
ISim User Guide

UG660 (v14.1) April 24, 2012

ISim User Guide www.xilinx.com UG660 (v14.1) April 24, 2012

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their respective owners. PCI, PCIe and PCI Express
are trademarks of PCI-SIG and used under license

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/19/2011 13.3 Updated with modifications to match release.

• Added:
• Revision History (this topic)
• Additional Resources Appendix
• Determining the Ethernet Port
• Tutorial References

• Updated:
• Clarified WCFG and WDB in Saving the Results
• Text throughout the document.
• Removed supported boards from Fuse command. Added: Board Support with

new supported boards listed.
• ISim GUI description: GUI Overview

11/30/2011 13.3 • Added Supported properties, selection options and new Type values to Board
Support.

• Removed references to explicit OS Support.

01/19/2011 13.4 • Date and Revision change only.

05/08/2012 14.1 • Updated Feature Support, page 3.
• Consolidated the Simulation chapters into Chapter 3, Compilation and Simulation.

• Consolidated fuse, vhpcomp, and vlogcomp Command Options, page 51 into a
single table and created a top-level command cross-reference

• Added `uselib Verilog Directive in Chapter 3.
• Added -hil_zynq_ps Hardware Co-Simulation command to fuse command option

in both Chapter 3, Compilation and Simulation, and Chapter 8, Using Hardware
Co-Simulation.

• Consolidated VHDL Language Support Exceptions and Verilog Language
Support Exceptions in Appendix B into two exceptions only tables.

http://www.xilinx.com

Table of Contents

Revision History . 2

Chapter 1: Introduction to ISim
Simulation Libraries . 3
Language Support. 3
Feature Support . 3
Operating System Support . 4
ISim Modes of Operation . 4
Simulation Steps Overview . 4
ISim Tutorials . 8

Chapter 2: Using the ISim GUI
ISim GUI Overview . 9
Setting ISim Preferences . 31

Chapter 3: Compilation and Simulation
Parsing Design Files . 36
Project File Syntax . 43
Predefined XILINX_ISIM Macro for Verilog Simulation . 43
Simulating the Design . 44
Mixed Language Simulation. 45
Timing Simulation (Gate-Level Simulation) . 48
ISim Executable Command . 49
Pausing a Simulation. 55
Saving Simulation Results . 56
Closing Simulation . 56

Chapter 4: Waveform Analysis
Working with the Wave Configuration . 57
Customizing the Wave Configuration . 59
Navigating the Wave Configuration . 65
Printing Wave Configurations . 69
Using Custom Colors. 70

Chapter 5: Viewing Simulation Results
Waveform Databases and Configuration Files . 71
Opening a Static Simulation. 72
UG660 (v14.1) April 24, 2012 www.xilinx.com ISim User Guide

http://www.xilinx.com

Chapter 6: Debugging at the Source Level
Stepping Through a Simulation . 75
Using Breakpoints . 76

Chapter 7: Writing Activity Data for Power Consumption

Chapter 8: Using Hardware Co-Simulation
Prerequisites . 81
Use Models . 81
Limitations . 82
Usage for Compilation . 82
fuse Command Line Flow . 83
Tools Flow . 83
Hybrid Co-Simulation Flow . 86
Hardware Board Usage . 88
Hardware Co-Simulation . 88
ISim Hardware Co-Simulation Tcl Commands. 89
Board Support . 90
Frequently Asked Questions . 93

Chapter 9: ISim Tcl Commands
Aliasing Simulation Commands . 100
ISim Wave Viewer Tcl Commands Overview . 101
Command Line Conventions . 101
Tcl Commands . 102

Appendix A: Library Mapping File (xilinxisim.ini)

Appendix B: Exceptions to VHDL and Verilog Language Support
VHDL Language Support Exceptions . 137
Verilog Language Support Exceptions . 139

Appendix C: Migrating from ModelSim XE to ISim
About ModelSim XE . 143
About ISim . 144
Feature comparison . 144
Simulation Process . 145

Appendix D: Additional Resources
Xilinx Resources . 153
ISim Tutorials . 153
UG660 (v14.1) April 24, 2012 www.xilinx.com ISim User Guide

http://www.xilinx.com

Simulation Libraries
Chapter 1

Introduction to ISim

Xilinx® ISim is a Hardware Description Language (HDL) simulator that lets you perform
behavioral and timing simulations for VHDL, Verilog, and mixed VHDL/Verilog
language designs.
This document describes the ISim tool features, lists the HDL languages that ISim
supports, and explains the methods of interfacing with the tool. For easier navigation
through this document, in your PDF reader, turn on the View > Toolbars > More Tools >
Previous View and Next View Buttons to navigate back and forth to linked information.

Simulation Libraries
ISim uses precompiled simulation device libraries and updates those libraries
automatically when updates are installed.

Note: Do not run the Simulation Library Compilation Wizard (Compxlib) to compile libraries for
use with ISim.

Language Support
ISim supports the following languages:

• VHDL IEEE-STD-1076-1993
• Verilog IEEE-STD-1364-2001
• Standard Delay Format (SDF) version 2.1
• VITAL-2000

Feature Support
The following features are supported:

• Incremental compilation
• Source code debugging
• SDF Annotation
• VCD Generation
• Power analysis and optimization using SAIF
• Native support for HardIP blocks (such as MGT, PPC, andPCIe®)
• Multi-threaded compilation
• Hardware Co-Simulation (HWCoSim)
• Mixed VHDL/Verilog
• Memory Editor for viewing and debugging memory elements
• Single-click simulation re-compile and re-launch
• Easy to use, one-click compilation and simulation
• Built-in Xilinx simulation libraries
ISim User Guide www.xilinx.com 3
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 1: Introduction to ISim
Operating System Support
See the Xilinx Design Tools: Installation and Licensing Guide (UG798) for operating systems
support.

The Xilinx Design Tools: Release Notes Guide (UG631) provides information about the most
recent release changes. Links to these document are also available in Appendix D,
Additional Resources.

ISim Modes of Operation
ISim has two modes of operation:

• Graphical User Interface (GUI)
Provides a graphical view of simulation data. Menu commands, context commands,
and toolbar buttons run simulation, and examine and debug data. For information
about working with the GUI, see Chapter 2, Using the ISim GUI.

• Command line mode
Has no interaction with the GUI and you run commands at the command prompt.
After the simulation executable runs, a Tool Command Language (Tcl) prompt opens
in which you can enter simulation Tcl commands to examine and debug data.

You can specify -tclbatch <file_name> option to the simulation executable to run
a set of Tcl commands after simulation has been loaded. You must have quit as the last
Tcl command if you want the simulation to quit upon completion. For more
information, see Chapter 3, Compilation and Simulation.

Simulation Steps Overview
The steps for simulating a design in ISim are:

• Step 1: Gathering Files and Mapping Libraries

• Step 2: Parsing and Elaborating the Design

• Step 3: Simulating the Design

• Step 4: Examining the Design

• Step 5: Debugging the Design

Step 1: Gathering Files and Mapping Libraries
The required files to run a simulation in ISim are as follows:

• Design files, including stimulus file

• User libraries

• Miscellaneous data files

Stimulus File

Include an HDL-based test bench as the stimulus file. You can create or edit your test bench
using any of the following:

• Text Editor:
Create or edit an HDL test bench in any text editor.
4 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=irn.pdf

Simulation Steps Overview
• Language Templates:
Use a template to populate the file correctly, such as those available with the ISE tool.
For more information, see “Using the Language Templates” in ISE Help.

• Third-party tool:
Create or edit an HDL test bench in any vendor-provided tool.

User Libraries

Depending upon how you launch ISim, there are different methods available to add user
libraries:

• When launching Project Navigator, define the user libraries in the ISE tool. See
“Working with VHDL Libraries” in ISE Help for details.

• When using ISim standalone, interactive command mode, or non-interactive mode,
set the library mapping file (see Appendix A, Library Mapping File (xilinxisim.ini) to
point to your logical or physical libraries.

• When launching ISim from the PlanAhead tool, define the user libraries in that tool.
See the PlanAhead User Guide (UG632) for more information. Appendix D, Additional
Resources, contains a link to the document.

Step 2: Parsing and Elaborating the Design
Before running a simulation, ISim must parse the code into one or more libraries, and then
elaborate the design components upon which the design depends. The simulation
executable is generated during this step.

GUI Mode

When you invoke ISim from either the ISE or the PlanAhead tool, the ISim GUI is
launched, the design is parsed, and design components are elaborated. For details, see
“Simulation from ISE” in Step 3: Simulating the Design, or the PlanAhead User Guide
(UG632). The design is parsed and elaborated manually at the command line, as described
in the next section. Then you can invoke the generated simulation executable with the
-gui mode to launch the GUI.

Interactive Command Line Mode

The steps in the interactive command-line mode:

1. Creating a project file. See Project File Syntax, page 43

2. Using the fuse command. See Running fuse, page 38

Step 3: Simulating the Design
After design compilation and elaboration, the next step is to run the simulation executable,
and simulate the design. For information about running simulation in read-only mode, see
Opening a Static Simulation in Chapter 5.

GUI Mode Simulation at the Command Line

After you generate a simulation executable (x.exe (default) or a user-specified name, you
can run the simulation executable with the -gui switch on the command line; for example,
my_sim.exe -gui. This command launches the GUI. The simulation executable
ISim User Guide www.xilinx.com 5
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm

Chapter 1: Introduction to ISim
command does not start the simulation. To start the simulation, use one of the run
simulation commands described in Simulating the Design, page 44.

You can then add signals to the Wave configuration. See Working with the Wave
Configuration, page 57 for details.

Optionally, you can also invoke the simulation executable, launch the GUI, and run
simulation with a Tcl file by leveraging the -tclbatch option, for example:

my_sim.exe -gui -tclbatch my_sim.tcl.

You can use the wave add command to add all signals at top-level of your my_sim.tcl
file to automatically trace the signals and display the signals in the GUI upon launch.

Simulation from ISE

Parsing, elaboration, and running the simulation executable command is run in the
background when you run one of the following processes in the ISE or the PlanAhead tool.

• Simulate Behavioral Model

• Simulate Post-Place & Route Model

These processes launch the GUI with the top-level signals being traced by default.

Optionally, you can specify custom Tcl files to control the signals that are traced when you
launch the GUI.

The simulator runs for the time specified under the ISE simulation process property,
Simulation Run Time. See “Simulation Properties” in ISE Help for details.

To run for an additional time, use one of the run simulation commands described in
Simulating the Design, page 44.

Interactive Command Line Mode

Run the simulation executable, for example, my_sim.exe. When the Tcl prompt displays,
type the run command.

Optionally, you can also invoke the simulation executable with a Tcl file by leveraging the
-tclbatch option, for example, my_sim.exe -tclbatch my_sim.tcl.

Ensure that this step was run successfully. If not, see Examining Error Messages and
Examining Log Files in Step 5: Debugging the Design.

Step 4: Examining the Design
After the design is simulated, you debug the design to ensure that it meets the design
specification.

You can examine the simulation results by:

• Viewing the signal interactions in the Wave window.

• Viewing or querying the results in the Console panel or the Tcl prompt.

In the debug phase, you can do the following:

• Save the results; see Saving Simulation Results, page 56.

• View and examine simulation results in a read-only static simulator; see Opening a
Static Simulation in Chapter 5.
6 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm

Simulation Steps Overview
Step 5: Debugging the Design
If you encounter issues, you must debug the design to identify the root cause and the
resolution of the issues. ISim provides a variety of ways to debug the design. To debug
your design, examine the error messages and log files.

Examining Error Messages

First, look at the error messages to see if there are any errors in the design. Error
messages appear in the ISE tool Console (GUI mode) and the log files discussed in the
next section. Look for messages with one of the following prefixes:

• HDL Compiler
Indicates an error during the parsing or static elaboration step. If an error occurs
during parsing and elaboration, and this step was not run successfully, the
problem can be an HDL compiler issue. Type fuse -v 1 to dump information
that might help identify the problem. A fuse.log file that contains a list of error
messages and errors appears in the ISE tool Console (in ISE Integration Mode).

• Simulator
Indicates an error during executable code generation or simulation. See Step 3:
Simulating the Design, page 5. Use the file name and line number in the message
to locate the issue.

Examining Log Files

Examining the available log files can provide helpful clues about design errors. The
following log files are available:

• fuse.log
Log file containing output produced by the fuse command during the parsing
and elaboration step.

• isim.log
Log file containing output produced by simulation executable during the
simulation step. This file does not disclose any design data, and is safe to share
with Xilinx Technical Support if you report a problem.

• isimcrash.log
Log file generated when the tool encounters an unexpected error or condition.
This is generated inside the
./isim/<simulation_executable>.sim directory.

Provide this file to Xilinx® Technical Support for further assistance. This file also does not
disclose any design data, and is safe to share with Xilinx Technical Support if you report a
problem.
ISim User Guide www.xilinx.com 7
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 1: Introduction to ISim
Using Tcl Simulation Commands

Several simulation commands are available to assist you with debugging. The following
commands are linked to the full command description, and can be run at the command
line Tcl prompt, or in the Console panel.

• isim ptrace on

• isim ltrace on

• dump

• show

• isim force

• bp

• onerror

For debug strategies, see Chapter 6, Debugging at the Source Level.

For more commands, see Chapter 9, ISim Tcl Commands.

ISim Tutorials
See the following tutorials for more information:

• ISE Simulator (ISim) In-Depth Tutorial (UG682)
Demonstrates how to use ISim for design simulation and debugging.

• ISE Hardware Co-Simulation Tutorial: Accelerating Floating Point FFT Simulation (UG817)
Shows how to use the ISim Hardware Co-Simulation (HWCoSim) feature to
accelerate Floating Point FFT simulation.

Appendix D, Additional Resources, provides links to these documents.
8 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Chapter 2

Using the ISim GUI

The ISim Graphical User Interface (GUI) consists of the main window, which contains
panels, the Workspace, toolbars, and the status bar. In the main window, you can:

• View the parts of the design that can be simulated

• Add and view signals in the wave configuration

• Use commands to run simulation

• Examine the design, and debug as necessary

ISim GUI Overview
The ISim GUI launches when you run the simulation executable from the ISE® tool, the
command line, or the PlanAhead™ tool.

Figure 2-1 shows the ISim GUI.

Figure 2-1: Isim GUI
ISim User Guide www.xilinx.com 9
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
To close ISim, select File > Exit. ISim prompts you to save your waveform configuration
before closing.

Table 2-1 lists the ISim GUI components as idenfied in Figure 2-1, page 9, and links to the
GUI part description.

Note: In your PDF reader, turn on the View > Toolbars > More Tools > Previous View and Next
View Buttons to navigate back and forth to linked information.

The following subsections describe each ISim GUI component.

Menus and Toolbar: Commands and Shortcuts
The ISim main window consists of functionally different toolbars that reflect the most
commonly used Main menu options.

The Main menu provides extended options within the option categories. The main
window toolbar buttons are below the Main menu at the top of the user interface.

To show or hide toolbars, select View > Toolbars > <toolbar_name>.

Table 2-1: ISim GUI Components

GUI Part by # Description

1. Menus and Toolbar:
Commands and
Shortcuts

Provides access to most operations available in the tool. Some
operations are available in context menu only.

2. ISim Menu and
Toolbar

Provides access to frequently used commands.

3. Instances and
Processes Panel

Displays the block (instance and process) hierarchy associated
with the current simulation.

4. Source Files Panel Displays the list of all the files associated with the design.

5. Console Panel Displays messages generated by the simulator. You can enter
simulation Tcl commands at the prompt.

6. Breakpoints Panel Displays a list of all breakpoints currently set in the design.

7. Find in Files Results
Panel

Displays the results that match a text string in a set of files.

8. Search Results Panel Displays the results that match the criteria from a search

9. Objects Panel Displays the simulation objects associated with the block
selected in the Instances and Processes panel.

10. Wave Window Displays the wave configuration, which consists of a list of
signals and buses, their waveforms, and any wave objects,
such as dividers, cursor or markers. The Wave window can
display more than one wave configuration.

11. Text Editor Window Displays read-only Hardware Description Language (HDL)
files.

12. Status Bar Displays a brief description for a menu command or toolbar
button that your cursor is placed over, and the simulation
time.
10 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
File Menu and Standard Toolbar

The Standard toolbar provides access to frequently used File menu commands.

The File menu and the Standard toolbar provide access to the following options:

• New
Use the New dialog box and to select the type of file you want to create. You can open
a new text file, schematic, or symbol.

• Open
Use this option to browse through your directories and select a file to open. The file
displays in the appropriate application or editor.

• Save
Use this option to save the active file to disk and overwrites the previously saved
version. If a file is not saved previously, the Save As dialog box opens and lets you
save the active file to disk.

• Save All
Use this option to save all files that require saving.

• Print
Use the Print dialog box to print an active file.

Edit Menu and Toolbar

The Edit toolbar provides access to frequently used Edit menu commands.

• Cut, Copy, Paste, Delete are available as well as Undo, Redo, Find, and Find in File.

View Menu and Toolbar

The View toolbar provides access to frequently used View menu commands.

View toolbar options are as follows:

• Zoom In and Zoom Out, Set View for all content to be visible, and Zoom to Cursors.

• The Refresh button cleans up the display of the file in focus.

In the View menu, additional options are:

• Panel
Opens a dialog box with the following check box options: Search Results, Find in Files
Results, Breakpoints, Compilation Log, Source Files, Memory, Objects, Instances and
Processes, Console.

• Toolbars
Turn the toolbars on and off.

• A check box controls the use of the Status Bar.
ISim User Guide www.xilinx.com 11
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
ISim Menu and Toolbar

The ISim toolbar provides access to frequentlyused ISim commands.

Table 2-2 describes the Simulation toolbar options:

Window Menu and Toolbar

The Window toolbar provides access to frequently used Window menu commands.

The Window toolbar options are the standard options to cascade, tile, show side-by-side,
and bring to front.

Help Toolbar

The Help toolbar provides access to frequently used Help menu commands. Support and
Services displays the Xilinx® Support page in the default web browser.

Table 2-2: Simulation Toolbar Options

Button Description

Moves the main cursor to the nearest marker to the left of the current
position of the marker.

Moves the main cursor to the nearest marker to the right of the main
current position of the marker.

Adds a marker at the position of the main cursor to the Waveform area.

Resets the simulation time to zero.

Runs simulation until there are no more events, a stop command is
issued or a break point is encountered.

Runs simulation for the amount of time specified (Run For).

Specifies the amount of time the simulation runs.

Steps through the simulation to the next line of HDL code.

Forces a running simulation to stop immediately. Simulation can be
restarted using one of the run commands.

Ends the current simulation, leaving the simulation data open.

Relaunch Simulation.
12 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
What’s This? activates tooltips. After clicking this button, you can hover over a menu item
or button and get a brief description of its functionality.

Keyboard Shortcuts

Table 2-3 lists the ISim keyboard shortcuts.

Table 2-3: Keyboard Shortcuts

 Shortcut Menu Command

 F1 Help Topics (Help menu)

 F3 Find Next (Edit menu)

 F5 Run All (View menu)

 F6 Zoom Full View (View menu)

 F7 Zoom Out (View menu)

 F8 Zoom In (View menu)

 F11 Step

 Delete Delete (Edit menu)

 Ctrl+N New (File menu)

 Ctrl+O Open (File menu)

 Ctrl+S Save (File menu)

 Ctrl+P Print (File menu)

 Ctrl+Z Undo (Edit menu)

 Ctrl+Y Redo (Edit menu)

 Ctrl+X Cut (Edit menu)

 Ctrl+C Copy (Edit menu)

 Ctrl+V Paste (Edit menu)

 Ctrl+F Find (Edit menu)

 Ctrl+G Go To (Edit menu)

 Ctrl+A Select All (Edit menu)

 Ctrl+W Add To Wave Configuration

 Ctrl+F4 Close (Window menu)

 Ctrl+Tab Next (Window menu)

 Ctrl+Shift+Tab Previous (Window menu)

 Ctrl+Home Go To Time 0

 Ctrl+End Go To Latest Time

 Ctrl+Shift+F5 Restart

 Ctrl+ Mouse Wheel Zooms in and out

 Shift+ Mouse Wheel Zooms left and right
ISim User Guide www.xilinx.com 13
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
Instances and Processes Panel
The Instances and Processes panel displays the block (instance and process) hierarchy
associated with a wave configuration that is open in the Wave window. Instantiated and
elaborated entities and modules display in a tree structure; components being entities,
processes, tasks, and blocks.

The columns in this panel are:

• Instance and Process Name
Shows the instance, process, and static tasks or functions buttons in a tree structure
showing the block hierarchy of the design.

• Design Unit
Displays the names of the design units (Verilog module or VHDL entity architecture)
corresponding to the instance, static task or function, or process from the first column.

• Block Type
Displays the type of the instance, static task or function, or process (for example,
Verilog Module).

The Instances and Processes tabs are:

• Instance
Displays the instance, process, and static tasks or functions buttons in a tree structure
showing the block hierarchy of the design.

• Memory
Displays the memory of the design object. See Using the Memory Editor, page 25.

• Source Files
Lists the source files of the design.

Figure 2-2, page 14 shows the Instances and Processes panel.

 Mouse Wheel Scrolls up and down

 Left Previous Transition

 Right Next Transition

 Pause Break

Table 2-3: Keyboard Shortcuts (Cont’d)

 Shortcut Menu Command

Figure 2-2: Instances and Processes Panel
14 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Design Hierarchy Buttons

Table 2-4 describes the design hierarchy buttons in the Instances and Processes panel.
:

With Hierarchy buttons you can take the following actions:

• To expand a hierarchy to display its components, click the arrows or use the Expand
context menu commands (see Expanding and Collapsing a Hierarchy, page 15).

• To sort the information in this panel according to the data in one of the columns, click
the column title, such as Design Unit.

• To hide or restore the panel, select View > Panel > Instances and Processes.

Expanding and Collapsing a Hierarchy

You can expand and collapse a hierarchy in any window or panel with objects in nested
groups using one of the following methods:

• Clicking the arrows:

• Click the expand arrow to expand the hierarchy. One level can be expanded
at a time.

• Click the collapse arrow to collapse the hierarchy.

• Using the menu command:

Table 2-4: Instance and Processes Panel Buttons

Icon Represents

VHDL Entity

VHDL Package

VHDL Block

VHDL Process

Verilog Module

A toggle for filtering Verilog tasks.

A toggle for filtering Verilog blocks.

A toggle for filtering Verilog Processes.
ISim User Guide www.xilinx.com 15
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
1. Select an object.

2. Select Edit > Wave Objects >

- Expand
Expands the hierarchy object that is selected. One level can be expanded at a
time.

- Collapse
Collapses the hierarchy of the object selected.

• Using the context menu:

1. Select an object.

2. Right-click and select the applicable command from the context menu.

Arranging the Main Window
You can move windows, panels, and the toolbar around in the interface using one of the
following techniques:

• Using Window Commands
The Window menu commands are available for the Wave window and Text Editor
window only.

• Using Drag and Drop
For other parts of the interface, like panels and the main window toolbar, drag and
drop lets you move the object to a new location. To do so:

1. Click and hold the header for the panel to move.

2. Move the panel to a new location.

A gray box indicates where the panel is placed.

3. Release the mouse button to place the panel to the new location.

Hiding and Restoring Windows
Many of the parts of the main window can be hidden from view, and restored again.

Note: To restore windows to their default locations, select View > Restore Default Layout.

Standard minimize, maximize and close commands apply to the Wave window and Text
Editor window using the upper right-hand buttons.

With these commands, you can hide, restore, float, and dock the panel. Table 2-5 lists the
buttons and description.

Table 2-5: Panel Control Buttons

Icon Description

Toggle Slide Out
Minimizes the panel. Also used to restore the pane by hovering over the name
of the panel at the edge of the window, and clicking the minimize button.

Toggle Maximized
Maximizes the panel. Click again to restore the panel size.
16 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Wave Window
The Wave window displays signals, buses, and their waveforms. Each tab in the Wave
window shows a wave configuration that contains a list of signals and buses, their
properties, and any added wave objects such as dividers, cursors, and markers.

In the GUI, the signals and buses in the wave configuration are traced during simulation,
and you use the wave configuration to examine the simulation results. The design
hierarchy and the signal transitions are not part of the wave configuration, and are stored
in a separate database .wdb file.

Wave Configuration File (.wcfg)

A wave configuration comprises a list of signals; their properties, such as color and radix
value; and other wave objects, such as dividers, groups, markers and cursors. You can
completely customize a wave configuration: you can add or remove signals and other
wave objects at any time when the simulation is not actively running.

The initial file, Default.wcfg, is not saved until you save the file. The wave configuration
file stores the list of signals, their properties, and wave objects.

You can create and simulate multiple wave configurations, and the wave configurations
can be saved separately.

For information about saving the Wave Configuration, see Saving Wave Configurations,
page 22.

When you invoke the simulator from any mode, it creates the Default.wcfg file. You
must supply a filename to save a wave configuration file to the disk as a .wcfg file.

• In GUI mode, when ISim exits, it prompts you to type a filename in the Save As
dialog box.

• In batch mode, type wcfg save to save the contents of the Default.wcfg before
exiting the ISim tool.

Active Window

When you invoke the simulator, the first active window is Default.wcfg. You can change
the active window by clicking the window tab or using the wave add command.

• In the GUI, select File > New or File > Open to change the active window to the
newly created waveform configuration window.

• In Tcl, the wcfg new and wcfg open commands change the active window to the
newly created window just like File > New and File > Open.

Toggle Floating
Floats the panel. Re-click to restore to its former location.

Close
Closes the panel from view. To restore the panel, select View > Panels and
select the pane to restore to view.

Table 2-5: Panel Control Buttons

Icon Description
ISim User Guide www.xilinx.com 17
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
Wave Configuration Signal and Bus Buttons

The signals and buses in the Wave window can be one of the following design objects with
the corresponding icon.

Table 2-6 lists the ISim signal buttons. Table 2-7, page 18 lists the Bus signal buttons.

Table 2-7 lists the ISim Bus buttons.

Table 2-6: ISim Signal Buttons

Icon Description

Input Port

Output Port

InOut, Bidirectional Port

Internal Signal

Constants, parameters, and generics

Variable

Linkage Signal (VHDL only)

Buffer Signal

Table 2-7: ISim Bus Buttons

Button Description

Input Bus

Output Bus

InOut, Bidirectional Bus
18 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Objects in the Wave Configuration

Cursors
The main cursor and secondary cursor in the wave configuration are used to pinpoint a
time (main cursor) and to measure time (main and secondary cursors together). The
cursors form the focal point for various navigation activities.

• Main Cursor
The main cursor is a solid line that intersects the waveform, and the value at that
intersection is displayed in the Value column for each waveform. The cursor is the
current simulation time while simulation is running, with the time displayed directly
above the cursor. See Cursors in Chapter 4.

• Secondary Cursor
The secondary cursor is a dotted line used with the main cursor to identify a time
range. The time range can be used with zoom and print to focus on the area.

Markers
A marker is used to mark a particular time for future reference. A marker is a vertical line
intersecting the waveform. A marker lets you display the signal value where the marker
intersects the waveform. The time of the marker displays at the top of the line. In addition,
a series of markers can be used to jump the cursor forward or back for quick analysis of
value change. See Markers in Chapter 4.

Adding Markers and Displaying Waveform Values With Markers

Hollow/Filled-in Circle
When placing or moving cursors and markers, you can use the Snap to Transition button
to assist with placing the cursor/marker more precisely on a signal transition.

• When placing or moving a cursor or marker, the mouse displays a hollow circle.

• When hovering over the signal transition, the mouse displays a filled in circle
when hovering over a transition of a signal.

Internal Bus

Constants, Parameters, and Generics Bus

Variable Bus

Linkage Bus

Buffer Bus

Table 2-7: ISim Bus Buttons (Cont’d)

Button Description
ISim User Guide www.xilinx.com 19
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
Dividers
A divider is a visual separator of signals in the wave configuration.

Groups
A group is a virtual collection to which you can add signals and buses in the wave
configuration as a means of organizing a set of related signals. A group displays the
group icon and group name.

The group itself displays no waveform data but can be expanded to show its contents or
collapsed to hide them. See Adding a Group in Chapter 4.

Virtual Buses
A virtual bus is a grouping to which logic scalars and arrays can be added. A virtual
bus displays the icon and virtual bus name. The virtual bus displays a bus waveform,
which is comprised of the signal waveforms in the vertical order that they appear under
the virtual bus, flattened to a one-dimensional array. See Adding Virtual Buses in
Chapter 4.

Wave Window Toolbar Buttons

Table 2-8 shows and describes the wave window toolbar buttons.

Table 2-8: Wave Window Toolbar Buttons

Button Description

Zoom Out decreases the size of the viewed objects.

Zoom In increases the size of the viewed objects.

Zoom to Full View zooms out to display the entire view in the active window.

Zoom to Cursors displays the waveforms such that the two cursors are at the
left and right edge of the display. If the secondary is off, the command centers
the display around the main cursor without changing the magnification level.

Go To Time 0 moves the cursor and focus to O time.

Go To Latest Time moves the cursor and focus to the end of simulation.

Go To Next Transition moves the main cursor to next transition.

Go To Previous Transition moves the main cursor to the previous transition.

Adds a marker at the position of the main cursor to the Waveform area.

Moves the main cursor to the nearest marker to the left of the current position.

Moves the main cursor to the nearest marker to the right of the current position.
20 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Working With Wave Configurations
You can create any number of Wave Configurations in the current session. The Wave
Configuration stores the list of signals, their properties and any wave objects that were
added.

To create a wave configuration:

1. Select File > New.

The New dialog box opens.

2. Select Wave Configuration from the list.

3. Click OK.

A new untitled wave configuration opens. The new wave configuration is empty until
you add signals (see Adding Signals to the Wave Configuration.)

If more than one wave configuration is open, either:

• Use the wave configuration tab to locate a particular wave configuration.

• Select Window > Next or Window > Previous to navigate through open wave
configurations.

Adding Signals to the Wave Configuration

You can populate the Wave window with the signals from your design using menu
commands or drag and drop capabilities in the GUI, or using Tcl commands in the Console
panel.

Note: Changes to the wave configuration, including creating the wave configuration or adding
signals, do not become permanent until you save the WCFG file. For more information, see Wave
Configurations and WCFG Files.

In the GUI:

1. In the Instances and Processes panel, expand the design hierarchy, and select an item.

The objects that correspond to the selected instance or process displays in the Objects
panel.

2. In the Objects panel, select one or more objects.

3. Use one of the following methods to add objects to the wave configuration:

• Right-click, and select Add to Wave Window from the context menu.

• Drag and drop the objects from the Objects panel to the Name column of the
Wave window.

Swaps the main and secondary cursors, if both are set.

Snap to Transition Mode moves the cursor to a transition when you place the
cursor close to the transition. This mode can be switched on or off.

Displays and hides the floating ruler that can be moved to the desired location
in the Wave window.

Table 2-8: Wave Window Toolbar Buttons (Cont’d)

Button Description
ISim User Guide www.xilinx.com 21
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
• In the Console panel, use wave add command.

Using Tcl:

• Optionally, you can first identify the objects you want to add by exploring the design
hierarchy in the Instances and Processes panel and the Objects panel, or by entering
the scope command in the Console panel.

• In the Console panel, enter the wave add command to enter an individual object or a
group of objects.

Wave Configurations and WCFG Files

Although both a wave configuration and a WCFG file refer to the customization of lists of
waveforms, there is a conceptual difference between them:

• The wave configuration is an object that is loaded into memory with which you can
work.

• You can name a wave configuration or leave it untitled. The name appears on the
tab of the wave configuration window.

• When saving a wave configuration to a WCFG file using a GUI Tcl command, the
WCFG file takes the name supplied as a command argument.

• When loading a wave configuration from a WCFG file, the wave configuration
displays the name of the file.

• The WCFG file is the saved form of a wave configuration on disk.

Saving Wave Configurations

You can save the current wave configuration, and if you have multiple wave
configurations open, each can be saved to a unique name for later viewing.

To save a wave configuration, do one of the following:

• Select File > Save

• Press Crtl+S

• Click the Save button

Note: Use File > Save As to assign a different name to the wave configuration.

Searching For Objects
You can search for objects in the design using the Search command, which is available in
the Instances and Processes panel and in the Objects panel. Search criteria includes a text
string, and/or an object-type filter.

To search for objects, do the following:

1. Place the cursor in the Objects panel or the Instances and Processes panel.

2. Right-click and select Search from the context menu.

3. In the Search dialog box, enter a text string. You can use an asterisk, *, as a wildcard
symbol.

4. Select the object type for which you are searching. Click Match case if applicable.

5. Click OK.

Objects that match the search criteria display in the Search Results Panel.
22 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Opening HDL Source Files
You can open Hardware Description Language (HDL) source file in the ISim Text Editor.

To view an HDL source file, do the following:

1. In the Instances and Processes panel, the Objects panel, or the Source Files panel, select
a file.

2. Double-click the file, or right-click and select Go To Source from the context menu.
The HDL source file associated with that object opens in the Text Editor.

When you open a file using the File > Open menu command, the file is in write mode.

In the Open dialog box, change Files of type file to Verilog or VHDL, select the file, and
click Open. See Modifying Source Files, page 25.

Source Files Panel
The Source Files panel displays as a tab in the Instances and Processes panel. When you
select the tab, it displays list of files associated with the design. The list of files is provided
by the fuse command during design parsing and elaboration, which is run in the
background for GUI users.

To open a source code file, do the following:

1. Select a file in the list.

2. Click the Go To Source Code button.

You can also use the Go To Source Code command from the context menu, or
double-click a file.

Objects Panel
The Objects panel displays all simulation objects (ports, signals, variables, constants,
parameters, and generics) associated with the selected instances and processes in the
Instances and Processes panel.

The top of the panel displays which instance or process is selected in the Instances and
Processes panel; those objects and their values are listed in the Objects panel.

The table columns are defined as follows:

• Object Name
Displays the name of the simulation object, accompanied by the symbol which
represents the type of object.

• Value
The value of the simulation object at the current simulation time or at the main cursor,
as determined by the Sync Time button.

• Data Type
Displays the data type of the corresponding simulation object, logic or an array.
ISim User Guide www.xilinx.com 23
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
Toggle buttons are available in the Objects panel, as described in Table 2-9.

Using Show Drivers

You can use the Show Driver command to display the driver for a change in signal, or
object value. This command is used to determine the cause of a value change, which helps
determine if circuit connections are correct. ISim displays the signal, or object, and its one
or more drivers in the Console panel.

The Show Driver command is available for probing objects in the following areas:

• Objects panel
• Wave window
• Console panel (using the show driver command)

To show drivers:

1. Select an object, or signal.

2. Select Edit > Wave Objects > Show Drivers.

The Console panel lists the drivers for the object or signal. When there is no driver, a
message indicates that there is no driver.

Note: Running this command is the same as running show driver at the Console panel prompt.

Showing Display Elements

In the Objects panel, you can control whether or not to limit a preset maximum number of
child elements displayed for every composite object. You can change the preset maximum
number using the Preferences dialog box.

Table 2-9: Object Panel Toolbar Buttons

Button Description

Toggles the input ports on and off.

Toggles the output ports on and off.

Toggles the inout, bidirectional ports on and off.

Toggles the internal signals on and off.

Toggles the constants, parameters, and generics on and off.

Toggles the variables on and off.

Toggles the Sync Time feature on and off.

• When on, Objects panel values are based on the main
cursor in the Wave window.

• When off, values are the values at the Sim Time in the
Status Bar (at simulation end time).
24 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
To display all child elements:

1. Right-click anywhere in the object list in the Objects panel.

2. Right-click, and select Show All Elements.

The number of children in the object hierarchy display.

To limit the display of child elements, right-click anywhere in the object list in the Objects
panel, and select Limit Elements.

To change the preset maximum number of child elements, set the preference settings as
follows:

1. Select Edit > Preferences.

2. In the Preferences dialog box, select ISim Simulator.

3. Select Limit the maximum number of elements displayed to, and enter a number.

4. Click Apply, and OK.

Selecting an Object in the Wave Window

To highlight signals for an object in the Objects panel:

1. Select an object in the Objects panel.

2. Right-click, and choose Select in Wave Window.

Text Editor Window
The Text Editor window is available for access to the underlying HDL source files.

Modifying Source Files

To modify source files:

1. Open the source file in the ISim Text Editor.

2. Make the appropriate edits, and run Re-Launch to re-simulate the design.

The ISE project automatically saves the source file changes.

Setting Breakpoints

You can set breakpoints in executable lines in your HDL file so you can run your code
continuously until the source code line with the breakpoint is reached, as described in
Using Breakpoints in Chapter 6.

Note: You can set breakpoints on lines with executable code only.

Using the Memory Editor
The Memory Editor lets you find and change contents of two-dimensional memory arrays
in a design during simulation (without recompiling or re-elaborating the design). There are
three places that show memory objects: the Memory tab, the Object panel, and the Search
Result tab. To open the Memory Editor, follow one of these methods.

• On the Memory tab which contains all the two-dimensional arrays of logic types in a
design, double-click a displayed memory object.

• In the Objects panel, right-click a two-dimensional array of logic type, and select
Memory Editor from the context menu.
ISim User Guide www.xilinx.com 25
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
• In the Instance and Processes panel, run a search on a memory name. When the
searched memory displays in the Search Results panel, you can right-click the
memory and select Memory Editor from the context menu.

Note: For objects that are not two-dimensional array of a logic type, the Memory Editor choice in the
Context Menu is grayed out.

The Memory Editor displays the following fields:

• Address
Go to a particular location in the displayed memory.

• Columns
Controls the display of the number of elements per row. The auto column displays the
maximum of 2 to power N of elements.

• Address Radix
Controls the radix of the address displayed in the Memory Editor.

• Value Radix
Controls the radix of the display value in the Memory Editor.

You can float the Memory Editor window and the Memory Editor retains the previous
state after the float operation.

You can navigate inside Memory Editor with the arrow keys, the current position of a
selected item displays on the status bar based on the current address radix.

Console Panel
The Console panel lets you view a log of commands generated by ISim, and enter standard
and ISim-specific Tcl commands at the command prompt. The Console panel shows:

Messages
Generated messages include errors, warnings, and informational messages. The Console
panel also echoes simulator commands that were invoked from the graphical controls in
the ISim GUI.

Simulation commands
The command prompt lets you enter simulation Tcl commands, and to view the command
dump (or print-out) in the Console panel. See Simulating the Design in Chapter 3.

A number of right-click menu commands are available to help manage the contents of the
Console panel.
26 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Breakpoints Panel
A breakpoint is a user-determined stopping point in the source code used for debugging a
design with ISim. The Breakpoints panel displays a list of breakpoints that are set in the
design. See Using Breakpoints in Chapter 6.

For each breakpoint set in your source files, the list in the Breakpoints panel identifies the
file location, filename, and line number. You can delete a selection, delete all breakpoints,
and go to the source code from either the Breakpoint panel toolbar buttons or the context
menu.

To set a breakpoint, use one of the following options:

• Select View > Breakpoint > Toggle Breakpoint.

• Click the Toggle Breakpoint button.

• In the HDL file, click a line of code just to the right of the line number.

• Type bp <option> in the Tcl console.

Alternatively, you can right-click a line of code, and select Toggle Breakpoint.

After the procedure completes, a simulation breakpoint icon appears next to the line
of code.

A list of breakpoints is available in the Breakpoints panel. If you place a breakpoint on a
line of code that is not executable, the breakpoint is not added.

To remove the breakpoint click the breakpoint.

Breakpoint Toolbar Buttons

Table 2-10 describes the Breakpoint buttons.

Search Results Panel
The Search Results panel displays the results that match the search criteria from the Search
command. The results display the icon for the object type being displayed and the location
of the object in the design.

Table 2-10: Breakpoint Buttons

Button Description

Deletes the selected line from the Breakpoint panel, and deletes the
breakpoint from the HDL source file.

Deletes all breakpoints from the HDL source files.

Opens the HDL source file in the text editor with the breakpoint in focus.
ISim User Guide www.xilinx.com 27
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
Search Results Toolbar Command Buttons

Table 2-11 shows and describes the buttons available in the Search Results panel.

Find in Files Results Panel

You can find a text string in a set of files as follows.

To use the Find in Files options:

Table 2-11: Search Results Toolbar Buttons

Button Description

Clears the contents of the Search Results panel.

Adds the signal associated with the selected search result to the wave
configuration in the Wave window.

Opens the HDL source file in the text editor at the line where the design unit
is defined.

Opens the HDL source file in the text editor at the line where the design unit
is instantiated.

Stops the search.

Table 2-12: Find in File Buttons and Actions

Button Action

 Select Edit > Find in Files, or click the Find Text in Files button.

In the Find in Files dialog box, specify the text to find, set the parameters
for your search, and click Find.

In the Find in Files Results panel, do any of the following:

To clear all results from the panel, click the Clear All button.

To open the file that contains the find result in the Workspace, select a find
result, and click the Show Current Result button

Alternatively, you can double-click the find result to open the file.

To view the next find result, click the Show Next Result button.

To view the previous find result, click the Show Previous Result button.

To stop the currently running Find in Files search, click the Stop Job
button.

To save your Find in Files search results to a Comma Separated Value
(CSV) file, click the Save Results as a Text File button.
28 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim GUI Overview
Re-launching Simulation
The Re-launch button lets you re-launch the ISim simulation after making
a modification in an Hardware Description Language (HDL) file to fix an
identified issue. You also can recompile from the ISim GUI.

Recompile and Re-launch are fully automated features. The dialog box messages specify
where an issue is located. Re-launch keeps all the options as set at compile time, and
automatically runs simulation to the specified runtime when the flow was launched from
either the Project Navigator or the PlanAhead tool.

• When you successfully re-launch a simulation, your simulation completes without
errors.

• When you re-launch an unsuccessful simulation, a dialog box opens with the syntax
error failure to the compiled source code. The links go to the source code with errors
in the source window. It is recommended that you address the linked errors
sequentially to correct the issues and then recompile using the Re-launch button to
verify the fix.

Applying Stimulus
Use the Force Selected Signal dialog box to enter parameters to force a VHDL signal,
Verilog wire, or a Verilog reg to a constant value. This dialog box opens when you select a
signal then right-click the Force Constant option. After you assign a new constant force,
those values override the assignments made from within HDL code or any previously
applied constant or clock force. Click Apply to apply all changes. Figure 2-3 shows the
Force Selected Signal dialog box.

The Force Selected Signal options are:

• Signal Name
Displays the default signal name. The default signal name is the full path name of the
selected item. You can change the signal name in the edit box. When you enter an
invalid signal name in the edit box, the edit box turns red.

• Value Radix
Displays the current radix setting of the selected signal. You can choose one of the
supported radix types - Binary, Hexadecimal, Unsigned Decimal, Signed Decimal,
Octal, and ASCII.

Figure 2-3: Force Selected Signal Dialog Box
ISim User Guide www.xilinx.com 29
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
• Force to Value
Specifies a force constant value using the defined radix value.

• Starting at Time Offset
Starts after the specified time. The default starting time is 0. Time can be a string, such
as “10” or “10 ns.” When you enter a number without a unit, ISim uses the default.

• Cancel after Time Offset
Cancels after the specified time. Time can be a string such as 10 or 10 ns. When a
number entered without a unit, the default simulation time unit is used.

Applying Clock Stimulus
When you right-click Force Clock, you can use the Define Clock dialog box to enter
parameters to force a VHDL signal, Verilog wire, or a Verilog reg to an alternating pattern
(clock). The newly applied clock pattern overrides assignments made from within HDL
code or any previously applied constant or clock force. Click Apply to apply changes.

Define Clock Dialog Box

Right-click Force Clock to open the Define Clock dialog box. The options in the dialog box
are:

• Signal Name
Displays the default signal name, which is the full path name of the item selected in
the Objects panel or waveform. You can change the signal name in the edit box. When
you enter an invalid signal name in the edit box, the edit box turns red.

Note: Running the restart command cancels all the effective isim force commands.

• Value Radix
Displays the current radix setting of the selected signal. You can choose one of the
supported radix types from the dropdown box: Binary, Hexadecimal, Unsigned
Decimal, Signed Decimal, Octal, and ASCII.

• Leading Edge Value
Specify the first edge of the clock pattern. The Leading Edge Value uses the radix
defined in Value Radix.

• Trailing Edge Value
Specify the second edge of the clock pattern. The Trailing Edge Value uses the radix
defined in the Value Radix field.

• Starting at Time Offset
Start the force command after the specified time from the current simulation. The
default starting time is 0. Time can be a string, such as 10 or 10 ns. If you enter a
number without a unit, ISim uses the default user unit as returned by the isim get
userunit Tcl command.

• Cancel after Time Offset
Cancel the force command after the specified time from the current simulation time.
Time can be a string, such as 10 or 10 ns. When you enter a number without a unit,
ISim uses the default simulation time unit.

• Duty Cycle (%)
Specify the percentage of time that the clock pulse is in an active state. The acceptable
value ranges from 0 to 100.

• Period
Specify the length of the clock pulse, defined as a time value. Time can be a string,
such as 10 or 10 ns.
30 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Setting ISim Preferences
Define Clock Settings Examples

To assign a permanent clock to a signal (100 MHz clock), set the following fields:

• Leading Edge Value: 1
• Trailing Edge Value: 0
• Starting at Time Offset: 0
• Cancel after Time Offset: <blank>
• Duty Cycle (%): 50
• Period: 10 ns

To assign a clock to a signal for a specific period of time (start toggling at 100 ns, stop
toggling after 1 ms), set the following fields:

• Leading Edge Value: 1
• Trailing Edge Value: 0
• Starting at Time Offset: 100 ns
• Cancel after Time Offset: 1 ms
• Duty Cycle (%): 50
• Period: <specify clock period>

To assign a toggling value for a signal (toggle between hex F and hex A every 50 ns for 1us),
set the following fields:

• Value Radix: Hexadecimal
• Leading Edge Value: F
• Trailing Edge Value: A
• Starting at Time Offset: 0
• Cancel After Time Offset: 1us
• Duty Cycle (%): 50
• Period: 50 ns

Setting ISim Preferences
The preference settings let you view and change the settings for ISim. To set preferences:

1. Select Edit > Preferences.

2. In the left pane of the Preferences dialog box, click a category to view.

• ISE Text Editor Preferences

• ISim Simulator Preferences

3. Make the necessary setting changes.

4. Click the Apply button, and then click OK.

The Preference settings are saved and are effective immediately in your ISim session.

ISE Text Editor Preferences
The preference setting associated with ISE Text Editor controls the behavior of Hardware
Description Language (HDL) files open in ISim only. For more information about the
preference settings, see the ISE Text Editor Help.
ISim User Guide www.xilinx.com 31
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/pn_db_editor_options.htm

Chapter 2: Using the ISim GUI
ISim Simulator Preferences
Use the ISim Simulator page in the Preferences dialog box. Select Edit > Preferences >
ISim Simulator in the left pane.

Draw Waveform Shadow
Shows or hides the shadow background for signals in the Wave window.

Limit the maximum number of elements display to
Sets limit for number of children elements to display for objects in the Object window. See
Showing Display Elements.

Default Radix
Sets the default radix value displayed in the wave configuration, the Objects panel, and the
Console panel. See Changing the Default Radix.

Console text font
The window to the right of the field shows example text for the specified font. Click the
Change button to open a dialog box in which you can specify the font used in the Console.

ISim Color Preferences

Use the Colors page to set your color preferences for displaying the waveform. Click
Apply to apply changes. The color preference options are:

• Current Color Scheme
Displays the default color scheme and any custom schemes you have created.

• New
Creates a new scheme. Enter the new name in the Current Color Scheme field and
edit the colors in the scheme table.

• Delete
Deletes the custom scheme that you have selected. You can edit the color of this
scheme.

See Setting ISim Preferences, page 31.

Time Format Preferences

You can customize the appearance of displayed time values using the Time Format
Preferences. Select Edit > Preferences >Time Format in the left pane. The following
subsections describe the two categories of time formats.

Waveform Window

Time format options apply to the GUI elements inside the waveform viewer window. The
time format options are:

• Link All Waveform Time Units To Ruler
Is on by default and keeps the Units setting of the Cursors/Markers and Measure
Bubble categories in sync with changes to the Ruler category.

• Rulers
Applies to the main ruler at the top of the waveform window as well as to the floating
ruler.

• Cursors/Markers
Applies to the time values displayed for the all cursors and markers.

• Measure Bubbles
Applies to the cursor value bubbles displayed at the bottom of the waveform window.
32 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Setting ISim Preferences
Other GUI Elements

The time format options apply to the GUI elements outside the Waveform window as
follows:

• All Time Values
Applies to the current simulation time shown at the bottom right of the main window
and time values shown in the Objects panel. Time formats allow setting of time units
and precision of display of values using following fields:

• Units
Lets you set the units for time values. The default settings for the Other GUI
elements is Default; for the Waveform Window, the default is Auto.

• Decimal Places
Lets you set the number of decimal places to be used in displaying time values.
The default setting for all categories that have a setting is Maximum.

• Reset To Defaults
Resets the values to the original default settings.
ISim User Guide www.xilinx.com 33
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 2: Using the ISim GUI
34 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3

Compilation and Simulation

You can run simulation for VHDL, Verilog, or Mixed Language components.

• Functional Simulation can be run early in the design process.

• Timing Simulation must be run post-Place and Route (PAR)

In addition to the two types of simulation, you have the options of running simulation as
follows:

• From a Tools Command Language (Tcl) batch file or from the command line using Tcl
commands.

• From the GUI, which can be invoked from either the ISE® Design Suite or the
PlanAhead™ tools.

Running a simulation from the command line for either a Functional or a Timing
simulation requires the following steps:

1. Parsing design files

2. Generating a simulation executable

3. Simulating the design

There are additional requirements for a Timing simulation, which is described in Timing
Simulation (Gate-Level Simulation), page 48.

The following subsections describe these steps.
ISim User Guide www.xilinx.com 35
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
Parsing Design Files
The vhpcomp and vlogcomp commands parse VHDL and Verilog files, respectively.

vlogcomp Command
The vlogcomp command parses Verilog source files and generates a binary
representation of the Verilog files. The binary representation generated by vlogcomp is
used by the fuse command to create a simulation executable.

You must specify either a project file or one or more Verilog source files to compile. If
neither the project file nor the Verilog file is specified, vlogcomp issues an error. See
Project File Syntax, page 43 for information about the project file.

vlogcomp Command Syntax

To go to the command description click the option link.

Note: In your PDF reader, turn on the View > Toolbars > More Tools > Previous View and Next
View buttons to navigate back and forth.

vlogcomp
[-d <macro_definition>=<value>=<value>]
[-f <cmd_file>]
[-h]
[-i “<include_path>“]
[-intstyle [ise | xflow | silent |default]
[-initfile <sim_init_file>]
[[-L|-lib <search_lib>[=<lib_path>]]
[-prj <prj_file>.prj]
[-sourcelibdir <directory_name>]
[-sourcelibext <file_extension>]
[-sourcelibfile <file_name>]
[-v [-verbose] <value>]
[-version]
[<verilog_files>...]
[-work [<work_library>[=<library_path>]] <filenames>...

The option descriptions are in the fuse, vhpcomp, and vlogcomp Command Options
section.

vlogcomp Command Examples

Use two Verilog files, specify a source library directory, and specify a Verilog file extension:

vlogcomp tb.v fft.v -sourcelibdir ./mylib -sourcelibext .v

Specify a Verilog file and the source library file:

vlogcomp dff.v -sourcelibfile ./mylib/dff_lowest.v

Specify the work directory and a Verilog file:

vlogcomp -work my_lib tb.v

Use two files:

vlogcomp top_testbench.v top_timesim.v

Search for unresolved cells inside directory mydir/cells:

vlogcomp -work mywork1 file1.v -sourcelibdir mydir/cells
36 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Parsing Design Files
For example, if file1.v, instantiates DFF and DMUX, which are unresolved, the
command then searches for files with names DFF and DMUX inside the mydir/cells
directory. The DFF and DMUX files define the DFF and DMUX modules.

Supporting Source Libraries

The following command arguments provide equivalent support to the de-facto Verilog-XL
standard.

Pass the following command options to the vlogcomp command:

vlogcomp -sourcelibdir <library_location>

Note: -sourcelibdir provides the same functionality as the -y switch in Verilog-XL.

After the source files on the command line are parsed, if there are any unresolved
references to modules, the command searches the source libraries for resolution.

During this search, vlogcomp attempts to match the name of any unresolved instantiated
design unit with a file of the same name in the specified -sourcelibdir directory.

If such a file exists, vlogcomp analyzes that file.

While processing the -sourcelibdir switch, vlogcomp ignores any files with extensions
such as .v or .h, unless -sourcelibext is also used.

Note: -sourcelibext provides functionality that is similar to the +libext+ switch in
Verilog-XL. You can use this command line argument in conjunction with -sourcelibdir when the
source library files have extensions. Examples:

vlogcomp -sourcelibdir /project/mysources tb.v fft.v
vlogcomp -sourcelibdir /project/mysources tb.v fft.v -sourcelibext .v

You can also provide a source Verilog library file that contains definitions of all the
unresolved modules.

Example:

-sourcelibfile ./library/lib_abc.v
ISim User Guide www.xilinx.com 37
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
vhpcomp Command
The vhpcomp command parses VHDL source files and stores a binary representation of
the HDL files. The binary representation generated by vhpcomp is used by the fuse
command to create a simulation executable.

Specify either a project file or one or more VHDL files. If neither project file nor VHDL
file are specified, vhpcomp issues an error. See Project File Syntax, page 43 for information
about the project file.

vhpcomp Syntax

To go to the command option, click the option link.

Note: In your PDF reader, turn on the View > Toolbars > More Tools > Previous View and Next
View Buttons to navigate back and forth.

The vhpcomp command syntax is:

vhpcomp
[-f <cmd_file>]
[-h]
[-i “<include_path>“]
[-intstyle [ise | xflow | silent |default]
[-initfile <sim_init_file>]
[[-L|-lib <search_lib>[=<lib_path>]]
[-prj <prj_file>.prj]
[-rangecheck]
[-v [-verbose] <value>]
[-version]
[<vhdl_files>...]
[-work [<work_library>[=<library_path>]] <filenames>...

The options descriptions are in the fuse, vhpcomp, and vlogcomp Command Options
section.

vhpcomp Command Example

vhpcomp using two files:

vhpcomp suba.vhd subb.vhd

Running fuse
The fuse command:

• Performs static elaboration of a design in terms of parsed nodes

• Generates object code for each unique module instance

• Links the generated object codes with the simulation engine library to create a
simulation executable

The fuse command generates object code and data files for each design unit comprising
the design, and puts them in the isim/<simulation_executable>.sim directory.

Note: Do not remove the isim/<simulation_executable>.sim directory; otherwise the
design cannot be simulated.
38 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Parsing Design Files
fuse Command Syntax

Click the link to go to the command option descriptions.

Note: In your PDF reader, turn on the View > Toolbars > More Tools > Previous View and Next
View Buttons to navigate back and forth. The fuse command syntax is:

fuse
[-d <macro_definition>=<value>=<value>]
[-f <cmd_file>]
[-generic_top "<parameter>=<value>"]
[-h]
[-hil_zynq_ps]
[-hwcosim_board <arg>]
[-hwcosim_clock <arg>]
[-hwcosim_instance <arg>]
[-hwcosim_no_combinatorial_path]
[-hwcosim_incremental <arg>]
[-i “<include_path>“]
[-incremental]
[-initfile <sim_init_file>]
[-intstyle [ise | xflow | silent |default]
[[-L|-lib <search_lib>[=<lib_path>]]
[-log <file_name>]
[-maxdeltaid <number>]
[-maxdelay]
[-maxdesigndepth <depth>]
[-mindelay]
[-mt <value>]
[-nodebug]
[-nolog]
[-nospecify]
[-notimingchecks]
[-o <sim_exe>]
[-override_timeprecision]
[-override_timeunit]
[-prj <prj_file>.prj]
[-rangecheck]
[-sdfnoerror]
[-sdfnowarn]
[-sdfmin]|[-sdftyp][-sdfmax] <root=file>]
[-sdfroot <root_path>]
[-sourcelibdir <directory_name>
[-sourcelibext <file_extension>]
[-sourcelibfile <file_name>]
[-timeprecision_vhdl <time_precision>]
[-timescale <time_unit/time_precision>]
[-typdelay]
[-v [-verbose] <value>]
[-version]

The option descriptions are in the fuse, vhpcomp, and vlogcomp Command Options
section.
ISim User Guide www.xilinx.com 39
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
fuse Command Examples

Use the fuse command with a project file and source library:

fuse -prj test.prj test -sourcelibfile ./mylib1/lib_abc.v
-sourcelibfile ./mylib1/lib_cde.v

Where test.prj contains “verilog work test.v “

The fuse command uses files from the -sourcelibfile options for modules used in
test.v as it analyzes the modules and elaborates the test design.

For every unresolved module with name <module_name> instantiated in file test.v,
the compiler looks up files with name modulename.v inside the directories ./mylib1
and./mylib2, in that order.

Use the fuse command with the work.glbl option:

fuse work.testbench work.glbl -prj design.prj -L simprims_ver -o
isim.exe

Note: Using glbl as <top_name> is necessary in fuse during timing simulation. The -o
switch is optional. Without -o, the default name for the simulation executable is x.exe. For
example:

fuse topunit work.glbl -prj <mydesign>.prj -o <my_sim>.exe

Note: To exclude certain lines in a PRJ file use the -- option.

Verilog Search Order

The fuse command uses the following search order to search and bind instantiated Verilog
design units:

1. A library specified by the ‘uselib directive in the Verilog code. For example:

module
full_adder(c_in, c_out, a, b, sum)
input c_in,a,b;
output c_out,sum;
wire carry1,carry2,sum1;
`uselib lib = adder_lib
half_adder adder1(.a(a),.b(b),.c(carry1),.s(sum1));
half_adder adder1(.a(sum1),.b(c_in),.c(carry2),.s(sum));
c_out = carry1 | carry2;
endmodule

2. Libraries specified on the command line with -lib|-L switch

3. A library of the parent design unit

4. The work library

Verilog Instantiation Unit

When a Verilog design instantiates a component, the fuse command treats the component
name as a Verilog unit and searches for a Verilog module in the user-specified list of
unified logical libraries in the user-specified order.

• If found, fuse binds the unit and the search stops.

• If fuse cannot find a Verilog unit, it treats the name of the instantiated module as a
VHDL entity name and continues a case-insensitive search.
40 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Parsing Design Files
The fuse command searches for an entity with the same name as the instantiated
module name in the user-specified list and order of unified logical libraries, searches
for and selects the first one matching name, then stops the search.

• If the case sensitive search is not successful, fuse performs a case sensitive search for
a VHDL design unit name constructed as an extended identifier in the user-specified
list and order of unified logical libraries.

• If fuse finds a unique binding for any one library, it selects that name and stops the
search.

Note: For a mixed language design, the port names used in a named association to a VHDL entity
instantiated by a Verilog module are always treated as case insensitive. Also note that you cannot use
a defparam statement to modify a VHDL generic.

VHDL Instantiation Unit

When a VHDL design instantiates a component, the fuse command treats the component
name as a VHDL unit and searches for it in the logical work library.

• If a VHDL unit is found, the fuse command binds it and the search stops.
• If fuse does not find a VHDL unit, it treats the case-preserved component name as a

Verilog module name and continues a case-sensitive search in the user-specified list
and order of unified logical libraries. The command selects the first matching the
name, then stops the search.

• If case sensitive search is not successful, fuse performs a case-insensitive search for a
Verilog module in the user-specified list and order of unified logical libraries. If a
unique binding is found for any one library, the search stops.

`uselib Verilog Directive
The Verilog `uselib directive is supported in ISim and by the library search order.

`uselib Syntax

<uselib compiler directive> ::= `uselib [<Verilog-XL uselib
directives>|<lib directive>]

<Verilog-XL uselib directives> :== dir = <library_directory> | file
= <library_file> | libext = <file_extension>

<lib directive>::= <library reference> { <library reference>}

<library reference> ::= lib = <logical library name>

`uselib Lib Semantics

The `uselib lib directive can not be used with any of the Verilog-XL `uselib directives.
For example:

`uselib dir=./ file=f.v lib=newlib

Is illegal.

Multiple libraries can be specified in one `uselib directive.

The order in which libraries are specified determine the search order. For example:

`uselib lib=mylib lib=yourlib

Specifies that the search for an instantiated module is made in mylib first, followed by
yourlib.
ISim User Guide www.xilinx.com 41
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
Like `uselib dir , `uselib file, and `uselib libext directives, the `uselib lib
persists across HDL files in a given invocation of parse/analyze, such as in a given
invocation of parse unless another `uselib is encountered; any previously encountered
`uselib (including any Verilog XL `uselib directive) in the HDL source remains in
effect.

A `uselib without any argument removes the effect of any currently active
`uselib lib|file|dir|libext.

The following module search mechanism is used for resolving an instantiated module or
UDP by the Verific Verilog elaboration algorithm:

• First, search for the instantiated module in the ordered list of logical libraries of the
currently active `uselib lib (if any).

• If not found, search for the instantiated module in the ordered list of libraries
provided as search libraries in fuse command line.

• If not found, search for the instantiated module in the library of the parent module.
For example, if module A in library work instantiated module B of library mylib and
B instantiated module C, then search for module C in library mylib, which is the
library of C’s parent B.

• If not found, search for the instantiated module in the work library, which is one of the
following:

• The library into which HDL source is being compiled

• The library explicitly set as work library

• The default work lib is named as work

`uselib Examples

File half_adder.v compiled into
logical library named adder_lib

File full_adder.v compiled into logical library
named work

module
half_adder(a,b,c,s);
input a,b;
output c,s;
s = a ^ b;
c = a & b;
endmodule

module
full_adder(c_in, c_out, a, b, sum)
input c_in,a,b;
output c_out,sum;
wire carry1,carry2,sum1;
`uselib lib = adder_lib
half_adder
adder1(.a(a),.b(b),.
c(carry1),.s(sum1));
half_adder
adder1(.a(sum1),.b(c_in),.c
(carry2),.s(sum));
c_out = carry1 | carry2;
endmodule
42 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Project File Syntax
Project File Syntax
To parse design files using a project file, create a file called <proj_name>.prj, and use the
following syntax inside the project file:

verilog <work_library> <file_names>... [-d <macro>]...
[-i <include_path>]...

vhdl <work_library> <file_name>

Where:

- <work_library> is the library into which the HDL files on the given line
should be compiled.

- <file_names> are Verilog source files. You can specify multiple Verilog files
per line.

- <file_name> is a VHDL source file; specify only one VHDL file per line.
- For Verilog, [-d <macro>] optionally lets you define one or more macros.
- For Verilog, [-i <include_path>] optionally lets you define one or more

<include_path> directories.

Predefined XILINX_ISIM Macro for Verilog Simulation
XILINX_ISIM is a Verilog predefined-macro. The value of this macro is 1. Predefined
macros perform tool-specific functions, or identify which tool to use in a design flow.

module
isim_predefined_macro;
integer fp;
initial
begin
`ifdef XILINX_ISIM
 $display("XILINX_ISIM defined");
 fp = $fopen("ISIM.dat");
`else
 $display("XILINX_ISIM not defined");
 fp = $fopen("other.dat");
`endif
$fdisplay (fp, "results");
end
endmodule
ISim User Guide www.xilinx.com 43
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
Simulating the Design
Simulation is the process of verifying the logic and timing of a design, and can be run from
ISim using functions in the GUI, in a Tcl batch file, or at the command line. After you parse
the design files and create a simulation executable using fuse, you can run a functional or
a timing simulation.

Running Simulation
You can run simulation using any of the following methods:

• Using the Command Line

• Using the GUI

Using the Command Line

You can run the executable generated by the fuse command to launch simulation in a
command shell. If you do not specify the -gui switch to the simulation executable, the
simulation launches in command line mode.

For example, type:

x.exe

The ISim > Tcl prompt opens, and you can interactively type simulation Tcl commands
that let you run simulation and debug the design.

You can use the -tclbatch option to contain commands within a file and execute those
command as simulation starts.

For example, you can have a file named run.tcl that contains the following:

run 20ns
show time
quit

Then launch simulation as follows:

x.exe -tclbatch run.tcl

Using the GUI

The following example shows command options for running the simulation executable
and opening the GUI:

<executable_name>.exe -gui

You can use the following GUI menu commands to run simulation.

• Simulation > Restart
Stops simulation and sets simulation time back to 0. Use the Run All, Run for, or Step
command to run the simulation over again without reloading the design.
Alternatively, you can type the restart Tcl command in the Console panel.

• Simulation > Run All
Runs simulation until all events are executed. Alternatively, you can type the run
-all Tcl command in the Console.

• Simulation > Run
Runs simulation for 100ns, or for the specified amount of time. Type the Time and
time unit in the Value box. Alternatively, you can use the run Tcl command with a
44 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Mixed Language Simulation
specified -length and -unit.

• Simulation > Step
Runs simulation for one executable HDL instruction at a time.
See Stepping Through a Simulation in Chapter 6, and the step Tcl command.

In addition, you can run simulation until a specific point in your HDL source code is
reached. To do so, use breakpoints and the run -all command. See Chapter 6, Debugging
at the Source Level.

Note: The current simulation time displays on the status bar in the lower-right corner.

Mixed Language Simulation
ISim supports mixed language project files and mixed language simulation. This lets you
include Verilog modules in a VHDL design, and vice versa.

Restrictions on Mixed Language in Simulation
• Mixing VHDL and Verilog is restricted to the module instance or component only.

• A VHDL design can instantiate Verilog modules and a Verilog design can instantiate
VHDL components. Any other mix use of VHDL and Verilog is not supported.

• A Verilog hierarchical reference cannot refer to a VHDL unit nor can a VHDL
expanded/selected name refer to a Verilog unit.

• Only a small subset of VHDL types, generics and ports are allowed on the boundary
to a Verilog module. Similarly, a small subset of Verilog types, parameters and ports
are allowed on the boundary to VHDL design unit.

• Component instantiation-based default binding is used for binding a Verilog module
to a VHDL design unit. Specifically, configuration specification, direct instantiation
and component configurations are not supported for a Verilog module instantiated
inside a VHDL design unit.

Key Steps in a Mixed Language Simulation
1. Optionally, specify the search order for VHDL entity or Verilog modules in the design

libraries of a mixed language project.

2. Use fuse -L to specify the binding order of a VHDL entity or a Verilog module in the
design libraries of a mixed language project.

Note: The library search order specified by -L is used for binding Verilog modules to other
Verilog modules as well.

Mixed Language Binding and Searching
When you instantiate a VHDL component or a Verilog module, the fuse command:

• First searches for a unit of the same language as that of the instantiating design unit.

• If a unit of the same language is not found, fuse searches for a cross-language design
unit in the libraries specified by the -lib option.

The search order is the same as the order of appearance of libraries on the fuse command
line. See Verilog Search Order, page 40 for more information.

Note: When using the ISE® Design Suite, the library search order is specified automatically. No
user intervention is necessary or possible.
ISim User Guide www.xilinx.com 45
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
Instantiating Mixed Language Components
In a mixed language design, you can instantiate a Verilog module in a VHDL design unit or
a VHDL module in a Verilog design unit as described in the following subsections.

Mixed Language Boundary and Mapping Rules
The following restrictions apply to the boundaries between VHDL and Verilog design
units/modules:

• The boundary between VHDL and Verilog is enforced at design unit level.
• A VHDL design is allowed to instantiate one or more Verilog modules.
• Instantiation of a Verilog UDP inside a VHDL design is not supported.
• A Verilog design can instantiate a VHDL component corresponding to a VHDL entity

only.
• Instantiation of a VHDL configuration in a Verilog design is not supported.

Instantiating a Verilog Module in a VHDL Design Unit

1. Declare a VHDL component with the same name as the Verilog module (respecting
case sensitivity) that you want to instantiate. For example:

COMPONENT MY_VHDL_UNIT PORT (
Q : out STD_ULOGIC;
D : in STD_ULOGIC;
C : in STD_ULOGIC);
END COMPONENT;

2. Use named association to instantiate the Verilog module. For example:

UUT : MY_VHDL_UNIT PORT MAP(
Q => O,
D => I,
C => CLK);

To ensure that you are correctly matching port types, review the Port Mapping, page 46.

Port Mapping
The following rules and limitations for port mapping are used in mixed language projects.

Supported Port Types

Table 3-1 lists the supported port types.

Table 3-2 shows the supported VHDL and Verilog data types for ports on the mixed
language design boundary.

Table 3-1: Supported Port Types

VHDL 1 Verilog 2

IN INPUT

OUT OUTPUT

INOUT INOUT

1. Buffer and linkage ports of VHDL are not supported.
2. Connection to bidirectional pass switches in Verilog are not supported. Unnamed Verilog ports

are not allowed on mixed design boundary.
46 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Mixed Language Simulation
Note: Verilog output port of type reg is supported on the mixed language boundary. On the
boundary, an output reg port is treated as if it were an output net (wire) port.

Note: Any other type found on mixed language boundary is considered an error.

Generics (Parameters) Mapping
ISim supports the following VHDL generic types (and their Verilog equivalents):

• integer

• real

• string

• boolean

Note: Any other generic type found on mixed language boundary is considered an error.

VHDL and Verilog Values Mapping
Table 3-3 lists the Verilog states mappings to std_logic and bit.

Note: Verilog strength is ignored. There is no corresponding mapping to strength in VHDL.

Table 3-4 lists the VHDL type bit mapping to Verilog states.

Table 3-5 lists the VHDL type std_logic mappings to Verilog states.

Table 3-2: Supported VHDL an d Verilog data types

VHDL Port Verilog Port

 bit net

 std_ulogic net

 std_logic net

 bit_vector vector net

 std_ulogic_vector vector net

 std_logic_vector vector net

Table 3-3: Verilog States mapped to std_logic and bit

Verilog std_logic bit

 Z Z 0

 0 0 0

 1 1 1

 X X 0

Table 3-4: VHDL bit Mapping to Verilog States

bit Verilog

0 0

1 1
ISim User Guide www.xilinx.com 47
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
Because Verilog is case sensitive, named associations and the local port names that you use
in the component declaration must match the case of the corresponding Verilog port
names.

Instantiating a VHDL Module in a Verilog Design Unit

To instantiate a VHDL module in a Verilog design unit, instantiate the VHDL entity as if it
were a Verilog module. For example:

module testbench ;
wire in, clk;
wire out;
FD FD1(
.Q(Q_OUT),
.C(CLK);
.D(A);
);

Timing Simulation (Gate-Level Simulation)
Before launching a timing simulation, you must have a timing simulation model and a
Standard Delay File (SDF) for back-annotation. Use the NetGen tool to generate these files.
See “Generating Gate-Level Netlist (Running NetGen)” in the Synthesis and Simulation
Design Guide (UG626). Appendix D, Additional Resources contains a link to this document.

Timing Simulation of a Verilog Design on the Command Line
In a timing simulation of a Verilog design, the following rules apply:

• Compile $XILINX/verilog/src/glbl.v to the work library.

• Specify work.glbl as one of the <library_name>.<top_name> in the fuse
command.

• Specify -L <simprims_ver> in the fuse command.

Table 3-5: VHDL std_logic mapping to Verilog States

std_logic Verilog

U X

X X

0 0

1 1

Z Z

W X

L 0

H 1

- X
48 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim Executable Command
ISim Executable Command
Note: Commands are case-sensitive.

The following subsections provide an overview of the ISim executable, compilation, and
elaboration commands as well as the command syntax, and command options.

The ISim executable file is user-defined. Running the file at the command line invokes a
simulation. You can set the executable name using the fuse command -o option. If not
user-defined, the default executable name is x.exe.

ISim Executable Syntax
The syntax for this command is:

<executable_name>.exe <options>

Where:

• <executable_name>.exe is user-defined or, by default, x.exe.

• <options> are the options specified in Table 3-6.

ISim Executable Command Options
Table 3-6 lists the command options used by ISim executable.

Table 3-6: ISim Command Options

Option Description

-f <cmd_file> Lets you save command options in a text file for future use. This option reads and
executes the saved options that are specified in <cmd_file>.

-gui Launches the ISim GUI.

-h Displays all command line options and usage.

-intstyle

[ise | xflow |
silent|default]

Use one of the specified styles for printing messages:

• ise formats messages for the ISE Console

• xflow formats messages for XFLOW.

• silent suppress all messages.

• default is the specified default message setting

-log <file_name> Generates a log file with the specified <file_name>.

-maxdeltaid <number> Specifies the maximum delta number in an integer.

-nolog Blocks log file generation.

-sdfnowarn Blocks the display of SDF warnings.

-sdfnoerror Treats SDF errors as warnings.

[-sdfmin|-sdftyp|
-sdfmax] <root=file>]

Specifies the type of delays for ISim to use:

• -sdfmin - Annotates <file> at <root> with minimum delay.

• -sdftyp - Annotates <file> at <root> with standard delay.

• -sdfmax - Annotates <file> at <root> with maximum delay.

-sdfroot <root_path> Sets default place in the design hierarchy where SDF annotation is applied.
ISim User Guide www.xilinx.com 49
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
ISim Executable Command Examples
<executable_name>.exe -tclbatch <tcl_file_name> -sdfmin
<instance>=<sdf_file_name>

Where:

• <executable_name>.exe is the simulation executable called x.exe unless
otherwise specified with the fuse -o switch.

• -tclbatch is an optional switch to use when you want to run additional Tcl
commands.

• -sdfmin is the type of delay (minimum) to use.

• <instance> is the hierarchical path name of the instance at which the Standard
Delay File (SDF) back annotation needs to be done.

• <sdf_file_name> is the filename of the SDF file to annotate.

-tclbatch <file_name> Specify a Tcl script file to be run after simulation is loaded. The <file_name>
specifies the name of file containing Tcl commands.

To quit simulation after executing the Tcl commands in <file_name>, you must
include the quit Tcl command as the last command in the <file_name>.

-testplusarg
<string|string_value>

When the simulator matches this command line argument string with the
$test$plusarg or $value$plusarg system function of a Verilog design file, the
test or design behavior change associated with the system function is run where
<string> is any string.

For example, -testplusarg HELLO, if a Verilog file uses
($test$plusargs("HE")), the function returns true.

<string_value> is an appropriate string for the Verilog format specifiers. It
provides a value to the variable in the $value$plusargs system function call.

For example, -testplusarg FINISH=10000, if a Verilog file uses
($value$plusargs("FINISH=%d", stop_clock)) and, when Verilog format
specifier %d matches 10000, and stop_clock gets values 10000, the function returns
true. The same string or string and value need to be set both in this command line
switch and in the system function for the action specified in the Verilog file (such as a
value display) to occur.

-transport_int_delays Use transport model for interconnect delays. No pulse rejection on interconnect
delays.

-vcdfile <vcd_file> Verilog-only option. Specifies the VCD output file for Verilog projects. The default
filename is dump.vcd.

-vcdunit <unit> Verilog-only option. Specifies the VCD output time unit. Unit values are fs, ps, ns, us,
ms, and sec. The default is ps.

-view
<waveform_file>.wcfg

Used in combination with the -gui switch to open the specified waveform file in the
ISim GUI.

-wdb
<waveform_file>.wbd

Saves simulation data to the specified WBD file.

For example: x.exe –wdb my.wdb saves the simulation data to my.wdb instead of
the default isimgui.wdb.

Table 3-6: ISim Command Options (Cont’d)

Option Description
50 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim Executable Command
fuse, vhpcomp, and vlogcomp Command Options
Table 3-7 lists the fuse, vhpcomp, and vlogcomp command options.

Table 3-7: fuse, vhpcomp, and vlogcomp Command Options

Option Description

-d
<macro_definition>=<value>=<value>

Verilog-only option. Define the macros used in Verilog files, and any
required values. You can specify more than one -d option.

Note: Ensure that there is no space between the = and the value; the
space would be interpreted as part of the value. Double-quote any path
that contains white spaces.

-f <cmd_file> Lets you save command options in a text file for future use. This
option reads and executes the saved options that are specified in
<cmd_file>.

-generic_top "<parameter>=<value>" Overrides generic or parameter of a top-level design unit with the
specified value. For example, -generic_top “P=10” applies the
value of 10 on the top-level parameter before elaboration.

-gui Launches the ISim GUI.

-h Displays all command line options and usage.

-hil_zynq_ps Use this to enable Zynq Processor System (PS) Hardware In Loop
(HIL) simulation.

-hwcosim_board <arg> Hardware Co-Simulation (HWCoSim) option specifies the board
name.

-hwcosim_clock <arg> Specifies the clock port name on the HWCoSim instance.

-hwcosim_instance <arg> HWCoSim option specifies the hierarchical name of the instance to
be run on the FPGA. For example:
/testbench/UUT.

-hwcosim_no_combinatorial_path HWCoSim option to speed up simulation if the design run on
FPGA does not have a purely combinatorial path from any input to
any output.

-hwcosim_incremental <arg> HWCoSim option skips the implementation phase and reuses the
previously created bit file.
Allowed values are: 0 and 1 (Default: 0)

-i “<include_path>“ Verilog-only.

Specifies that if fuse calls vlogcomp, it should use the specified
path for Verilog include directives.

Each -i can be used for only one include path. More than one -i can
be specified. Place quotes around paths with spaces.

-incremental Compiles only the files that have changed since last compile.

-initfile <sim_init_file> Specifies a user-defined simulator initialization file to add to or to
override the logical-to-physical mappings of libraries provided by
the default xilinxsim.ini file.
ISim User Guide www.xilinx.com 51
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
-intstyle
[ise | xflow | silent |default]

Use one of the specified styles for printing messages:

• ise formats messages for the ISE Console

• xflow formats messages for XFLOW

• silent suppress all messages

• default is the specified default message style

-ise <file> Lets you specify an ISE file.

[-L|-lib <search_lib>[=<lib_path>]] Specifies other libraries and optionally the physical path name for
those libraries.
You can use multiple -L switches that are treated as resource
libraries. The physical path provided through -L overrides
mappings provided by the xilinxsim.ini file. The
<search_lib> is the logical name of the specified library
optionally followed by the <lib_path>, the path to the physical
library.

Note: Ensure that there is no space between the = and the value; the
space would be interpreted as part of the value. Double-quote any path
that contains white spaces.

-log <file_name> Generates a log file with the specified <file_name>.

-maxdeltaid <number> Specifies the maximum delta number in an integer.

-maxdelay Verilog-only option. Specifies that if fuse calls vlogcomp, it should
use worst case delays.

-maxdesigndepth <depth> Overrides maximum design depth allowed by the fuse elaborator.

If a design exceeds the depth, fuse errors out. This option lets you
increase the depth in case fuse has inaccurately determined that a
design has infinite recursive instantiation.

-mindelay Verilog-only option. Specifies that if fuse calls vlogcomp, it should
use fastest possible delays.

-mt <value> Specifies the number of sub-compilation jobs which can be run in
parallel. Values are on, off, or an integer greater than 1.

Default is on, where the compiler automatically chooses a number
based upon the number of cores in the system.

-nodebug Generates output that has no information for debugging your
HDL code during simulation. Output with no debug information
results in a faster simulation runtime. The default is to generate
HDL debug units.

-nolog Blocks log file generation.

-nospecify Verilog-only option. Disables specify block functionality.

-notimingchecks Verilog-only option. Disables the timing checks.

Table 3-7: fuse, vhpcomp, and vlogcomp Command Options (Cont’d)

Option Description
52 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim Executable Command
-o <sim_exe> Specifies the name of the simulation executable output file. The
name of the file is <sim_exe>. If you do not use this option, the
default executable name is: <work_library>/<mod_name>/
<platform>/x.exe, where:

• <work_library> is the work library.

• <module_name> is the first specified top module.

• <platform> is the operating system.

-override_timeprecision Verilog-only option. Overrides the time precision (unit of accuracy)
of Verilog modules in the design with the time precision specified in
the -timescale option.

-override_timeunit Overrides the time unit (unit of measurement of delays) of all
Verilog modules in the design with the time unit specified in the
-timescale option.

-prj <prj_file>.prj Specifies a project file to use for input. A project file contains a list of
all the files associated with a design. It is the main source file used
by the ISE tool.

A <prj_file> must have a .prj extension.

-rangecheck VHDL-only option. Specifies value range check to be performed
on VHDL assignments.This option does not affect index range
checking for arrays. ISim always checks an index into an array
for being within the allowed range. For example:

• If a signal is declared as positive, fuse checks that the signal
is not assigned a negative number.

• If a signal is declared as std_logic, vhpcomp generates
output to check that the signal is assigned only valid
std_logic values (U,X,0,1,Z,W,L,H,-).

Note: This option does not affect the checking of index ranges. The
simulator always checks the index ranges.

By default -rangecheck is turned off.

-sdfnoerror Treats SDF errors as warnings.

-sdfnowarn Blocks the display of SDF warnings.

[-sdfmin]|[-sdftyp][-sdfmax]
<root=file>

Specifies the type of delays to use:

• -sdfmin - Annotates <file> at <root> with minimum delay.

• -sdftyp - Annotates <file> at <root> with standard delay.

• -sdfmax - Annotates <file> at <root> with maximum
delay.

-sdfroot <root_path> Sets the default location in the design hierarchy in which to apply
the SDF annotation.

-sourcelibdir <directory_name> Specifies the source directory for library modules.

-sourcelibext <file_extension> Specifies the file extension for source files for modules. The
-sourcelibdir option provides the location for these files.

-sourcelibfile <file_name> Specifies the filename for library modules.

Table 3-7: fuse, vhpcomp, and vlogcomp Command Options (Cont’d)

Option Description
ISim User Guide www.xilinx.com 53
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
-timeprecision_vhdl
<time_precision>

VHDL-only option. Specifies the time precision (unit of accuracy) for
all VHDL design units. The <time_precision> is entered as
number (1|10|100|...) followed by unit (fs|ps|ns|us|ms|s).

Default is 1ps.

-timescale <time_unit/
time_precision>

Verilog-only option. Specifies the default timescale for Verilog
modules that do not have an effective timescale:

• <time_unit> is the unit of measurement of delays

• <time_precision> is the unit of accuracy.

Both <time_unit> and <time_precision> are entered as
number (1|10|100|...) followed by unit (fs|ps|ns|us|ms|s).

Default is 1ns/1ps.

-typdelay Verilog-only option. Specifies that if fuse calls vlogcomp, it should
use typical delays.

-timeprecision_vhdl
<time_precision>

VHDL-only option. Specifies the time precision (unit of accuracy) for
all VHDL design units. The <time_precision> is entered as
number (1|10|100|...) followed by unit (fs|ps|ns|us|ms|s).
Default is 1ps.

-v [-verbose] <value> Specifies the verbosity level for printing messages. Values are 0, 1, 2.
Default is 0. For example:

fuse -v 1 prints useful debugging information, which can help to
identify problems in ISim compilers. The verbosity level 1:

• Dumps the library mapping as seen by the compiler after reading
all available library mapping files (xilinxsim.ini).

• Gets verbose messages from design elaborator.
• Gets the dumps of current values of environment variables that

affect the behavior of the compiler.
• Gets the list of loaded shared objects by the compiler.
• Dumps operating system information, including version number

and processor.
• Dumps path to the GCC compiler being used to compile the

generated code.

<verilog_files>... Specifies the Verilog file to be compiled.

<vhdl_files>... Specifies one or more VHDL source files to be compiled.

-version Prints the compiler version.

Table 3-7: fuse, vhpcomp, and vlogcomp Command Options (Cont’d)

Option Description
54 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Pausing a Simulation
Pausing a Simulation
While running a simulation for any length of time, you can pause a simulation using the
Break command, which leaves the simulation session open.

To pause a running simulation, do one of the following:

• Select Simulation > Break.

• Click the Break button.

• Type Ctrl+C at the command line only.

The simulator stops at the next executable HDL line. The line at which the simulation
stopped is displayed in the text editor.

Note: This behavior applies to designs that are not compiled with the -nodebug switch.

The simulation can be resumed at any time by using the Run All, Run, or Step commands.
See Stepping Through a Simulation, page 75.

-wdb <waveform_file>.wbd Saves simulation data to the specified WBD file.

For example: x.exe –wdb my.wdb saves the simulation data to
my.wdb instead of the default isimgui.wdb.

-work
[<work_library>[=<library_path>]]
<filenames>...

Specifies the work library, and optionally, the physical path for
the work library. The physical path overrides the mappings
provided by the xilinxsim.ini file. The default work library
is the logical library /work.

The <work_library> is the logical name of the specified work
library optionally followed by <library_path>, the path to the
physical library. For example: mywork=C:/home/worklib.

Note: Ensure that there is no space between the = and the value; the
space would be interpreted as part of the value. Double-quote any path
that contains white spaces.

Table 3-7: fuse, vhpcomp, and vlogcomp Command Options (Cont’d)

Option Description
ISim User Guide www.xilinx.com 55
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 3: Compilation and Simulation
Saving Simulation Results
ISim saves the simulation results of the objects (VHDL signals, or Verilog reg or wire) being
traced to the Waveform Database (WDB) file (<filename>.wdb) in the working directory. If
you add objects to the Wave window and run the simulation, the design hierarchy for the
complete design and the transitions for the added objects are automatically saved to the
WDB file. The wave configuration settings; which include the signal order, name style,
radix, and color, among others; are saved to the wave configuration (WCFG) file upon
demand. See Chapter 4, Waveform Analysis, for more information.

Saving a Database to a WDB File
When ISim is launched from the:

• ISE tool or the PlanAhead tool, the WDB file is named according what is specified in
the ISim Properties dialog box.

• Command line, use the -wdb switch to specify a filename. When a simulation is run,
results of the objects (VHDL signals, Verilog reg or wire) being traced are
automatically saved to the WDB; no additional action is required. If another
simulation is run on the same design in the same working directory as a currently
running simulation, the WDB filename for the new simulation is the name of the first
simulation appended with an integer. The results of the first simulation are not
overwritten. For a WDB file called isim.wdb, subsequent invocations of simulation
results in WDB files isim1.wdb, isim2.wdb, and so forth.

Note: The name of the database file cannot be changed while running simulation.

Saving a Wave Configuration to a WCFG File
When you save the wave configuration (WCFG) file, ISim automatically adds a reference
in the file to the associated waveform database (WDB) file. There can be multiple WCFG
files for a single WDB file.

The WCFG stores the order and inclusion of simulation objects, their properties, and any
added wave objects, such as dividers, and markers found in the Wave window. For more
information, see Working with the Wave Configuration in Chapter 4.

When saving a WCFG file, select File > Save, and specify a file name for the WCFG file.

Closing Simulation
You can terminate a simulation with one of the following commands.

• Select File > Exit.

• Type the quit -f command in the Console at the prompt.

• Click the X at the top-right corner of the main window.
56 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Working with the Wave Configuration
Chapter 4

Waveform Analysis

Before starting the waveform analysis, you need to open the ISim GUI, using one of the
following methods:

• In read-only mode to view or analyze the data from a previous simulation, see
Opening a Static Simulation, page 72.

• From the ISE® or the PlanAhead™ tools, a wave configuration with top-level signals
displays. You can then proceed to add additional signals, or run the simulation. See
Running Simulation in Chapter 3.

• From the command line, run the simulation executable with the -gui switch, and an
empty wave configuration displays. You must add signals to the wave configuration
before you run simulation. See Running Simulation in Chapter 3.

ISim populates design data in other areas of the GUI, such as the Objects , and the Instances
and Processes panel.

Working with the Wave Configuration
You can add signals and buses to the wave configuration file, then save that configuration
to a WDB file. See Opening a Wave Configuration and Waveform Database in Chapter 5.

Adding Signals to the Wave Configuration
You can populate the Wave window with the signals from your design using menu
commands or drag and drop capabilities in the GUI, or using Tools Command Language
(Tcl) commands in the Console panel.

Note: Changes to the wave configuration, including creating the wave configuration or adding
signals, do not become permanent until you save the WCFG file. For more information, see Saving
the Results

Adding Signals in the GUI

1. In the Instances and Processes panel, expand the design hierarchy, and select an item.

The objects that correspond to the selected instance or process displays in the Objects
panel.

2. In the Objects panel, select one or more objects.

3. Use one of the following methods to add objects to the wave configuration:

• Right-click, and select Add to Wave Window from the context menu.

• Drag and drop the objects from the Objects panel to the Name column of the
Wave window.

• In the Console panel, use the wave add command.
ISim User Guide www.xilinx.com 57
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
Adding Signals Using Tcl

1. Optionally, you can first identify the objects you want to add by exploring the design
hierarchy in the Instances and Processes panel and the Objects panel, as described
above, or type scope in the Console panel.

2. In the Console panel, type wave add to and an individual object or a group of objects.

Wave Configurations and WCFG Files
Though both a wave configuration and a WCFG file refer to customizing lists of
waveforms, there is a conceptual difference between them.

• The wave configuration is an object with which you can work that is loaded into
memory.

• The WCFG file is the saved form of a wave configuration on disk.

Wave Configuration Names and WCFG File Names
A wave configuration can have a name or be untitled. The name shows on the tab of the
wave configuration window.

• When saving a wave configuration to a WCFG file using a GUI Tcl command, the
WCFG file takes the supplied name as a command argument.

• When loading a wave configuration from a WCFG file, the wave configuration uses
the name of the WCFG file.

Adding Copies of Signals or Buses
You can add copies of the same signal or bus in a wave configuration for comparing
waveforms. You can place copies of the same signal or bus anywhere in the wave
configuration, such as in groups or virtual buses.

Adding a Copy of a Signal or Bus

1. Select a signal or bus in the wave configuration in the Wave window.

2. Select Edit > Copy or type Ctrl+C.

The signal name is copied to the clipboard.

3. Select Paste command or type Ctrl+V.

The signal or bus is now copied to the wave configuration. You can move the signal or bus
using drag and drop as needed.
58 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Customizing the Wave Configuration
Customizing the Wave Configuration
You can customize the Wave configuration using the features that are listed and briefly
described in Table 4-1; the feature name links to the subsection that fully describes the
feature.

Note: In your PDF reader, turn on the View > Toolbars > More Tools > Previous View and Next
View Buttons to navigate back and forth.

Cursors
Cursors are used primarily for temporary indicators of time and are expected to be moved
frequently, as in the case when you are measuring the time between two waveform edges.
For more permanent indicators, used in situations such as establishing a time-base for
multiple measurements, add markers to the Wave window instead. See Markers, page 60
for more information.

Placing the Main Cursor

You can place the main cursor with a single click in the Wave window.

Table 4-1:

Feature Description

Cursors The main cursor and secondary cursor in the Wave window let
you display and measure time, and they form the focal point for
various navigation activities.

Markers You can add markers to navigate through the waveform, and to
display the waveform value at a particular time.

Dividers You can add a divider o create a visual separator of signals.

Groups You can add a group, that is a collection to which signals and
buses can be added in the wave configuration as a means of
organizing a set of related signals.

Virtual Buses You can add a virtual bus to your wave configuration, to which
you can add logic scalars and arrays.

Renaming Objects You can rename objects, signals, buses, and groups.

Display Names You can display the full hierarchical name (long name), the simple
signal or bus name (short name), or a custom name for each signal.

Radixes The default radix controls the bus radix that displays in the wave
configuration, Objects panel, and the Console panel.

Bus Bit Order You can change the Bus bit order from Most Significant Bit (MSB)
to Least Significant Bit (LSB) and vice versa.
ISim User Guide www.xilinx.com 59
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
Placing the Secondary Cursor

Place the secondary cursor as follows:

1. Click and hold the waveform, and drag either left or right.

This sets the secondary cursor, with the initial click, and the main cursor, when you
finish dragging.

2. Press Shift and click the mouse in the waveform.

If the secondary cursor is not already on, this action sets the secondary cursor to the
present location of the main cursor and places the main cursor at the location of the
mouse click.

Note: To preserve the location of the secondary cursor while positioning the main cursor, hold
the Shift key while clicking.

Note: When placing the secondary cursor by dragging, you must drag a minimum distance
before the secondary cursor appears.

Moving a Cursor

To move a cursor, hover over the cursor until you see the grab symbol, and click and drag
the cursor to the new location.

As you drag the cursor in the Wave window, you see a hollow or filled-in circle if the Snap
to Transition button is selected, which is the default behavior.

• A hollow circle indicates that you are between transitions in the waveform of the
selected signal.

• A filled-in circle indicates that you are hovering over the waveform transition of
the selected signal.

A secondary cursor can be hidden by clicking anywhere in the Wave window where there
is no cursor, marker, or floating ruler.

Markers
You can add, move, and delete markers.

Adding a Marker

You add markers to the wave configuration at the location of the main cursor.

1. Place the main cursor at the time where you want to add the marker by clicking in the
Wave window at the time or on the transition.

2. Select Edit > Markers > Add Marker, or click the Add Marker button.

A marker is placed at the cursor, or slightly offset if a marker already exists at the
location of the cursor. The time of the marker displays at the top of the line.
60 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Customizing the Wave Configuration
Moving a Marker

After you add a marker, you can move the marker to another location in the waveform
using the drag and drop method.

1. Click the marker label (at the top of the marker) and drag it to the location.

• The drag symbol indicates that the marker can be moved. As you drag the
marker in the Wave window, you see a hollow or filled-in circle if the Snap
to Transition button is selected, which is the default behavior.

• A filled-in circle indicates that you are hovering over a transition of the
waveform for the selected signal or over another marker.

• For markers, the filled-in circle is white.

• A hollow circle indicates that you between transitions in the waveform of
the selected signal.

2. Release the mouse key to drop the marker to the new location.

Deleting a Marker

You can delete one or all markers with one command.

1. Right-click over a marker.

2. Perform one of the following functions:

• Select Delete Marker from the context menu to delete a single marker.

• Select Delete All Markers from the context menu to delete all markers.

Note: You can also use the Delete key to delete a selected marker.

Use Edit > Undo to reverse a marker deletion.

Dividers
Dividers create a visual separator between signals.

Adding Dividers

You can add a divider to your wave configuration to create a visual separator of signals.

1. In a Name column of the Wave window, click a signal to add a divider below that
signal.

2. From the context menu, select Edit > New Divider, or right-click and select New
Divider.

The change is visual and nothing is added to the HDL code. The new divider is saved with
the wave configuration file when you save the file.

Changing Dividers

The following changes can be made to a divider:

• Dividers can be renamed. See Renaming Objects, page 63.

• Dividers can be moved to another location in the waveform by dragging and
dropping the divider name.
ISim User Guide www.xilinx.com 61
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
Deleting Dividers

To delete a divider, highlight the divider, and click the Delete key, or right-click and select
Delete from the context menu.

Groups
A Group is a collection of expandable and collapsible categories, to which signals and
buses can be added in the wave configuration to organize related sets of signals. The group
itself displays no waveform data but can be expanded to show its contents or collapsed to
hide them.

Adding a Group

To add a Group:

1. In a wave configuration, select one or more signals or buses to add to a group.

Note: A group can also comprise dividers, virtual buses, and other groups.

2. Select Edit > New Group, or right-click and select New Group from the context menu.

A group that contains the selected signal or bus is added to the wave configuration.
A group is represented with the group icon. The change is visual and nothing is
added to the HDL code.

You can move other signals or buses to the group by dragging and dropping the signal or
bus name.

The new group and its nested signals or buses is saved when you save the wave
configuration file.

Changing Groups

You can change groups as follows:

• You can rename Groups. See Renaming Objects, page 63.

• You can move Groups to another location in the Name column by dragging and
dropping the group name.

Removing a Group

To remove a group, highlight it and select Edit > Wave Objects > Ungroup, or right-click
and select Ungroup from the context menu. Signals or buses formerly in the group are
placed at the top-level hierarchy in the wave configuration.

Caution! The Delete key removes the group and its nested signals and buses from the wave
configuration.
62 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Customizing the Wave Configuration
Virtual Buses
You can add a virtual bus to your wave configuration, which is a grouping to which you
can add logic scalars and arrays. The virtual bus displays a bus waveform, which shows
the signal waveforms in the vertical order that they appear under the virtual bus, flattened
to a one-dimensional array

Adding Virtual Buses

To add a virtual bus:

1. In a wave configuration, select one or more signals or buses you to add to a virtual bus.

2. Select Edit > New Virtual Bus, or right-click and select New Virtual Bus from the
context menu.

The virtual bus is represented with the Virtual Bus button . The change is visual and
nothing is added to the HDL code.

You can move other signals or buses to the virtual bus by dragging and dropping the signal
or bus name. The new virtual bus and its nested signals or buses are saved when you save
the wave configuration file.

Changing Virtual Buses
The following changes can be made to a virtual bus:

• You can rename them. See Renaming Objects, page 63.

• You can move it to another location in the waveform by dragging and dropping the
virtual bus name.

Removing Virtual Buses

To remove a virtual bus, and ungroup its contents, highlight the virtual bus, and select
Edit > Wave Objects > Ungroup, or right-click and select Ungroup from the context menu.

Caution! The Delete key removes the virtual bus and its nested signals and buses from the
wave configuration.

Renaming Objects
You can rename any object in the Wave window, such as signals, dividers, groups, and
virtual buses.

1. Select the object name in the Name column.

2. Right-click, and select Rename from the context menu.

3. Replace the name with a new one.

4. Press Enter or click outside the name to make the name change take effect.

You can also double-click the object name and then type a new name.

The change is effective immediately. Object name changes in the wave configuration do
not affect those in the design source code.
ISim User Guide www.xilinx.com 63
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
Display Names
You can display the full hierarchical name (long name), the simple signal or bus name
(short name), or a custom name for each signal. The signal or bus name displays in the
Name column of the wave configuration. If the name is hidden:

• Expand the Name column until you see the entire signal name.

• Use the scroll bar in the Name column to view the name.

Changing Display Names

To change the display name:

1. Select one or more signal or bus names. Use Shift+ click or Ctrl+ click to select many
signal names.

2. Right-click, and select Name >:

• Long to display the full hierarchical name.

• Short to display the name of the signal or bus only.

• Custom to display the custom name given to the signal when renamed. See
Renaming Objects, page 63.

The name changes immediately according to your selection.

Radixes
The default radix controls the bus radix displayed in the wave configuration, the Objects
panel, and the Console panel.

Changing the Default Radix

The default radix is binary. To change the radix, do the following:

1. Select Edit > Preferences.
2. In the Preferences dialog box, click ISim Simulator in the left pane.
3. From the Default Radix drop down list, select a radix.
4. Click Apply, and click OK.

Changing an Individual Radix

You can change the radix of an individual signal (HDL object) in the Objects panel as
follows:

1. Right-click a bus in the Objects panel.

2. Select Radix and the format you want from the drop down menu:

• Binary

• Hexadecimal

• Unsigned Decimal

• Signed Decimal

• Octal ASCII

Note: Changes to the radix of an item in the Objects panel do not apply to values in the Wave
window or the Console panel. To change the radix of an individual signal (HDL object) in the Wave
window, use the Wave window context menu. To change the radix in the Console panel, use the Tcl
command, isim set radix.
64 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Navigating the Wave Configuration
Bus Bit Order
You can reverse the bus bit order in the wave configuration in order to switch between
MSB-first and LSB-first signal representation. To reverse the bit order:

1. Select a bus.

2. Right-click and select Reverse Bit Order.

The bus bit order is reversed. The Reverse Bit Order command is marked to show that this
is the current behavior.

Navigating the Wave Configuration
You can navigate the wave configuration using a variety of options, which include:

• Expanding and Collapsing a Hierarchy
• Zooming In and Out
• Using the Floating Ruler
• Displaying Waveform Values With Markers
• Displaying Waveform Values at Signal Transitions
• Measuring Time with Cursors
• Using Go To Time
• Using Show Drivers

Expanding and Collapsing a Hierarchy
You can expand and collapse a hierarchy in any window or with objects in nested groups
using one of the following methods.

Using the Arrows

Click the expand arrow to expand the hierarchy. One level can be expanded at a time.

Click the collapse arrow to collapse the hierarchy.

Using the Menu

1. Select an object.

2. Select Edit > Wave Objects >

• Expand
Expands the hierarchy object that is selected. One level can be expanded at a time.

• Collapse
Collapses the hierarchy of the object selected.

Using the Context Menu

1. Select an object.

2. Right-click and select the applicable command from the context menu.

• Expand
Expands the hierarchy object that is selected. One level can be expanded at a time.
ISim User Guide www.xilinx.com 65
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
• Collapse
Collapses the hierarchy of the selected object.

Zooming In and Out
Use the zoom functions to view your wave configuration in the Wave window as needed.
See the View Menu and Toolbar, page 11.

Using the Floating Ruler
The floating ruler assists with time measurements using a time base other than the
absolute simulation time shown on the standard ruler at the top of the Wave window.

You can display (or hide) a floating ruler and move it to a location in the Wave window.
The time base (time 0) of the floating ruler is the secondary cursor, or, if there is no
secondary cursor, the selected marker.

The floating ruler button and the floating ruler itself are visible only when the secondary
cursor (or selected marker) is present.

1. Do either of the following to display or hide a floating ruler:

• Place the secondary cursor.

• Select a marker.

2. Select View > Floating Ruler, or click the Floating Ruler button.

You only need to follow this procedure the first time. The floating ruler displays
each time the secondary cursor is placed or marker is selected.

Select the command again to hide the floating ruler.

Displaying Waveform Values With Markers
Markers, which are lines that intersect the waveform at a particular time, can be used to
navigate through the wave configuration and to display the signal and bus values in the
Value column for each marker. Follow this procedure to jump the main cursor from marker
to marker to display waveform values.

1. In the wave configuration in the Wave window, add one or more markers, as described
in Adding a Marker, page 60.

For a single marker, if the main cursor and marker occupy the same location, the Value
column displays the signal and bus values. No further action is required.

For multiple markers, continue.

2. Select Edit > Markers > Next Marker, or click the Next Marker button.

The cursor advances through markers in the wave configuration.

3. Observe the values in the Value column at each marker.

4. Select Edit > Markers > Previous Marker, or click the Previous Marker button.

The cursor moves backward through markers in the wave configuration.

5. Observe the values in the Value column at each marker.
66 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Navigating the Wave Configuration
Displaying Waveform Values at Signal Transitions
You can view signal values at each transition of a signal in your waveform using the Next
Transition or Previous Transition commands. The starting point is the main cursor.

Using Next and Previous Transition Commands

1. Select a signal.

The starting point is the location of the cursor in the waveform.

2. To advance to the next transition, select View > Cursors > Next Transition or
click the Next Transition button.

3. The marker advances to the next transition for the selected signal. The values for all
signals at that time are displayed in the Value column.

4. Repeat step 2 as necessary.

5. To go back to the previous transition,
select View > Cursors > Previous Transition or click the Previous Transition
button

6. The marker moves back to the previous transition for the selected signal. The values
for all signals at that time display in the Value column.

7. Repeat step 4 as necessary.

The cursor advances or moves back, and the signal values are updated.

Measuring Time with Cursors
Together, the main and secondary cursors in the wave configuration measure a range of
time. In addition to measuring time, the time range also forms the focal point for zooming
to cursors and printing a range.

A quick time measurement between one transition and another, possibly between two
different signal waveforms, can be done with the following procedure.

Note: The Snap to Transition button is on by default. This feature assists with placing the cursor
more precisely on a signal transition because the cursor snaps to the transition when in close
proximity.

1. Place the mouse on the first transition and press and hold the left mouse button.

2. Drag the mouse to the second transition.

3. Release the mouse button.

These actions place the secondary cursor on the first transition, and the main cursor on
the second transition.

4. Examine the values at the bottom of the wave configuration:

• X1 represents the time of the main cursor.

• X2 represents the time of the secondary cursor.

• Delta X represents the time range between the cursors.

If the floating ruler is displayed, the time values of the cursors display just above the
floating ruler.

5. Optional. You can switch the cursors using the Swap Cursors button

6. The time range displays until you click in the wave configuration to place a new main
cursor.
ISim User Guide www.xilinx.com 67
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
If you move the secondary cursor, as described in Placing the Secondary Cursor, the time
range updates automatically.

Measuring Time with Markers
When the floating ruler is displayed, you can view the time measurement between the
floating ruler time base (at the selected marker), and the main cursor and markers in the
waveform.

1. Display the floating ruler using a selected marker as the time base.

2. Add additional markers.

3. Move markers to a location in the waveform.

The marker label above the floating ruler shows the time intervals between the selected
marker and each of the new markers.

The time base can be switched quickly from one marker to another by clicking, and thus
selecting, another marker.

You can also use a combination of cursors and markers for measuring time. To do so, use
the secondary cursor as the time base, and the floating ruler displays the time
measurement of the markers and main cursor against the secondary cursor.

Using Go To Time
The Go To Time function lets you jump the main cursor to a particular time in the wave
configuration.

Going To a User-Specified Time

With a wave configuration open:

1. Select Edit > Go To.

The Go To Time dialog box opens in the Wave window below the wave configuration.

2. Type the time and time unit to which to jump the cursor, or select a time/time unit
from the drop down list, if available.

3. Press Enter.

Going to Time 0 or Latest Time

With a wave configuration open:

1. Select the Go To Time 0 button to move the cursor to time 0 in the wave
configuration.

2. Select the Go To Latest Time button to move the cursor to the latest time in the
wave configuration
68 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Printing Wave Configurations
Using Show Drivers
You can use the Show Driver command to display the driver for a change in signal, or
object value. This command is used to determine the cause of a value change, which helps
determine if circuit connections are correct. ISim displays the signal, or object, and its one
or more drivers, in the Console panel.

The Show Driver command is available for probing objects in the following areas:

• Objects panel

• Wave window

• Console panel

To show drivers:

1. Select an object, or signal.

2. Select Edit > Wave Objects > Show Drivers, or select Show Drivers from the
right-click menu.

The Console panel lists the drivers for the object or signal. When there is no driver, a
Console message indicates that there is no driver.

Note: Running this command is the same as running show driver at the Console prompt.

Printing Wave Configurations
You can print one wave configuration at a time, using the setting specified during print
setup. The wave configuration always prints with a white background.

Printing Preview
1. Select File > Print Preview.

2. In the Print Preview dialog box, make sure the wave configuration looks as expected.

3. Select Print or Setup to further customize the print options and layout, and to print.

4. Select Close to close the Print Preview dialog box.

Print preview displays the wave configuration in black and white or color as determined
by your default printer. You can select another printer, if available, just prior to printing.

Printing
1. Select File > Print.

2. In the Print Setup dialog box, specify the Page Orientation, Time Range, Fit Time
Range To, and other display settings.

Note: Time Range is populated with the time range of the main and secondary cursor if both
are placed in the wave configuration.

3. Click OK.

4. In the Print dialog box, select a printer, and click Print.

The wave configuration prints according to the print settings.
ISim User Guide www.xilinx.com 69
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 4: Waveform Analysis
Using Custom Colors
You can change the color for individual signals or buses to make them stand out for
comparison purposes. General color settings are part of the color scheme specified in the
Colors Preferences page. See ISim Color Preferences in Chapter 2.

You can use pre-defined color schemes or create your own color scheme.

Changing an individual signal or bus color overrides the general color setting for signal or
bus waveforms.

1. Right-click on a signal or bus.

2. Select Signal Color and a color.

The signal or bus waveform displays the new color selection.

Note: When using custom colors, all logic values including special values, such as X and Z, display
in the same color.
70 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Waveform Databases and Configuration Files
Chapter 5

Viewing Simulation Results

A live simulation consists of the following:

• A waveform database file (WDB), which contains all simulation data

• A wave configuration file (WCFG), which contains the order and settings associated
with objects in the wave configuration

Waveform Databases and Configuration Files
A WDB opens automatically when you run a simulation. For more information about
running a simulation, see Running Simulation in Chapter 3.

When you run a simulation from the ISE® tool or the PlanAhead™ tool, a default wave
configuration opens automatically. You can open additional wave configurations.

When running a simulation from the command prompt or using a batch script, a wave
configuration is not opened by default when the GUI is launched, and you must open or
create one. See the following subsections and Running Simulation in Chapter 3 for more
information.

Open a Wave Configuration in the GUI

1. Select File > Open.

2. Select .wcfg from the file type list.

3. Select the file to open, and click OK.

The wave configuration opens in the Wave window. Multiple wave configurations can be
opened during one simulation session. Click the corresponding wave configuration tab to
view the wave configuration.

Opening a Wave Configuration from a Command Prompt

Because a wave configuration is not open by default when you launch the GUI, you can
include the -view switch to open an existing one.

Run the simulation executable with the following syntax:

<sim_exe>.exe -gui -wdb <wdb>.wdb -view <wcfg>.wcfg

Where:

• -gui launches the GUI

• -wdb <wdb>.wdb specifies the filename where the simulation data is stored

• -view <wcfg>.wcfg opens the specified waveform file in the GUI
ISim User Guide www.xilinx.com 71
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 5: Viewing Simulation Results
The GUI opens with a new database (a live simulation). If simulation objects from the
WCFG correspond to those in the database, the wave configuration is pre-populated with
data from the database.

For information about creating a new wave configuration, see Working with the Wave
Configuration in Chapter 4.

Opening a Static Simulation
A static read-only simulation consists of a:

• Wave configuration (WCFG) file, which contains the order and settings associated
with objects the display in the wave configuration, and

• WDB file, which contains the simulation data from a previously run live simulation.

A wave configuration file references the waveform database for which it was created. A
simulation cannot be performed in the static simulator. For information about opening a
live simulation, see Simulating the Design in Chapter 3.

Opening a Wave Configuration and Waveform Database
If you have a waveform configuration (WCFG) file from a previous simulation run and
you want to open the WCFG and its associated simulation data (WDB), use one of the
following methods to open the WCFG and WDB.

To open a wave configuration and the waveform database, do the following:

1. Run isimgui.exe to open the static simulator.

2. Select File > Open, select the .wcfg file type from the file filter list, and select the wave
configuration (WCFG) file from a previous simulation.

Alternatively, you can type isimgui.exe -open <wcfg_file>.wcfg:

Where:

• isimgui.exe is the application executable

• -open instructs the that the tool open the specified file.

• -view <wcfg>.wcfg opens the specified waveform file in the GUI

The static simulator displays the wave configuration, with all signals previously traced,
and the associated waveform database.

Opening an Existing WCFG and Non-Associated Waveform Database
You can load simulation data (WDB), and view a WCFG that is not associated with the
database. This way of opening a static simulation is useful for cases when different views
(as captured in a WCFG file) of the same simulation result (the transitions stored in the
WDB file) need to be seen by different engineers in a team.

ISim issues a warning for any object name that is present in the WCFG but not found in the
WDB file and displays only those objects that match.

In a command prompt, run:

isimgui.exe -open <wdb>.wdb -view <wcfg>.wcfg

 Where:

• isimgui.exe is the application executable.
72 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Opening a Static Simulation
• -open <wdb>.wdb opens the specified waveform database file in the ISim
graphic user interface.

• -view <wcfg>.wcfg opens the specified waveform file in the ISim graphical
user interface.

Opening a Waveform Database and a New Default WCFG
If you have simulation data (WDB) that you wish to analyze and you do not want to open
a previous WCFG, use the following method to open the Waveform Database and a new
default WCFG.

In a command prompt, type:

isimgui.exe -view <wdb_file>.wdb

Where:

• isimgui.exe is the application executable.

• -view <wdb>.wdb opens the specified waveform database file in the ISim
graphical user interface.

The static viewer displays the data from the previous simulation and a new wave
configuration file named as Default.wcfg that displays up to a maximum of 1000 objects
from the WDB file in the Wave window. You can remove or add signals to the default
WCFG file, and save the WCFG for future viewing.

Opening a Waveform Database Only
If you would like to open a WDB from a previous simulation and no WCFG, use this
method:

1. In a command prompt, type:

isimgui.exe

This opens the static simulator.

2. Select File > Open, select the .wdb file type from the file filter list, and select the wave
database (WDB) file from a previous simulation.

Alternatively, you can type:

isimgui.exe -open <wdb_file>.wdb

Where:

• isimgui.exe is the application executable.

• -open <wdb_name>.wdb opens the specified waveform database file in the
GUI .

The static viewer displays the data from the previous simulation in the Objects panel, and
the Instances and Processes panel. There is no waveform data open in the Wave window.

You can open an existing wave configuration using File > Open, or create a new wave
configuration using File > New.
ISim User Guide www.xilinx.com 73
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 5: Viewing Simulation Results
74 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Stepping Through a Simulation
Chapter 6

Debugging at the Source Level

You can debug your HDL source code to verify that the design is running as expected.
Debugging is accomplished through controlled execution of the source code to determine
where issues might be occurring. Available strategies for debugging are:

• Step through the code line by line:
For any design at any point in development, you can use the Step command to debug
your HDL source code one line at a time to verify that the design is working as
expected. After each line of code, run the Step command again to continue the
analysis. For more information, see Stepping Through a Simulation.

• Set breakpoints on the specific lines of HDL code, and run the simulation until a
breakpoint is reached. In larger designs, it can be cumbersome to stop after each line
of HDL source code is run. Breakpoints can be set at any predetermined points in
your HDL source code, and the simulation is run (either from the beginning of the test
bench or from where you currently are in the design) and stops are made at each
breakpoint. You can use the Step, Run All, or Run For command to advance the
simulation after a stop. For more information, see Using Breakpoints, page 76.

Stepping Through a Simulation
You can use the Step command at any point in the simulation to debug your HDL
source code. The Step command executes your HDL source code one line of source
code at a time to verify that the design is working as expected. A yellow arrow points
to the line of code currently being executed.

You can also create breakpoints for additional stops while stepping through your
simulation. For more information on debugging strategies in ISim, see Using Breakpoints,
page 76.

1. To step through a simulation:

• From the current running time, do one of the following:

- Select Simulation > Step.

- Click the Step button.

- Type the step command at the Console prompt.

The HDL associated with the top design unit opens as a new tab in the Wave window.

• From the start (0 ns), restart the simulation. Use the Restart command to reset time to
the beginning of the test bench. See Running Simulation in Chapter 3.

2. Select Window > Tile Horizontally (or Window > Tile Vertically) to simultaneously
see the waveform and the HDL code.

3. Repeat the Step action until debugging is complete.
ISim User Guide www.xilinx.com 75
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 6: Debugging at the Source Level
As each line is executed, you can see the yellow arrow moving down the code. If the
simulator is executing lines in another file, the new file opens, and the yellow arrow steps
through the code. It is common in most simulations for multiple files to be opened when
running the Step command. The Console panel also indicates how far along the HDL code
the step command has progressed.

Using Breakpoints
A breakpoint is a user-determined stopping point in the source code used for debugging
the design. Breakpoints are particularly helpful when debugging larger designs for which
debugging with the Step command (stopping the simulation for every line of code) might
be too cumbersome and time consuming.

You can set breakpoints in executable lines in your HDL file so you can run your code
continuously until the source code line with the breakpoint is reached.

Note: You can set breakpoints on lines with executable code only. If you place a breakpoint on a line
of code that is not executable, the breakpoint is not added.

Setting a Breakpoint
To set a breakpoint, do the following:

1. Select View > Breakpoint > Toggle Breakpoint, or click the Toggle Breakpoint
button.

2. In the HDL file, click a line of code just to the right of the line number. The
breakpoint icon displays next to the line..

Note: Alternatively, you can right-click a line of code, and select Toggle Breakpoint.

After the procedure completes, a simulation breakpoint icon opens next to the line of
code, and a list of breakpoints is available in the Breakpoints panel.

Debugging Your Design Using Breakpoints
1. Open the HDL source file. See Opening HDL Source Files, page 23.

2. Set breakpoints on executable lines in the HDL source file, as described in Setting a
Breakpoint, page 76.

3. Repeat steps 1 and 2 until all breakpoints are set.

4. Click the Wave window to return to the waveform.

• To run from the beginning, use the Simulation > Restart command.

• Use the Simulation > Run All or Simulation > Run for Specified Time
command.

The simulation runs until a breakpoint is reached, then stops. The HDL source
file displays, and the breakpoint stopping point is indicated with a yellow arrow.

5. Click the Wave window again to return to the waveform to determine if the design
behavior (such as the signal value change) is as expected at the breakpoint.

6. Repeat the steps to advance the simulation, breakpoint by breakpoint, until you are
satisfied with the results.

A controlled simulation runs, stopping at each breakpoint set in your HDL source files.

During design debugging, you can also run the Simulation > Step command to
advance the simulation line by line to debug the design at a more detailed level.
76 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Using Breakpoints
Deleting Breakpoints
You can delete a single breakpoint or all breakpoints from your HDL source code.

Deleting a Single Breakpoint

Delete a single breakpoint using one of the following methods:

• Click the Breakpoint button.

• At the Tcl prompt:

• Type bp list to list all breakpoints in your design and shows each breakpoint
index number and line number.

• Type bp del or bp remove followed by the breakpoint index number of the
breakpoint to remove. See bp, page 102.

Note: You can also remove a breakpoint in the Breakpoints by selecting a breakpoint and using the
Delete context-menu command, or the Delete button.

Removing All Breakpoints

Use one of the following methods to remove all breakpoints:

• Select View > Breakpoint > Delete All Breakpoints.

• Click the Delete All Breakpoints button.

• Type bp clear at the Tcl prompt.
ISim User Guide www.xilinx.com 77
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 6: Debugging at the Source Level
78 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 7

Writing Activity Data for Power
Consumption

ISim writes out files with switching activity data of the design, which is useful for two
tasks:

• Estimating the power consumption with a power analysis tool, such as XPower
Analyzer.

• Implementing the design for optimal power consumption with Map, and Place &
Route (PAR) tools.

The switching activity data can be written out from the simulation of the design either at
the RTL-level or after full PAR. Map, PAR, and XPower Analyzer all work with switching
activity data generated from both RTL and post-PAR simulation.

For better accuracy in power analysis and power optimized implementation, it is
recommended to use switching activity data generated from a post-PAR simulation. The
data then matches the design internal nodes that result from the placement and routing.

It is also possible to use switching activity data generated from a RTL simulation (quicker
than the post-PAR simulation) for both power analysis and power driven implementation.
However, only activities for the inputs and outputs of the design are taken into account.
The tools use their vector-less analysis algorithms to estimate activities of the internal
nodes of the design.

For more information about how these tools use the switching activity data, see the
Command Line Tools User Guide for implementation tools (Map and PAR), and XPower
Analyzer Help for power analysis. Appendix D, Additional Resources, contains links to
these documents

Creating Activity Files
You can write out two types of stimulus files:

• SAIF
The Switching Activity Interchange format (SAIF) file contains toggle counts (number
of changes) on the signals of the design. It also contains the timing attributes which
specify time durations for signals at level 0, 1, X, or Z. The SAIF file is recommended
for power related tasks (such as, power analysis or power driven implementation)
because it is smaller than the VCD file.

• VCD
The Value Change Dump (VCD) file is an ASCII file containing header information,
variable definitions, and value change details for each step of the simulation. The file
can be used to estimate the power consumption of the design. The computation time
of this file can be very long, and the resulting file size is larger than the SAIF file.
ISim User Guide www.xilinx.com 79
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 7: Writing Activity Data for Power Consumption
To write out a switching activity file:

1. Create the activity file to gather the signals transition during simulation for power
estimation.

• SAIF - Use the saif command at a Tcl prompt.

• VCD - Use the vcd command at a Tcl prompt, or set the -vcdfile option in
your simulation executable at the command line.

2. Run simulation. For example:

run 1000 ns

If you are running your simulation using the simulation executable at the command
line, the first and second steps can be accomplished at the same time.

3. When simulation ends, close the SAIF or VCD file by issuing the saif or vcd
command. Examples are:

saif close

vcd dumpoff

4. Retrieve the SAIF or VCD file from the working directory for use in another tool.
80 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Prerequisites
Chapter 8

Using Hardware Co-Simulation

Hardware Co-Simulation (HWCoSim) is a complementary flow to the tool-based HDL
simulation. This feature lets you simulate a design or a portion of the design and offload
that simulation to hardware. It can accelerate the simulation of a complex design and
verify that the design works in hardware.

Prerequisites
Hardware co-simulation has the following requirements:

• Xilinx® ISE® Design Suite 14.x (any edition)

• 32-bit or 64-bit Windows or Linux

• An FPGA board with a JTAG header

Supported FPGA devices are:

• Virtex®-4, Virtex-5, Virtex-6, Virtex-7

• Spartan®-3, Spartan-3E, Spartan-3A, Spartan-3AN, Spartan-3A DSP, Spartan-6

• Artix™-7 and Kintex™-7

• A Xilinx Parallel Cable IV or Platform Cable USB

Use Models
HWCoSim supports two use models: one for pure logic-based designs and another for
hybrid designs.

Pure Logic-based Designs
Pure logic-based designs are co-simulated in a lockstep fashion with ISim. The modules
under co-simulation typically have the following characteristics:

• Composed of LUTs, FFs, block RAMs, and DSP primitives only

• Port controlled by ISim and accessible from the tool test bench (no external I/Os)

• Functionality of the module is irrelevant of the clock frequency at which it operates
(there is no need to run on a continuous clock or a clock at a specific frequency)

The pure logic, lockstep-based HWCoSim provides the following advantages:

• Simulation acceleration for computational-intensive designs

• In-hardware functional verification

• Bit-and-cycle accurate with respect to pure tool simulation
ISim User Guide www.xilinx.com 81
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
Hybrid Designs
The pure logic-based design use model is simple and trivial to set up, but is not suitable for
designs that require hard IPs, external I/Os, and specific clock frequencies. ISim
HWCoSim provides a hybrid co-simulation flow that supports designs with the following
characteristics:

• Composed of hard IP blocks, DCMs/PLLs, and MGTs.

• Some clocks are in lockstep with the tool simulation using emulated clock sources,
and other clocks are free-running using external clock sources.

• Some ports can be mapped to external I/Os, which are neither controlled by ISim nor
accessible from tool test bench.

The hybrid co-simulation flow offers the following advantages:

• Accelerates simulation

• Verifies functionality in hardware

• Allows customized or complicated software and hardware interactions beyond a
typical co-simulation setup.

Limitations
HWCoSim has the following limitations:

• Only one instance in a design can be selected for hardware co-simulation, and it
cannot be the top-level test bench itself.

• The selected instance for hardware co-simulation must be able to be synthesized
using XST, and must be able to be implemented on the target FPGA device of the
selected board.

The lockstep hardware co-simulation has additional restrictions on clocking and I/Os:

• The co-simulation instance in hardware is clocked with an emulated clock source that
ISim controls, and is asynchronous to the simulation. Thus, the co-simulation does not
exactly model the design scenario running in hardware, or serve as a timing
simulation.

• The instance under co-simulation cannot have access to external I/Os or
Multi-Gigabit Transceivers (MGTs), nor can it instantiate primitives (such as DCMs/
PLLs) that require a continuous clock or a clock at a specific frequency.

• All ports of the instance under co-simulation must be routable to a slice register or
LUT. Certain resources on the FPGA require dedicated routes, such as to an IOB or to
certain port of a primitive, and thus cannot be wired to any port of the instance under
co-simulation.

Usage for Compilation
As with tool-based HDL simulation, you first compile a design into a simulation
executable before performing HWCoSim. Invoke the fuse command for compilation,
using the command line or through the ISE tool or the PlanAhead™ tool to produce the
co-simulation executable, a HWCoSim bitstream, and a co-simulation project file.
82 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

fuse Command Line Flow
fuse Command Line Flow
The fuse command provides some additional compiler options to compile a design for
hardware co-simulation.

Usage:

fuse -prj <project file> <top level modules>

-hil_zynq_ps

-hwcosim_board <board>

-hwcosim_clock <clock>

-hwcosim_constraints <constraints file>

-hwcosim_incremental [0|1]

-hwcosim_instance <instance>

-hwcosim_no_combinatorial_path

Where:

• -hil_zynq_ps enables Zynq™ Processor System (PS) Hardware In Loop (HIL)
simulation.

• -hwcosim_board specifies the identifier of the hardware board to use for
co-simulation. See Board Support, page 90 for a list of supported boards.

• -hwcosim_clock specifies the port name of the clock input for the instance.

For a design with multiple clocks, specify the fastest clock using this option so that
ISim can optimize the simulation. Other clock ports are treated as regular data
ports.

• -hwcosim_constraints (optional) specifies the custom constraints file that
provides additional constraints for implementing the instance for hardware
co-simulation. A custom constraints file is also used in the hybrid co-simulation
flow to specify which ports of the instance are mapped to external I/Os or clocks.

• -hwcosim_incremental (optional) specifies whether fuse r uses the last
generated hardware co-simulation bitstream and skips the implementation flow.

• -hwcosim_instance specifies the full hierarchical path of the instance to
co-simulate in hardware

• -hwcosim_no_combinatorial_path speeds up simulation if the design run on
FPGA does not have a purely combinatorial path from any input to any output.

Tools Flow
1. Ensure you have ISim selected as the simulator for the project. Switch to the

Simulation view.

2. From the Hierarchy pane, select the instance to co-simulate in hardware and right-click
to show the context menu.

3. From the context menu, select Source Properties to open the Source Properties dialog
box.

4. In the Source Properties dialog box, select Hardware Co-Simulation from the
category list.

5. Set the following properties for hardware co-simulation:
ISim User Guide www.xilinx.com 83
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
• Check the Enable Hardware Co-Simulation check box.

Because only one instance can be enabled for hardware co-simulation, enabling a
instance for hardware co-simulation disables any other instance that has been
previously enabled for hardware co-simulation.

• In the Clock Port field, specify the name of the clock port on the instance. For an
instance with multiple clocks, specify the name of the fastest clock port.

• From the Target Board for Hardware Co-Simulation drop down list, select a
board. The list shows only the boards with an FPGA of same project device
family.

• If a previous hardware co-simulation bitstream is available and the instance
under co-simulation remains unchanged, check the Reuse Last Bitstream File
check box to skip the implementation flow for hardware co-simulation.

• Click OK.

Notice that the instance enabled for hardware co-simulation is now marked
with a special icon.

Select the test bench module in the hierarchy pane to the start the simulation. Hardware
Co-Simulation must be started at a level above the instance that is selected for
co-simulation.

6. In the Instances and Processes panel of the test bench, double-click
Simulate Behavior Model to start the compilation and simulation process.

7. Open the Process Properties for the Simulate Behavior Model to specify any
additional options for ISim before starting the compilation and simulation process.
Figure 8-1 through Figure 8-3, page 86 display steps 1 through 8:
84 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tools Flow
Figure 8-1: Steps 1, 2, and 3

Figure 8-2: Steps 4 and 5
ISim User Guide www.xilinx.com 85
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
Hybrid Co-Simulation Flow
To use external pins and free-running clocks, you need to provide a custom constraints file
in UCF format. The flow currently reads in a constraints file specified through the
-hwcosim_constraints option to determine which pins are mapped to FPGA IOBs.

1. Decide which portion of your design to run in lockstep with ISim simulation and
which to be free-running. Figure 8-4, page 87 outlines the concept:

Figure 8-3: Steps 6, 7, and 8
86 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Hybrid Co-Simulation Flow
2. Copy the original design constraints file and use it as the basis for the custom
constraints file.

3. Modify the custom constraints file to comment out the LOC constraints for those pins
that are controlled by ISim. Other pins with LOC constraints are assumed to be
external.

4. As an example, for a FIFO design that you want to single-step the write side and
free-run the read side, such as:

module FIFO (WCLK, WDATA, WE, RCLK, RDATA, RE);

The isim_hwcosim.ucf would be:

The following pin LOCs commented out as they are driven by ISim
NET "WCLK" PERIOD = 5 ns HIGH 50%;
NET "WCLK" LOC = "A1"; # <--- this becomes single-step clock
NET "WDATA" LOC = "A2"; # <--- these are accessible from ISim
testbench
NET "WE" LOC = "A3";
NET "RCLK" PERIOD = 10 ns HIGH 50%;
NET "RCLK" LOC = "B1"; # <-- this becomes free-running clock
NET "RDATA" LOC = "B2"; # <-- these go to external IOBs
NET "RE" LOC = "B3";

Figure 8-4: Determining Lockstep and Free-running Design Portions
ISim User Guide www.xilinx.com 87
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
Hardware Board Usage
The following procedure describes how to install and set-up the hardware to run hardware
co-simulation.

1. Ensure the hardware board is powered off.

2. If you are using a Xilinx® Parallel Cable IV, follow steps 2a through 2d.

a. Connect the DB25 Plug Connector on the Xilinx Parallel Cable IV to the IEEE-1284
compliant PC Parallel (Printer) Port Connector.

b. Using the narrow (14 pin) 6” High Performance Ribbon cable, connect the pod end
of the Xilinx Parallel Cable IV to the FPGA JTAG header on the board.

c. Connect the attached Power Jack cable to the Keyboard/Mouse connector on the
PC.

d. If necessary, connect the male end of the Keyboard/Mouse cable to the associated
female connector on the Xilinx Power Jack cable (splitter cable).

3. If you are using a Xilinx Platform Cable USB, follow steps 3a and 3b.

a. Connect the Xilinx Platform Cable USB to a USB port on the PC.

b. Using the narrow (14 pin) 6” High Performance Ribbon cable, connect the pod end
of the Xilinx Platform Cable USB to the FPGA JTAG header on the board.

4. If your board supports Point-to-Point (P2P) Ethernet co-simulation, and you want to
use Ethernet P2P for (faster) co-simulation, then in addition to the above steps, use an
Ethernet cable to connect the Ethernet port of your PC to the Ethernet port of your
board. If your computer has more than one Ethernet card/port, note the MAC address
of the port that you connected to the board. Specify that address to the ISim engine
using the ISim Tcl command: hwcosim set ethernetInterfaceID.

5. Power the board on and check to ensure the LED on the cable is green.

6. Install the Xilinx cable drivers when prompted. For more information about Ethernet,
see Determining the Ethernet, page 92.

Hardware Co-Simulation
Unlike the executable for tool simulation, the executable for HWCoSim communicates
with a hardware board and offloads the simulation of the selected portion of a design into
the hardware. It is invoked in the same way as in the tool simulation flow:

• Invoking the executable launches a Tcl shell interface for controlling the simulation.

• Invoking the executable with the -gui option launches the GUI front end with
waveform display.

Before the simulation starts and each time the simulation is restarted, the executable
configures the FPGA with the hardware co-simulation bitstream. The configuration
process can take a few seconds or longer, depending on the speed of the JTAG cable. ISim
prints a message to the Console panel when the configuration is complete.
88 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim Hardware Co-Simulation Tcl Commands
ISim Hardware Co-Simulation Tcl Commands
ISim provides the following Tool Command Language (Tcl) commands to access a given
property of an instance in the design hierarchy under hardware co-simulation. These
commands are scope-sensitive; you must first use the scope command to select an
instance that is marked enabled.

• hwcosim get <property>

Get a property of the hardware co-simulation instance in the current scope. For
example, the following Tcl commands get the cableParameters property of the
hardware co-simulation instance under /mytestbench/top/hwcosim_inst.

scope /mytestbench/top/hwcosim_inst

hwcosim get cableParameters

• hwcosim set <property> <value>

Set a property of the hardware co-simulation instance in the current scope. The effect
of the hwcosim set command is only taken after the initialization finishes (after the
init/restart command) and before the simulation runs (before the run
command). Also, the effect is not preserved between simulation runs; you might need
to call the -hwcosim set command each time after calling the init or restart
command. For example, the following Tcl commands set the skipConfig property of
the hardware co-simulation instance under /mytestbench/top/hwcosim_inst in
two simulation runs.

init

scope /mytestbench/top/hwcosim_inst

hwcosim set skipConfig 1

run 1000 ns

restart

scope /mytestbench/top/hwcosim_inst

hwcosim set skipConfig 1

run 1000 ns

The following hardware co-simulation properties can be changed before a simulation runs:

• skipConfig

• Default is 0. Set to 1 if the FPGA configuration should be skipped. To skip the
configuration, the FPGA should have been configured with a valid hardware
co-simulation bitstream. Otherwise, unexpected behavior can occur.

• cableParameters
Default is an empty string. This property is used to specify a third-party JTAG cable
supported by iMPACT or the ChipScope™ debugging analyzer. Refer to the iMPACT
help and the ChipScope Pro Software and Cores User Guide (UG029) for details on
specifying cable plug-in parameters. Appendix D, Additional Resources has a link to
this document.

• shareCable
Default is 0. This property is only available for JTAG-based co-simulation interfaces.
Set to 1 if the JTAG cable is to be shared with the Xilinx Microprocessor Debugger
(XMD) or the ChipScope debugging analyzer for concurrent access. Share the JTAG
cable only when necessary as this could decrease the hardware co-simulation
performance substantially.
ISim User Guide www.xilinx.com 89
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
• ethernetInterfaceID
Default is an empty string. This property is only available for Ethernet-based
co-simulation interfaces.

If you have multiple Ethernet cards available on your host machine, you need to select
the Ethernet card that is connected to your FPGA board. You can select an Ethernet
card by setting the value of this property to the MAC address (in the format of
xx:xx:xx:xx:xx:xx) of the Ethernet card. For more information, see Determining
the Ethernet, page 92.

Board Support
To support a new FPGA board for hardware co-simulation in ISim, the board must have a
JTAG header. Provide a board support file that records the following information of the
board:

• FPGA part information

• Period and pin location of the system clock

• JTAG boundary scan chain information

After you enter the board information into a board support file, you can use that board for
HWCoSim. There is no GUI option to generate the board support file.

To support additional boards, you can either modify the default board support file or
provide your own board support file, named hwcosim.bsp, in the directory where fuse
is invoked. The board support file contains board specifications in a specific format.

In the following example, ml402-jtag is the board identifier that is provided to the fuse
command to compile the design for the given board.

‘ml402-jtag’ => {
‘Description’ => ‘ML402 (JTAG)’,
‘Vendor’ => ‘Xilinx’,
‘Type’ => ‘jtag’,
‘Part’ => ‘xc4vsx35-10ff668’,
‘Clock’ => {
‘Period’ => 10,
‘Pin’ => ‘AE14’,
},
‘BoundaryScanPosition’ => 3,
},

Where the board identifier includes the following list of properties:

• Description is the description of the board.

• Vendor is the the board vendor.

• Type is the type of co-simulation interface to be used. Allowed values are as
follows:

- jtag

- ppethernet (for Point-To-Point Ethernet-based HWCoSim).

• Part is the part name of the FPGA on the board.

• Clock is the system clock information, where: Period (and VariablePeriods)
specifies the supported clock period(s) in nanoseconds.

• Pin is the clock pin location. For differential clock sources, provide both Positive
and Negative clock pin locations.
90 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Board Support
• BoundaryScanPosition is the position of the FPGA on the JTAG boundary
scan chain, beginning with 1. This information can be determined by running the
Xilinx iMPACT tool.

Note: For P2P Ethernet HWCoSim, additional fields must be specified. See the setup for the
ml605-ppethernet entry in the $XILINX/sysgen/hwcosim/data/hwcosim.bsp file as an
example.

Board Support File
Xilinx boards are supported by default. The default board support file is installed under
the following directory of an ISE® 14.x installation: $XILINX/sysgen/hwcosim/data/
hwcosim.bsp.

Boards with default support are as follows:

• ml401-jtag - Xilinx® Virtex®-4 ML401 Evaluation Platform

• ml402-jtag - Xilinx ML402 Evaluation Platform

• ml403-jtag - Xilinx ML403 Evaluation Platform

• ml405-jtag - Xilinx ML405 Evaluation Platform

• ml410-jtag - Xilinx ML410 Evaluation Platform

• ml501-jtag - Xilinx Virtex-5 ML501 Evaluation Platform

• ml505-jtag - Xilinx ML505 Evaluation Platform

• ml506-jtag - ML506 ppethernet - Xilinx ML506 Evaluation Platform

• ml507-jtag - Xilinx ML507 Evaluation Platform

• xupv5-jtag - Xilinx University Program XUPV5-LX110T Development System

• ml510-jtag - Xilinx ML510 Evaluation Platform

• ml605-jtag - ML605 ppethernet Xilinx Virtex-6 ML605 Evaluation Platform

• kc705-jtag - Xilinx Kintex™-7 FPGA KC705 Evaluation Kit

• zc702-jtag - Zynq™-7000 EPP board

• vc707-jtag - Xilinx Virtex-7 FPGA VC707 Evaluation Kit

• s3e-sk-jtag - Xilinx Spartan®-3E Starter Kit

• s3e-mb-jtag - Xilinx Spartan-3E MicroBlaze Development Kit

• s3a-sk-jtag - Xilinx Spartan-3A Starter Kit

• s3an-sk-jtag - Xilinx Spartan-3AN Starter Kit

• s3adsp1800a-jtag - Xilinx Spartan-3A DSP 1800A Starter Platform

• s3adsp3400a-jtag - Xilinx Spartan-3A DSP 3400A Development Platform

• sp601-jtag - sp601 ppethernet Xilinx Spartan-6 SP601 Evaluation Platform

• sp605-jtag - sp605 ppethernet Xilinx Spartan-6 SP605 Evaluation Platform
ISim User Guide www.xilinx.com 91
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
Determining the Ethernet
To run an Ethernet-based Hardware Co-Simulation, when multiple Ethernet interfaces are
present, you must select the Ethernet interface that you want to co-simulate.

If you ran a previous hardware co-simulation using the Point-to-Point interface option,
you see the following error message:

"ERROR: In process wrapper AHIL_INITIALIZE Failed to open hardware
co-simulation instance. Error in Point-to-point Ethernet Hardware
Co-simulation. There are multiple Ethernet interfaces available. Please
select an interface."

Use the following steps to determine the Ethernet port, set and verify the Ethernet address,
and verify that the simulation runs.

1. Determine the Ethernet port to which the co-simulation board is connected.

a. On your system command prompt, open a command terminal window (cmd).

b. In the command window, type ipconfig -all to list all Ethernet ports and
connections. Figure 8-5 shows the command in the cmd window.

c. Locate the physical address of the Ethernet port connected to the co-simulation
board.

d. Convert the physical address delimiter from a dash (-) to a colon (:). For example:
00:19:B9:75:E5:95

2. Set and verify the correct Ethernet port, as follows:

a. Open the GUI.

b. Select the Design under Test (DUT).

c. Go to the Tcl Console panel.

d. In the Tcl Console panel, type the following commands:

i. Set the Ethernet address:

hwcosim set

ethernetInterfaceID <##:##:L#:##:L#:##> <physical address>

ii. Verify the Ethernet address:

hwcosim get ethernetInterfaceID

iii. Verify that the simulation runs:

run 10us

Figure 8-5: ipconfig -all in cmd.exe
92 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Frequently Asked Questions
Figure 8-6 outlines the process within the GUI.

Frequently Asked Questions
In the following description, design under test (DUT) refers to the portion of design that is
co-simulated in FPGA.

General
1. Q: Does HWCoSim support any kind of designs?

A: Certain limitations, described in Limitations, page 82, apply.

2. Q: Is IHWCoSim a functional simulation or a timing simulation?

A: It is a functional simulation assisted with hardware, which is bit-and-cycle accurate
with respect to the pure tool simulation.

3. Q: How do I use my own board?

A: You can add your own board in the board support file as described in Board
Support, page 90.

Compilation
1. Q: Can I co-simulate multiple instances in the design in hardware?

A: No. Only one instance can be selected for hardware co-simulation. You can
co-simulate the parent instance of the multiple instances or group the multiple
instances into one instance.

2. Q: What happens if the DUT already instantiates a BSCAN primitive (such as the
ChipScope debugging tool ICON)?

Figure 8-6: HWCoSim Process in GUI Console
ISim User Guide www.xilinx.com 93
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
A: The hardware co-simulation interface uses a BSCAN primitive at location 1, which
could result in an error in MAP if the DUT also instantiates another BSCAN primitive
at location 1.

You might need to change the ChipScope ICON to use a different location for the
BSCAN primitive. Some device families, such as Spartan-3, have only one BSCAN
primitive, where the hardware co-simulation interface cannot coexist with a
ChipScope ICON module.

To share the JTAG cable with ChipScope Analyzer or the XMD, run the Tcl command:
hwcosim set shareCable 1.

Simulation
1. Q: Can I skip the FPGA configuration and reuse the last downloaded bitstream for

multiple co-simulation runs?

A: There is no command line or GUI option for that; however, you can run this Tcl
command: -hwcosim set skipConfig 1. Be aware that, by skipping the bitstream
configuration, the design running in the FPGA maintains its previous states across
simulation runs. You might need to appropriately reset the design in the test bench
when a new simulation run starts.

2. Q: Can I probe a signal inside the DUT that is co-simulated in hardware?

A: No. Only the port interface of the DUT can be accessed from ISim through the
hardware co-simulation interface. To debug an internal signal, you need to route the
signal to a port of the DUT.

Clocking and I/Os
1. Q: Which clock is supplied to the DUT? How is the clocking of the DUT being handled

during co-simulation?

A: The clock pin of the hardware board specified in the board support file is the master
clock source but is not used directly to drive the DUT. This clock source is scaled to a
particular clock frequency (typically around 25 to 100 MHz) through a DCM/PLL. The
scaled clock further goes through a gated clock buffer (BUFGCTRL) before driving the
clock port of the DUT. The gated clock buffer generates a clock pulse to the DUT per
simulation cycle to synchronize the tool simulation and the DUT execution.

2. Q: Can I let the DUT clock be free-running?

A: In hybrid co-simulation, you can let a portion of the DUT be free-running by
mapping one or multiple clock ports to external I/Os. However, at least one clock of
the DUT must be clocked in a lockstep fashion synchronous to the tool simulation.
That effectively partitions the DUT into two portions; one running in lockstep and the
other free-running. Also note that ISim hardware co-simulation does not insert any
clock domain crossing between the two portions.

Some asynchronous buffer or additional synchronization logic is expected to properly
handle clock domain crossing between the two portions.

3. Q: Can I run the DUT at a particular clock frequency?

A: You can supply external clocks for the free-running portion of the DUT in hybrid
co-simulation. However, the clock in the lockstep portion is controlled by ISim, and is
synchronous to the tool simulation and thus not fixed to a particular clock frequency.
The effective clock rate of the lockstep portion is slow regardless of its input clock
frequency.
94 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Frequently Asked Questions
Driving the DUT with a faster clock does not improve the simulation performance as
the major bottleneck is the communication between tool and hardware. The DUT is
constrained with a lower clock frequency to make the compilation process (such as
map and place-and-route) faster.

4. Q: Can I connect some ports of the DUT to external I/Os such as DDR memory
modules?

A: External I/Os and clocks are supported in the hybrid co-simulation mode through
the use of a custom constraints file as described in Hybrid Co-Simulation Flow,
page 86.
ISim User Guide www.xilinx.com 95
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 8: Using Hardware Co-Simulation
96 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9

ISim Tcl Commands

Simulation commands let you run an interactive simulation at a command prompt.

Note: All commands are case sensitive.

Simulation Command Entry Methods
Simulation commands can be entered as follows:

• ISim GUI
Type simulation commands in the ISim Console panel.

• Command Line
Type simulation commands at the command line Tcl prompt.

• Tclbatch
Type simulation commands in a Tcl file, and reference the Tcl file with the -tclbatch
option of the simulation executable.

You can enter individual commands or create simulation scripts. For examples of
simulation Tcl scripts, see the Simulation Constructs folder available in the Language
Templates.

To access these examples:

1. Click Edit > Language Templates.

2. In the Language Templates, expand the Tcl > Tools > ISim folder.

You can set a variable to represent a simulation command to quickly run frequently used
simulation commands. For more information, see Aliasing Simulation Commands,
page 100.

Note: For information on using Tcl, see documentation at http://www.tcl.tk/.
ISim User Guide www.xilinx.com 97
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.tcl.tk/

Chapter 9: ISim Tcl Commands
Simulation Command Summary
Table 9-1 lists the available simulation Tcl commands with a brief description, and links to
a more complete description of the command, syntax, options, and examples.

In your PDF reader, turn on the View > Toolbars > More Tools > Previous View and Next
View buttons to navigate back and forth.
. .

Table 9-1: Simulation Command Summary

Command Description

bp Sets and deletes breakpoints in your HDL source code for debugging purposes.

describe Displays information about the given HDL data or block object.

divider add Adds a new divider.

dump Displays a list of variables, generics, parameters, and nets along with their values
for the current scope of the design hierarchy.

group add Adds a new group.

help Displays a description with usage and syntax of the specified ISim command.

isim condition Enables the execution of a set of commands based on a specified condition on one
or more nets or Verilog regs.

isim force Forces or removes a value on a VHDL signal, Verilog wire, or Verilog reg.

isim set
arraydisplaylength

Displays the limit of numbers of elements for an array type HDL object.

isim get radix Gets the global radix being used.

isim get userunit Displays the current unit of measurement for all time values where unit is
unspecified.

isim ltrace Turns on and off line tracing.

isim ptrace Turns on and off tracing of execution of processes.

isim set
arraydisplaylength

Sets the limit on the number of elements for an array type HDL object.

isim set radix Sets the global radix to use.

isim set userunit Sets the default unit of measurement for all time values where unit is unspecified.

marker add Adds a new marker.

onerror For batch mode, controls the behavior immediately following a failed Tcl simulation
command.

put Assigns a value to a specified bit, slice, or all of a variable or signal.

quit Exits either the simulation or the tool, depending on the command options.

restart Restarts simulation, setting the simulation time back to 0.

resume With the onerror command, continues executing commands after an error is
encountered.

run Starts simulation.
98 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Using Object Names with Special Characters in Tcl
Some commands, such as wave add, can take arguments that contain characters that have
special meaning to Tcl. Those arguments must be surrounded with curly braces {} to avoid
unintended processing by Tcl. The most common cases are as follows.

Bus Indexes

Because square brackets [] have special meaning to Tcl, an indexed (bit- or
part-selected) bus using square bracket notation must be surrounded with curly
braces. For example, when adding element 4 of bus to the Wave window using square
bracket notation, you must write the command as wave add {bus[4]}.

Parentheses can also be used for indexing a bus, and because parentheses have no
special meaning to Tcl, the command can be written without curly braces. For
example:

wave add bus(4)

Verilog Escaped Identifiers

Verilog identifiers containing characters that are special to Verilog need to be
“escaped” both in Verilog source code and on the ISim command line by prefixing the
identifier with a backslash \ and appending a space.

Additionally, on the Tcl command line the escaped identifier must be surrounded with
curly braces. For example, to add wire my wire to the Wave window, you must write
the command as wave add {\my wire}, taking care to supply a space between the
final character and the closing curly brace.

saif Creates a Switching Activity Interchange Format (SAIF) file and records estimated
power usage.

scope Navigates the design hierarchy.

sdfanno Back-annotates delays from an SDF file to the HDL design.

show Displays selected aspects of the design in the Simulation Console panel.

step Executes simulation through your HDL design, line by line, to assist with debug.

test Compares the actual value of a net or bus with a supplied value.

vcd Generates simulation results in VCD format.

virtualbus add Adds a new virtual bus.

wave add Adds simulation objects or blocks to the specified wave configuration in the ISim
graphical user interface.

wave log Logs simulation output of HDL objects to a waveform database.

wcfg new Creates a new wave configuration.

wcfg open Opens a wave configuration from a file.

wcfg save Saves a wave configuration.

wcfg select Selects the wave configuration file to be displayed in the active window.

Table 9-1: Simulation Command Summary (Cont’d)

Command Description
ISim User Guide www.xilinx.com 99
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
Note: Verilog allows any identifier to be escaped. On the ISim command line do not escape
Verilog identifiers that are not required to be escaped. For example, to add wire w to the Wave
window, ISim would not accept wave add {\w} as a valid command. Instead, the command
must be written as wave add w, or optionally, wave add {w}.

If the escaped identifier contains a curly brace, then the technique of surrounding the
identifier with curly braces does not work, because Tcl interprets curly braces as
special characters even within curly braces. Instead, you must use the technique
demonstrated in VHDL Extended Identifiers, below.

VHDL Extended Identifiers:

VHDL extended identifiers contain backslashes \, which are special characters to Tcl.
Because Tcl interprets a backslash next to a close curly brace \} as being a close curly
brace character, VHDL extended identifiers cannot be written with curly braces.

Instead, the curly braces must be absent and each special character to Tcl must be
prefixed with a backslash. For example, to add the signal \my sig\ to the Wave
window, you must write the command as wave add \\my\ sig\\.

Both the backslashes that are part of the extended identifier, and the space inside the
identifier are prefixed with a backslash.

Aliasing Simulation Commands
You can set a variable to represent a simulation command using a Tcl-based command
prompt. You can then use the variable to execute the command many times without having
to type it in each time. Setting a variable to represent one or more commands is called
aliasing.

Setting a Variable at the Simulation Console Panel
In the Console panel (GUI mode) or Tcl prompt (command-line mode), type in a variable as
follows:

set svc “show value count”

Where:

• set indicates that you are creating a variable.

• svc is the variable name.

• “show value count” is the simulation command represented by the variable
name.

The Tcl variable svc is set to show value count.

To then run the variable (and thereby execute the simulation command), type:

eval $svc.
100 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

ISim Wave Viewer Tcl Commands Overview
ISim Wave Viewer Tcl Commands Overview
The ISim Wave Viewer Tcl commands operate on the active window. When ISim starts, the
first active window is Default.wcfg.

You can change the active window by:

• Clicking the window tab or using the wcfg select command.

• In the GUI, select File > New and File > Open to change the active window to the
newly created waveform configuration window.

• In Tcl, you can use the wcfg new and wcfg open commands to change the active
window to the newly created window.

Command Line Conventions
You can enter console commands at the command line of the ISim Console panel as an
alternative to using menu commands. Console commands do not display the dialog boxes
that menu commands invoke.

Table 9-2 provides a summary of the syntax used for the simulation commands.

Table 9-2: Simulation Command Syntax

Syntax Description

[]

Indicates an optional command option.

Note: The [] can be used in Tcl for nesting commands. A command
put inside [] is executed and result of that is returned as a value to be
used in another Tcl command. For example, set var <show time>
sets var to the current time.

|
Indicates a choice of possible parameters. If one term is divided into
a subset of parameters that can be entered separately or together,
each sub-parameter occurs between square brackets.

... Indicates that one or more occurrences of the option separated by
space is accepted.

< > Encloses variables for which you must supply values.
ISim User Guide www.xilinx.com 101
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
Tcl Commands

Engine Commands

bp

The bp command controls the setting and removal of breakpoints in the HDL source code
that you are simulating. A breakpoint is used to interrupt the simulation during
debugging.

bp Command Syntax

bp add <file_name> <line_number> clear
del <index> [<index>...]list

remove <file_name> <line_number>

bp Command Options

Table 9-3: bp Command Options

Option Description

add <file_name>
<line_number>

Adds a breakpoint at the given line in the HDL file.

The <file_name> is the name of the HDL source file that you are simulating where you
want to put a breakpoint. <line_number> is the number of the line of HDL code where
you want the simulation to stop.

clear Deletes all breakpoints for all loaded HDL files. If you have breakpoints in multiple files,
all breakpoints are deleted.

del <index>
[<index>...]

Deletes individual breakpoints from your HDL code. Before using this command, run
the bp list command to obtain the index numbers for your breakpoints. See the list
option for details.

<index> is the index number assigned to the breakpoint you want to delete. Each
breakpoint in your design is assigned a unique index number.

Note: This index is not the line number of the breakpoint in the source file.

list Lists all of the breakpoints in your design and shows their index number to be used with
the bp del command. If you have set breakpoints in multiple files, all breakpoints are
listed. bp list returns the following:

<index> <directory_path> <file_name>/<line_number>

Where:

• <index> is the index number to use with the bp del command.
• <directory_path> is the fully qualified path to your source files.
• <file_name> is the name of the source file in which there is a breakpoint.
• <line_number> is the line number in the source file of the breakpoint.

remove <file_name>
<line_number>

Deletes a breakpoint at the <line_number> in the <file_name>.

• The <file_name> is the name of the HDL source file that you are simulating and
where you want to remove a breakpoint.

• The <line_number> is the number of the line of HDL code where the breakpoint
has been set.
102 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
bp Command Examples

Set a breakpoint at line 2 for the file statmach.vhd:

bp add statmach.vhd 2

List all Breakpoints

List all breakpoints in all files in your simulation, and give them a unique index number:

bp list

Delete all breakpoints in your simulation:

bp clear

To delete a breakpoint by index number:

1. First use the bp list command to get the breakpoint indexes:

bp list

 The simulator returns the following:

1 C:/examples/watchvhd/stopwatch_tb.vhd::46

2 C:/examples/watchvhd/stopwatch_tb.vhd::55

2. Then delete the breakpoint at line number 46 in stopwatch_tb.vhd:

bp del 1

Delete a breakpoint at line 2 in statmach.vhd:

bp remove statmach.vhd 2

describe

The describe command displays information about the given HDL data or block object.

describe Command Syntax

describe <object_name>

The <object_name> option displays a description about either an HDL object or an HDL
block in the current simulation scope.

describe Command Example

The describe command can be used as follows.

describe param

Returns:

Verilog Instance: {param}

Path:{/parameter8_hn/param}

Location: {/home/test5.v:42}

Instantiation: {/home/test5.v:37}

dump

The dump command displays values for all VHDL signals and generics, and Verilog wires,
non-subprogram regs, and parameters in the current scope.

To navigate the design hierarchy, use the scope command. The dump command uses the
default radix set using the isim set radix command.
ISim User Guide www.xilinx.com 103
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
dump Command Syntax

dump

dump Command Example

This example displays a list of all the signal names and their values at the current scope of
the design hierarchy.

dump

help

The help command displays a description with usage and syntax of the specified ISim Tcl
command. With no command specified, the help command displays descriptions, usage
and syntax for ISim Tcl commands.

Help Command Syntax

help [command_name]

help Command Options

help displays a description for the specified command.

help Command Examples

The help command can be used as follows.

For a description of all of ISim commands:

help

For a description of the bp command:

help bp

isim condition

The isim condition command adds, removes, or generates a list of conditional actions.
A conditional action is equivalent to a VHDL process or a Verilog always block. When
added, it starts monitoring signals (those that appear in the isim condition
expression) continually during simulation. The condition expression is evaluated anytime
a signal change is detected. When a specified condition expression is met, the specified
command runs.

• isim condition remove stops monitoring signals.

• isim condition list lists all active conditional actions added and their labels and
IDs.

isim condition Command Syntax

isim condition add|remove|list

[<condition expression> <command>]

[-radix <radix_type>]

[-label <label_name>]

[-index <index_name>]

-all
104 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
isim condition Command Options

isim condition Command Examples

isim condition add Examples

Adding a condition that states that when the signal asig is equal to 8, a stop occurs, and
the condition is called label0:

isim condition add {/top/asig == 8} {stop} -label label0 -radix hex

Adding a VHDL-specific signal condition that states that when the signal asig is equal to 1,
a stop occurs, and the condition is called label1:

isim condition add {/top/asig == ‘1’} {stop} -label label1

Adding a condition that states that for any change on the asig signal, a stop occurs, and
the condition is called label2:

isim condition add /top/asig {stop} -label label2

Table 9-4: isim condition Command Options

Option Description

add|remove|list Specifies to add a condition, remove one or more conditions, or
list all active conditions.

<condition
expression>
<command>

The <condition expression> is associated with the add
function, and it determines when to run the specified
<command>.

Operators used in the condition expression include
!= (not equal), == (equal), && (and), and || (or).

A space is required between words in the expression and the
operator, such as clk == St1.

The <command> is a Tcl command or script that is executed when
the condition expression is true. This command is surrounded by
{} (braces). The command can include standard Tcl commands
and simulation Tcl commands, except run, restart, init, and
step. Tcl variables used in the condition expression are
surrounded by quotes “” instead of {}.

Refer to the syntax examples below.

-radix <radix_type> An optional argument used to read the value in the condition
expression.

The supported radix types are default, dec, bin, oct, hex,
unsigned, and ascii. When no radix type is specified, the
global radix type set with the isim set radix command is
used, or if none is set there, default is used as radix.

-label <label_name> An optional argument that specifies the name of a condition. For
isim condition add, when no label is specified, the simulator
generates an index used to identify the condition.

-index <index_name> An optional argument that identifies a condition. Can be used
with isim condition remove only.

-all An optional argument that is used to remove all conditions in the
current simulation.
ISim User Guide www.xilinx.com 105
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
Adding a Verilog-specific signal condition that states that when clk is equal to St1, a stop
occurs, and the condition is called label3:

isim condition add {clk == St1} {stop} -label label3

Adding a condition that states that when asig (3:0) is equal to 0001 and reset is equal
to 1, a stop occurs:

isim condition add {asig(3:0) == 0001 && reset == 1} {stop}

isim condition remove Examples

Remove all conditions in the current simulation:

isim condition remove

or

isim condition remove -all

Remove the conditions label0, label1, and label2:

isim condition remove -label {label0 label1 label2}

Remove a single statement:

isim condition remove -index 2

or

isim condition remove -label label3

ISim condition list Examples

Listing all ISim conditions added to the design at the current time.

isim condition list

isim force

The isim force command forces a VHDL signal, Verilog wire, or Verilog reg to a constant
value or a repeating pattern over time. The value applied by the isim force command
overrides any value assigned from within the HDL code, or any value applied by a
previous force. The force remains active until cancel time, if a cancel time is specified, or
until an explicit isim force remove command is issued.

• For a VHDL signal or a Verilog wire, removal of a force restores the value of the signal
or the wire to the current driven value.

• For a Verilog reg, the forced value is retained even after the applied force has been
removed until the time one of the HDL processes that write into the Verilog reg gets to
assign a new value to the reg.

isim force Command Syntax

isim force add|remove

[<object_name>]

[-value <value>]

[-radix <radix_type>]

[-time <time>]

[-cancel <time>]

[-repeat <time>]
106 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
isim force Command Options

isim force Examples

The isim force command can be used as follows.

Assigning a Value

Force signal rst to 0 starting at the current simulation time:

isim force rst 0

Force signal rst to 1 starting at 10 ns from the current simulation time and cancel forcing
after 50 ns from the current simulation time:

isim force rst 1 -time 10 ns -cancel 50 ns

Apply a clock to the signal clk such that clk goes to 1 at current simulation time, goes back
to 0 at 20 ns later, and then repeats this every 40 ns until 1us from the current simulation
time (for example, to generate a clock with 50% duty cycle and 40 ns period for a duration
of 1 us):

isim force clk 1 -value 0 -time 20 ns -repeat 40 ns -cancel 1 us

To:

• Force signal data_in to 1 at current simulation time

• Set data_in to 0 at current simulation time + 50 ns

• Set data_in back to 1 at current simulation time + 75 ns

• Repeat this 101 pattern every 100 ns for a duration of 5000 ns:

force add data_in 1 -value 0 -time 50 ns -value 1 -time 75 ns -repeat
100 ns -cancel 5000 ns

Table 9-5: sim force Command Options

Option Description

add|remove Specifies whether you wish to assign or remove a value from a
bus or signal.

<object_name> Specifies name of the VHDL signal, Verilog wire, or Verilog reg
to be forced.

-value <value> Specifies one or more values to add.

-radix <radix_type> This option specifies the radix. The supported radix types are
default, dec, bin, oct, hex, unsigned and ascii. When no
radix type is specified, the global radix type set with the isim
set radix command is used, or if none is set, default is used.

-time <time> Time can be a string such as 10, 10 ns, “10 ns”. When a number
entered without a unit, the simulator resolution unit is used,
which is ps. Time is relative to the time of execution of the
command.

-cancel <time> Cancels the force command after the specified time.

-repeat <time> Repeats the cycle after the specified time.
ISim User Guide www.xilinx.com 107
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
Removing a Value

Remove the values on signals s, s1, and s2:

isim force remove s s1 s2

isim get arraydisplaylength

The isim get arraydisplaylength command lets you display the limit of numbers of
elements for array type HDL object. The limit can be set with the isim set
arraydisplaylength command.

ism get arraydisplaylength Command Syntax

isim get arraydisplaylength

where no options are available.

isim get arraydisplaylength Command Example

Type the following command to determine the array display length, and the array is 64-bit:

isim get arraydisplaylength

Returns: 64

isim get radix

The isim get radix command lets you display the default radix as a string. The radix
is set with the isim set radix command.

isim get radix Command Syntax

isim get radix

No options are available.

isim get radix Command Example

Return the radix:

isim get radix

Returns the current global radix.

isim get userunit

The isim get userunit command displays the current unit of measurement for all time
values where unit is unspecified. The unit of measurement can be set with the isim set
userunit command.

isim get userunit Command Syntax

isim get userunit (where no options are available)

isim get userunit Example

isim get userunit

Returns: 1 ps
108 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
isim ltrace

The isim ltrace command lets you turn line tracing on or off. When line tracing is
turned on, you can do a line-by-line analysis for debugging. Executed HDL lines print to
the screen with the following information: simulation time, filepath, filename, and line
number.

Note: isim ltrace on can slow the simulation.

isim ltrace Command Syntax

isim ltrace [on | off]

isim ltrace Command Options

The isim ltrace command options are [on | off]. The default is off.

isim ltrace Command Example

To see which line is currently executing:

isim ltrace on

run

The output lists the simulation_time, filename, line number, as follows:

1005 ns “C:/Data/ISE_Projects/freqm/watchver/
stopwatch_tb.v”:261005 ns “C:/Data/ISE_Projects/freqm/watchver/
stopwatch_tb.v”:271005 ns(3) “C:/Data/ISE_Projects/freqm/watchver/
statmach.v”:631005 ns(3) “C:/Data/ISE_Projects/freqm/watchver/
statmach.v”:64

isim ptrace

The isim ptrace command lets you turn process tracing on or off. When turned on, the
command also displays the name of the currently executing VHDL or Verilog process in
the Simulation Console panel. This is useful if the simulator is stuck in an infinite loop, in
which case the command points out the exact process where the simulator is stuck.

isim ptrace Command Syntax

isim ptrace [on | off]

isim ptrace Command Options

The options are [on | off]. The default is off.

isim ptrace Command Example

See which process is currently executing.

isim ptrace on

isim set arraydisplaylength

The isim set arraydisplaylength command sets the limit on the number of
elements for an array type HDL object. The default is 64. The following are affected by the
limit set:

• The display of values in the GUI Objects

• The response to the show value command
ISim User Guide www.xilinx.com 109
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
isim set arraydisplaylength Syntax

isim set arraydisplaylength <size>

The available option is <size>. Type a number of elements of an array type HDL object to
display. Use 0 for unlimited length. The default is 64.

isim set arraydisplaylength Command Examples

Enter:

isim set arraydisplaylength 2

show value xcountout

Returns:

00

00

Examine the Value column for arrays in the Objects :

isim set arraydisplaylength 64

show value xcountout

Returns:

0001000000

0001000000

isim set radix

The isim set radix command enables you to set the global radix for the current
simulation. This radix type is used for other commands: show value, put, test, dump,
isim force, and isim condition.

isim set radix Syntax

isim set radix <radix_type>

Where:

The <radix_type> option sets the global radix for the current simulation. The
simulator uses <radix_type> for other commands: show value, put, test, dump,
isim force, and isim condition.

The supported radix types are: default, dec, bin, oct, hex, unsigned, and
ascii.

isim set radix Examples

Set a radix of hex, and see a count value:

isim set radix hex

show value count

Returns: a.

Set a radix of dec, and see a count value:

isim set radix dec

show value count //count is defined as reg[3:0] count

Returns -4.
110 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
Set a radix of unsigned, and see a count value.

isim set radix unsigned

show value count

Returns: 10.

isim set userunit

The isim set userunit command let you set the default unit of measurement for all
time values where unit is unspecified. The default time unit is the same as the time-unit of
the engine as set in the fuse command -timescale or -override_timeunit options.
In the absence of these fuse options, the timescale is determined by:

• The default time unit, which is 1ps.
• As defined by the ‘timescale simulator directive in Verilog.

isim set userunit Command Syntax

isim set userunit <1|10|100> <fs|ps|ns|us|ms|s>

Example

Set the simulator timescale to 1 ps:

isim set userunit 1 ps

onerror

The onerror command lets you control the behavior immediately following a failed Tcl
simulation command. See examples for various applications, such as printing the error and
resuming the next command. This command can be used to debug simulation command
errors, and is particularly useful when running a Tcl script in which an error is
encountered.

Note: This command is not intended for users who type one Tcl command at a time at the Tcl
prompt.

onerror Command Syntax

onerror [<list_of_Tcl_commands>] [<source Tcl_script>]

Where:

• <list_of_Tcl_commands> Is a list of simulation Tcl commands to control behavior
upon encountering a simulation command error.

• <source Tcl_script> Is the sourced Tcl script file that contains listed Tcl commands.

onerror Command Examples

Print the that an error occurred and all values in the current scope, then exit:

onerror {showtime;dump;quit -f}

Continue reading the next command in the Tcl script after showing the time the error
occurred and all values in the current scope:

onerror {show time;dump;resume}

Read the sourced Tcl file and executes its command upon encountering an error:

onerror {source myerror.tcl}
ISim User Guide www.xilinx.com 111
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
put

The put command lets you modify values of signals or buses during simulation. The put
command can be used to assign:

• Aspecified signal or bus

• An array of signals or buses

• A record or array of records containing signals or buses

• A value with the specified radix is put to an object

To use the put command, the signal or bus must be declared as a signal in your Hardware
Description Language (HDL) source code.

You cannot use the put command to assign a value to a VHDL variable, a VHDL generic,
or a Verilog parameter. You can assign values to the whole signal, a bit of a signal or a slice
of a signal. You can also access the signal hierarchically. This command can be overridden.
The stimulus from your design can override the put command; consequently, the
command is temporary.

put Command Syntax

put <signal_name>|<vhdl_process_name>| <process_variable_name>
[element reference...] <value> [<object> <value>] [-radix
<radix_type>]

put Command Options

Table 9-6: put Command Options

Option Description

<signal_name>|

<vhdl_process_name>|

<process_variable_name>

[element reference...]

<value>

• <signal name> is the name of the signal or bus to which you want to assign a
value. This can also be the name of an array of signals or buses, an array of records
containing signals and buses, or a record of arrays of buses/signals.

• <vhdl_process_name/process_variable_name> is the name of the process
and process variable to assign a value. To assign a value to a process variable, you
must also supply the name of the process that contains the variable. The process
name and process variable names must be separated by a slash symbol, /.

• The optional <element_reference> refers to the different ways in which the
sub-elements of the signal name can be referenced when used with the put
command. You can use it to further refine the signals by referencing the individual
sub-elements of a signal. See the following examples for more information.

The accepted <value> depends upon the signal type as follows:

• Integer type can be a positive or negative integer.
• A <bit_vector> can be 0 or 1 or a series of 0s and 1s.
• For VHDL, std_logic values can be U, X, 0, 1,...
• For Verilog, <bit_values> can be U, X, 0, 1.
• Strength values are not supported.

[<object> <value>]

[-radix <radix_type>]

Takes a value with the specified radix, converts the value to the data type of the object,
and writes the value to the object.

<object> specifies the signals, buses or objects to modify.

<value> refers to the value you wish to add to the object. Supported radix types:
-radix [radix_types]default, dec, bin, oct, hex, unsigned and ascii.
When no radix type is specified, the global radix type set with the isim set radix
command is used, or if none is set there, default is used as radix.
112 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
put Command Examples

Assign a Value To a Bus or Signal

Assign a value to a signal called clk:

put clk 1

or

put clk 1 -radix bin

or

put clk “1” -radix bin

Assign a value to a 4-bit bus called busx:

put busx 0101

Assign a value FF to signal A:

put A FF -radix hex

Assign a bit value of 1 to a signal called count(6) in the module u1 that is instantiated
under your current scope:

put u1/count(6) 1

Assign a Value To a Standard Logic Vector

For a standard logic vector called sigx that is declared as follows:

signal sigx: std_logic_vector(0 to 5);

Set bit 0 of sigx to 1:

put sigx(0) 1

Set slice 1 to 2 of sigx to 11:

put sigx(1:2) 11

Set all of sigx to 101010:

put sigx 101010

Assign a Value To an Array of Objects

To assign a value to an array of standard logic vectors that is declared as follows:

signal sigarray: (0 to 3) vectorarray(0 to 5, 1 to 4, 2 to 6);

Set every bit of the array element of sigarray to 1:

put sigarray(0,1,2)1111

Set the first two bits of the array element of sigarray to 10:

put sigarray(0,1,2)(1:2)10

Set bits three of the array element of sigarray to 1:

put sigarray(0,1,2)(3)1

Assign a value to an array of records which in turn contain an array of standard logic
vectors that is declared as follows:

type ram_3d_vector is array(0 to 10, 7 downto 0, 0 to 2) of
std_logic_vector(1 to 4);
ISim User Guide www.xilinx.com 113
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
type rectype is record

a: integer;

b: string(1 to 7);

c: std_logic_vector(0 to 3);

d: ram_3d_vector;

end record;

type recarray is array(0 to 3, 4 downto 1) of rectype;

signal recarrsig: recarray;

signal recsig: rectype;

Set the second element (b) of the record recsig to the string abc:

put recsig.b(2:4)abc

Set the four bit wide vector represented by the coordinates 2,3,1 in the three dimensional
array d in the record recsig to 0110:

put recsig.d(2,3,1) 0110

Set the first two bits of the four bit wide vector represented by the coordinates 2,3,1 in the
three dimensional array d in the record recsig to 01:

put recsig.d(2,3,1)(1:2) 01

Set the four bit wide vector represented by the coordinates 2,3,1 in the three dimensional
array d in the record recsig represented by the coordinates 2,2 in the two dimensional
array recarrsig to 0011:

put recarrsig(2,2).d(2,3,1)0011

quit

The quit command exits either the simulation or the tool, depending on the command
options. With no options, the quit command closes the ISim tool after being prompted to
do so (for graphic user interface (GUI) mode) or simply closes ISim (in command-line
mode).

quit Command Syntax

quit [-f] [-s]

Where:

• -f
Quits the current simulation and quits the ISim tool. You are not prompted to save the
wave configuration even when changes have been made to wave configurations. The
switch has no effect at the command line.

• -s
Quits the current simulation while keeping the graphical user interface open. At this
point, ISim can only be used for loading static wave databases using File > Open to
open a WDB file. The switch has no effect at the command line.

quit Command Examples

Exit ISim and leave the Tcl prompt:

quit
114 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
Exit ISim and save your waveform:

quit -f

Quit the current simulation:

quit -s

restart

The restart command stops simulation and sets simulation time back to 0. This lets you
start simulation over again within the same simulation run without reloading the design.
The equivalent GUI command is Simulation > Restart.

restart Command Syntax

restart [onerror][scope][saif][vcd][isim force][put]

restart Command Options
:

restart Command Example

To set simulation time back to 0, and start simulation:

restart

resume

The resume command is used with the onerror command to continue executing
commands after an error is encountered.

Note: This command has no effect when entered alone.

resume Command Syntax

resume

There no available options to this command.

resume Command Example

To continue reading the next command in the Tcl script after showing the time the error
occurred and all values in the current scope:

onerror {show time;dump;resume}

Table 9-7: restart Command Options

Option Description

onerror Removes the onerror script.

scope Resets scope to /top.

saif Closes file.

vcd Closes file.

isim force Removes force.

put Returns to initial value.
ISim User Guide www.xilinx.com 115
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
run

The run command starts simulation. With no options, the run command runs simulation
for 100 ns. The equivalent GUI commands are:

• Simulation > Run All

• Simulation > Run

run Command Syntax

run [all][continue][<time> <unit>]

run Command Options

run Command Examples

The run command can be used as follows.

Run simulation until there are no more events or until ISim reaches a breakpoint:

run all

Run simulation for 2000 nanoseconds:

run 2000 ns

Run simulation for 1.2 nanoseconds:

run 1.2 ns

Run simulation for 100 ns:

run

Table 9-8: run Command Options

Option Description

all Runs simulation until there are no more events or until ISim encounters
a breakpoint. See bp Command for information about setting and
removing breakpoints.

continue Resumes simulation after ISim has stopped at a breakpoint. This option
is the same as running run all.

<time> <unit> • <time> is the length of time you want simulation to run. It can be any
positive integer or decimal.

• <unit> is the unit of time. Possible values are fs, ps, ns, us, ms, and
sec. Default is ps.
116 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
saif

The saif command lets you create a Switching Activity Interchange format (SAIF) file
and record port and signal switching rates. See Chapter 7, Writing Activity Data for Power
Consumption.

saif Command Syntax

saif open [-scope <path_name>] [-file <file_name>][-allnets]

close [-level <number_of_levels>]

saif Command Options

saif Command Examples

The saif command can be used as follows.

Write all ports of a design starting at the current scope recursively to a file called
xpower.saif:

saif open

Write the ports and internal nets of a design starting at the current scope recursively to a
file called xpower.saif:

saif open -allnets

Write ports and internal nets of a design starting at the UUT recursively to a file called
uut_backward.saif:

saif open -scope uut -file uut_backward.saif -allnets

Table 9-9: saif Command Options

Option Description

open

[-scope <path_name>]

[-file <file_name>]

[-allnets]

open creates a file for SAIF power estimation.

• -scope <path_name> creates power estimation data
starting at specified scope and recursively. You can use a
relative or an absolute path. If no path is specified, the
current scope is used.

• -file <file_name> creates a new SAIF file. The
default name of the SAIF file is xpower.saif. Only one
SAIF file can be opened during one run of simulation.

• -allnets includes internal nets and port signals in the
power estimation. Without this switch, only port signal
changes are monitored.

close Stops monitoring and flushes the SAIF file.

[-level
<number_of_levels>]

You can have as many levels as you have in your design
hierarchy, as follows:

• -level 0 tracks and dumps all levels of signal
transitions below the specified hierarchy into the SAIF
file.

• -level 1 tracks and dumps only the signal transitions
in the specified hierarchy into the SAIF file.

• -level 2 tracks and dumps two levels of signal
transitions in the specified hierarchy into the SAIF file,
and so forth.
ISim User Guide www.xilinx.com 117
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
scope

The scope command lets you navigate the design hierarchy. With no options, the scope
command displays the current module information.

scope Command Syntax

scope.. <path_name>

Where:

• ..
Moves the current scope to the hierarchy directly above the current one.

• <path_name>
is the path to the module for which you want to display the module information.
You can use a relative or an absolute path.

scope Command Examples

The scope command can be used as follows.

Move up one level in the design hierarchy:

scope..

Move to the module UUT that is instantiated in the current module:

scope UUT

Use the scope command on child instances in a post route netlist:

X_IPAD \CLK/PAD (

.PAD(CLK)

);

Where, \CLK/PAD is an extended identifier:

scope /testbench/UUT/\\CLK/PAD\

Notice that you must constrain the extended identifiers CLK and PAD with a backslash
at the beginning and at the end.

sdfanno

The sdfanno command back-annotates VITAL delays from a Verilog Standard Delay
Format (SDF) file to a VHDL design that is made of VITAL-compliant VHDL models. The
sdfanno command also back-annotates to the timing specified in specify blocks of Verilog
modules.

sdfanno Command Syntax

sdfanno -min | -typ | -max | <file_name>
[<file_name>][-nowarn][-noerror][-root <root_path>]

Where:

-min | -typ | -max| and <file_name> are required. The [options] are any options listed
in Table 9-10, page 119.
118 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
sdfanno Command Options

sdfanno Command Examples

sdfanno -typ Examples

Annotate the submodule called subdesign with the typical delay values from
mysubdesign.sdf:

sdfanno -typ mysubdesign.sdf -root /subdesign

Annotate the current top-level design with the typical delay values from design.sdf and
ignore all errors or warnings:

sdfanno -typ design.sdf -noerror -nowarn

sdfanno -min Example

Annotate the submodule “subdesign” with the minimum delay values from
mysubdesign.sdf:

sdfanno -min mysydesign.sdf -root /subdesign

sdfanno -max Example

Annotate the current top-level design with the maximum delay values found in
design.sdf and ignore warnings:

sdfanno -max design.sdf -nowarn

Table 9-10: sdfanno Command Options

Option Description

-min | -typ | -max A delay switch type (-min, -typ or -max) must be specified in the
sdfanno command.

• -min - Annotates VHDL/Verilog file with fastest possible delay
values, and gives you a Hold Time timing simulation.

• -typ - Annotates VHDL/Verilog file with typical delay values.
• -max - Annotates VHDL/Verilog file with longest possible delay

values, and gives you a Setup Time timing simulation.

<file_name> Name of the SDF file that contains the delay information. A
filename must be specified in the sdfanno command.

-nowarn Turns off warning messages.

-noerror Turns error messages into warning messages. This lets you continue
simulation even though there are errors in SDF back-annotation.

-root <root_path> Specifies the place in the design to apply annotation. The paths
specified in the SDF file are relative to the place in the design
hierarchy specified by <root_path>. By default, the root is at the
top level of the design.
ISim User Guide www.xilinx.com 119
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
show

The show command displays selected aspects of the design.

show Command Syntax

show [child | child -r][constant][driver <signal_name>]

[load <signal_name>][port][scope][signal][time]

value [<generic_name> | <parameter_name> |

<process_name>/<process_variable_name>] [<signal_name>

[element references...]<object> [-radix <radix_type>] variable

show Command Options

Table 9-11: show Command Options

Option Description

child | child -r The child displays the children blocks (one level only) from the current block. The
child -r option recursively lists all children blocks, including the child processes
from the current block.

constant Lists constants, generics, and parameters within the current block.

driver <signal_name> Displays the processes that are driving the signal specified by <signal_name>.

If possible, it prints the line numbers of the HDL code that is contributing to the
driver.

load <signal_name> Displays all of the load for the signal specified by <signal_name>.

port Displays the port signals within the current block. This command identifies signals
as inputs or outputs.

scope Displays the current scope in the design hierarchy. You can view, but not alter, the
hierarchy location. This command is identical to the scope command without the
<path_name> option.

signal Displays signals within the current module including port signals.

time Displays the simulator current time.

value [<generic_name> |
<parameter_name> |

<process_name>/
<process_variable_name>]

• <generic_name> is the name of the VHDL generic to be queried.
• <parameter_name> is the name of the VHDL parameter to be queried.
• <process_name/process_variable_name> is the name of the process and

process variable to be queried. To query the value of a process variable, you
must also supply the name of the process that contains the variable. The process
name and process variable names must be separated by a forward slash/.
120 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
show Command Examples

show child

If you are located at the top level of the hierarchy in a design called fifo_controller
and type show child, the following hierarchy information displays:

Block Name: <fifo_controller>

Type show child -r for the same level of the design, and the current and recursive
hierarchy information displays.

show driver

If you are located at the top-level of the hierarchy in a design called fifo_count and type
show driver fifocount, the following information displays for the signal fifocount:

<Driver for fifocount>

fifoctlr_cc_v2.v:221

The number 221 at the end of the lines refers to the code line in the source file.

[<signal_name>

[element references...]

• <signal_name> is the name of the signal or bus to be queried. This can also be
the name of an array of signals or buses, an array of records containing signals
and buses, or a record of arrays of buses/signals.
• Use a dot (.) to separate the record hierarchy, as in: show value recsig.c
• Use a forward slash / to delimit the hierarchical name of the signal to query

a value to a signal on a lower level of hierarchy, as in:
show value mymod/mysig [element reference] refers to the
different ways in which the sub-elements of the signal name can be
referenced when used with the show command.

This allows further refinement to the signals by referencing the individual
sub-elements of a signal. See the following examples:

• Two integers separated by a colon and enclosed in parenthesis displays a
range of values in the vector specified by <signal_name>. For example:
show value(3:0)

• One or more integers separated by commas and enclosed by parenthesis
displays the values of elements in a multidimensional array specified by
<signal_name>. For example: show value(2,3)

<object>

[-radix <radix_type>]

• <object> [-radix <radix_type>] displays values with the specified
radix. For <object>, set the HDL object data type.

• Supported <radix_type> are: default, dec, bin, oct, hex,
unsigned, and ascii. When no radix type is specified, the global radix type
set with the isim set radix command is used, or if none is set with that
command, default is used

variable Displays all of the variables within the current block. To see variables within a
VHDL process, use the scope command to navigate to the VHDL process and then
run show variable.

Table 9-11: show Command Options (Cont’d)

Option Description
ISim User Guide www.xilinx.com 121
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
show load

If you are located at the top-level of the hierarchy in a design called fifo_count and type
show load fifocount, the following information displays for the signal fifocount:

<Load for fifocount>

Signal <Hex(0)> (Block: fifo_count/Lsbled/)

Signal <Hex(1)> (Block: fifo_count/Lsbled/)

Signal <Hex(2)> (Block: fifo_count/Lsbled/)

Signal <Hex(3)> (Block: fifo_count/Lsbled/)

show scope

If you are located at the top level of the hierarchy in a design called fifo_count and type
show scope, the following information displays:

<Block> /tb_cc_func/

show value (Signal)

Query a value to a signal called clk:

show value clk

Query a value to a 4-bit bus called busx:

show value busx

Query the value of addr:

show value addr

• Displays: 0111010101011101.

show value addr -radix hex

• Displays 755D.

show value addr -radix dec

• Displays 30045.

show value (Object)

The following examples refer to a standard logic vector called sigx that is declared as
follows:

signal sigx : std_logic_vector(0 to 5);

Query bit 0 of sig :

show value sigx(0)

Query slice 1 to 2 of sigx:

show value sigx(1:2)

Query all of sigx:

show value sigx
122 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
show value of Array of Objects

The following examples refer to an array of standard logic vectors that is declared as
follows:

signal sigarray: vectorarray(0 to 5, 1 to 4, 2 to 6);

Query every bit of a vector array element of sigarray:

show value sigarray(0,1,2)

Query the first two bits of each array element of sigarray:

show value sigarray(0,1,2)(1:2)

Query bits three of each array element of sigarray:

show value sigarray(0,1,2)(3)

An array of records which in turn contains an array of standard logic vectors is declared as
follows:

type ram_3d_vector is array(0 to 10, 7 downto 0, 0 to 2) of
std_logic_vector(1 to 4);

type rectype is record

a: integer;

b: string(1 to 7);

c: std_logic_vector(0 to 3);

d: ram_3d_vector;

end record;

type recarray is array(0 to 3, 4 downto 1) of rectype;

signal recarrsig: recarray;

signal recsig: rectype;

Query the second element b of the record recsig:

show value recsig.b(2:4)

Query the four-bit wide vector represented by the coordinates 2,3,1 in the
three-dimensional array d in the record recsig:

show value recsig.d(2,3,1)

Query the first two bits of the four bit wide vector represented by the coordinates 2,3,1 in
the three-dimensional array d in the record recsig:

show value recsig.d(2,3,1)(1:2)

Query the four-bit-wide vector represented by the coordinates 2,3,1 in the
three-dimensional array d,in the record recsig represented by the coordinates 2,2 in the
two-dimensional array recarrsig:

show value recarrsig(2,2).d(2,3,1)

step

After you run an initial simulation, you can step through your HDL design one line of
source code at a time to verify that the design is working as expected.
ISim User Guide www.xilinx.com 123
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
step

The step command advances to the next line of executable code in the Verilog or VHDL
file. The equivalent GUI command is Simulation > Step.

step Command Syntax

step

where no options are available.

step Command Example

Step through one line of HDL source code:

step

test

The test command compares the actual value of a VHDL signal, Verilog wire, Verilog reg,
VHDL generic, Verilog parameter or VHDL process variable in the current scope with a
supplied value.

If the two values match, nothing is displayed. Otherwise the current correct value is
displayed, and ISim reports an error. You can test one bit, a slice of a vector element or a
whole value.

test Command Syntax

test <signal_name>| <vhdl_process_name /<process_variable_name>]
[element reference...]<value>
<object> <value> [-radix <radix_type>]

test Command Options

Table 9-12: test Command Options

Option Description

<signal_name>|
<vhdl_process_name /
<process_variable_name>

[element reference...]

<value>

• <signal_name> is the name of the signal or bus to be compared. This can also be
the name of an array of signals or buses, an array of records containing signals and
buses or a record of arrays of buses/signals.

• <vhdl_process_name/process_variable_name>
is the name of the process and process variable to be compared. To compare the
value of a process variable, you must also supply the name of the process that
contains the variable. The process name and process variable names must be
separated by a forward slash /.

• element reference are the different ways in which the sub-elements of the
signal name can be referenced when used with the test command. This provides
the ability to further refine the signals by referencing the individual sub-elements
of a signal.

• <value> is the supplied value to compare with actual value on net or bus.

<object> <value>

[-radix <radix_type>]

Compares the specified value with the specified radix to object value.

• <object> specifies the signals, buses, or objects to test.
• <value> is the value to add to the object. The supported radix types are:

default, dec, bin, oct, hex, unsigned, and ascii. When no radix type
is specified, the global radix type set with the isim set radix command is used,
or if none is set, default is used.
124 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
test Command Examples

The test command can be used as follows.

Compare a bit values of 1 to a signal called count(6) in the module u1 that is instantiated
under your current scope:

test u1/count(6) 1

Compare the value of signal A to FF:

test A FF -radix hex

Compare value with clk value:

test clk “U”

Returns: 1

Compare value with clk value:

test clk “0”

Returns: 0

Stop simulation if /top/rst is 0.

if {[test /top/rst 0]} {stop} else...

For the signal Reset in Block UUT, the command test Reset 1 displays the following
message:

test failed Command failed: test Reset 1 1 Net Reset has value 0 not
1 as expected.

For the bus, Lsbcnt in UUT: the command test Lsbcnt 1001 displays the following
message:

test passed 0

For a standard logic vector called sigx that is declared as follows:

signal sigx: std_logic_vector(0 to 5);

Compare bit 0 of sigx to 1:

test sigx(0) 1

Compare slice 1 to 2 of sigx to 11:

test sigx(1:2) 11

Compare all of sigx to 101010:

test sigx 101010

For an array of standard logic vectors that is declared as follows:

signal sigarray: vectorarray(0 to 5, 1 to 4, 2 to 6);

Compare every bit of a vector array element of sigarray to 1:

test sigarray(0,1,2)1111

Compare the first two bits of each array element of sigarray to 10:

test sigarray(0,1,2)(1:2)10

Compare bits three of each array element of sigarray to 1:

test sigarray(0,1,2)(3)1
ISim User Guide www.xilinx.com 125
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
For an array of records that contains an array of standard logic vectors and is declared as
follows:

type ram_3d_vector is array(0 to 10, 7 downto 0, 0 to 2) of
std_logic_vector(1 to 4);

type rectype is record

a: integer;

b: string(1 to 7);

c: std_logic_vector(0 to 3);

d: ram_3d_vector;

end record;

type recarray is array(0 to 3, 4 downto 1) of rectype;

signal recarrsig: recarray;

signal recsig: rectype;

Compare the second element (b) of the record recsig to the string abc:

test recsig.b(2:4)abc

Compare the four bit wide vector represented by the coordinates 2,3,1 in the three
dimensional array d in the record recsig to 0110:

test recsig.d(2,3,1) 0110

Compare the first two bits of the four bit wide vector represented by the coordinates 2,3,1
in the three dimensional array d in the record recsig to 01:

test recsig.d(2,3,1)(1:2) 01

Compare the four bit wide vector represented by the coordinates 2,3,1 in the three
dimensional array d in the record recsig represented by the coordinates 2,2 in the two
dimensional array recarrsig to 0011:

test recarrsig(2,2).d(2,3,1)0011
126 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
vcd

The vcd command generates simulation results in Value Change Dump (VCD) format.
This command lets you:

• Dump specified instances to a VCD file

• Name the VCD file

• Start and stop the dump process

and other functions. See Chapter 7, Writing Activity Data for Power Consumption.

vcd Command Syntax

vcd [dumpfile <file_name>][dumpvars -m <module_name> [-l <level>]]
[dumpoff][dumpon][dumpall][dumplimit <file_size>][dumpflush]

vcd Command Options

vcd Command Examples

The vcd command can be used as follows.

Following are the commands you would use to write the VCD simulation values of the
module UUT to a VCD file after running simulation for 1000 ns.

Table 9-13: vcd Command Options

Option Description

dumpfile <file_name> Gives a name to VCD file. The default file name is dump.vcd. Invokes the Verilog
$dumpfile directive.

dumpvars -m
<module_name>
[-l <level>]

Dumps the specified variables and their values to the VCD file.

-m <module_name> dumps the module of that name.

-l <level> {0|1}

• 0 causes a dump of all variables in the specified module and in all module
instances below the specified module. The argument 0 applies only to
subsequent arguments which specify module instances, and not to individual
variables.

• 1 dumps all variable within the module specified by -m; it does not dump
variables in any of the modules instantiated by the module specified by -m.

Invokes the Verilog $dumpfile directive.

dumpoff Temporarily suspends the dumping process, and dumps all selected variables as an X
value. Invokes the Verilog $dumpoff directive.

dumpon Resumes the dumping process after the dumpoff option is invoked, and dumps all
selected values at the time dumpon is invoked. Invokes the Verilog $dumpon directive.

dumpall Creates a checkpoint in the VCD file that dumps the current value of all selected
variables. Invokes the Verilog $dumpall directive.

dumplimit <file_size> Limits the size of the VCD file. <file_size> specifies the maximum size of the VCD
file in bytes. When the size of VCD file reaches the limit, the dump process stops and
a comment is inserted in the VCD file indicating that the dump limit was reached.
Invokes Verilog $dumplimit directive.

dumpflush Empties the operating system VCD file buffer to ensure that all the data in that buffer
is stored in the VCD file. After executing, dump process resumes as before so no value
changes are lost. Invokes Verilog $dumpflush directive.
ISim User Guide www.xilinx.com 127
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
Specify which file to write:

vcd dumpfile adder.vcd

Specify which module net activities to write:

vcd dumpvars -m /UUT

Run simulation for given time:

run 1000 ns

Dump the activity data to the VCD file.

vcd dumpflush

wave log

The wave log command logs simulation output of HDL object(s) to a waveform database
(wdb) file. VHDL signal, Verilog wire, and Verilog reg type HDL objects can be logged.
Logging of VHDL variables is not supported.

wave log Command Syntax

wave log [-r] [<object_name>]

Where:

• -r
Recursively adds all child modules of the specified block

• <object_name>
HDL object whose simulation output is to be logged to the waveform database.
The <object_name> can also be a hierarchical instance name
(for example: /tb/UUT) of a block in which case all HDL objects within the given
block are logged.

Wild characters such as * are not supported in the <object_name>.
To add all HDL objects inside instance of a block, the instance name of the block
can be used (for example: wave add /UUT is the same as wave add /UUT/* if *
were supported).

wave log Command Examples

Log the signals associated with the module instances /tb/UUT and /tb/child/gt to
the waveform database:

wave log /tb/UUT /tb/child/gt

Log all signals in the design:

wave log -r /

Waveform Window Commands

wcfg new

The wcfg new command creates a new wave configuration and opens it in a new window.

wcfg new Command Syntax

wcfg new
128 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
wcfg new Command Example

Create a new wave configuration:

wcfg new

wcfg open

The wcfg open command opens a wave configuration from a file into a new window.

wcfg open Command Syntax

wcfg open <filename>

The <filename> command option specifies the name of the WCFG file to open.

wcfg open Command Example

Open a WCFG file of the name, toplevel.wcfg:

wcfg open toplevel.wcfg

wcfg save

The wcfg save command saves the active wave configuration to a file.

wcfg save Command Syntax

wcfg save <filename>

wcfg save Command Option

The wcfg save command option, <filename>, specifies the name of the WCFG file to
save.

wcfg save Command Example

Save the active wave configuration to a WCFG file named toplevel.wcfg:

wcfg save toplevel.wcfg

wcfg select

The wcfg select command makes the specified wave configuration the active window.

wcfg select Command Syntax

wcfg select <wave_config_name>

wcfg select Command Option

The wcfg select command option <wave_config_name> specifies the wave
configuration to activate. The <wave_config_name> must be the name of an open, existing
wave configuration; otherwise, the command reports an error.

wcfg select Command Example

Activate the wave configuration named design:

wcfg select design
ISim User Guide www.xilinx.com 129
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
wave add

The wave add command adds HDL object(s) to the currently active wave configuration in
the ISim graphical user interface and logs simulation output of the HDL object(s) to a
waveform database (wdb) file. The waveform database file is named as isim.wdb by
default and can be changed using the -wdb switch with the simulation executable. The
wave configuration displays in the Wave window.

The equivalent GUI command is to right-click in the wave window for the context menu
and select the Add to Wave Window option.

wave add Command Syntax

wave add [-into <ID>][-reverse][-radix <radix>][-color
<color>][-name <custom_name>] [-r] [<object_name>]

wave add Command Options

wave add Command Examples

The wave add command can be used as follows.

Add the signals associated with object UUT to the current wave configuration:

wave add /tb/UUT

Add all top-level signals:

wave add /

Table 9-14: wave add Command Options

Option Description

-into <ID> Specifies object ID of the group or virtual bus into which the object should be added.

-reverse Reverses the bus order (MSB to LSB or vice versa).

-radix <radix> Uses the specified radix when displaying signal values. The value of <radix> is one
of default, bin, oct, hex, dec, unsigned, or ascii.

-color <color> Sets the simulation object(s) to the specified <color>. The value of is defined in RGB
format.

For example: #0000FF is blue, #FF0000 is red, and #00FF00 is green.

You can also specify the textual name of color can for some of the popular colors. The
following color names are accepted: black, red, darkred, green,
darkgreen, blue, darkblue, cyan, darkcyan, magenta, darkmagenta,
darkyellow, gray, darkgray, lightgray. The RGB values for these colors are
defined in the RGB table.

-name <custom_name> Names the wave object with a custom name.

-r Adds objects associated with each block to the waveform, down to the lowest level of
hierarchy. Without -r, the first level objects of the block(s) entered as <object_name>
are added.

<object_name> Specifies HDL object whose simulation output is to be logged to the waveform
database. The <object_name> can also be a hierarchical instance name (for example:
/tb/UUT) of a block, in which case all HDL objects within the given block are logged.
This option does not support the use of wild card characters. To add all HDL objects
inside instance of a block, use the block instance name.
130 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
Add all signals in the design in color whose RGB value is #00FF10:

wave add -r / -color #00FF10

Add specific signals with radix hex and in color red:

wave add /tb/clk /tb/UUT/data -radix hex -color red

divider add

The divider add command adds a new divider.

divider add Command Syntax

divider add [-into <ID>][-color <color>]

Where:

• -into <ID>
Specifies the object ID of the group into which the divider should be added

• -color <color>
Sets the divider color to the specified <color>. The value of is defined in RGB
format.

For example: #0000FF is blue, #FF0000 is red, and #00FF00 is green.

You can also specify the textual name of color can for some of the popular colors.
The following color names are accepted: black, red, darkred, green,
darkgreen, blue, darkblue, cyan, darkcyan, magenta, darkmagenta,
darkyellow, gray, darkgray, lightgray. The RGB values for these colors
are defined in the RGB table.

divider add Command Examples

Add a divider with name Inputs to the current wave configuration:

divider add Inputs

Add red divider with name Outputs:

divider add Outputs -color red

Add dividers into a group:

set test_group_id [group add test_group]

wave add “dcm_clk_s” /tb/data2 -into $test_group_id

divider add data -color blue -into $test_group_id

wave add “addr1” /tb/UUT/addr2 -into $test_group_id

divider add address -color red -into $test_group_id

group add

The group add command adds a new group.

group add Command Syntax

group add [-into <ID>]

Where:

• -into <ID>
Specifies the object ID of an already existing group into which to add a newly created
group.
ISim User Guide www.xilinx.com 131
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
group add Command Examples

Add a group with name Inputs to the current wave configuration:

group add Inputs

Create a group that adds a simulation object, dcm_clk_s, to the group:

set test_group_id [group add test_group]

wave add “dcm_clk_s” -into $test_group_id

Create groups within a group:

set group_id [group add test_group]

set group_id_1 [group add group_1 ?into $group_id]

set group_id_2 [group add group_2 ?into $group_id]

wave add clk read_ok -into $group_id_1

wave add data_w -into $group_id_2

virtualbus add

The virtualbus add command adds a new virtual bus to the currently active waveform
configuration. The bus is empty when it is created. Subsequently, HDL objects can be
added to populate the virtual bus as desired.

virtualbus add Command Syntax

virtualbus add <name> [-into <ID>][-reverse][-radix <radix>]
[-color <color>]

virtualbus add Command Options

virtualbus add Command Examples

Add a virtual bus with name mybus having radix as hexadecimal to the current wave
configuration:

virtualbus add <mybus> -radix hex

Option Description

<name> Name of the virtual bus.

-into <ID> Specifies the object ID of an existing virtual bus into which to add the new virtual bus.

-reverse Reverses the bus order.

-radix <radix> Uses the specified radix when displaying signal values.

The value of <radix> is one of bin, oct, hex, signed, dec, or ascii.

-color <color> Sets the virtual bus color as specified. The value of is defined in RGB format. For example:

#0000FF is blue, #FF0000 is red, and #00FF00 is green.

You can also specify the textual name of a color for some of the popular colors. The following color
names are accepted: black, red, darkred, green, darkgreen, blue, darkblue,
cyan, darkcyan, magenta, darkmagenta, darkyellow, gray, darkgray,
lightgray. The RGB values for these colors are defined in the RGB table.
132 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Tcl Commands
Create a virtual bus that adds two simulation objects, sigA and sigB, to the virtual bus:

set vbusId [virtualbus add mybus -radix hex]

wave add sigA -into $vbusId

wave add sigB -into $vbusId

marker add

The marker add command adds a new marker.

marker add Command Syntax

marker add <time>

The <time> option lets you specify the time location at which to add the new marker. If you do
not specify the time unit, you can get the default user time unit by running the
isim get userunit command.

marker add Command Examples

Add a marker at 10 ns to the current wave configuration: marker add 10 ns
ISim User Guide www.xilinx.com 133
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Chapter 9: ISim Tcl Commands
134 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Appendix A

Library Mapping File (xilinxisim.ini)

The ISim HDL compile programs, vhpcomp, vlogcomp, and fuse, use the
xilinxisim.ini configuration file to find the definitions and physical locations of VHDL
and Verilog logical libraries.

The compilers attempt to read xilinxisim.ini from these locations in the following
order.

1. $XILINX/vhdl/hdp/<platform>.

2. User-file specified through the -initfile switch. If -initfile is not specified, the
program searches for xilinxsim.ini in the current working directory.

The xilinxisim.ini file has the following syntax:

<logical_library1> = <physical_dir_path1>
<logical_library2> = <physical_dir_path2>
<logical_libraryn> = <physical_dir_pathn>

The following is an example xilinxisim.ini file:

VHDL
std=C:/libs/vhdl/hdp/
stdieee=C:/libs/vhdl/hdp/ieee
work=C:/workVerilog
unisims_ver=$XILINX/rtf/verilog/hdp/nt/unisims_ver
xilinxcorelib_ver=C:/libs/verilog/hdp/nt/xilinxcorelib_ver
mylib=./mylib
work=C:/work

The xilinxisim.ini file has the following features and limitations:

• There must be no more than one library path per line inside the xilinxisim.ini file.

• If the directory corresponding to the physical path does not exist, vhpcomp or
vlogcomp creates it when the compiler first tries to write to it.

• You can describe the physical path in terms of environment variables. The
environment variable must start with the $ character.

• The default physical directory for a logical library is
isim/<logical_library_name>.

• File comments must start with --
ISim User Guide www.xilinx.com 135
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Appendix A: Library Mapping File (xilinxisim.ini)
136 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

VHDL Language Support Exceptions
Appendix B

Exceptions to VHDL and Verilog
Language Support

VHDL Language Support Exceptions
ISim supports:

• VHDL IEEE-STD-1076-1993
• Verilog IEEE-STD-1364-2001

with exceptions as noted in the Exceptions Column in the following tables.
.

Table B -1: VHDL Language Support Exceptions

Supported VHDL Construct Exceptions

abstract_literal Floating point expressed as based literals are not
supported.

aggregate Mixing choice directions in an aggregate is not
supported.

alias_declaration Alias to non-objects are in general not supported;
particularly the following:

• Alias of an alias
• Alias declaration without subtype_indication
• Signature on alias declarations
• Operator symbol as alias_designator
• Alias of an operator symbol
• Character literals as alias designators

alias_designator • Operator_symbol as alias_designator
• Character_literal as alias_designator

association_element Globally, locally static range is acceptable for taking slice
of an actual in an association element.

attribute_name Signature after prefix is not supported.

binding_indication Binding_indication without use of entity_aspect is not
supported.

bit_string_literal. Empty bit_string_literal ("") is not supported

block_statement Guard_expression is not supported; for example,
guarded blocks, guarded signals, guarded targets, and
guarded assignments are not supported.
ISim User Guide www.xilinx.com 137
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix B: Exceptions to VHDL and Verilog Language Support
choice Aggregate used as choice in case statement is not
supported.

concurrent_assertion_statement Postponed is not supported.

concurrent_signal_assignment_s
tatement

Postponed is not supported.

concurrent_statement Concurrent procedure call containing wait statement is
not supported.

conditional_signal_assignment Keyword guarded as part of options is not supported as
there is no supported for guarded signal assignment.

configuration_declaration Non locally static for generate index used in
configuration is not supported.

entity_class Literals, unit, file and group as entity class are not
supported.

entity_class_entry Optional <> intended for use with group templates is not
supported.

file_logical_name Although file_logical_name is allowed to be any wild
expression evaluating to a string value, only string literal
and identifier is acceptable as file name.

function_call In named parameter association in a function_call
slicing, indexing or selection of formals is not supported.

instantiated_unit Direct configuration instantiation is not supported.

mode Linkage and Buffer ports are not supported completely.

options Guarded is not supported.

primary At places where primary is used, allocator is expanded
there.

procedure_call In named parameter association in a procedure_call
slicing, indexing or selection of formals is not supported.

process_statement Postponed processes are not supported.

selected_signal_assignment The "guarded" keyword as part of options is not
supported as there is no support for guarded signal
assignment.

signal_declaration Signal_kind is not supported. Signal_kind is used for
declaring guarded signals, which are not supported.

subtype_indicationd. Resolved subtype of composites (arrays and records) is
not supported

waveform. Unaffected is not supported.

waveform_element Null waveform element is not supported as it only has
relevance in the context of guarded signals.

Table B -1: VHDL Language Support Exceptions (Cont’d)

Supported VHDL Construct Exceptions
138 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Verilog Language Support Exceptions
Verilog Language Support Exceptions
The following table lists the exceptions to supported Verilog language support.

Table B -2: Verilog Language Support Exceptions

Verilog Construct Exception

Compiler Directive Constructs

`celldefine not supported

`endcelldefine not supported

`undefs Supports parameterized `define macros.

`unconnected_drive not supported

`nounconnected_drive not supported

Attributes

attribute_instance not supported

attr_spec not supported

attr_name not supported

Primitive Gate and Switch Types

cmos_switchtype not supported

mos_switchtype not supported

pass_en_switchtype not supported

Generated Instantiation

generated_instantiation The module_or_generate_item alternative is not
supported.

Production from 1364-2001 Verilog standard:
generate_item_or_null ::=
generate_conditonal_statement |
generate_case_statement |
generate_loop_statement |
generate_block |
module_or_generate_item

Production supported by Simulator:
generate_item_or_null ::=
generate_conditional_statement|
generate_case_statement |
generate_loop_statement |
generate_blockgenerate_condition
ISim User Guide www.xilinx.com 139
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix B: Exceptions to VHDL and Verilog Language Support
genvar_assignment Partially supported.

All generate blocks must be named.

Production from 1364-2001 Verilog standard:
generate_block ::=
begin
[: generate_block_identifier]
{ generate_item }
end

Production supported by Simulator:
generate_block ::=
begin:
generate_block_identifier {
generate_item }
end

Source Text Constructs

Library Source Text

library_text not supported

library_descriptions not supported

library_declaration not supported

include_statement This refers to include statements within library map
files (See IEEE 1364-2001, section 13.2). This does not
refer to the `include compiler directive.

Configuration Source Text

config_declaration not supported

design_statement not supported

config_rule_statement not supported

default_clause not supported

System Timing Check Commands

$skew_timing_check not supported

$timeskew_timing_check not supported

$fullskew_timing_check not supported

$nochange_timing_check not supported

System Timing Check Command Argument

checktime_condition not supported

PLA Modeling Tasks

$async$nand$array not supported

$async$nor$array not supported

$async$or$array not supported

Table B -2: Verilog Language Support Exceptions (Cont’d)

Verilog Construct Exception
140 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Verilog Language Support Exceptions
$sync$and$array not supported

$sync$nand$array not supported

$sync$nor$array not supported

$sync$or$array not supported

$async$and$plane not supported

$async$nand$plane not supported

$async$nor$plane not supported

$async$or$plane not supported

$sync$and$plane not supported

$sync$nand$plane not supported

$sync$nor$plane not supported

$sync$or$plane not supported

Value Change Dump (VCD) Files

$dumpportson

$dumpports

$dumpportsoff,
$dumpportsflush,
$dumpportslimit

$vcdplus

not supported

Table B -2: Verilog Language Support Exceptions (Cont’d)

Verilog Construct Exception
ISim User Guide www.xilinx.com 141
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix B: Exceptions to VHDL and Verilog Language Support
142 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

About ModelSim XE
Appendix C

Migrating from ModelSim XE to ISim

Retargeting from a ModelSim XE simulation environment to a Xilinx® ISim simulation
environment can be accomplished without significantly modifying the existing
environment.

This overview identifies and details the appropriate migration guidelines and other
considerations for making the switch from ModelSim XE to ISim.

To get the best use of the underlying innovations of ISim, a video demonstration and
tutorials are also available:

• Tutorials: http://www.xilinx.com/support/documentation/dt_ise.htm

• ISim Video Demos:
http://www.xilinx.com/products/design_resources/design_tool/resources/
index.htm

• ISim Product Page: http://www.xilinx.com/tools/isim.htm

About ModelSim XE
ModelSim XE stands for ModelSim Xilinx Edition, which is an OEM product from Mentor
Graphics. ModelSim XE provides a complete HDL simulation environment that lets you
verify the functional and timing models of your design, and your HDL source code.
ModelSim XE was discontinued in the Xilinx ISE® Design Suite 12.4 tool release. See the
Product Discontinuance Notice at:
http://www.xilinx.com/support/documentation/customer_notices/xcn10028.pdf

ModelSim XE was shipped with each major Xilinx ISE Design Suite release through
version 12.3. There were two versions:

• ModelSim XE Starter - a free version that can be downloaded from the Xilinx website.
A starter license is required for using this product.

• ModelSim XE Full - an OEM version from Mentor Graphics, based on their PE
product line.
ISim User Guide www.xilinx.com 143
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/tools/isim.htm
http://www.xilinx.com/support/documentation/customer_notices/xcn10028.pdf

 Appendix C: Migrating from ModelSim XE to ISim
About ISim
ISim is a Xilinx simulation product that provides a complete, full-featured HDL simulator
integrated within the ISE tool and the PlanAhead™ tool, Embedded Development Kit
(EDK), and System Generator.

ISim is available with all major Xilinx tools releases and comes in two versions:

• ISim Lite: A limited version of the ISE Simulator. In this version, when your design
plus test bench exceeds 50,000 lines of HDL code, the simulator begins to derate the
performance of the simulator for that invocation.

• ISim Full: The full version of ISE Simulator.

Feature comparison
Table C-1: ModelSim and ISim Feature Comparison

Feature ModelSim XE Starter ModelSim XE Full ISim Lite ISim Full

Line Limit (Statements) 10,000 40,000 50,000 None

Performance 30% of ModelSim PE
or ModelSim DE

40% of ModelSim PE
or ModelSim DE

Same as
ModelSim XE

Same as
ModelSim XE

Mixed Language No No Yes Yes

VHDL Yes Yes Yes Yes

Verilog Yes Yes Yes Yes

System Verilog for
Design

No No No No

System Verilog for
Verification

No No No No

Debugging
Environment

Yes Yes Yes Yes

Standalone Waveform
Viewer

Yes Yes Yes Yes

Memory Viewer/Editor Yes Yes Yes Yes

Verilog PLI/VPI Yes Yes No No

VHDL FLI/VHPI No No No No

Code Coverage No No No No

SecureIP/HardIP
Support No No Yes Yes

EDK Support No No Yes Yes

System Generator
Support

No No Yes Yes

CORE Generator
Support

Yes Yes Yes Yes

MIG Support No No Yes Yes
144 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Simulation Process
Simulation Process
This section describes the different modes of simulation and the steps involved in
simulation. Each sub-section explains the differences between the two simulators.

Figure C-1 shows the different steps in simulation and the process for each step.

Step 1: Gathering Files and Mapping Libraries

ModelSim XE Flow

The ModelSim XE libraries are downloaded from
http://www.xilinx.com/support/download/index.htm.

Each time a new release of the ISE Design Suite is available; you must go to this area and
download the libraries separately. These libraries are marked and must be used to ensure
that the Xilinx libraries are not counted against the line count limits.

The modelsim.ini file delivered with ModelSim XE is pre-mapped with the correct
Xilinx libraries.

Floating License No No Yes Yes

32-bit OS Support Windows Windows Windows/Linux Windows/Linux

64-bit (native) OS
Support

No No Windows/Linux Windows/Linux

Table C-1: ModelSim and ISim Feature Comparison (Cont’d)

Feature ModelSim XE Starter ModelSim XE Full ISim Lite ISim Full

Figure C-1: Simulation Steps
ISim User Guide www.xilinx.com 145
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix C: Migrating from ModelSim XE to ISim
ISim Flow

Libraries for ISim are updated as part of the standard Xilinx installation. No additional
steps are needed. Mapping is also handled automatically by Xilinx. You do not need to
know where to download from or how to map the Xilinx libraries to start simulating.

Step 2: Parsing and Elaborating the Design

ModelSim XE Flow

ModelSim XE uses the following commands for compilation and elaboration. VCOM
options (VHDL Compiler) runs the VHDL compiler and compiles VHDL files to a
specified directory.VLOG options (Verilog Compiler) runs the Verilog compiler and
compiles Verilog files to a specified directory. VSIM options (VSIM simulator) elaborates
the load for the simulation.

For each of these commands, multiple options give you additional control over
compilation and elaboration. For a complete list of equivalent ModelSim XE commands,
see Appendix B, Exceptions to VHDL and Verilog Language Support.

ISim Flow

ISim uses the following commands for compilation and elaboration.

• vhpcomp: (VHDL Compiler) runs the VHDL compiler and compiles VHDL files to a
specified directory.

• vlogcomp: (Verilog Compiler) runs the Verilog compiler and compiles Verilog files to
a specified directory.

• fuse: (VSIM simulator) elaborates the load for the simulation and creates an
executable that needs to be launched to run the simulation.

For each of these commands, multiple options give you additional control over
compilation and elaboration.

Step 3: Simulating the Design

ModelSim XE Flow

Running VSIM elaborates the design and runs the simulation. By default, running vsim
launches the GUI.

To run in command line mode use the -c switch.

ISim Flow

Running fuse creates a named executable. You must run this executable to launch the
simulation. By default this executable is named x.exe, but you can change the name.

By default, running the executable runs the simulation in command line mode. To launch
the GUI, use the -gui switch.
146 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Simulation Process
Step 4: Examining and Debugging the Design

Customizing Wave Operations

ModelSim XE and ISim provide the same capabilities for customizing the waveform
window, but perform the customization differently. ModelSim XE uses standard Tools
Command Language (Tcl) commands for all waveform operations. ISim uses a subset of
Tcl commands, but the majority of the customizing is through the GUI, with results saved
in the waveform configuration file.

The waveform configuration file for ISim is an XML-based file that you cannot edit, while
the waveform Tcl commands in ModelSim XE can be modified. The load time for the wave
configuration through the ISim implementation is faster because loading an XML file is
faster than executing multiple Tcl commands.

Note: ISim does not have Tcl support for all wave configuration operations.

Measuring with Markers and Cursors

Measuring with markers and cursors is different between ModelSim XE and ISim.
ModelSim XE provides cursors to measure between two points of interest. You can add
cursors as needed, and each new cursor gets added under the existing cursors. The
waveform viewer automatically shows the distance between the cursors. Figure C-2 shows
the ModelSim XE waveform with cursors.

ISim has a different approach to measuring. ISim uses both cursors and markers. While in
ModelSim XE a cursor is a permanent measuring stick, ISim cursors are treated as
temporary. ISim has a primary and a secondary cursor that together can be used to
measure between two points. ISim markers let you measure between multiple points,
including the primary cursor. Figure C-3 shows the ISim measure in use.

Figure C-2: ModelSim XE Waveform View with Cursor
ISim User Guide www.xilinx.com 147
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix C: Migrating from ModelSim XE to ISim
ISim also provides a ruler for frame of reference. The selected marker or cursor is always
the 0 location against which all other markers are measured. Figure C-3 shows how to
measure between the edges of interest in ISim.

Note: You cannot rename markers in ISim.

Analog Waveforms

Contact Xilinx Technical Support for more information on availability.

Single-Click Compile and Reload

ModelSim XE has a true text editor built into the standalone GUI which lets you make
changes to HDL code, recompile, and re-simulate.

The ISim GUI has a text viewer only for HDL files. When you make edits to the file, you
cannot recompile and re-simulate. You must shut down the existing simulation, make
HDL modifications in the ISE tool or PlanAhead tool text editor, then re-launch the
simulation in ISim.

Figure C-3: ISim Measure in Use
148 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Simulation Process
Project Navigator Integration

The ISE Project Navigator notifies you when ModelSim XE is not a valid simulator choice,
and that you should select one of the other integrated simulators. The following figure
shows the ISim selection in Project Navigator.

The simulation properties are similar between ModelSim XE and ISim; the following table
lists the differences.

Figure C-4: Project Navigator Project Settings Dialog Box with ISim Selected

Table C-2: Simulation Properties in Project Navigator

ModelSim XE
Property Name

ISim
Property Name

Comments

Library Compilation

Compiled Library Directory
N/A

Pre-compiled libraries delivered with ISE Design Suite
installation for ISim.

Ignore Pre-compiled Library
Warning Check

N/A
ISim User Guide www.xilinx.com 149
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix C: Migrating from ModelSim XE to ISim
Generate Verbose Library
Compilation Messages

N/A

Custom User Commands

Use Custom Do File Use Custom
Simulation Command
File

Use Custom Wave
Configuration File

ISim supports Tcl commands to control engine operation as
well as to control most common GUI operations. In addition,
it allows a faster way to set waveform window using wave
configuration file.

Custom Do File Custom Simulation
Command File

Custom Wave
Configuration File

Use Automatic Do File N/A You cannot prevent Project Navigator from creating the ISim
script.

Custom Compile File List Use Custom Project
File
Custom Project
Filename

Lets you change the compile order of the file.

N/A Waveform Database
Filename

Lets you specify a different database for the simulation.

Custom Compiler Commands

Other VSIM Command
Line Options

Other Compiler
Options
Other Simulator
Commands

ISim splits the VSIM commands into fuse commands and
executable commands.

Other VLOG Command
Line Options Other Compiler

Options

Passes the options to the fuse command in ISim.

Other VCOM Command
Line Options

Runtime Settings

Simulation Run Time Simulation Run Time

Simulation Resolution N/A ISim defaults to 1ps.

Language Settings

Table C-2: Simulation Properties in Project Navigator (Cont’d)

ModelSim XE
Property Name

ISim
Property Name

Comments
150 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Simulation Process
VHDL Syntax N/A The default in ISim is 93.

Use Explicit Declarations
Only

N/A N/A

Other VCOM Command
Line Options

Value Range Check

ModelSim XE does not have specific options for this, but
options can be specified with the “Other Command Line
Options” property.

Specify Search
Directories for
`include
Incremental
Compilation

Specify `define Macro
Name and Value
Incremental
Compilation

N/A Compile for HDL
Debugging

Miscellaneous Settings

Use Configuration Name N/A

Configuration Name N/A

Log All Signals In
Simulation

N/A

Other VSIM Command
Line Options

Specify Top-Level
Instance Name

Table C-2: Simulation Properties in Project Navigator (Cont’d)

ModelSim XE
Property Name

ISim
Property Name

Comments
ISim User Guide www.xilinx.com 151
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

 Appendix C: Migrating from ModelSim XE to ISim
152 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

Xilinx Resources
Appendix D

Additional Resources

Xilinx Resources
• Device User Guides:

http://www.xilinx.com/support/documentation/user_guides.htm

• Xilinx Glossary: http://www.xilinx.com/company/terms.htm

• Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/iil.pdf

• Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf

• Product Support and Documentation: http://www.xilinx.com/support

• Synthesis and Simulation Design Guide (UG626):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/sim.pdf

• PlanAhead User Guide (UG632):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
PlanAhead_UserGuide.pdf

• Command Line Tools User Guide (UG628):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/devref.pdf

• ChipScope Pro Software and Cores User Guide (UG029):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
chipscope_pro_sw_cores_ug029.pdf

• ISE Help: http://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_1/isehelp_start.htm

• XPower Help: http://www.xilinx.com/support/documentation/sw_manuals/
xilinx13_1/isehelp_start.htm#xpa_c_overview.htm

ISim Tutorials
• ISim In-Depth Tutorial (UG682):

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug682.pdf

• ISE Hardware Co-Simulation Tutorial: Accelerating Floating Point FFT Simulation
(UG817):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
ug817_fft_sim_tutorial.pdf
ISim User Guide www.xilinx.com 153
UG660 (v14.1) April 24, 2012

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=irn.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=support
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=sim.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=PlanAhead_UserGuide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=ise+docs;d=devref.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;d=chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;d=chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm#xpa_c_overview.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/isehelp_start.htm#xpa_c_overview.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug682.pdf

Appendix D: Additional Resources
154 www.xilinx.com ISim User Guide
UG660 (v14.1) April 24, 2012

http://www.xilinx.com

	ISim User Guide
	Revision History
	Table of Contents
	Introduction to ISim
	Simulation Libraries
	Language Support
	Feature Support
	Operating System Support
	ISim Modes of Operation
	Simulation Steps Overview
	ISim Tutorials

	Using the ISim GUI
	ISim GUI Overview
	Setting ISim Preferences

	Compilation and Simulation
	Parsing Design Files
	Project File Syntax
	Predefined XILINX_ISIM Macro for Verilog Simulation
	Simulating the Design
	Mixed Language Simulation
	Timing Simulation (Gate-Level Simulation)
	ISim Executable Command
	Pausing a Simulation
	Saving Simulation Results
	Closing Simulation

	Waveform Analysis
	Working with the Wave Configuration
	Customizing the Wave Configuration
	Navigating the Wave Configuration
	Printing Wave Configurations
	Using Custom Colors

	Viewing Simulation Results
	Waveform Databases and Configuration Files
	Opening a Static Simulation

	Debugging at the Source Level
	Stepping Through a Simulation
	Using Breakpoints

	Writing Activity Data for Power Consumption
	Using Hardware Co-Simulation
	Prerequisites
	Use Models
	Limitations
	Usage for Compilation
	fuse Command Line Flow
	Tools Flow
	Hybrid Co-Simulation Flow
	Hardware Board Usage
	Hardware Co-Simulation
	ISim Hardware Co-Simulation Tcl Commands
	Board Support
	Frequently Asked Questions

	ISim Tcl Commands
	Aliasing Simulation Commands
	ISim Wave Viewer Tcl Commands Overview
	Command Line Conventions
	Tcl Commands

	Library Mapping File (xilinxisim.ini)
	Exceptions to VHDL and Verilog Language Support
	VHDL Language Support Exceptions
	Verilog Language Support Exceptions

	Migrating from ModelSim XE to ISim
	About ModelSim XE
	About ISim
	Feature comparison
	Simulation Process

	Additional Resources
	Xilinx Resources
	ISim Tutorials

