL Requirements and Restrictions.

For the Configuration Wizard to find your module, the model must be saved in the same
directory as the module you are trying to import. This means, in particular, that the model
must be saved to same directory.

Note: The wizard only searches for.vhd and.v files in the same directory as the.mdl file. If the
wizard does not find any files it issues a warning and the black box is not automatically configured.
The warning looks like the following:

After searching the model's directory for.vhd and.v files, the Configuration Wizard opens
a new window that lists the possible files that can be imported. An example screenshot is
shown below:

You can select the file you would like to import by selecting the file, and then pressing the
Open button. At this point, the configuration wizard generates a configuration M-function
and associates it with the black box block.
Designing with System Generator 178
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=178

Chapter 6: Importing HDL Modules
Note: The configuration M-function is saved in the model's directory as <module>_config.m,
where <module> is the name of the module that you are importing.

Configuration Wizard Fine Points

The configuration wizard automatically extracts certain information from the imported
module when it is run, but some things must be specified by hand. These things are
described below:

Note: The configuration function is annotated with comments that instruct you where to make
these changes.

• If your model has a combinational path, you must call the tagAsCombinational method
of the block's SysgenBlockDescriptor object. A multiple independent hardware clock
design will not support a combinational path.

• The Configuration Wizard only knows about the top-level entity that is being imported.
There are typically other files that go along with this entity. These files must be added
manually in the configuration M-function by invoking the addFile method for each
additional file.

• The Configuration Wizard automatically creates either a synchronous single clock black
box descriptor or an asynchronous multiple clock black box descriptor.

° In the case of single-rate black box, every port on the black box runs at the same
rate. In most cases, this is acceptable. You may want to explicitly set port rates,
which can result in a faster simulation time.

° In the case of a multiple clock black box, the input port rate must be derived from
the “source clock subsystem” and the output port rate must be set based on the
“destination clock subsystem”. In some cases, you may want to explicitly set port
rates for a required configuration.
Designing with System Generator 179
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=179

Chapter 6: Importing HDL Modules
Black Box Configuration M-Function
An imported module is represented in System Generator by a Black Box block. Information
about the imported module is conveyed to the black box by a configuration M-function.
This function defines the interface, implementation, and the simulation behavior of the
black box block it is associated with. More specifically, the information a configuration
M-function defines includes the following:

• Name of the top-level entity for the module;

• VHDL or Verilog language selection;

• Port descriptions;

• Generics required by the module;

• Synchronous single clock or asynchronous multiple independent clock configuration;

• Clocking and sample rates;

• Files associated with the module;

• Whether the module has any combinational paths.

The name of the configuration M-function associated with a black box is specified as a
parameter in the black box parameters dialog box (parity_block_config.m in the
example shown below).

Configuration M-functions use an object-based interface to specify black box information.
This interface defines two objects, SysgenBlockDescriptor and SysgenPortDescriptor. When
System Generator invokes a configuration M-function, it passes the function a block
descriptor:

function sample_block_config(this_block)

A SysgenBlockDescriptor object provides methods for specifying information about the
black box. Ports on a block descriptor are defined separately using port descriptors.
Designing with System Generator 180
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=180

Chapter 6: Importing HDL Modules
Language Selection

The black box can import VHDL and Verilog modules. SysgenBlockDescriptor provides a
method, setTopLevelLanguage, that tells the black box what type of module you are
importing. This method should be invoked once in the configuration M-function. The
following code shows how to select between the VHDL and Verilog languages.

VHDL Module:

this_block.setTopLevelLanguage('VHDL');

Verilog Module:

this_block.setTopLevelLanguage('Verilog');

Note: The Configuration Wizard automatically selects the appropriate language when it generates a
configuration M-function.

Specifying the Top-Level Entity

You must tell the black box the name of the top-level entity that is associated with it.
SysgenBlockDescriptor provides a method, setEntityName, which allows you to specify the
name of the top-level entity.

Note: Use lower case text to specify the entity name.

For example, the following code specifies a top-level entity named foo.

this_block.setEntityName('foo');

Note: The Configuration Wizard automatically sets the name of the top-level entity when it
generates a configuration M-function.

Defining Block Ports

The port interface of a black box is defined by the block's configuration M-function. Recall
that black box ports are defined using port descriptors. A port descriptor provides methods
for configuring various port attributes, including port width, data type, binary point, and
sample rate.

Adding New Ports

When defining a black box port interface, it is necessary to add input and output ports to
the block descriptor. These ports correspond to the ports on the module you are importing.
In your model, the black box block port interface is determined by the port names that are
declared on the block descriptor object. SysgenBlockDescriptor provides methods for
adding input and output ports:
Designing with System Generator 181
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=181

Chapter 6: Importing HDL Modules
Adding an input port:

this_block.addSimulinkInport('din');

Adding an output port:

this_block.addSimulinkOutport('dout');

The string parameter passed to methods addSimulinkInport and addSimulinkOutport
specifies the port name. These names should match the corresponding port names in
the imported module.

Note: Use lower case text to specify port names.

Adding a bidirectional port:

config_phase = this_block.getConfigPhaseString;
if (strcmpi(config_phase,'config_netlist_interface'))
this_block.addInoutport('bidi');
% Rate and type info should be added here as well

end

Bi-directional ports are supported only during the netlisting of a design and will not
appear on the System Generator diagram; they only appear in the generated HDL. As
such, it is important to only add the bi-directional ports when System Generator is
generating the HDL. The if-end conditional statement is guarding the execution of the
code to add-in the bi-directional port.

It is also possible to define both the input and output ports using a single method call. The
setSimulinkPorts method accepts two parameters. The first parameter is a cell array of
strings that define the input port names for the block. The second parameter is a cell array
of strings that define the output port names for the block.

Note: The Configuration Wizard automatically sets the port names when it generates a
configuration M-function

Obtaining a Port Object

Once a port has been added to a block descriptor, it is often necessary to configure
individual attributes on the port. Before configuring the port, you must obtain a descriptor
for the port you would like to configure. SysgenBlockDescriptor provides methods for
accessing the port objects that are associated with it. For example, the following method
retrieves the port named din on the this_block descriptor:

Accessing a SysgenPortDescriptor object:

din = this_block.port('din');

In the above code, an object din is created and assigned to the descriptor returned by the
port function call.
Designing with System Generator 182
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=182

Chapter 6: Importing HDL Modules
SysgenBlockDescriptor also provides methods, inport and outport, that return a port
object given a port index. A port index is the index of the port (in the order shown on the
block interface) and is some value between 1 and the number of input/output ports on the
block. These methods are useful when you need to iterate through the block's ports (e.g.,
for error checking).

Configuring Port Types

SysgenPortDescriptor provides methods for configuring individual ports. For example,
assume port dout is unsigned, 12 bits, with binary point at position 8. The code below
shows one way in which this type can be defined.

dout = this_block.port('dout');
dout.setWidth(12);
dout.setBinPt(8);
dout.makeUnsigned();

The following also works:

dout = this_block.port('dout');
dout.setType('Ufix_12_8');

The first code segment sets the port attributes using individual method calls. The second
code segment defines the signal type by specifying the signal type as a string. Both code
segments are functionally equivalent.

The black box supports HDL modules with 1-bit ports that are declared using either single
bit port (e.g., std_logic) or vectors (e.g., std_logic_vector(0 downto 0)) notation. By default,
System Generator assumes ports to be declared as vectors. You may change the default
behavior using the useHDLVector method of the descriptor. Setting this method to true
tells System Generator to interpret the port as a vector. A false value tells System
Generator to interpret the port as single bit.

dout.useHDLVector(true); % std_logic_vector
dout.useHDLVector(false); % std_logic

Note: The Configuration Wizard automatically sets the port types when it generates a configuration
M-function.

Configuring Bi-Directional Ports for Simulation

Bi-directional ports (or inout ports) are supported only during the generation of the HDL
netlist, that is, bi-directional ports will not show up in the System Generator diagram. By
default, bi-directional ports will be driven with 'X' during simulation. It is possible to
overwrite this behavior by associating a data file to the port. Be sure to guard this code
since bi-directional ports can only be added to a block during the config_netlist_interface
phase.

if (strcmpi(this_block.getConfigPhaseString,'config_netlist_interface'))
 bidi_port = this_block.port('bidi');
 bidi_port.setGatewayFileName('bidi.dat');
end
Designing with System Generator 183
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=183

Chapter 6: Importing HDL Modules
In the above example, a text file "bidi.dat" is used during simulation to provide stimulation
to the port. The data file should be a text file, where each line represents the signal driven
on the port at each simulation cycle. For example, a 3-bit bi-directional port that is
simulated for 4 cycles might have the following data file:

ZZZ
110
011
XXX

Simulation will return with an error if the specified data file cannot be found.

Configuring Port Sample Rates

The black box block supports ports that have different sample rates. By default, the sample
rate of an output port is the sample rate inherited from the input port (or ports, if the inputs
run at the same sample rate). Sometimes it is necessary to explicitly specify the sample rate
of a port (e.g., if the output port rate is different than the block's input sample rate).

Note: When the inputs to a black box have different sample rates, you must specify the sample rates
of every output port.

SysgenPortDescriptor provides a method, setRate, which allows you to explicitly set the
rate of a port.

Note: The rate parameter passed to the setRate method is not necessarily the Simulink sample rate
of that the port runs at. Instead, it is a positive Integer value that defines the ratio between the
desired port sample period and the Simulink system clock period defined by the System Generator
token dialog box.

Assume you have a model in which the Simulink system period value for the model is
defined as 2 sec. Also assume, the example dout port is assigned a rate of 3 by invoking the
setRate method as follows:

dout.setRate(3);

A rate of 3 means that a new sample is generated on the dout port every 3 Simulink system
periods. Since the Simulink system period is 2 sec, this means the Simulink sample rate of
the port is 3 x 2 = 6 sec.

Note: If your port is a non-sampled constant, you may define it as so in the configuration
M-function using the setConstant method of SysgenPortDescriptor. You can also define a constant
by passing Inf to the setRate method.

Dynamic Output Ports

A useful feature of the black box is its ability to support dynamic output port types and
rates. For example, it is often necessary to set an output port width based on the width of
an input port. SysgenPortDescriptor provides member variables that allow you to determine
the configuration of a port. You can set the type or rate of an output port by examining
these member variables on the block's input ports.
Designing with System Generator 184
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=184

Chapter 6: Importing HDL Modules
For example, you can obtain the width and rate of a port (in this case din) as follows:

input_width = this_block.port('din').width;
input_rate = this_block.port('din').rate;

Note: A black box's configuration M-function is invoked at several different times when a model is
compiled. The configuration function may be invoked before the data types and rates have been
propagated to the black box.

The SysgenBlockDescriptor object provides Boolean member variables inputTypesKnown
and inputRatesKnown that tell whether the port types and rates have been propagated
to the block. If you are setting dynamic output port types or rates based on input port
configurations, the configuration calls should be nested inside conditional statements that
check that values of inputTypesKnown and inputRatesKnown.

The following code shows how to set the width of a dynamic output port dout to have the
same width as input port din:

if (this_block.inputTypesKnown)
dout.setWidth(this_block.port('din').width);

end

Setting dynamic rates works in a similar manner. The code below sets the sample rate of
output port dout to be twice as slow as the sample rate of input port din:

if (this_block.inputRatesKnown)
dout.setRate(this_block.port('din').rate*2);

end

Black Box Clocking

In order to import a multirate module, you must tell System Generator information about
the module's clocking in the configuration M-function. System Generator treats clock and
clock enables differently than other types of ports. A clock port on an imported module
must always be accompanied by a clock enable port (and vice versa). In other words, clock
and clock enables must be defined as a pair, and exist as a pair in the imported module. This
is true for both single rate and multirate designs.

Note: Although clock and clock enables must exist as pairs, System Generator drives all clock ports
on your imported module with the FPGA system clock. The clock enable ports are driven by clock
enable signals derived from the FPGA system clock.

SysgenBlockDescriptor provides a method, addClkCEPair, which allows you to define
clock and clock enable information for a black box. This method accepts three parameters.
The first parameter defines the name of the clock port (as it appears in the module). The
second parameter defines the name of the clock enable port (also as it appears in the
module).
Designing with System Generator 185
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=185

Chapter 6: Importing HDL Modules
The port names of a clock and clock enable pair must follow the naming conventions
provided below:

• The clock port must contain the substring clk

• The clock enable must contain the substring ce

• The strings containing the substrings clk and ce must be the same (e.g., my_clk_1
and my_ce_1).

The third parameter defines the rate relationship between the clock and the clock enable
port. The rate parameter should not be thought of as a Simulink sample rate. Instead, this
parameter tells System Generator the relationship between the clock sample period, and the
desired clock enable sample period. The rate parameter is an integer value that defines the
ratio between the clock rate and the corresponding clock enable rate.

For example, assume you have a clock enable port named ce_3 that would like to have a
period three times larger than the system clock period. The following function call
establishes this clock enable port:

addClkCEPair('clk_3','ce_3',3);

When System Generator compiles a black box into hardware, it produces the appropriate
clock enable signals for your module, and automatically wires them up to the appropriate
clock enable ports.

Combinational Paths

If the module you are importing has at least one combinational path (i.e., a change on any
input can effect an output port without a clock event), you must indicate this in the
configuration M-function. SysgenBlockDescriptor object provides a
tagAsCombinational method that indicates your module has a combinational path. It
should be invoked as follows in the configuration M-function:

this_block.tagAsCombinational;

Specifying VHDL Generics and Verilog Parameters

You may specify a list of generics that get passed to the module when System Generator
compiles the model into HDL. Values assigned to these generics can be extracted from mask
parameters and from propagated port information (e.g., port width, type, and rate). This
flexible means of generic assignment allows you to support highly parametric modules that
are customized based on the Simulink environment surrounding the black box.

The addGeneric method allows you to define the generics that should be passed to your
module when the design is compiled into hardware. The following code shows how to set a
VHDL Integer generic, dout_width, to a value of 12.

addGeneric('dout_width','Integer','12');
Designing with System Generator 186
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=186

Chapter 6: Importing HDL Modules
It is also possible to set generic values based on port on propagated input port information
(e.g., a generic specifying the width of a dynamic output port).

Because a black box's configuration M-function is invoked at several different times when a
model is compiled, the configuration function may be invoked before the data types (or
rates) have been propagated to the black box. If you are setting generic values based on
input port types or rates, the addGeneric calls should be nested inside a conditional
statement that checks the value of the inputTypesKnown or inputRatesKnown
variables. For example, the width of the dout port can be set based on the value of din as
follows:

if (this_block.inputTypesKnown)
% set generics that depend on input port types
this_block.addGeneric('dout_width', ...
this_block.port('din').width);

end

Generic values can be configured based on mask parameters associated with a block box.
SysgenBlockDescriptor provides a member variable, blockName, which is a string
representation of the black box's name in Simulink. You may use this variable to gain access
the black box associated with the particular configuration M-function. For example, assume
a black box defines a parameter named init_value. A generic with name init_value
can be set as follows:

simulink_block = this_block.blockName;
init_value = get_param(simulink_block,'init_value');
this_block.addGeneric('init_value', 'String', init_value);

Note: You can add your own parameters (e.g., values that specify generic values) to the black box by
doing the following:

• Copy a black box into a Simulink library or model;

• Break the link on the black box;

• Add the desired parameters to the black box dialog box.

Black Box VHDL Library Support

This Black Box feature allow you to import VHDL modules that have predefined library
dependencies. The following example illustrates how to do this import.
Designing with System Generator 187
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=187

Chapter 6: Importing HDL Modules
The VHDL module below is a 4-bit, Up counter with asynchronous clear (async_counter.vhd).
It will be compiled into a library named async_counter_lib.

The VHDL module below is a 4-bit, Up counter with synchronous clear (sync_counter.vhd). It
will be compiled into a library named sync_counter_lib..
Designing with System Generator 188
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=188

Chapter 6: Importing HDL Modules
The VHDL module below is the top-level module that is used to instantiate the previous
modules. This is the module that you need to point to when adding the BlackBox into you
System Generator model.

The VHDL is imported by first importing the top-level entity, top_level, using the Black Box.
Designing with System Generator 189
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=189

Chapter 6: Importing HDL Modules
Once the file is imported, the associated Black Box Configuration M-file needs to be
modified as follows:

The interface function addFileToLibrary is used to specify a library name other than “work”
and to instruct the tool to compile the associated HDL source to the specified library.

The System Generator model should look similar to the figure below.

The next step is to double-click on the System Generator token and click on the Generate
button to generate the HDL netlist.

During the generation process, a Vivado IDE project(.xpr) is created and placed with the
hdl_netlist folder under the netlist folder. If you double click on the Vivado IDE
project and select the Libraries tab under the Source view, you will see not only a work
library, but an async_counter_lib library and sync_counter_lib library as well.

Error Checking

It is often necessary to perform error checking on the port types, rates, and mask
parameters of a black box. SysgenBlockDescriptor provides a method, setError, which allows
you to specify an error message that is reported to the user. The string parameter passed to
setError is the error message that is seen by user.
Designing with System Generator 190
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=190

Chapter 6: Importing HDL Modules
Black Box API

SysgenBlockDescriptor Member Variables

Type Member Description

String entityName Name of the entity or module.

String blockName Name of the black box block.

Integer numSimulinkInports Number of input ports on black box.

Integer numSimulinkOutports Number of output ports on the black
box.

Boolean inputTypesKnown true if all input types are defined, and
false otherwise.

Boolean inputRatesKnown true if all input rates are defined, and
false otherwise.

Array of
Doubles

inputRates Array of sample periods for the input
ports (indexed as in inport(indx)).
Sample period values are expressed
as integer multiples of the Simulink
System Period value specified by the
master System Generator token

Boolean error true if an error has been detected,
and false otherwise.

Cell Array of
Strings

errorMessages Array of all error messages for this
block.
Designing with System Generator 191
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=191

Chapter 6: Importing HDL Modules
SysgenBlockDescriptor Methods

Method Description

setTopLevelLanguage(language) Declares language for the top-level entity (or
module) of the black box. language should be
'VHDL' or 'Verilog'.

setEntityName(name) Sets name of the entity or module.

addSimulinkInport(pname) Adds an input port to the black box. pname tells
the name the port should have.

addSimulinkOutport(pname) Adds an output port to the black box. pname tells
the name the port should have.

setSimulinkPorts(in,out) Adds input and output ports to the black box. in
(respectively, out) is a cell array whose element
tell the names to use for the input (resp., output)
ports.

addInoutport(pname) Adds a bi-directional port to the black box.
pname specifies the name the port should have.
Bi- directional ports can only be added during the
'config_netlist_interface' phase of configuration.

tagAsCombinational() Indicate that the block has a combinational path
(i.e., direct feedthrough) from an input port to an
output port.

addClkCEPair(clkPname, cePname,
rate)

Defines a clock/clock enable port pair for the
block. clkPname and cePname tell the names for
the clock and clock enable ports respectively.
rate, a double, tells the rate at which the port pair
runs. The rate must be a positive integer. Note the
clock (respectively, clock enable) name must
contain the substring clk (resp., ce). The names
must be parallel in the sense that the clock enable
name is obtained from the clock name by
replacing clk with ce.

port(name) Returns the SysgenPortDescriptor that matches
the specified name.

inport(indx) Returns the SysgenPortDescriptor that describes
a given input port. indx tells the index of the port
to look for, and should be between 1 and
numInputPorts.

outport(indx) Returns the SysgenPortDescriptor that describes
a given output port. indx tells the index of the
port to look for, and should be between 1 and
numOutputPorts.
Designing with System Generator 192
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=192

Chapter 6: Importing HDL Modules
addGeneric(identifier, value) Defines a generic (or parameter if using Verilog)
for the block. identifier is a string that tells the
name of the generic. value can be a double or a
string. The type of the generic is inferred from
value's type. If value is an integral double, e.g.,
4.0, the type of the generic is set to integer. For a
non-integral double, the type is set to real. When
value is a string containing only zeros and ones,
e.g., `0101', the type is set to bit_vector. For any
other string value the type is set to string.

addGeneric(identifier, type, value) Explicitly specifies the name, type, and value for a
generic (or parameter if using Verilog) for the
block. All three arguments are strings. identifier
tells the name, type tells the type, and value tells
the value.

addFile(fn) Adds a file name to the list of files associated to
this black box. fn is the file name. Ordinarily, HDL
files are associated to black boxes, but any sorts
of files are acceptable. VHDL (respectively,
Verilog) file names should end in .vhd (resp., .v).
The order in which file names are added is
preserved, and becomes the order in which HDL
files are compiled. File names can be absolute or
relative. Relative file names are interpreted with
respect to the location of the .mdl or library .mdl
for the design.

getDeviceFamilyName() Gets the name of the FPGA device corresponding
to the Blackbox.

getConfigPhaseString Returns the current configuration phase as a
string. A valid return string includes:
config_interface, config_rate_and_type,
config_post_rate_and_type, config_simulation,
config_netlist_interface and config_netlist.

setSimulatorCompilationScript
(script)

Overrides the default HDL co-simulation
compilation script that the black box generates.
script tells the name of the script to use. This
method can, for example, be used to short-circuit
the compilation phase for repeated simulations
where the HDL for the black box remains
unchanged.

setError(message) Indicates that an error has occurred, and records
the error message. message gives the error
message.

Method Description
Designing with System Generator 193
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=193

Chapter 6: Importing HDL Modules
SysgenPortDescriptor Member Variables

SysgenPortDescriptor Methods

Type Member Description

String name Tells the name of the port.

Integer simulinkPortNumber Tells the index of this port in Simulink.
Indexing starts with 1 (as in Simulink).

Boolean typeKnown True if this port's type is known, and
false otherwise.

String type Type of the port, e.g., UFix_<n>_,
Fix_<n>_, or Bool

Boolean isBool True if port type is Bool, and false
otherwise.

Boolean isSigned True if type is signed, and false
otherwise.

Boolean isConstant True if port is constant, and false
otherwise.

Integer width Tells the port width.

Integer binpt Tells the binary point position, which
must be an integer in the range
0..width.

Boolean rateKnown True if the rate is known, and false
otherwise.

Double rate Tells the port sample time. Rates are
positive integers expressed as
MATLAB doubles. A rate can also be
infinity, indicating that the port
outputs a constant.

Method Description

setName(name) Sets the HDL name to be used for this port.

setSimulinkPortNumber(num) Sets the index associated with this port in
Simulink. num tells the index to assign. Indexing
starts with 1 (as in Simulink).

setType(typeName) Sets the type of this port to type. Type must be
one of Bool, UFix_<n>_ , Fix_<n>_ ,
signed or unsigned. The last two choices leave
the width and binary point position unchanged.

XFloat_<exponent_bit_width>_fraction_bit_width
> is also supported. For example:
ap_return_port = this_block.port('ap_return');

ap_return_port.setType('XFloat_30_2');

setWidth(w) Sets the width of this port to w.
Designing with System Generator 194
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=194

Chapter 6: Importing HDL Modules
setBinpt(bp) Sets the binary point position of this port to bp.

makeBool() Makes this port Boolean.

makeSigned() Makes this port signed.

makeUnsigned() Makes this port unsigned.

setConstant() Makes this port constant

setGatewayFileName(filename) Sets the dat file name that will be used in
simulations and test-bench generation for this
port. This function is only meant for use with
bi-directional ports so that a hand written data
file can be used during simulation. Setting this
parameter for input or output ports is invalid and
will be ignored.

setRate(rate) Assigns the rate for this port. rate must be a
positive integer expressed as a MATLAB double or
Inf for constants.

useHDLVector(s) Tells whether a 1-bit port is represented as
single-bit (ex: std_logic) or vector (ex:
std_logic_vector(0 downto 0)).

HDLTypeIsVector() Sets representation of the 1-bit port to
std_logic_vector(0 downto 0).

Method Description
Designing with System Generator 195
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=195

Chapter 6: Importing HDL Modules
Multiple Independent Clock Support on Black Box

DRCs on Port connection
When the black box is used in multiple independent hardware clock design context, DRCs
for its port connections must be added in the configuration M-function. This should avoid
invalid or incorrect port connection with different clock sources. You need to ensure all port
signals are connected from/to a proper clocked-subsystem interface.

The utility “checkPortsOfSameClockDomain()” should be used to specify a list of ports
from a particular clock domain and to group it together. The input arguments to this API are
‘SysgenBlockDescriptor’ object followed by the list of port names associated with a
particular clock domain.

Example: checkPortsOfSameClockDomain (<block_descriptor>,
'<port_name_1>', ‘<port_name_2>’, '<port_name_3>',
'<port_name_4>');

In the above example, the API put an error check and verifies the four ports are connected
to the same subsystem clock domain.

Configuring Port Sample Rates
In multiple clock hardware designs, the clock period of the port interface should be
computed using the connected “clocked subsystem domain”. By default, “synchronous
system clock” source is used by all the ports but for asynchronous clock hardware designs
it is necessary to explicitly specify the clock sources of every port (e.g., if the output port
clock is different than the block's input port clock).

Note: You must set the sample rate to ‘1.0’ to all output ports of multiple independent clock black
box designs; it automatically set the output ports to the destination clock subsystem period.

SysgenPortDescriptor provides a method ‘setRate’, which allows you to explicitly set the
rate of a port.

Example: port('<port_name>').setRate(1.0)

Black Box Clocking
In order to import a synchronous or asynchronous black box module, you must tell System
Generator information about the module's clocking in the configuration M-function. System
Generator treats clock and clock enables differently than other types of ports. A clock port
on an imported module must always be accompanied by a clock enable port (and vice
versa). In other words, clock and clock enables must be defined as a pair, and exist as a pair
Designing with System Generator 196
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=196

Chapter 6: Importing HDL Modules
in the imported module. This is true for both single synchronous clock and multiple
independent clock designs.

SysgenBlockDescriptor provides a method, addClkCEPair, which allows you to define clock,
clock enable and its associated clock period using clock sub-system domain. The clock
domain information is not required for synchronous single clock designs.

The first parameter defines the name of the clock port (as it appears in the module). The
second parameter defines the name of the clock enable port (also as it appears in the
module).

The port names of a clock and clock enable pair must follow the naming conventions
provided below:

• The clock port must contain the substring clk

• The clock enable must contain the substring ce

• The strings containing the substrings clk and ce must be the same (e.g., my_clk_1 and
my_ce_1).

The third parameter defines the rate relationship between the clock and the clock-enable
port. The rate parameter should not be thought of as a Simulink sample rate. Instead, this
parameter tells System Generator the relationship between the clock sample period, and the
desired clock enable sample period. The rate parameter is an integer value that defines the
ratio between the clock rate and the corresponding clock enable rate.

For multiple independent clock designs, fourth and fifth optional parameter is mandatory.

The fourth parameter holds a “Boolean” value and it defines whether clock and clock enable
pair is tied to ground. If you set it to “true” both clock and clock enable would be tied to
ground during simulation. Setting it to false would activate clock and clock enable rate
transitions.

The firth parameter defines the clock period for the corresponding clock-clock enable pair.
The ‘clockDomain’ property of the black box “SysgenPortDescriptor” must be used to set
the clock periods for multiple independent clock designs.

Example:

rate_data = this_block.port('<port_name>').rate;
clkDomain_data = this_block.port(<port_name>).clockDomain;
this_block.addClkCEPair('clk',ce',rate_data, false, clkDomain_data);
Designing with System Generator 197
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=197

Chapter 6: Importing HDL Modules
HDL Co-Simulation

Introduction
This topic describes how a mixed language/mixed flow design that includes Xilinx blocks,
HDL modules, and a Simulink block design can be simulated in its entirety.

System Generator simulates black boxes by automatically launching an HDL simulator,
generating additional HDL as needed (analogous to an HDL testbench), compiling HDL,
scheduling simulation events, and handling the exchange of data between the Simulink and
the HDL simulator. This is called HDL co-simulation.

Configuring the HDL Simulator
Black box HDL can be co-simulated with Simulink using the System Generator interface to
either the Vivado simulator or the ModelSim simulation software from Model Technology,
Inc.

Xilinx Simulator

To use the Xilinx simulator for co-simulating the HDL associated with the black box, select
Vivado Simulator as the option for the Simulation mode parameter on the black box. The
model is then ready to be simulated and the HDL co-simulation takes place automatically.

ModelSim Simulator

To use the ModelSim simulator by Model Technology, Inc., you must first add the ModelSim
block that appears in the Tools library of the Xilinx Blockset to your Simulink diagram.

For each black box that you wish to have co-simulated using the ModelSim simulator, you
need to open its block parameterization dialog and set it to use the ModelSim session
represented by the black box that was just added. You do this by making the following two
settings:

1. Change the Simulation Mode field from Inactive to External co-simulator.
Designing with System Generator 198
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=198

Chapter 6: Importing HDL Modules
2. Enter the name of the ModelSim block (e.g., ModelSim) in the HDL Co-Simulator to use
field.

The block parameter dialog for the ModelSim block includes some parameters that you can
use to control various options for the ModelSim session. See the block help page for details.
The model is then ready to be simulated with these options, and the HDL co-simulation
takes place automatically.

Co-Simulating Multiple Black Boxes
System Generator allows many black boxes to share a common ModelSim co-simulation
session. I.e., many black boxes can be set to "use" the same ModelSim block. In this case,
System Generator automatically combines all black box HDL components into a single
shared top-level co-simulation component. This is transparent to the user. It does mean,
however, that only one ModelSim simulation license is needed to co-simulate several black
boxes in the Simulink simulation.

Multiple black boxes can also be co-simulated with the Vivado simulator by just selecting
Vivado Simulator as the option for Simulation mode on each black box.
Designing with System Generator 199
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=199

Chapter 7

System Generator Compilation Types
There are different ways in which System Generator can compile your design into an
equivalent, often lower-level, representation. The way in which a design is compiled
depends on settings in the System Generator dialog box. The support of different
compilation types provides you the freedom to choose a suitable representation for your
design’s environment. For example, an HDL Netlist or IP Catalog is an appropriate target if
your design is used as a component in a larger system.

HDL Netlist Compilation Describes how to generate HDL files that
implement the design.

Hardware Co-Simulation
Compilation

Describes how System Generator can be
configured to compile your design into FPGA
hardware that can be used by Simulink and
ModelSim.

IP Catalog Compilation Describes how to package a System Generator
design as an IP core that can be added to the
Vivado IP catalog for use in another design.

System Generator uses the IP Catalog compilation
type as the default generation target.

Synthesized Checkpoint
Compilation

Describes how to generate a synthesized
checkpoint file (synth_1.dcp) that can be used in a
Vivado IDE project.
Designing with System Generator 200
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=200

Chapter 7: System Generator Compilation Types
HDL Netlist Compilation
The HDL Netlist compilation type produces HDL files that implement the design. More
details regarding the HDL Netlist compilation flow can be found in the Compilation Results
section.

As shown below, you may select HDL netlist compilation by left-clicking the Compilation
submenu control on the System Generator token dialog box, and selecting the HDL Netlist
target.

The Board and Part fields allow you to specify the board or part for which you are targeting
the HDL Netlist compilation. When you select a Board, the Part field automatically
displays the name of the Xilinx device on the selected Board, and this part name cannot be
changed.

The HDL Netlist compilation can be performed for any of the boards or parts your Vivado
tools support. In addition to accessing the Xilinx development boards installed as part of
your Vivado installation, you can also specify Partner boards or custom boards (see
Specifying Board Support in System Generator).

The files generated as part of an HDL Netlist compilation are placed in an hdl_netlist
subdirectory under the directory you specified in the Target directory field. These files are
described in the Compilation Results section.
Designing with System Generator 201
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug897-vivado-sysgen-user.pdf;a=xSpecifyingBoardSupportInSystemGenerator
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=201

Chapter 7: System Generator Compilation Types
Hardware Co-Simulation Compilation
System Generator can compile designs into FPGA hardware that can be used in the loop
with Simulink simulations. This capability is discussed in the topic Using Hardware
Co-Simulation.

As shown below, you may select Hardware Co-Simulation compilation by left-clicking the
Compilation submenu control on the System Generator token dialog box, and selecting the
Hardware Co-Simulation target.

The Board fields allows you to specify the development board you are targeting when you
are performing the Hardware Co-Simulation compilation. You can only select a Board for
Hardware Co-Simulation compilation - you cannot select a Part. When you select a Board,
the Part field automatically displays the name of the Xilinx device on the selected Board,
and this part name cannot be changed.

JTAG Hardware Co-Simulation is supported for all Xilinx development boards.
Point-to-Point Ethernet Hardware Co-Simulation is only supported on a KC705 or VC707
board.

The Simulink library (<design_name>_hwcosim_lib.slx) generated as part of a
Hardware Co-Simulation compilation is placed in the directory you specified in the Target
directory field. This library, and the hardware co-simulation block stored in the library, are
described in Hardware Co-Simulation Blocks.
Designing with System Generator 202
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=202

Chapter 7: System Generator Compilation Types
IP Catalog Compilation
System Generator uses the IP Catalog compilation type as the default generation target.

The IP Catalog compilation target allows you to package your System Generator design into
an IP module that can be included in the Vivado IP catalog. From there, the generated IP
can be instantiated into another Vivado user design as a submodule.

System Generator first generates an HDL NetList based on the block design. If there are
Vivado IP modules in the design, all the necessary IP files are copied into a subfolder
named IP. Finally, all the RTL design files and Vivado IP design files are included into a ZIP
file that is placed in a subfolder named ip_catalog.

The IP Catalog Flow
In a System Generator design, double click on System Generator token.

As shown below, under Compilation, click on the > button, then select IP Catalog.

The Board and Part fields allow you to specify the board or part for which you are targeting
the IP Catalog compilation. When you select a Board, the Part field automatically displays
the name of the Xilinx device on the selected Board, and this part name cannot be changed.

The IP Catalog compilation can be performed for any of the boards or parts your Vivado
tools support. In addition to accessing the Xilinx development boards installed as part of
your Vivado installation, you can also specify Partner boards or custom boards (see
Specifying Board Support in System Generator).

The Target directory field allows you to specify the location of the generated files.
Designing with System Generator 203
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug897-vivado-sysgen-user.pdf;a=xSpecifyingBoardSupportInSystemGenerator
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=203

Chapter 7: System Generator Compilation Types
The Settings button activates and when you click on it, a dialog box appears as shown
below, allowing you to enter information about the module that will appear in the Vivado IP
Catalog.

The Use common repository directory field allows you to specify a directory referred to as
the Common Repository. In an IP Catalog compilation, the IP created is copied over to this
location. If a Vivado user adds this Path as User Repository in the Vivado project's IP
Settings, then all IPs that a System Generator user has placed in this Common Repository
will automatically be picked up by Vivado and can be used either in an IP Integrator or an
RTL flow.

The Use Plug-in project field is used to specify a Vivado project containing an IP Integrator
Block Diagram (BD) that has been imported into System Generator. For an example of a
procedure that will need to have a Vivado project specified in this field, see Tailor Fitting a
Platform Based Accelerator Design in System Generator.

Once you click the Generate button, the IP Catalog flow starts. As shown below,
Compilation status windows pop up and indicate the progress of the flow. Once the IP
Catalog flow is finished, it will indicate Generation Completed. You can then click on Show
Details, to get more detailed information.

If you navigate to the specified Target directory, you’ll find a folder named ip_catalog. This
folder contains all the necessary files to form an IP from your System Generator design. The
ZIP file, circled below, contains all the files required to include the System Generator design
as IP in the Vivado IP catalog.
Designing with System Generator 204
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=204

Chapter 7: System Generator Compilation Types
Using AXI4 Interfaces

Selecting the Auto Infer Interface option in the IP Catalog: Settings dialog box ensures
AXI4 interfaces are automatically inferred from the design Gateway In and Gateway Out
ports. The Auto Infer Interface option groups signals into AXI4-Stream, AXI4-Lite and AXI4
interfaces based on the port names.

The Auto Infer Interface option will infer interfaces based on the following criteria:

• The Gateway In and Gateway Out port name suffix must exactly match the signal names
in the AXI4 interface standard.

• The design must contain the minimum number of signals to be considered a valid AXI4
interface.

For example, if a design has two Gateway In ports named PortName_tdata and
PortName_tvalid, and also a Gateway Out port named PortName_tready, the Auto Infer
Interface option infers these three ports into a single AXI4-Stream port named PortName.
In this example,

• The port name suffixes are exact matches for the signals in an AXI4-Stream interface
(TDATA, TREADY and TVALID).

• These three signals are the minimum signals required for an AXI4-Stream interface.

If optional AXI4 sideband signals are present, for example the TUSER signal is optional in
the AXI4-Stream standard, and they are named using the same naming convention (for
example, PortName_tuser) they will be grouped into the same AXI4 Interface.

For more details on AXI4 interfaces, AXI4 interface signals names and the minimum
required signals for an AXI4 interface, refer to the document Vivado Design Suite: AXI
Reference Guide (UG1037).

Including a Testbench with the IP Module
In order to verify the functionality of the newly generated IP, it is important to include a
testbench. As shown below, if you check Create testbench, a test bench will automatically
be created when you click the Generate button.
Designing with System Generator 205
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=205

Chapter 7: System Generator Compilation Types
As shown below, when you include a testbench, you can verify the IP functionality by adding
three more steps to the flow.

Step 1: Add the new IP to the Vivado IP catalog. Refer to the document Vivado Design Suite
User Guide: Designing with IP (UG896).

Step 2: Create a new Vivado IDE project and add the IP as the top-level source

Step 3: Run simulation, synthesis and implementation to verify the functionality of the
generated IP.

The following figure shows an open Vivado IDE project with the newly created IP as the
top-level source.

Adding an Interface Document to the IP Module
As shown below, if you check Create interface document, then press Generate, System
Generator will generate an interface document for the IP and package this HTML document
with the IP.
Designing with System Generator 206
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=206

Chapter 7: System Generator Compilation Types
You can find a new folder documentation under the netlist folder. When you right click on
the new IP in Vivado, and click Data sheet, one HTML file will be opened with interface
information about this IP.
Designing with System Generator 207
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=207

Chapter 7: System Generator Compilation Types
Adding the Generated IP to the Vivado IP Catalog
In order to use the generated IP from System Generator, you need to create a new project
or open an existing project that targets the same device as specified in System Generator
for creating the IP.

Note: The IP will only be accessible in this project. For each new project where you will use this IP, you need
to perform the same steps.

Second, select IP Catalog in the “Project Manager” and right click on an empty area in IP
Catalog window. Select Update IP Catalog and add the directory the contains your new IP.

Once the IP is added to the IP Catalog, you can include it in larger designs just as you might
with any other IP in the IP catalog.

Synthesized Checkpoint Compilation
Vivado tools provide design checkpoint files (.dcp) as a mechanism to save and restore a
design at key steps in the design flow. Checkpoints are merely a snapshot of a design at a
specific point in the flow. A Synthesized Checkpoint is a checkpoint file that is created in the
out-of-context (OOC) mode after a design has been successfully synthesized.

When you select the Synthesized Checkpoint compilation target (see figure below), a
synthesized checkpoint target file named design_name.dcp is created and placed in the
Target directory. This design_name.dcp file can then be used in any Vivado IDE project.
Designing with System Generator 208
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=208

Chapter 7: System Generator Compilation Types
The Board and Part fields allow you to specify the board or part for which you are targeting
the Synthesized Checkpoint compilation. When you select a Board, the Part field
automatically displays the name of the Xilinx device on the selected Board, and this part
name cannot be changed.

The Synthesized Checkpoint compilation can be performed for any of the boards or parts
your Vivado tools support. In addition to accessing the Xilinx development boards installed
as part of your Vivado installation, you can also specify Partner boards or custom boards
(see Specifying Board Support in System Generator).

Creating Your Own Custom Compilation Target
System Generator provides a custom compilation infrastructure that allows you to create
your own custom compilation target. In addition to generating HDL from your System
Generator design, you can create a compilation target plug-in that automates steps both
before and after the HDL is generated. Details about how to create a custom compilation
target can be found in the topic titled Creating Custom Compilation Targets.
Designing with System Generator 209
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug897-vivado-sysgen-user.pdf;a=xSpecifyingBoardSupportInSystemGenerator
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=209

Chapter 8

Creating Custom Compilation Targets
System Generator provides a custom compilation infrastructure that allows you to create
your own custom compilation targets. In addition to generating HDL from your System
Generator design, you can create a compilation target plug-in that automates steps both
before and after the Vivado IDE project is created. In order to create a custom compilation
target, you need to be familiar with the object-oriented programming concepts in the
MATLAB environment.

xilinx_compilation Base Class
The custom compilation infrastructure provides a base class named xilinx_compilation.
From this base class, you can then create a subclass and use its properties and override the
member functions to implement your own functionality.
Designing with System Generator 210
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=210

Chapter 8: Creating Custom Compilation Targets
Creating a New Compilation Target
The following text outlines the general procedure for creating a new compilation target.
Specific examples of creating targets follow this description.

Running the Helper Function
You create a new custom compilation target by running the following helper function.

xilinx.environment.addCompilationTarget(target_name, directory_name)

For example, consider the following command:

xilinx.environment.addCompilationTarget('Impl', 'U:\demo')

When you enter this command in the MATLAB Command Window as shown above, the
following happens

1. A folder is created named Impl/@Impl in U:\demo.

2. Inside the folder, a template class file Impl is created (Impl.m), which is derived from the
base class xilinx_compilation. At this point, if no modifications are made to the file, the
newly created Impl compilation target will act the same as the HDL Netlist compilation
target. The content of the Impl.m file is shown in the following figure.
Designing with System Generator 211
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=211

Chapter 8: Creating Custom Compilation Targets
3. The helper function then adds U:\demo\Impl to the MATLAB path, so that the new class
Impl can be discovered by MATLAB.

Note: Be aware that the target_name cannot contain spaces. After the class is created, you can add
spaces to the target_name property of the class.

Modifying a Compilation Target
If modifications are made to a class file for a compilation target, you are required to call the
following helper function. This helper function ensures that System Generator detects the
new class definition.

>> xilinx.environment.rehashCompilationTarget

Adding an Existing Compilation Target
You are required to add the path which contains the folder with the custom compilation
target. As shown below, you can use the addpath functionality provided by MATLAB to do
this:

>>addpath(‘U:\demo\Impl’);

When you use addpath, you need to provide the absolute path, not the relative path.
Designing with System Generator 212
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=212

Chapter 8: Creating Custom Compilation Targets
Saving a Custom Compilation Target
You can use the savepath functionality in MATLAB to save the custom compilation target.
To do the save, you may need write permission to the MATLAB installation area.

Removing a Custom Compilation Target
Removing the custom compilation target is done by removing the path to the target from
the MATLAB Search Path.

Base Class Properties and APIs
The Base class xilinx_compilation resides in the following location:

<Vivado Install Path>/scripts/sysgen/matlab/@xilinx_compilation

System Generator Token-Related Properties and APIs

setup_sysgen_token()

This function is called to populate the System Generator token information by the Custom
Compilation Infrastructure. You can use any of the following functions related to the System
Generator token to set how the token looks by default when the custom target is selected.
The fields, their default values and the field enablement/disablement can be set by the
following System Generator token API functions.

add_part(family, device, speed, package, temperature)

An example of an explicit command is add_part(‘Kintex7’, ‘ xc7k325t’, ‘-1’ , ‘fbg676’, ‘’).
If the part-related API’s are not used, the end user can select any device that he wants to
choose from the list.

string target_name

This is a required field that has to be set in the setup_sysgen_token() function.

string hdl

The default value is an empty string. Valid options are ‘Verilog’ or ‘VHDL’. Once a value is set
to this field, this field will be disabled for further user selection.
Designing with System Generator 213
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=213

Chapter 8: Creating Custom Compilation Targets
string synth_strategy

The default value is an empty string. Once a value is set to this field, this field will be
disabled for further user selection. If this API is used, the user has to make sure that the
specified strategy exists. Otherwise, it will result in an error.

string impl_strategy

The default value is an empty string. Once a value is set to this field, this field will be
disabled for further user selection. If this API is used, the user has to make sure that the
specified strategy exists. Otherwise, it will result in an error.

string create_tb

The default value is an empty string. Valid options are ‘on’ or ‘off’. Once a value is set to this
field, this field will be disabled for further user selection.

string create_iface_doc

The default value is an empty string. Valid options are ‘on’ or ‘off’. Once a value is set to this
field, this field will be disabled for further user selection.

Vivado Project-Related Properties

top_level_module

Users can use this property to set the top-level name of their choice. This parameter accepts
a MATLAB string.

Vivado IDE Project Generation-Related Functions

pre_project_creation(design_info)

This function should be called before the Vivado IDE project is created. Before the System
Generator Infrastructure creates the project, it has to know what files need to be added to
the Vivado IDE project and what additional Tcl commands need to be run. There might be
use-cases where the user wants to add some files to the project, based on the top-level port
interface of the System Generator design. For this purpose, a structure which describes the
port interface will be passed into this function called design_info. design_info is described
in detail in a later section.

post_project_creation(design_info)

This function should be called at the end of Vivado IDE project creation. This is the last
function to be called after the Project Generation script is run. This is a useful function for
Designing with System Generator 214
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=214

Chapter 8: Creating Custom Compilation Targets
things like error parsing, generating reports, and opening the Vivado IDE project. A
structure which describes the port interface will be passed into this function called
design_info. design_info is described in detail in a later section.

add_tcl_command(string)

This function adds the additional Tcl commands as a string. These Tcl commands will be
issued after the Vivado IDE project is created. This command can be used to create a
bitstream once project creation occurs. The Tcl command can also be used to source a
particular Tcl file. The commands will be executed in the order in which they are received.

add_file(string)

This function adds user-defined files to the Vivado IDE project. This API function can also be
used to add XDC constraint files to the Vivado IDE project. You should make sure that the
order in which add_file is called, is hierarchical in nature. The top-module file must be
added last.

run_synthesis()

This function runs synthesis in the Vivado IDE project.

run_implementation()

This function runs implementation in the Vivado IDE project.

generate_bitstream()

This function generates a bitstream in the Vivado IDE project.
Designing with System Generator 215
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=215

Chapter 8: Creating Custom Compilation Targets
Design Info
design_info is a MATLAB struct and its contents are shown below:
Designing with System Generator 216
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=216

Chapter 8: Creating Custom Compilation Targets
Examples of Creating Custom Compilation Targets
The following examples provide more detail on how you can create various kinds of
customized targets.

Example 1: Creating an Implementation Target
1. Open a System Generator model, then open the System Generator token. This populates

the token with all the available compilation targets.

2. In the MATLAB Command Window, modify the path as per your requirements and then
enter the following command:

xilinx.environment.addCompilationTarget('Impl', 'U:\demo')

This will provide a template derived class for the users to edit.

3. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This ensures that the new compilation target is picked up by the System Generator token

4. Close and then re-open the System Generator token. You will now see the compilation
target Impl on the token as shown below.

X-Ref Target - Figure 8-1
Designing with System Generator 217
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=217

Chapter 8: Creating Custom Compilation Targets
5. At this point, selecting Impl will not perform any customized operations on the System
Generator token. It is equivalent to an HDL Netlist compilation target.

6. Open U:\demo\Impl\@Impl\Impl.m in the MATLAB Editor.

7. Populate the setup_sysgen_token() function as per the requirements. Using this
approach, you can control how the System Generator token should look, including the
enabled/disabled fields when the user-defined custom compilation is selected.

8. In the MATLAB Command Window, you should enter the following command:

xilinx.environment.rehashCompilationTarget

This will ensure that the updated class definition of Impl is used.

9. Close and then re-open the System Generator token. Select Impl from the list of
Compilation targets.
Designing with System Generator 218
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=218

Chapter 8: Creating Custom Compilation Targets
10. The System Generator token will appear as follows:

11. Observe that the Hardware description language field and the Implementation Strategy
field are fixed to what you set in the Impl class and are disabled for user modification.

12. All the user specified files and additional Tcl commands to be run are known before the
Vivado IDE project is created. The next step is to populate the pre_project_creation()
function as indicated below:
Designing with System Generator 219
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=219

Chapter 8: Creating Custom Compilation Targets
13. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This will ensure that the updated class definition of Impl is used.

14. Close and then re-open the System Generator token. Select Impl from the list of
Compilation targets.

15. Click on Generate. Once the process is finished, you can see the implementation results
by opening up the Vivado IDE project.

Example 2: Creating a Bitstream Target
1. Open a System Generator design.

2. In the MATLAB command Window, modify the path as per your requirements, similar to
the first example, and then enter the following command:

xilinx.environment.addCompilationTarget('Bitstream', '.')

This provides a template derived class for the users to edit. The last field corresponds to
the directory which contains the board.xml file.

3. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This will ensure that the new compilation target is picked up by the System Generator
token

4. Close and then re-open the System Generator token.
Designing with System Generator 220
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=220

Chapter 8: Creating Custom Compilation Targets
5. You will now see the compilation target Bitstream on the System Generator token as
shown below.

6. Open the Bitstream.m created in the ‘./Bitstream/@Bitstream/Bitstream.m’

7. Download the two files below:

8. Inside the function pre_project_creation(), add the following lines to do the following:

a. Set the board as a KC705 board

b. Add a new top-level file (top.v) to use the differential clock ports of KC705.

c. Add a new XDC file to give the location constraints for the clock, dip and led ports.

d. Set the newly added module ‘top’ as the top

e. Run Synthesis

f. Run Implementation

g. Generate Bitstream.

After you save the files to a location on your computer, you should give the full path to the
files in the add_file API as per your path.
Designing with System Generator 221
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=221

Chapter 8: Creating Custom Compilation Targets
add_tcl_command(obj, 'set_property board xilinx.com:kintex7:kc705:1.1
[current_project]');
add_file(obj,
'/group/dspusers-xsj/umangp/rel/2013.4/cust_comp_test/bitstream_example.xdc');
add_file(obj, '/group/dspusers-xsj/umangp/rel/2013.4/cust_comp_test/top.v');
obj.top_level_module = 'top';
run_synthesis(obj);
run_implementation(obj);
generate_bitstream(obj);

9. In the MATLAB Command Window, enter the following command:

xilinx.environment.rehashCompilationTarget

This ensures that the new compilation target is picked up by the System Generator token

10. Close and then re-open the System Generator token.

11. Select the Bitstream compilation target.

12. Click the Generate button.

13. After the generation is complete, you can find the bit file in the following directory:

./<Target directory>/ Bitstream/bitstream_example.runs/impl_1/top.bit
Designing with System Generator 222
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=222

Appendix A

System Generator GUI Utilities
Xilinx has added graphics commands to the Simulink model popup menu that will help you
rapidly create and analyze your System Generator design. As shown below, you can access
these commands by right-clicking on the Simulink model canvas and selecting the
appropriate Xilinx command:

A detailed description of the additional Xilinx commands is provided below.

Xilinx BlockAdd Facilitates the rapid addition of Xilinx blocks (and a limited set of Simulink blocks) to
a Simulink model.

Xilinx Tools > Save as
blockAdd default

This feature allows you to pre-configure a block, then add multiple copies of the
pre-configured block using the BlockAdd feature.

Xilinx BlockConnect Facilitates the rapid connection of blocks in a Simulink model.

Xilinx Tools > Terminate Facilitates the rapid addition of Simulink terminator blocks on open output ports
and/or Xilinx Constant Blocks on open input ports.

Xilinx Waveform Viewer The Xilinx Waveform Viewer displays a waveform diagram of selected signals in your
System Generator design. Waveforms can be displayed in the Waveform Viewer after
running a Simulink simulation. Inputs and outputs of blocks in the Xilinx Blockset can
be displayed in the Waveform Viewer.

Xilinx Clear Waveform
Selections

Deletes all of the waveforms currently displayed in the Waveform Viewer, and closes
the Waveform Viewer.
Designing with System Generator 223
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=223

Appendix A: System Generator GUI Utilities
Xilinx BlockAdd
Facilitates the rapid addition of Xilinx blocks (and a limited set of Simulink blocks) to a Simulink
model.

How to Invoke

Method 1

Right-click on the Simulink canvas and select Xilinx BlockAdd.

Method 2

Execute the short cut Ctrl 1 (one).

Method 3

From the Simulink model pull down menu, select the following item:

Tools > Xilinx > BlockAdd

How to Use
Right-click on the Simulink canvas and select Xilinx BlockAdd.

Right-click on the Simulink canvas and select Xilinx BlockAdd.

1. Right-Click 2. Select

2. Double-Click 1. Scroll to block
Designing with System Generator 224
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=224

Appendix A: System Generator GUI Utilities
As shown below, to rapidly scroll to a block, enter the first few letters of the block name in
the top entry box. To add multiple blocks, select each block using Shift-Click, then press
Enter.

To add multiple copies of the same block, add a block, select the block, press Ctrl-C, then
Ctrl-V, Ctrl-V, etc.

To dismiss the Add block window, press Esc.

2. Shift-Click 1. Enter letter(s)
3. Press Enter
Designing with System Generator 225
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=225

Appendix A: System Generator GUI Utilities
Xilinx Tools > Save as blockAdd default
This feature allows you to pre-configure a block, then add multiple copies of the pre-configured
block using the BlockAdd feature.

How to Use
Assume you need to add multiple Gateway In blocks of type Boolean to a model.

1. Add one Gateway In block to the model.

2. Double click on the Gateway In block, change the Output type to Boolean and click OK.

3. Select the modified Gateway In block, right-click and select Xilinx Tools > Save as
blockAdd default.

4. Now, every time you add addition Gateway In blocks to the model using the BlockAdd
feature, the block is of Output type Boolean.

How to Restore the Block Default
1. Select a block with pre-configured (changed) defaults.

2. Right-click and select Xilinx Tools > Clear blockAdd defaults.
Designing with System Generator 226
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=226

Appendix A: System Generator GUI Utilities
Xilinx BlockConnect
Facilitates the rapid connection of blocks in a Simulink model.

Simple Connections
1. As shown below, select an open port of a block, right click, and select Xilinx

BlockConnect.

2. BlockConnect proposes the nearest connection with a green line. To confirm, you can
double click the selected connection in the table. The connection then turns black.
Otherwise, select another connection in the table to see if the new green line connection
is correct.

1. Right-click 2. Select

2. Double-click1. Verify connection
Designing with System Generator 227
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=227

Appendix A: System Generator GUI Utilities
Smart Connections
As shown below, a “lighting bolt” icon indicates a “smart” connection. Smart connections
have intelligence built in to help you manage the connection. For example, right-clicking on
a block with an AXI interface allows you to (1) group/separate the AXI signals to/from a bus.
Or (2) connect to other ports with the same number of AXI connections.

No port data type checking is performed and any AXI ports with the same number of ports
are allowed to connect.

In another smart connection example below, right clicking on the Accumulator block
output, selecting BlockConnect, and double clicking on Scope creates a smart connection
to the Scope block. The Gateway Out block is added automatically.

If a second connection is made to this Scope block, a second port is automatically added to
the Scope. The driving signal name is also used to name the signal driving the scope.

Means “smart” connection
Designing with System Generator 228
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=228

Appendix A: System Generator GUI Utilities
Xilinx Tools > Terminate
Facilitates the rapid addition of Simulink terminator blocks on open output ports and/or Xilinx
Constant Blocks on open input ports.

How to Use

Terminating Open Outputs

Consider the following model with open input and output ports:

Right-click on the DDS Compiler 5.0 block in this case and select:

Xilinx Tools > Terminate > Outputs
Designing with System Generator 229
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=229

Appendix A: System Generator GUI Utilities
The following graphic illustrates the resulting terminated outputs.

Terminating Open Inputs

Consider the following model with an open input port:

Right-click on the DDS Compiler 5.0 block and select:

Xilinx Tools > Terminate > Inputs
Designing with System Generator 230
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=230

Appendix A: System Generator GUI Utilities
The following graphic illustrates the resulting terminated input.

Verifying Input Port Data Type Requirements

System Generator connects each open input port to a Xilinx Constant Block. The new
Constant blocks are set to the following default values:

Type: Signed (2’s comp)

Constant value: 0

Number of bits: 16

Binary point: 14

This terminate tool does not do data type checking on the input ports. If an open port
requires a different data type, for example a Boolean data type, you’ll need to double-click
on the Constant block and change the Output Type to Boolean.

To check for data type mismatches, click on the Simulink model canvas and enter Ctrl-D.
System Generator will report on all the data type mismatches, if there are any.
Designing with System Generator 231
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=231

Appendix A: System Generator GUI Utilities
Xilinx Waveform Viewer
The Xilinx Waveform Viewer displays a waveform diagram of selected signals in your System
Generator design. Waveforms can be displayed in the Waveform Viewer after running a Simulink
simulation. Inputs and outputs of blocks in the Xilinx Blockset can be displayed in the Waveform
Viewer.

In your design, you can select the signals that will be monitored in the Waveform Viewer. As you
develop and troubleshoot your design, the waveforms for the signals you are monitoring will be
updated in the Waveform Viewer each time you simulate the model.

The Xilinx Waveform Viewer used with System Generator is also used by other tools in the Vivado
toolset. The Waveform Viewer is used to analyze a design and debug code in the Vivado®
simulator and to display data captured by the Integrated Logic Analyzer (ILA) for in-system
debugging.

For information on using the Waveform Viewer to develop and troubleshoot your design,
see this link in the Vivado Design Suite User Guide: Logic Simulation (UG900).

Waveform Viewer Files
The first time you open the Waveform Viewer for your Simulink model, System Generator
creates a wavedata directory in the directory containing your Simulink model.
Designing with System Generator 232
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug900-vivado-logic-simulation.pdf;a=xAnalyzingSimulationWaveforms
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=232

Appendix A: System Generator GUI Utilities
Note: You will need write permission for the directory containing your Simulink model.

Data describing the display in the Waveform Viewer is stored in the following files in the
wavedata directory:

• design_name.wcfg - This is the waveform configuration file. It contains the names of
the signals you are monitoring in your design and how the waveforms for these signals
will appear in the Waveform Viewer.

• design_name.wdb - This is the waveform database file. It contains the data necessary
to draw the waveforms in the Waveform Viewer.

The names of the signals that are being monitored are stored in the Simulink model (SLX
file). If the Simulink model cannot access the data in the wavedata directory (for example,
if you moved the model’s SLX file to a different directory and opened it in the new
directory), you can display the monitored signals by opening the Waveform Viewer and
simulating the design. The waveforms for the monitored signals will then appear in the
Waveform Viewer.

Opening the Xilinx Waveform Viewer
The Waveform Viewer can be opened in either of the following ways:

• Opening from right-click menu:

Right-click in your model and select Xilinx Waveform Viewer in the right-click menu.

The Waveform Viewer opens with the following display:

° If this is the first time you are opening the Waveform Viewer for this design, the
Waveform Viewer opens displaying waveforms for the clock signals in your design,
and no other waveforms. You can then add the signals in your design that you want
monitored to the Waveform Viewer display (see Adding Signals to the Waveform
Viewer Display).

X-Ref Target - Figure A-1
Designing with System Generator 233
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=233

Appendix A: System Generator GUI Utilities
° If you have previously monitored signals in the Waveform Viewer for this design,
and have saved the data, the Waveform Viewer opens displaying the signal names
and waveforms displayed when you last closed the Waveform Viewer.

° If you have previously monitored signals in the Waveform Viewer for this design, but
cannot access the saved data (for example, if you moved the model’s SLX file to a
different directory and opened it in the new directory), the Waveform Viewer will
open displaying the signal names for the signals monitored when you last saved the
model. The Waveform Viewer will not show the waveforms for the monitored signals
until you resimulate the model.

X-Ref Target - Figure A-2

X-Ref Target - Figure A-3
Designing with System Generator 234
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=234

Appendix A: System Generator GUI Utilities
• Opening after simulation:

If you have previously monitored signals in the Waveform Viewer for your design, the
Waveform Viewer will open automatically when you simulate your model.

Adding Signals to the Waveform Viewer Display
Inputs and outputs of blocks in the Xilinx Blockset can be displayed in the Waveform Viewer. The
data necessary to draw each signal’s waveform is not stored with the design; it is generated
by simulation. You can only display a signal’s waveform after you have added the signal to
the Waveform Viewer and then simulated the model.

To add signals to the display in the Waveform Viewer:

1. With the Waveform Viewer open, select a signal in the System Generator model.

You can also select multiple signals by using Shift+click to select additional signals.

Note: For the Gateway In block, only the output signal can be displayed in the Waveform Viewer.

2. Right-click one of the selected signals in the System Generator model and select Xilinx
Add to Viewer in the right-click menu.

Note: If you select a signal that is currently displayed in the Waveform Viewer, the Xilinx Add to
Viewer entry will not appear in the right-click menu.

X-Ref Target - Figure A-4
Designing with System Generator 235
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=235

Appendix A: System Generator GUI Utilities
The signal names of the selected signals appear in the Waveform Viewer.

Only the names of the added signals appear in the Waveform Viewer, since the
Waveform Viewer does not have the data to draw the signal’s waveform until you
simulate the design.

3. Simulate the model.

After the simulation is finished, the waveforms for the added signals are displayed in the
Waveform Viewer.

Deleting Signals From the Waveform Viewer Display
1. In the Waveform Viewer, select the signals to be deleted.

Use Shift+click or Ctrl+click to select multiple signal names (Ctrl+A to select all).

2. Right click one of the selected names and select Delete in the right-click menu.

OR

Press the Delete key.

The waveforms are deleted from the Waveform Viewer. Deleted waveforms are no longer
monitored; if you resimulate the model the deleted waveforms will not appear in the
Waveform Viewer.

X-Ref Target - Figure A-5

X-Ref Target - Figure A-6
Designing with System Generator 236
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=236

Appendix A: System Generator GUI Utilities
Cross Probing Between the Waveform Viewer and the Model
Cross probing helps you correlate the waveforms in the viewer to the wires in the System
Generator model.

You can cross probe signals between the Waveform Viewer and the model in the following
ways:

• To cross probe a signal from the Waveform Viewer to the System Generator model,
select one or more signal names in the Waveform Viewer. Use Shift+click or Ctrl+click
to select multiple signal names (Ctrl+A to select all).

The selected signals are highlighted in orange in the System Generator model.

To unhighlight a signal you have highlighted in the System Generator model, Ctrl+click
the signal name in the Waveform Viewer. The signal is unhighlighted in the System
Generator model.

• To cross probe a signal from the System Generator model to the Waveform Viewer:

1.With the Waveform Viewer open, select a signal in the System Generator model.

You can also select multiple signals by using Shift+click to select additional signals.

2.Right-click one of the selected signals in the System Generator model and select Xilinx
Highlight in Viewer in the right-click menu.

Note: If you select a signal that is not currently displayed in the Waveform Viewer, the Xilinx
Highlight in Viewer entry will not appear in the right-click menu.

3.Observe that the signal names of the selected signals are highlighted in the Waveform
Viewer.

X-Ref Target - Figure A-7
Designing with System Generator 237
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=237

Appendix A: System Generator GUI Utilities
Clearing the Waveform Viewer Display
To clear the waveform display, deleting all the waveforms currently displayed in the
Waveform Viewer:

1. Right-click in the System Generator model.

2. Select Xilinx Clear Waveform Selections in the right-click menu.

All of the signals currently displayed in the Waveform Viewer are deleted from the
Waveform Viewer display, and the Waveform Viewer closes. The deleted waveforms are no
longer monitored and the wavedata directory (which contains data describing the current
display in the Waveform Viewer) is removed from the directory containing your Simulink
model.

To open the Waveform Viewer again, right-click in your model and select Xilinx Waveform
Viewer in the right-click menu. The Waveform Viewer opens displaying waveforms for the
clock signals in your design, and no other waveforms.

Customizing the Display and Analyzing Waveforms
The Waveform Viewer has many tools to customize how your waveforms are displayed and
to analyze the waveforms. For information on using the Waveform Viewer to develop and
troubleshoot your design, see this link in the Vivado Design Suite User Guide: Logic
Simulation (UG900).

Tips for Working in the Waveform Viewer
The following tips will help you with your waveform analysis using the System Generator
model and the Waveform Viewer:

• Keep the Waveform Viewer open during a System Generator session. Do not close the
Waveform Viewer between each simulation.

• If you select a group of signals in the Waveform Viewer, all of the signals in the group
will be cross-probed from the Waveform Viewer to the System Generator model.

X-Ref Target - Figure A-8
Designing with System Generator 238
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug900-vivado-logic-simulation.pdf;a=xAnalyzingSimulationWaveforms
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=238

Appendix A: System Generator GUI Utilities
• To add multiple signals in your System Generator model to the Waveform Viewer
display, you can press and hold the left mouse button and drag the mouse to draw a
box around the signals, selecting them. Then right click one of the selected signals and
select Xilinx Add to Viewer in the right-click menu. The selected signals will be added
to the Waveform Viewer display.

• When naming an output signal for a block in your System Generator model, avoid using
the reserved characters shown in the table below. These are reserved characters in
VHDL or Verilog. If your model does contain a signal with a reserved character, its name
will be changed in the Waveform Viewer display according to the following mapping
table.

Closing the Waveform Viewer
To close the Waveform Viewer, select File > Exit. If you have not yet saved the waveform
data, you will be prompted to save the data before the Waveform Viewer closes.

Reserved Character Mapped To

(#1

) #2

[#3

] #4

. #5

, #6

: #7

\ #8
Designing with System Generator 239
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=239

Appendix A: System Generator GUI Utilities
How to Migrate WaveScope Signals Names from a Deprecated
WaveScope Block
If your design includes a deprecated WaveScope block, you can migrate the existing
monitor signal names from the deprecated WaveScope block to the Upgraded block as
follows:

1. As shown below, right click on the WaveScope block to bring up the context menu.

2. Select Xilinx Tools > Upgrade block.

• The Upgrade is performed.
Designing with System Generator 240
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=240

Appendix A: System Generator GUI Utilities
• After the Upgrade operation is performed, the deprecated WaveScope block is removed
from the model and a summary is written in the MATLAB console, as shown below:

• Finally, click on the simulation button to simulate the design.

• After the simulation is finished, the signal names from the deprecated WaveScope block
will be displayed in the Waveform Viewer.
Designing with System Generator 241
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=241

Appendix B

Migrating ISE Designs to the Vivado IDE

Introduction
System Generator for DSP has an Upgrade Model feature that can assist you in migrating
designs previously created in ISE System Generator to designs that are compatible with the
Vivado Integrated Design Environment (IDE).

Requirements for migration are as follows:

• The design containing ISE Design Suite (IDS) design blocks must be upgraded to the
latest version found in the ISE version of System Generator for DSP.

• The IDS design blocks that are not compatible with the Vivado IDE must be removed or
replaced.

Upgrade Methodology
The recommended migration methodology involves (1) preparing the model for migration
using the ISE Environment and (2) completing the migration flow using the Vivado
Integrated Design Environment (IDE).

General Migration Flow Starting with the ISE Environment
The model preparation in the ISE environment involves the following steps:

1. Upgrade all the blocks to the latest found in the latest ISE version of System Generator.
For example, upgrade De-interleaver 7.0 with De-interleaver 7.1.

2. Manually replace NON_AXI blocks with AXI blocks. For example, manually replace CIC
Compiler 2.0 (non-AXI interface) with CIC Compiler 3.0 (AXI interface).

3. Remove any remaining blocks that are not compatible with the Vivado IDE. For example,
remove the ChipScope block.
Designing with System Generator 242
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=242

Appendix B: Migrating ISE Designs to the Vivado IDE
Step 1: Upgrade Blocks to the Latest Version Found in ISE
System Generator
1. Open the System Generator model in the latest ISE System Generator release.

The latest blocks with multiple versions are listed in the table below:

2. Double click on the System Generator token and then click the Model upgrade button
as shown below:

3. Observe the information in the generated Status Report, as shown in the following
figure:

Block Name Latest Version in ISE

DSP48 Macro DSP48 Macro 2.1

FIR Compiler 6.2 FIR Compiler 6.3

Interleaver/De-Interleaver 7.0 Interleaver/De-Interleaver 7.1
Designing with System Generator 243
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=243

Appendix B: Migrating ISE Designs to the Vivado IDE
• Two blocks in this model are upgradable.

• The Interleaver/De-interleaver 7.0 block has full Replace support. When you click
Upgrade in the Perform Upgrade column, the single block is upgraded.

• In this case, the Complex Multiplier 3.1 block does not have full Replace support
because moving from the non-AXI 3.1 block to the AXI 5.0 block requires manual
intervention. When you click Upgrade in the column, a sub-system work-space is
created where you can manually re-connect the input/output signals to the new AXI
ports.

Step 2: Manually Replace Non-AXI Blocks with AXI Blocks in the
ISE Environment
As previously stated, upgrading from the non-AXI block to an AXI block requires manual
intervention. When you click Upgrade in the column of the Upgrade Status Report, a
Sub-system work-space is created where you can manually re-connect the input/output
signals to the new AXI ports. As shown in the figure below, the subsystem work-space
contains the connected old block and the most recent (unconnected) AXI block.
Designing with System Generator 244
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=244

Appendix B: Migrating ISE Designs to the Vivado IDE
The upgraded AXI block contains an equivalent parameter configuration as the old non-AXI
block, but you will need to manually connect the AXI block in parallel with the non-AXI
block, then delete the non-AXI block and simulate the design to verify that the design
behavior has not changed.

After upgrading the model through the Upgrade Status Report, the Details link on the
Upgrade Status Report will be enabled

Note: This link is only active if the upgrade is performed through this report. It is not available when
upgrading directly from the model.

General Instructions for Upgrading a Non-AXI Block

1. MATLAB variables should be initialized on the MATLAB console before the upgrade, if
one or more parameters in the old block are defined using MATLAB functions or
variables.

2. The latency may change with migration from Non-AXI to AXI. For more information,
refer to the associated LogiCORE IP product Guide. For system designers, it is
recommended that you validate the data signals with the control signals.

3. “Port Mismatch” warnings pop up when there are changes in the port name of the old
and upgraded block. This is to indicate that there is change in the port name and the
update port name information if used somewhere else.

4. In rare cases for very old blocks, when the Model Upgrade facility is not available, you
are advised to manually configure and connect the latest AXI block.
Designing with System Generator 245
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=245

Appendix B: Migrating ISE Designs to the Vivado IDE
Block-wise Recommendations for Non-AXI to AXI Upgrade

This section covers the detailed recommendations for upgrading a Non-AXI block to an AXI
block. These blocks are listed below.

CIC Compiler

Most of the Non-AXI ports can be directly mapped to the AXI Ports. The AXI interface has
some additional ports described below.

1. s_axis_data_tlast: This port is available only for a multichannel CIC Compiler. This port
can be driven with constant 0 value. This is not used by the CIC Compiler, except to
generate the event_tlast_missing and event_tlast_unexpected signal.

2. event_tlast_missing and event_tlast_unexpected: These ports can be ignored if the
s_axis_data_tlast port is not used and driven with constant value.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

Non-AXI Block
in ISE-Sysgen

Latest AXI Block
in ISE-Sysgen Associated LogiCORE Product Guide

CIC Compiler 2.0 CIC Compiler 3.0 LogiCORE IP CIC Compiler 3.0

CORDIC4.0 CORDIC5.0 LogiCORE IP CORDIC v5.0

Complex
Multiplier 3.0,3.1, 4.0

Complex
Multiplier 5.0

LogiCORE IP Complex Multiplier v5.0

Convolution
Encoder 6.1, 7.0

Convolution
Encoder 8.0

LogiCORE IP Convolution Encoder 8.0

DDS
Compiler 4.0

DDS
Compiler 5.0

LogiCORE IP DDS Compiler v5.0

Divider
Generator 3.0

Divider
Generator 4.0

LogiCORE IP Divider Generator 4.0

FIR Compiler 5.0, 6.0,
6.1, 6.2

FIR Compiler 6.3 LogiCORE IP FIR Compiler v6.3

Fast Fourier
Transform 7.1

Fast Fourier
Transform 8.0

LogiCORE IP Fast Fourier Transform v8.0

Interleaver/
De-Interleaver 6.0, 7.0

Interleaver/
De-Interleaver 7.1

LogiCORE IP Interleaver/De-interleaver v7.1

Reed-Soloman
Decoder 7.0, 7.1

Reed-Soloman
Decoder 8.0

LogiCORE IP Reed-Solomon Decoder v8.0

Reed-Soloman
Encoder 7.0, 7.1

Reed-Soloman
Encoder 8.0

LogiCORE IP Reed-Solomon Encoder v8.0

Viterbi
Decoder 6.1, 6.2, 7.0

Viterbi
Decoder 8.0

LogiCORE IP Viterbi Decoder v8.0
Designing with System Generator 246
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/cic_compiler/v3_0/ds845_cic_compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v5_0/ds858_cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmpy/v5_0/ds793_cmpy.pdf
https://www.xilinx.com/support/documentation/ip_documentation/convolution/v8_0/pg026_convolution.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ds794_dds_compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v4_0/ds819_div_gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v6_3/ds795_fir_compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sid/v7_1/pg049-sid.pdf
https://www.xilinx.com/support/documentation/ip_documentation/rs_decoder/v8_0/ds862_rs_decoder.pdf
https://www.xilinx.com/support/documentation/ip_documentation/rs_encoder/v8_0/pg025_rs_encoder.pdf
https://www.xilinx.com/support/documentation/ip_documentation/viterbi/v8_0/pg027_viterbi_decoder.pdf
https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=246

Appendix B: Migrating ISE Designs to the Vivado IDE
CORDIC

Most of the Non-AXI ports can be directly mapped to the AXI Ports. The AXI interface has
some additional ports described below.

1. Input tvalid ports: These ports can be driven with a constant “1” value.

2. Output tvalid ports: These ports can be ignored if this information is not used by
downstream blocks.

There are some of the optional Non-AXI output ports that are not supported for some
configurations in the AXI interface. These ports are described below:

1. x_out: This port is not supported with “arc_tan” and “arc_tanh” functions. Only the
phase_output port is supported for this configuration.

2. y_out: This port is not supported with the “arc_tan”, “arc_tanh” and “square_root”
functions.

3. phase_output: This port is not supported with the “square_root”, “sin_and_cos”,
“sinh_and_cosh” and “rotate” functionality.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

Complex Multiplier

Most of the Non-AXI ports can be directly mapped to the AXI Ports. The AXI interface has
some additional ports described below.

1. Input tvalid ports: These ports can be driven with a constant 1 value.

2. dout_tvalid: This port can be ignored if this information is not used by downstream
blocks.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

The output width may vary between the old and upgraded block. It is recommended to
match the parameter value using the detail report. If the output_lsb value is greater than 0
in Non-AXI block, you can use the slice block at the dout signals to get the desired results
since the AXI Complex Multiplier supports only output_width, not the LSB to MSB range.
Designing with System Generator 247
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=247

Appendix B: Migrating ISE Designs to the Vivado IDE
Convolution Encoder

Most of the Non-AXI ports can be directly mapped to the AXI Ports. The AXI interface has
some additional ports described below.

1. Input tvalid port: If nd is not enabled in the Non-AXI block, then this port can be driven
with a constant “1” value.

2. Output tvalid ports: These ports can be ignored if this information is not used by
downstream blocks.

There are some optional Non-AXI output ports that are not supported in the AXI interface.
These ports are:

1. fd_in: This port is deprecated. The AXI interface does not require a pulse at the start of
each block. s_axis_tvalid is used by the core to detect this automatically.

2. rffd: This port is deprecated. The AXI interface input data stream will be sampled when
s_axis_data_tready is asserted.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

DDS Compiler

Most of the Non-AXI ports can be directly mapped to the AXI Ports. The AXI interface has
some additional ports described below.

1. Input tvalid port: These ports can be driven with a constant “1” value.

2. Output tvalid ports: These ports can be ignored if this information is not used by
downstream blocks.

3. Input tlast ports: These ports can be driven with a constant “0” value. This is not used by
the DDS Compiler except to generate the event_tlast_missing and
even_tlast_unexpected signals.

4. Output event signals: These ports can be ignored if the input tlast ports are not used
and driven with a constant value.

There are some of the optional Non-AXI output ports that are not supported in the AXI
interface. These ports are:

1. addr: This pin is deprecated for the AXI interface. It has no equivalent, but is replaced
internally by an incrementing counter.

2. reg_select: This pin is no longer required with the AXI interface, since both PINC and
POFF may be written in a single transfer.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.
Designing with System Generator 248
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=248

Appendix B: Migrating ISE Designs to the Vivado IDE
If the Channel Pin is used for the Non-AXI DDS Compiler, the same functionality can be
achieved from the data_tuser_chanid port on the AXI interface. To enable this port, open
the AXI DDS Compiler GUI and under TUSER Options change the value of DATA Output to
Chan_ID_Field.

Divider Generator

Most of the Non-AXI ports of Divider Generator can be directly mapped to the AXI Ports. The
AXI interface has some additional ports described below:

• Input tvalid ports: These ports can be driven with a constant “1” value.

• dout_tvalid: This port can be ignored if this information is not used by downstream
blocks.

• quotient: This port can be mapped to tdata_quotient

• remainder: This port can be mapped to tdata_remainder

• fractional: This port can be mapped to tdata_fractional

• rfd: This port can be mapped to either dividend_tready or divisor_tready. These ports
are available with the blocking configuration of the AXI Divider Generator block.

The behavior of rst (reset) signal is changed from the Non-AXI to AXI interface. With the AXI
interface, aresetn must be active low for a minimum of two cycles.

FIR Compiler

Most of the Non-AXI ports can be directly mapped to the AXI Ports. The AXI interface has
some additional ports described below.

• s_axis_config_tvalid: This port can be driven with a constant “1” value. For a
decimation filter, this port must be driven at the output rate.

• s_axis_config_tlast: This port is available only for a multichannel FIR Compiler. This
port can be driven with a constant “0” value. This is not used by the FIR Compiler except
to generate the event_tlast_missing and even_tlast_unexpected signals.

• Output event signals: These signals can be ignored if tlast is unused and driven with a
constant value.

There are some of the optional Non-AXI output ports that are not supported in the AXI
interface. These ports are:

• chan_in: This port is deprecated.

• coef_filter_sel: The format of the reload channel has changed such that coef_filter_sel
is now pre-pended to the reload packet on the s_axis_reload_tdata.
Designing with System Generator 249
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=249

Appendix B: Migrating ISE Designs to the Vivado IDE
The behavior of coeff_id is changed. coeff_id can be mapped to s_reload_tlast but is now
asserted at the end of a reload packet.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

If the Chan_out port is used for the Non-AXI FIR Compiler, the same functionality can be
achieved from the data_tuser_chanid port with an AXI interface. To enable this port, open
the AXI FIR Compiler GUI and under TUSER, change the value of Output to Chan_ID_Field.

The parameter Coefficient Vector is modified in the Non-AXI to AXI flow to evaluate any
expression and return the actual vector data. This allows the hierarchical subsystem upgrade
to be verified and implemented without moving or mis-representing any FDATool,
workspace, or mask parameters. After verification and connection modifications are
complete, this variable may be manually converted to the prior value (as shown in the
Details page of the Upgrade Status Report).

Fast Fourier Transform

Some of the Non-AXI ports can be directly mapped to the AXI Ports. The following is the list
of obsolete Non-AXI ports:

1. start: AXI FFT starts automatically when sample data is supplied on the data input
channel with s_axis_data_tvalid high.

2. xn_index: This port is obsolete with the AXI interface.

3. busy: This port is obsolete with the AXI interface.

4. edone: This port is obsolete with the AXI interface.

5. done: This port is obsolete with the AXI interface.

6. unload: The AXI FFT automatically starts to unload processed sample data when it is
available, if m_axis_data_tready is asserted.

The AXI interface has some additional ports described below.

1. s_axis_data_tlast: This port is available only for a multichannel FFT. This port can be
driven with a constant “0” value. This is not used by the FFT except to generate the
event_tlast_missing and event_tlast_unexpected.

2. event_tlast_missing and event_tlast_unexpected: These ports can be ignored if the
“s_axis_data_tlast” port is not used and driven with a constant value.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

You should tie s_axis_data_tvalid to 1. This tells the core that you are always able to supply
data when requested. Note, however, that the FFT cannot always consume data on
Designing with System Generator 250
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=250

Appendix B: Migrating ISE Designs to the Vivado IDE
consecutive clock cycles, so s_axis_data_tready has to be used to control the flow of data
into the FFT.

Interleaver/De-Interleaver

Most of the Non-AXI ports can be directly mapped to the AXI Ports. Following is the list of
obsolete Non-AXI ports:

• FD: FD is no longer available. The core starts a block when:

° The first symbol is seen after a reset.

° When the first symbol is seen after the end of a block in Rectangular mode.

° When the first symbol is seen after the end of a block in Forney mode. This is when
the commutator reaches branch 0 after s_axis_data_tlast has been asserted.

• FD abort is no longer available. Enough symbol data has to be supplied to bring a
block to a natural conclusion, or aresetn has to be used to reset the core. In Forney
mode, this means blocks must now be an integer multiple of the number of branches in
use.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

Reed-Solomon Decoder

Most of the Non-AXI ports can be directly mapped to the AXI Ports. Following is an obsolete
Non-AXI port:

sync: sync is obsolete with the AXI version. s_axis_tvalid is now used to detect this
automatically. You need to manually update the design accordingly.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

Reed-Solomon Encoder

Most of the Non-AXI ports can be directly mapped to the AXI Ports. Following is an obsolete
Non-AXI port:

start: start is obsolete with the AXI interface. s_axis_tvalid is used to detect this
automatically. You need to manually update the design accordingly.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.
Designing with System Generator 251
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=251

Appendix B: Migrating ISE Designs to the Vivado IDE
Viterbi Decoder

Most of the Non-AXI ports can be directly mapped to the AXI Ports.

The behavior of the rst (reset) signal is changed from the Non-AXI to AXI interface. With the
AXI interface, aresetn must be active low for a minimum of two cycles.

Step 3: Remove any Remaining Blocks that are Incompatible
with the Vivado IDE
Blocks that are completely incompatible with the Vivado IDE should be removed from the
model. Incompatible blocks are listed below:

Step 4: Complete the Migration Flow from ISE to the Vivado IDE
1. Verify that the ISE-System Generator model contains only the latest 14.7 blocks and that

blocks that are incompatible with the Vivado environment (like Non-AXI blocks) have
been manually replaced or removed.

2. Open the prepared System Generator design in the Vivado IDE.

Block Incompatible with Vivado IDE Action to Take

ChipScope Continue using System Generator 14.7
or directly use the Vivado IDE for
debug

Configurable Subsystem Manager

Multiple Subsystem Generator Convert model to use Multiple Clock
Domains as detailed in the topic
Multiple Independent Clocks Hardware
Design

Resource Estimator Remove this block until a replacement
capability is introduced in a future
release

EDK Processor Continue using System Generator 14.7
until this capability is introduced in a
future release

From FIFO, To FIFO, From Register, To
Register, Shared Memory, Shared
Memory Read, Shared Memory Write

Continue using System Generator 14.7
until a replacement capability is
introduced in a future release

PicoBlaze Instruction Display

PicoBlaze Microcontroller

Continue using System Generator 14.7

VDMA Interface 5.3 Continue using System Generator 14.7
until a replacement capability is
introduced in a future release

WaveScope Use Waveform Viewer
Designing with System Generator 252
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=252

Appendix B: Migrating ISE Designs to the Vivado IDE
3. Right-click on a blank space in the model sheet and select Tools >Upgrade model from
the pop-up menu.

IMPORTANT: Before invoking model upgrade, make sure that all the variables for successful
compilation of the model have already been set. If you depend on model InitFcn to set up the variables
the upgrade will fail because System Generator does not compile the model for performing the model
upgrade.

4. Select File > Save from the pull-down menu.

5. Re-simulate the design in MATLAB to verify that it is functionally correct.

6. Close the design

The design migration from the ISE environment to the Vivado IDE is now complete.

Migrating Multiple-Clock ISE Designs into the Vivado IDE
When you are migrating a multiple-clock ISE design into the Vivado environment, you must
use manual intervention. Do the following:

1. After following the Model Upgrade procedures outlined in the previous discussion, open
the prepared model file in the Vivado version of System Generator. The source design
should be partitioned into clock-specific subsystems for read and write interfaces.

2. Verify that the Xilinx Shared-Memory blocks are removed and that input and output
ports are replaced by Simulink outport and inport connections. This will ensure that
cross-clock domain port interfaces are available to the top-level Subsystem for
connection.

3. Manually insert the Vivado System Generator for DSP asynchronous logic to transfer the
data across the multiple independent clock domains. This procedure is discussed in the
topic Multiple Independent Clocks Hardware Design.
Designing with System Generator 253
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=253

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Designing with System Generator 254
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=254

Appendix C: Additional Resources and Legal Notices
References
These documents provide supplemental material useful with this guide:

1. Vivado Design Suite Reference Guide: Model-Based DSP Design Using System Generator
(UG958)

2. Vivado Design Suite Tutorial: Model-Based DSP Design Using System Generator (UG948)

3. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

4. Vivado Design Suite User Guide: Design Flows Overview (UG892)

5. Vivado Design Suite Migration Methodology Guide (UG911)

6. Vivado Design Suite User Guide: Designing with IP (UG896)

7. Vivado Design Suite User Guide: Using Constraints (UG903)

8. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

9. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

10. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

11. Vivado® Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

12. UltraFast™ Design Methodology Guide for the Vivado Design Suite (UG949)

13. Vivado Design Suite Tutorials

14. Vivado Design Suite User Guides

15. Vivado Design Suite Reference Guides

16. Vivado Design Suite Methodology Guides

17. Vivado Design Suite Documentation

18. Download Center on the Xilinx website.
Designing with System Generator 255
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug948-vivado-sysgen-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+tutorials
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+userguides
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+refguides
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+methodguides
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+docs
https://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=255

Appendix C: Additional Resources and Legal Notices
Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. DSP Design Using System Generator Training Course

2. Vivado Design Suite Quick Take Video: Generating Vivado HLS block for use in System
Generator for DSP

3. Vivado Design Suite Quick Take Video: Using Vivado HLS C/C++/System C block in
System Generator

4. Vivado Design Suite Quick Take Video: Using Hardware Co-Simulation with Vivado
System Generator for DSP

5. Vivado Design Suite Quick Take Video: System Generator Multiple Clock Domains

6. Vivado Design Suite Quick Take Video: Specifying AXI4-Lite Interfaces for your Vivado
System Generator Design

7. Vivado Design Suite Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012–2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
Designing with System Generator 256
UG897 (v2016.4) November 30, 2016 www.xilinx.com

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/training/dsp/dsp-design-using-system-generator.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-block-system-generator-dsp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-block-system-generator-dsp.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-c-system-c-system-generator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-c-system-c-system-generator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/hardware-co-simulation-vivado-system-generator-for-dsp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/hardware-co-simulation-vivado-system-generator-for-dsp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/system-generator-multiple-clock-domains.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/axi4-lite-interfaces-for-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/axi4-lite-interfaces-for-vivado.html
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG897&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=256

	Vivado Design Suite User Guide: Model-Based DSP Design Using System Generator
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Xilinx DSP Block Set
	FIR Filter Generation
	Support for MATLAB
	Hardware Co-Simulation
	System Integration Platform
	Operating System, MATLAB, and Simulator Support in System Generator

	Ch. 2: Installation
	Downloading
	Hardware Co-Simulation Support
	UNC Paths Not Supported

	Using the Xilinx Installer
	Choosing MATLAB for System Generator
	Windows Installations
	Linux Installations

	Post Installation Tasks
	Post-Installation Tasks on Linux
	Compiling Xilinx HDL Libraries
	Example Designs Associated with this User Guide
	Managing the System Generator Cache
	Specifying Board Support in System Generator

	Ch. 3: Hardware Design Using System Generator
	Design Flows Using System Generator
	Algorithm Exploration
	Implementing Part of a Larger Design
	Implementing a Complete Design
	Note to the DSP Engineer
	Note to the Hardware Engineer

	System-Level Modeling in System Generator
	System Generator Blocksets
	Xilinx Blockset
	Xilinx Reference Blockset

	Xilinx Commands that Facilitate Rapid Model Creation and Analysis
	Signal Types
	Floating-Point Data Type
	IEEE-754 Standard for Floating-Point Data Type
	Floating-Point Data Representation in System Generator
	Displaying the Data Type on Output Signals
	Rate and Type Propagation

	AXI Signal Groups
	Bit-True and Cycle-True Modeling
	Timing and Clocking
	Discrete Time Systems
	Multirate Models
	Rate-Changing Blocks
	Hardware Oversampling
	Asynchronous Clocking
	Synchronous Clocking

	Synchronization Mechanisms
	Valid Ports
	Indeterminate Data

	Block Masks and Parameter Passing
	Block Masks
	Parameter Passing

	Automatic Code Generation
	Compiling and Simulating Using the System Generator Token
	Compilation Type and the Generate Button
	Simulink System Period
	Block Icon Display
	Hierarchical Controls

	Compilation Results
	Using the System Generator Constraints File
	Multicycle Path Constraints
	IOB Timing and Placement Constraints
	The “Clock Enables” Multirate Implementation

	IP Instance Caching

	Vivado Project
	HDL Testbench

	Compiling MATLAB into an FPGA
	Simple Selector
	Simple Arithmetic Operations
	Complex Multiplier with Latency
	Shift Operations
	Passing Parameters into the MCode Block
	Optional Input Ports
	Finite State Machines
	Parameterizable Accumulator
	FIR Example and System Verification
	RPN Calculator
	Example of disp Function

	Importing a System Generator Design into a Bigger System
	HDL Netlist Compilation
	Integration Design Rules

	Configurable Subsystems and System Generator
	Defining a Configurable Subsystem
	Using a Configurable Subsystem
	Deleting a Block from a Configurable Subsystem
	Adding a Block to a Configurable Subsystem

	Notes for Higher Performance FPGA Design
	Review the Hardware Notes Included with Each Block Dialog Box
	Register the Inputs and Outputs of Your Design
	Insert Pipeline Registers
	Use Saturation Arithmetic and Rounding Only When Necessary
	Set the Data Rate Option on All Gateway Blocks
	Other Things to Try

	Using FDATool in Digital Filter Applications
	Design Overview
	Open and Generate the Coefficients for this FIR Filter
	Parameterize the MAC-Based FIR Block
	Generate and Assign Coefficients for the FIR Filter
	Browse Through and Understand the Xilinx Filter Block
	Run the Simulation

	Multiple Independent Clocks Hardware Design
	Introduction
	Grouping Blocks within a Clock Domain
	System Generator Blocks used to Create Asynchronous Clock Domains
	Configuring the Top-Level System Generator Token
	Clock Propagation Algorithm
	Debugging Clock Propagation
	Simulation
	Debugging Multiple Clock Domain Signals
	Code Generation
	Migrating a Multiple-Clock ISE Design into the Vivado IDE
	Known Issues

	AXI Interface
	Introduction
	AXI4-Stream Support in System Generator
	Naming conventions
	Notes on TREADY/TVALID handshaking
	Handshaking Key Points

	AXI4-Stream Blocks in System Generator
	Port Groupings
	Port Name Shortening
	Breaking Out Multi-Channel TDATA

	AXI4-Lite Interface Generation
	Introduction
	AXI4-Lite Interface Synthesis in System Generator
	Configuring the Design for an AXI4-Lite Interface
	Packaging the Design for Use in Vivado IP Integrator
	Description of the Generated Results
	Mapping to AXI4-Lite Interfaces
	Managing Multiple AXI4-Lite Interfaces
	Address Generation
	Features of the Vivado IDE Example Project
	Software Drivers
	Known Issue in AXI4-Lite Interface Generation

	Tailor Fitting a Platform Based Accelerator Design in System Generator
	Step 1: Create a connectivity platform in Vivado as an IP Integrator Block Diagram (.bd)
	Step 2: Parse the BD file and import un-located ports and interfaces into System Generator
	Step 3: In System Generator, connect logic to the BD socket
	Step 4: Compile the accelerator model (IP Catalog flow) to create a complete design

	Ch. 4: Performing Analysis in System Generator
	Timing Analysis in System Generator
	Performing Timing Analysis
	Cross Probing from the Timing Analysis Results to the Model
	Accessing Existing Timing Analysis Results
	Recommendations For Troubleshooting Timing Violations

	Resource Analysis in System Generator
	Performing Resource Analysis
	Cross Probing from the Resource Analysis Results to the Model
	Accessing Existing Resource Analysis Results
	Recommendations For Optimizing Resource Analysis

	Ch. 5: Using Hardware Co-Simulation
	Compiling a Model for Hardware Co-Simulation
	Performing Standard Hardware Co-Simulation
	Performing Burst Mode Hardware Co-Simulation
	M-Code Access to Hardware Co-Simulation
	Setting Up Your Hardware Board
	Setting Up a KC705 Board for JTAG Hardware Co-Simulation
	Assemble the Required Hardware
	Set Up the KC705Board

	Setting Up a KC705 Board for Point-to-Point Ethernet Hardware Co-Simulation
	Assemble the Required Hardware
	Set Up the KC705 Board

	Setting Up a VC707 Board for Point-to-Point Ethernet Hardware Co-Simulation
	Assemble the Required Hardware
	Set Up the VC707 Board

	Hardware Co-Simulation Blocks
	Block Parameters for the JTAG Hardware Co-Simulation Block
	Basic tab
	Advanced tab
	Cable tab

	Block Parameters for the Ethernet Hardware Co-Simulation Block
	Basic tab
	Advanced tab
	Ethernet tab
	Configuration tab

	Hardware Co-Simulation Clocking
	Clocking Modes
	Single-Step Clock
	Free-Running Clock
	Selecting the Clock Mode

	Point-to-Point Ethernet Hardware Co-Simulation
	Setting Up the Local Area Network on the PC
	Using Jumbo Frames for Point-to-Point Ethernet Hardware Co-Simulation
	Point-to-Point Ethernet Hardware Co-Simulation on Linux

	Burst Data Transfers for Hardware Co-Simulation
	Hardware Co-Simulation Overview
	Burst Data Transfer Mode
	How to Use Burst Data Transfer Mode
	Automatic Testbench Generation
	Burst Mode Testbench Script

	Ch. 6: Importing HDL Modules
	Black Box HDL Requirements and Restrictions
	Black Box Configuration Wizard
	Using the Configuration Wizard
	Configuration Wizard Fine Points

	Black Box Configuration M-Function
	Language Selection
	Specifying the Top-Level Entity
	Defining Block Ports
	Adding New Ports
	Obtaining a Port Object
	Configuring Port Types
	Configuring Bi-Directional Ports for Simulation
	Configuring Port Sample Rates
	Dynamic Output Ports

	Black Box Clocking
	Combinational Paths
	Specifying VHDL Generics and Verilog Parameters
	Black Box VHDL Library Support
	Error Checking
	Black Box API
	SysgenBlockDescriptor Member Variables
	SysgenBlockDescriptor Methods
	SysgenPortDescriptor Member Variables
	SysgenPortDescriptor Methods

	Multiple Independent Clock Support on Black Box
	DRCs on Port connection
	Configuring Port Sample Rates
	Black Box Clocking

	HDL Co-Simulation
	Introduction
	Configuring the HDL Simulator
	Xilinx Simulator
	ModelSim Simulator

	Co-Simulating Multiple Black Boxes

	Ch. 7: System Generator Compilation Types
	HDL Netlist Compilation
	Hardware Co-Simulation Compilation
	IP Catalog Compilation
	The IP Catalog Flow
	Using AXI4 Interfaces

	Including a Testbench with the IP Module
	Adding an Interface Document to the IP Module
	Adding the Generated IP to the Vivado IP Catalog

	Synthesized Checkpoint Compilation
	Creating Your Own Custom Compilation Target

	Ch. 8: Creating Custom Compilation Targets
	xilinx_compilation Base Class
	Creating a New Compilation Target
	Running the Helper Function
	Modifying a Compilation Target
	Adding an Existing Compilation Target
	Saving a Custom Compilation Target
	Removing a Custom Compilation Target

	Base Class Properties and APIs
	System Generator Token-Related Properties and APIs
	setup_sysgen_token()
	add_part(family, device, speed, package, temperature)
	string target_name
	string hdl
	string synth_strategy
	string impl_strategy
	string create_tb
	string create_iface_doc

	Vivado Project-Related Properties
	top_level_module

	Vivado IDE Project Generation-Related Functions
	pre_project_creation(design_info)
	post_project_creation(design_info)
	add_tcl_command(string)
	add_file(string)
	run_synthesis()
	run_implementation()
	generate_bitstream()

	Design Info

	Examples of Creating Custom Compilation Targets
	Example 1: Creating an Implementation Target
	Example 2: Creating a Bitstream Target

	Appx. A: System Generator GUI Utilities
	Xilinx BlockAdd
	How to Invoke
	Method 1
	Method 2
	Method 3

	How to Use

	Xilinx Tools > Save as blockAdd default
	How to Use
	How to Restore the Block Default

	Xilinx BlockConnect
	Simple Connections
	Smart Connections

	Xilinx Tools > Terminate
	How to Use
	Terminating Open Outputs
	Terminating Open Inputs
	Verifying Input Port Data Type Requirements

	Xilinx Waveform Viewer
	Waveform Viewer Files
	Opening the Xilinx Waveform Viewer
	Adding Signals to the Waveform Viewer Display
	Deleting Signals From the Waveform Viewer Display
	Cross Probing Between the Waveform Viewer and the Model
	Clearing the Waveform Viewer Display
	Customizing the Display and Analyzing Waveforms
	Tips for Working in the Waveform Viewer
	Closing the Waveform Viewer
	How to Migrate WaveScope Signals Names from a Deprecated WaveScope Block

	Appx. B: Migrating ISE Designs to the Vivado IDE
	Introduction
	Upgrade Methodology
	General Migration Flow Starting with the ISE Environment
	Step 1: Upgrade Blocks to the Latest Version Found in ISE System Generator
	Step 2: Manually Replace Non-AXI Blocks with AXI Blocks in the ISE Environment
	General Instructions for Upgrading a Non-AXI Block
	Block-wise Recommendations for Non-AXI to AXI Upgrade
	CIC Compiler
	CORDIC
	Complex Multiplier
	Convolution Encoder
	DDS Compiler
	Divider Generator
	FIR Compiler
	Fast Fourier Transform
	Interleaver/De-Interleaver
	Reed-Solomon Decoder
	Reed-Solomon Encoder
	Viterbi Decoder

	Step 3: Remove any Remaining Blocks that are Incompatible with the Vivado IDE
	Step 4: Complete the Migration Flow from ISE to the Vivado IDE
	Migrating Multiple-Clock ISE Designs into the Vivado IDE

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

