
QDMA Subsystem for PCI
Express v1.0

Product Guide
Vivado Design Suite

PG302 (v1.0) April 17, 2018

https://www.xilinx.com

Table of Contents
Chapter 1: IP Facts... 4

Features..4
IP Facts..5

Chapter 2: Overview..7
Glossary.. 8
QDMA Architecture... 8
QDMA Operations... 17
Applications..49
Feature Support Roadmap...49
Licensing and Ordering.. 50

Chapter 3: Product Specification... 51
Standards... 51
Minimum Device Requirements.. 51
Port Descriptions...52
Register Space... 67
Context Structure Definition..108
Queue Entry Structure..111

Chapter 4: Designing with the Subsystem... 114
General Design Guidelines...114
Clocking.. 115

Chapter 5: Design Flow Steps...117
Customizing and Generating the Subsystem.. 117
Constraining the Subsystem..129
Simulation.. 131
Synthesis and Implementation... 133

Chapter 6: Example Design... 134
AXI4 Memory Mapped and AXI Stream Default Example Design..................................... 134

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=2

Appendix A: Upgrading... 140
Comparing With DMA/Bridge Subsystem for PCI Express ... 140

Appendix B: Debugging...141
Finding Help on Xilinx.com.. 141
Debug Tools... 142
Hardware Debug... 143

Appendix C: Application Software Development......................................144
Device Drivers..144
Linux DMA Software Architecture (PF/VF)... 145
Using the Driver.. 145
Reference Software Driver Flow.. 147

Appendix D: Additional Resources and Legal Notices........................... 154
Xilinx Resources...154
Documentation Navigator and Design Hubs.. 154
References..155
Training Resources..155
Revision History...155
Please Read: Important Legal Notices... 156

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=3

Chapter 1

IP Facts
The Xilinx QDMA Subsystem for PCI Express® (PCIe®) implements a high performance DMA for
use with the PCI Express® 3.x Integrated Block with the concept of multiple queues that is
different from the DMA/Bridge Subsystem for PCI Express which uses multiple C2H and H2C
channels.

Features
• Supports PCIe Integrated Blocks in UltraScale+™ devices, including Virtex® UltraScale+™

devices with high bandwidth memory (HBM).

• Supports 64, 128, 256 and 512-bit data path.

• Supports x1, x2, x4, x8, or x16 link widths.

• Supports Gen1, Gen2, and Gen3 link speeds.

• Support for both the AXI4 Memory Mapped and AXI4-Stream interfaces per queue.

• 2K queue sets

○ 2K H2C Descriptor rings.

○ 2K C2H Descriptor rings.

○ 2K C2H Write back rings.

• Supports Polling Mode (Status Descriptor Write Back).

• Interrupts

○ 2K MSI-X vectors.

○ Up to 8 MSI-X per function.

○ Interrupt coalescing.

• C2H Stream interrupt moderation.

• C2H AXI4-Stream Completion (CMPT) interrupt entry coalescence.

• Descriptor and DMA customization through user logic

Chapter 1: IP Facts

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=4

○ Allows custom Descriptor format.

○ Traffic Management.

• Supports SR-IOV up to 4 Physical Functions (PF) and 252 Virtual Functions (VF)

○ Thin Hypervisor model.

○ Allows only privileged/Physical functions to program contexts and registers.

○ Function Level Reset (FLR) support.

○ Mailbox.

The 2018.1 version of this IP is marked as BETA. Not all features listed above are supported in
the current release. For a list of features that are not supported, see Feature Support Roadmap.
Some ports and the Descriptor Format will change in 2018.2. For more information, contact
Xilinx Support.

IP Facts

LogiCORE IP Facts Table
Subsystem Specifics

Supported Device Family1 UltraScale+™

Supported User Interfaces AXI4 Memory Map, AXI4-Stream, AXI4-Lite

Resources Not Provided

Subsystem

Design Files Encrypted System Verilog

Example Design Verilog

Test Bench Verilog

Constraints File Xilinx Constraints File (XDC)

Simulation Model Verilog

Supported S/W Driver2 Linux, Windows, DPDK Drivers

Tested Design Flows3

Design Entry Vivado Design Suite

Simulation For supported simulators, see the Xilinx Design Tools:
Release Notes Guide.

Synthesis Vivado Synthesis

Chapter 1: IP Facts

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=5

LogiCORE IP Facts Table
Support

Provided by Xilinx® at the Xilinx Support web page

Notes:

1. For a complete list of supported devices, see the Vivado IP catalog.
2. Standalone driver details can be found in AR 70928.
3. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Chapter 1: IP Facts

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 6Send Feedback

https://www.xilinx.com/support
http://www.xilinx.com/support/answers/70928.htm
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.1;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=6

Chapter 2

Overview
The Queue DMA (QDMA) subsystem provides PCI Express (PCIe) based high bandwidth and high
packet rate by using the UltraScale+ Integrated Block for PCI Express in conjunction with an
extensive DMA and bridge infrastructure. The primary mechanism for data transfer is
bidirectional Endpoint (“Card”) initiated transactions from Host to Card (H2C) and Card to Host
(C2H). QDMA provides a secondary option of Host initiated memory accesses to AXI space on
the card (Target Bridge – Master), and user logic initiated direct access to the Host (Target Bridge
– Slave), including PCIe and AXI4 memory mapping. The primary user interfaces to the DMA
engines are: AXI4 Memory Mapped (AXI-MM) and AXI4-Stream (AXI-ST); AXI4 Memory Mapped
and AXI4-Lite for direct host or user logic initiated access; and several other functional
interfaces. The user logic and software interact through the PCIe Base Address Registers (BAR)
interfaces and AXI4-Lite Slave (AXI-L) register interfaces to set up and control the subsystem.

The QDMA Subsystem for PCIe offers a wide range of setup and use options, many selectable on
a per-queue basis, such as memory mapped DMA or stream DMA, interrupt mode or polling, etc.
The subsystem provides many options for customizing the Descriptor and DMA through user
logic to provide complex traffic management capabilities.

The main difference between QDMA and other DMA offerings is the concept of Queues. The
idea of Queues is derived from the “queue set” concepts of Remote Direct Memory Access
(RDMA) from high performance computing (HPC) interconnects. These Queues can be
individually configured by interface type, and they function in many different modes. Based on
how the DMA descriptors are loaded for a single Queue, each Queue provides a very low
overhead option for setup and continuous update functionality. By assigning Queues as
resources to multiple PCIe Physical and Virtual Functions, a single QDMA core and PCI Express
interface can be used across a wide variety of multi-function and virtualized application spaces.

A common usage example for the QDMA Subsystem for PCIe is to implement Data Center and
Telco applications, such as Compute accelerations, Smart NIC, NVMe, RDMA-enabled NIC
(RNIC), server virtualization, and NFV in the user logic. Multiple applications can be implemented
to share the QDMA by assigning different queue sets and PCIe functions to each application.
These Queues can then be scaled in the user logic to implement rate limiting, traffic priority, and
custom work queue entry (WQE).

The QDMA Subsystem for PCIe can be used and exercised with a Xilinx provided QDMA
reference driver, and then built out to meet a variety of application spaces.

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=7

Glossary
The following table contains frequently used acronyms in this document.

Table 1: Glossary of Terms

Acronym Full Name
AXI-ST AXI4-Stream

H2C Host to Card

C2H Card to Host

TXQ Transfer Queue

RXQ Receive Queue

TM Traffic Manager

CMPT C2H AXI4-Stream Completion

FLR Function Level Reset

CQ Completer Request

CC Completer Completion

RQ Requester Request

RC Requester Completion

SRIOV Single root input/output virtualization

PF Physical function

VF Virtual function

PIDX Producer index pointer

CIDX Consumer index pointer

CTXT Context

HW Hardware

SW Software

QID Queue Identification

CSR Control/Status register

PFCH Prefetch Block

QDMA Architecture
The following figure shows the block diagram of the QDMA Subsystem for PCIe.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=8

Figure 1: QDMA Core

UltraScale+ PCIe
Integrated

Block(Configured
as end-point)

RQ / RC
Interface

CQ / CC
Interface Target Bridge

Control Registers

IRQ Module

C2H Stream

CMPT

PFCH
SCache

C2H MM

H2C MM

H2C Stream

Descriptor
Engine

AXI-MM Bridge
Master M

AXI-MM Bridge
Slave S

CMPT AXI4-ST S

C2H AXI4-ST S

C2H AXI4-M M

H2C AXI4-M M

H2C AXI4-ST M

Dsc byp in

Dsc byp out

User Logic

TM DSC STS
DSC CRDT

C2H/H2C
BypassOut

AXI-MM Lite
Master M

X20521-041618

PCIe CQ/CC
The PCIe CQ/CC modules receive and process TLP requests from the remote PCIe agent. This
interface to the UltraScale+™ Integrated Block for PCIe IP operates in address aligned mode. The
module uses the BAR information from theIntegrated Block for PCIe IP to determine where the
request should be forwarded. The three destinations for these requests are:

• the internal configuration module

• the AXI4 MM Bridge Master interface

• the AXI4-Lite Bridge Master interface

Non-posted requests are expected to receive completions from the destination, which are
forwarded to the remote PCIe agent. For details, see the UltraScale+ Devices Integrated Block for
PCI Express LogiCORE IP Product Guide (PG213).

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=9

PCIe RQ/RC
The role of the PCIe RQ/RC interface is to generate PCIeTLPs on the RQ bus and process PCIe
Completion TLPs from the RC bus. This interfaces to the UltraScale+™ Integrated Block for
PCIe® core operates in DWord aligned mode. With a 512-bit interface, straddling must also be
enabled. While straddling is supported, all combinations of RQ straddled transactions as defined
in the UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213) may
not be implemented.

PCIe Configuration
Several factors can throttle outgoing non-posted transactions. Outgoing non-posted transactions
are throttled based on flow control information from the Integrated Block for PCIe® to prevent
head of line blocking of posted requests. If Finite Completion Credits are not supported in the
system or not configured in the Integrated Block for PCIe®PCIe IP, the DMA will meter non-
posted transactions based on the PCIe Receive FIFO space. It is possible that non-posted
transactions can be throttled by the number of outstanding PCIe tags.

Interrupt Module
IRQ module aggregates interrupts from various sources into the UltraScale+™ Integrated Block
for PCIe® core interface. The interrupt sources are queue-based interrupts, user interrupts and
error interrupts.

Queue-based interrupts and User interrupts are allowed on the PFs and VF, but Error interrupts
are allowed only for PFs. If the SRIOV is not enabled, each PF has the choice of MSI-X or MSI. If
the SRIOV is enabled, only MSI-X is supported on all functions.

With support for MSI-X, MSI can be specified by attributes. Host system (Root Complex) will
enable one or all of the interrupt types supported in hardware. If MSI-X is enabled, it takes
precedence over the MSI.

The UltraScale+™ Integrated Block for PCIe core offers eight interrupts per functions. The
QDMA offers a novel way of aggregating interrupts from multiple queues on a given PCIe
function to a single interrupt vector. Theoretically, all 2K queues can be mapped to single
vectors. The QDMA offers 256 interrupt aggregation rings that can be flexibly allocated among
256 functions.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=10

Descriptor Engine
H2C and C2H descriptors are fetched by the Descriptor Engine. The descriptor engine maintains
per queue context where it tracks the software PIDX, CIDX, BADDR, queue configurations, etc. It
uses a round-robin algorithm for fetching the descriptors. The descriptor engine has separate
buffers for H2C and C2H, and ensures it never fetches available space. In addition, it has only
one descriptor fetch outstanding per queue. It also reorders the out-of-order completions so that
descriptors for the queues are always in order.

The descriptor bypass can be enabled on a per queue basis and the fetched descriptors, after
buffering, are sent to the respective bypass output interface instead of the H2C or C2H engine.
In internal mode, based on context setting, the descriptors are sent to per H2C MM, C2H MM,
H2C Stream or C2H Stream engines.

The descriptor engine is also responsible for generating the status descriptor for completion of
DMA operations. With the exception of C2H Stream, all modes use this mechanism to convey
completion of DMA operations, which allows the software to reclaim the descriptors and free up
any associated buffers. This is indicated by the CIDX field of the status descriptor.

RECOMMENDED: If the queue is associated with interrupt aggregation, Xilinx recommends that you
turn off this status descriptor, and instead get the DMA status from the interrupt aggregation ring.

To put a limit on the number of fetched descriptors, turn on crediting on a per queue basis. In this
mode, the descriptor engine fetches the descriptors for available credit, and the total descriptors
fetched per queue is limited to the credit provided. The user logic can return the credit through
the dsc_crdt interface.

To help the traffic manager prioritize the job, the available descriptor to be fetched (incremental
PIDX value) of the PIDX update is sent to the user logic on the tm_dsc_sts interface. This
prioritizes and optimizes the descriptor storage, and implements a DMA descriptor pull mode.

H2C MM Engine
The H2C MM Engine moves data from host memory to card memory through H2C AXI-M
interface. The engine generates reads on PCIe, splitting descriptors into multiple requests based
on MRRS and 4K boundaries. Once completion data for a read request is received on PCIe, it
generates a write on the H2C AXI-M interface. For source and destination addresses that are not
aligned, the hardware will shift the data and split writes on AXI-M to prevent 4K alignment
crossing. Each completed descriptor is checked to determine whether a writeback and/or
interrupt is required.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=11

For Internal mode, the queue descriptor engine delivers memory mapped descriptors straight to
H2C MM engine. The user logic can also inject the descriptor to H2C bypass interface to move
data from host to card memory. This gives the ability to do interesting things such as mixing the
control and DMA commands in the same queue. Control information can be sent to a control
processor indicating the completion of DMA operation.

C2H MM Engine
The C2H MM Engine moves data from card memory to host memory through C2H AXI-M
interface. The engine generates reads on the C2H AXI-M, splitting descriptors into multiple
requests based on 4K boundaries. Once completion data for a read request is received, it
generates a write on the Integrated Block for PCIe® interface. For source and destination
addresses that are not aligned, the hardware will shift the data and split writes on the PCIe to
obey MPS and prevent 4K alignment crossing. Each completed descriptor is checked to
determine whether a writeback and/or interrupt is required.

For Internal mode, the queue descriptor engine delivers memory mapped descriptors straight to
C2H MM engine. The user logic can also inject the descriptor to C2H bypass in interface to move
data from host to card memory. This gives the ability to do interesting things such as mixing the
control and DMA commands in the same queue. Control information can be sent to a control
processor indicating the completion of DMA operation.

The PCIe Function number information will be provided by the AXI-MM aruser interface bus. A
parity bus separate from the data and user bus is also provided for end-to-end parity support.

H2C Stream Engine
H2C engine moves data from host to H2C Stream interface. For internal mode, queue descriptors
are delivered straight to the H2C engine. For a queue in bypass, the descriptors can be
reformatted and fed to bypass-in interface. The engine is responsible for breaking up DMA reads
to MPS size, guarantee the space for completions, and also makes sure completions are
reordered to make for correct H2C Stream interface ordering.

It has the buffering for up to 256 DMA reads and up to 32 Kbytes of data. There is an aligner to
zero align the PCIe completion data to the AXI-ST interface. This allows every descriptor to be
random offset and random length. Total length of all descriptors should be less than 64 KB.

For internal mode queues, each descriptor defines a single packet to be transferred to the H2C
AXI-ST interface. A packet straddling multiple descriptors is not allowed, due to the lack of per
queue storage. Multi-descriptor packets can be implemented using the descriptor bypass mode,
where descriptors are delivered to user logic, to be stored on a per queue basis. When it has
enough descriptors to form the packet, the H2C DMA can be initiated by delivering those
descriptors, non-interleaved, with other H2C ST packet descriptors, through bypass in interface.
Also, in bypass in the interface, the user logic can control the generation of the status descriptor.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=12

C2H Stream Engine
THe C2H streaming engine is responsible for DMA writing the streaming packet from the user
logic to the descriptors in C2H descriptor queue specified by the QID associated with the packet.
It allows user logic to send up to 28B of metadata along with packet, which will be placed into
C2H AXI-Stream Completion (CMPT) queue entry.

C2H has two major blocks to accomplish C2H streaming DMA, Prefetch Block (PFCH) cache and
CMPT. The PFCH and CMPT will have per queue context to performance of its function, which
the software is expected to program.

PFCH cache has three main modes, on a per queue basis, called cache mode, simple bypass and
cached bypass mode.

• In simple bypass mode, a queue fetched descriptor is sent to user logic. User logic is then
responsible for delivering the packet and associated descriptor in bypass interface. The
ordering of the descriptors in bypass interface and C2H stream interface be maintained across
queue among simple bypass mode queues.

• In cache mode and cached bypass mode, the PFCH module offers storage for 512 descriptors,
which can be used by up to 64 different queues. In this mode, it controls the descriptors to be
fetched by managing the C2H descriptor queue credit on demand based on received packets
in the pipeline. One could turn on the pre-fetch mode per queue basis and that causes the
descriptors to be opportunistically pre-fetched so that descriptors are available before the
packet shows up and reduce the latency. The size of the buffer is fixed for a queue (PFCH
context) and it can scatter the packet up to 7 descriptors. In cached bypass mode descriptor is
bypassed to user logic for further processing such as address translation and sent back on the
bypass in interface. This does not have the same restriction as simple bypass mode.

After the DMA write of the packet from the C2H stream interface is done, the CMPT packet
from the CMPT interface is placed into the CMPT queue ID from the C2H stream interface.
Queue state and configuration is stored in CMPT context per queue basis. It stores the base
address, CIDX, PIDX, configurations in context. The software identifies the new CMPT entry
being written based on the color bit or the based status descriptor. It also can be configured to
generate the interrupt, status descriptor, or both based on the needs of the software. If the
interrupts for multiple queues are aggregated into the interrupt aggregation ring, the status
descriptor information is available in the interrupt aggregation ring as well.

CMPT has cache of 32 entries to coalesce the multiple smaller CMPT writes into 64B writes to
improve the PCIe efficiency. At any time, it can simultaneously coalesce for 32 queues and any
additional queue, needing to write CMPT entry, will cause the eviction of least recently used
queue.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=13

Bridge Master AXI Memory Mapped Interface
The Bridge AXI-MM Master interface is used for high bandwidth access to AXI Memory Mapped
space from the Integrated Block for PCIe®. The interface supports up to 32 outstanding reads
and 32 outstanding writes. One or more PCIe BAR of any PF or VF can be mapped to master
AXI-MM interface. This selection needs to be done at the point of configuring the IP. Function
ID, bar ID (bar hit), VF group and VF group offset will be made available as part of aruser and
awuser of the AXI-MM interface to help the user logic identify the source of memory access.
Also, each host initiated access can be uniquely mapped to 64 bit AXI address space through
PCIe to AXI BAR translation.

Bridge Master AXI4-Lite Interface
One or more PCIe BAR of any PF or VF can be mapped to the master AXI4-Lite interface. This
selection needs to be done at the point of configuring the IP. Function ID, BAR ID (BAR hit), VF
group, and VF group offset will be made available as part of aruser and awuser of the AXI4-
Lite interface to help the user logic identify the source of memory access. Also, each of the host
initiated access can be uniquely mapped to 64 bit AXI address space. Though the user bits are
non-standard, without user bits the user logic may not be able to identify the intended address
space. One outstanding read and one outstanding write are supported on this interface.

PCIe to AXI BARs
For requests received in PCIe, a set of six 32-bit BARs for each Physical Function, one 32-bit BAR
for EXPROM BAR on physical function, and six 32-bit BARs for Virtual Functions within the
same Physical Function when SR-IOV is enabled are available. These BARs provide address
translation to the AXI4 memory mapped spaced capability, interface routing, and AXI4 request
attribute configuration. Pairs of BARs can be configured as a single 64-bit BAR. Each BAR can be
configured to route its requests to the QDMA register space, the Bridge AXI4-Lite Master
interface, or the Bridge AXI-MM Master interface.

The configurable AXI request attributes include:

• Address aperture to be translated: attr_dma_pciebar2axibar_[0-5]_len

• Translated address: attr_dma_pciebar2axibar_[0-5]

A programming example can be found in the Address Translation section (Example 3) of AXI
Bridge for PCI Express Gen3 Subsystem Product Guide (PG194).

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 14Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=14

Request Memory Type

The memory type can be set for each PCIe BAR through attributes
attr_dma_pciebar2axibar_*_cache_pf*.

• AxCache[0] is set to 1 for Modifiable and 0 for Non-modifiable.

• AxCache[1] is set to 1 for Cacheable and 0 for Non-cacheable.

• Allocate and Other Allocate are not supported.

Bridge Slave AXI Memory Mapped Interface
The Bridge AXI-MM Slave Interface is used for high bandwidth memory transfers between the
user logic and the Integrated Block for PCIe®. AXI to PCIe translation is supported through the
AXI to PCIE BARs. The interface will split requests as necessary to obey PCIe MPS and 4K
crossing requirements. Up to 32 outstanding read requests and up to 32 outstanding write
requests are supported.

Bridge Slave AXI4-Lite Interface
The AXI4-Lite slave interface is used to access the AXI Bridge and QDMA internal registers. The
QDMA registers are virtualized for VFs and PFs. Example VFs and PFs can access different parts
of the address space, and each has access to its own queues. To accommodate all modes, this
interface provides a non-standard AXI4-Lite slave interface where the user logic can provide
function ID, which gives the QDMA proper internal register access. One outstanding read
request and one outstanding write request are supported.

AXI to PCIe BARs
In the Bridge Slave interface, there are six BARs which can be configured as 32 bits or 64 bits.
These BARs provide address translation from AXI address space to PCIe address space. The
address translation is configured for each AXI BAR through attributes. The attributes include:

• Base address: attr_dma_axibar_base_[0-5]

• High address: attr_dma_axibar_highaddr_[0-5]

• Address size (32-bit or 64-bit): attr_dma_axibar_as_[0-5]

• Translated address: attr_dma_axibar_[0-5]

A programming example can be found in the Address Translation section (Example 4) of AXI
Bridge for PCI Express Gen3 Subsystem Product Guide (PG194).

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 15Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=15

SR-IOV Support
The QDMA Subsystem for PCIe provides an optional feature to support the Single Root I/O
Virtualization (SR-IOV). The PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV)
specification standardizes the method for bypassing the VMM involvement in datapath
transactions and allows a single PCI Express® Endpoint to appear as multiple separate PCI
Express Endpoints. SR-IOV classifies the functions as:

• Physical Functions (PF): Full featured PCIe® functions which include SR-IOV capabilities
among others.

• Virtual Functions (VF): PCIe functions featuring configuration space with Base Address
Registers (BARs) but lacking the full configuration resources and controlled by the PF
configuration. The main role of the VF is data transfer.

Apart from PCIe defined configuration space, QDMA Subsystem for PCI Express virtualizes data
path operations, such as pointer updates for queues, and interrupts. The rest of the management
and configuration functionality (slow path) is deferred to the physical function driver. The driver
that does not have sufficient privileges needs to communicate with the privileged driver through
mailbox provided in part of the QDMA Subsystem for PCI Express.

The security is an important aspect of virtualization. The QDMA Subsystem for PCI Express
offers the following security functionality:

• QDMA allows only privileged PF to configure the context and registers.

• Drivers are allowed to do pointer updates only for the queue allocated to them.

• IOMMU can be turned on to check that the DMA is done by PFs and VFs. The ARID comes
from queue context programmed by privileged function.

Any PF or VF can communicate to a PF (not itself) through mailbox. Each function implements
one 64B inbox and 64B outbox. These mailboxes will be visible to the driver in the DMA BAR
(typically BAR0) of its own function. At any given time any function can have one outgoing
mailbox and incoming mailbox message outstanding.

The QDMA Subsystem for PCI Express supports all the PCIe defined resets, such as link down
reset, hot reset and FLR (supports only Quiesce mode).

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=16

QDMA Operations
Theory of Rings
Multi-queue DMA uses RDMA model queue pairs to allow RNIC implementation in the user
logic. Each queue set consists of Host to Card (H2C) Ring, Card to Host (C2H) Ring, and a C2H
Stream Completion (CMPT) Ring.

H2C and C2H rings are always written by the driver/software. The hardware is always read from
the Queue set (QSet0 - QSet2047). H2C carries the descriptors for the DMA read operations.
C2H carries the descriptors for the DMA write operations.

In all internal modes, H2C descriptors carry address and length, which is also called scatter gather
descriptor. It supports 32 bits of metadata that can be passed from software to hardware along
with every packet. The descriptor can be of memory mapped (carries host address and card
address) or streaming (only host address). Through descriptor bypass, you can define the complex
descriptor format where software is permitted the concept of immediate data and more
metadata along with packet.

Memory Mapped descriptors for C2H queue consist of card address, host address and the length
of transfer. In streaming mode except for simple bypass mode, descriptors carry only the host
address and the buffer size of the descriptor passed by the driver, which is expected to be of
fixed size for the whole queue.

The software advertises valid descriptors to H2C queue and C2H queue by writing its producer
index (PIDX) to the hardware. H2C and C2H descriptors can be reclaimed upon completion of
DMA operation through the status descriptor. The status descriptor is the last entry of the
descriptor ring in a queue set. The status descriptor carries the consumer index (CIDX) of the
hardware so that the driver knows when to reclaim the descriptor and deallocate the buffers in
the host.

For C2H stream mode, C2H descriptors will be reclaimed based on the queue entry. Typically it
carries one entry per C2H packet, indicating of one or more C2H descriptors consumed. The
CMPT queue entry carries enough information for software to claim all the descriptors
consumed. Through external logic it can be extended to carry other kinds of completions or
information to host.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=17

CMPT entry written to the ring can be detected by the driver using color bit in the descriptor or
the status descriptor at the end of the CMPT queue ring. This CMPT descriptor can carry meta
data for C2H stream packet and also it can be custom completion or immediate for user
application. The CMPT queue can be detected by the driver using a color bit in the descriptor or
last descriptor of the CMPT queue reserved as status descriptor. The CMPT queue supports two
formats, internal or user. In internal format, it conveys metadata, color bit, descriptor format,
error and packet length. In the user format, the length is the responsibility of the user logic.

Figure 2: Theory of Rings

Driver Objects

H2C/
TXQ

C2H/
RXQ

CMPT/CQ

Qset0

H2C/
TXQ

C2H/
RXQ

CMPT/CQ

Qset2047

X20520-032918

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=18

H2C and C2H Circular Buffer Queues

Figure 3: H2C and C2H Circular Buffer Queues

PIDX CIDX BASE Size

SW PIDX

Posted write
SW PIDX

Read request
BASE + CIDX CTXT

Base

Base +
Size

Size -1 Cpld
Descriptors

Posted write
HW CIDX

Status desc
(H2C only)

HW CIDX

1 2

3

4

5

DMA Engine OperationDriver Operation

X20624-040218

The above figures shows the H2C and C2H fetch operation.

• For H2C, the application data gets written to a buffer, the software forms the descriptor and
posts it to the copy of the Producer Index (PIDX) location in the descriptor ring. (For C2H, the
driver forms the descriptor with the buffer for the hardware to the DMA packet.)

• The software sends the posted write for the associated Queue ID (QID) with its current PIDX
value.

• Upon reception of PIDX, updates the hardware, which issues DMA read to address BASE
+CIDX.

• The read completion from the host memory is delivered to the H2C Engine or C2H Engine. In
case of bypass, it will be sent out.

• Whenever the descriptor processing is complete, only for the H2C Status Descriptor with
CIDX will be written to allow the driver to reuse the descriptors and deallocate buffers.

For C2H, the fetch operation is implicit through the write back ring.

Note: C2H operates in pull mode of the descriptor, and H2C can be either pull or push mode.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=19

C2H DMA Write Back
Figure 4: C2H DMA Write Back

PIDX CIDX BASE Size

HW PIDX
DMA Write
BASE +
PIDX

WRB CTXT

Base

Base +
Size

Size -1

Posted write
HW PIDX

Interrupt

Status
descriptor

SW CIDX

1

2

4

3

5

DMA Engine OperationDriver Operation

Posted write
SW PIDX

X20621-040218

When C2H receives a packet from the user logic, it gets the DMA buffer from the Fetch Engine
and the DMA writes the payload to one or more buffers. After that, write back operation begins.

Simple flow of DMA Write back queue operation.

• The DMA write completion descriptor will be written to address BASE+PIDX.

• Posted write to status descriptor with PIDX.

• If in interrupt mode, generate the interrupt.

• The software identifies the new descriptor being written, updates the SW CIDX, and reads any
buffers associated with the descriptor.

• Sends posted write back to queue DMA with SW CIDX. This allows the hardware to reuse the
descriptors again.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=20

Descriptor Bypass
The Descriptor bypass mode provides immediate data with efficient traffic management. It also
provides address translation of descriptors. The C2H Descriptor bypass mode allows for custom
write back format. The Descriptor bypass mode can be used with RoCE/iWARP Send queues. In
Descriptor bypass mode, descriptors are pushed in from the soft logic and stored in-order in the
descriptor buffer based on the channel to which the descriptor belongs. The descriptor bypass
can be enabled on a per channel basis. The descriptor bypass is controllable through registers.

H2C Descriptor Bypass

Figure 5: H2C Descriptor Bypass Flow

Pointer updates

TM updates

SW/Driver QDMA Customer
logic

Credit return

DMA Read req

DMA completion
Desc to byp out

Bypass in DMA

Descriptor

DMA Read request

DMA completion Payload on AXI Streaming

H2C Flow

X20605-040218

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=21

When Descriptor Bypass for Read (H2C) is enabled, these descriptor bypass ports are present.
For port descriptions, seeQDMA Descriptor Bypass Input Ports and QDMA Descriptor Bypass
Output Ports.

C2H Descriptor Bypass

The C2H Bypass mode supports two bypass input modes:

• Simple mode: Customer logic takes full responsibility of returning descriptor in sync with
incoming packet.

• Cache mode: This mode makes use of cache in QDMA where up to 512 C2H descriptors can
be cached for 64 queues.

The C2H descriptor bypass flow is as shown below.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=22

Figure 6: C2H Descriptor Bypass Flow

Pointer updates

TM updates

SW/Driver QDMA Customer
logic

Credit return

DMA Read req

DMA completion
Desc to byp out

Bypass in DMA

Descriptor

DMA Write Payload

C2H Flow

Payload on AXI

Streaming

DMA Write back

completion

Interrupt

X20604-040218

For port descriptions, see QDMA Descriptor Bypass Input Ports and QDMA Descriptor Bypass
Output Ports.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=23

C2H Stream

C2H Descriptor

The C2H descriptors can be from the Fetch Engine or C2H Bypass Input interfaces. The
descriptors from the Fetch Engine are in cache mode. The PFCH block keeps the order of the
descriptors. The descriptors from the C2H Bypass Input interfaces have one interface for the
simple mode, and another interface for the cache mode. For the simple mode, the user
application keeps the order of the descriptors. For the cache mode, the PFCH block keeps the
order of the descriptors.

The Prefetch Context has a bypass bit. When it is 1’b1, the user application sends the credits for
the descriptors. When it is 1’b0, the PFCH block sends the credits for the descriptors.

The Descriptor Context has a desc_byp bit. When it is 1’b1, the Fetch Engine sends out the
descriptors on the C2H Bypass Output interface. The user application convert it and loops it
back to the QDMA Subsystem for PCIe on the C2H Bypass Input interface. When it is 1’b0, the
Fetch Engine sends the descriptors to the PFCH block directly.

Three cases per queue basis are supported.

c2h_byp_in desc_ctxt.desc_byp pfch_ctxt.bypass
Case 1 simple mode 1 1

Case 2 cache mode 1 0

Case 3 cache mode 0 0

For Case 1, the Fetch Engine sends the descriptors out on the C2H Bypass Out interface. The
user application converts the descriptor and loops it back to the QDMA on the simple mode C2H
Bypass Input interface. The user application sends the credits for the descriptors, and it also
keeps the order of the descriptors.

For Case 2, the Fetch Engine sends the descriptors out on the C2H Bypass Output interface. The
user application converts the descriptor and loops it back to the QDMA on the cache mode C2H
Bypass Input interface. The PFCH block sends the credits for the descriptors, and it keeps the
order of the descriptors.

For Case 3, the Fetch Engine sends the descriptors to the PFCH block. The PFCH block sends
out the credits for the descriptors and keeps the order of the descriptors. In this case, the
descriptors do not go out on the C2H Bypass Output and do not come back on the C2H Bypass
Input interfaces.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=24

C2H DMA Write Engine

The C2H DMA Write Engine block gets the C2H streaming data packet from the user application.
It breaks the data packet into smaller TLP packets and sends them to the integrated block for
PCIe.

C2H Completion

When the user application sends the C2H data packet to the DMA, it also sends the CMPT
packet. The CMPT packet has two formats: Standard Format and User Format.

The following is the CMPT packet from the user application in the Standard Format when the
data format bit is 1’b0.

Name Size Index
User defined 44 bits-236 bits [255:20]

rsvd 8 [19:12]

Qid 11 [11:1]

Data format 1 [0:0]

The following is the CMPT packet from the user application in the User Format when the data
format bit is 1’b1.

Name Size Index
User defined 61 bits-253 bits [255:3]

rsvd [2:1] [2:1]

Data format [0:0] [0:0]

The CMPT packet has three types: 8B, 16B, or 32B. When it is 8B or 16B, it only needs one
pump of the data. When it is 32B, it needs two pumps of data. Each data pump is 128bits.

When the DMA write of the data packet is done, the QDMA writes the CMPT packet into the
CMPT queue. Besides the user defined data, it also includes some other information, such as
error, color, and the length onto the CMPT packet.

The following is the CMPT packet inside the CMPT queue in the User Format when the data
format bit is 1’b1.

Name Size Index
User defined 61 bits-253 bits [255:3]

err 1 [2:2]

color 1 [1:1]

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=25

Name Size Index
Data format 1 [0:0]

The following is the CMPT packet inside the CMPT queue in the Standard Format when the data
format bit is 1’b0.

Name Size Index
User defined 44 bits-236 bits [255:20]

Len 16 [19:4]

rsvd 1 [3:3]

err 1 [2:2]

color 1 [1:1]

Data format 1 [0:0]

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=26

C2H Interrupt Moderation

The QDMA Subsystem for PCIe provides a means to moderate the C2H completion interrupts.
You can choose from one of the 7 modes to regulate the C2H completion interrupts. The
selected mode for a queue is stored in the QDMA Subsystem for PCIe in the C2H completion
ring context for that queue. After a mode has been selected for a queue, the driver can always
select another mode when it sends the completion ring CIDX update to QDMA.

The C2H completion interrupt moderation is handled by the completion engine inside the C2H
engine. The completion engine stores the C2H completion ring contexts of all the queues. It is
possible to individually enable or disable the sending of interrupts and C2H completion status
descriptors for every queue and this information is present in the completion ring context.

The QDMA Subsystem for PCIe keeps only one interrupt outstanding per queue. This policy is
enforced by QDMA even if all other conditions to send an interrupt have been met for the mode.
The way the QDMA Subsystem for PCIe considers an interrupt serviced is by receiving a CIDX
update for that queue from the driver.

The basic policy followed in all the interrupt moderation modes is that when there is no interrupt
outstanding for a queue, the QDMA Subsystem for PCIe keeps monitoring the trigger conditions
to be met for that mode. Once the conditions are met, an interrupt is sent out. While the QDMA
subsystem is waiting for the interrupt to be served, it remains sensitive to interrupt conditions
being met and remembers them. When the CIDX update is received, the QDMA subsystem
evaluates whether the conditions are still being met. If they are still being met, another interrupt
is sent out. If they are not met, no interrupt is sent out and QDMA resumes monitoring for the
conditions to be met again.

Note that the interrupt moderation modes that the QDMA subsystem provides are not
necessarily precise. Thus, if the user application sends two C2H packets with an indication to
send an interrupt, it is not necessary that two interrupts will be generated. The main reason for
this behavior is that when the driver is interrupted to read the completion ring, and it is under no
obligation to read exactly up to the completion for which the interrupt was generated. Thus, the
driver may not read up to the interrupting completion descriptor, or it may even read beyond the
interrupting completion descriptor if there are valid descriptors to be read there. This behavior
requires the QDMA Subsystem for PCIe to re-evaluate the trigger conditions every time it
receives the CIDX update from the driver.

The detailed description of each mode is given below:

• TRIGGER_EVERY: This mode is the most aggressive in terms of interruption frequency. The
idea behind this mode is to send an interrupt whenever the completion engine determines
that an unread completion descriptor is present in the completion ring.

• TRIGGER_TIMER: The QDMA Subsystem for PCIe maintains a timer for each QID running
with this mode. The idea behind this mode is to interrupt the driver after a specific interval of
time. These intervals of time can be configured by the driver. Every QID can be configured to
use one of 16 programmable timer values.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=27

• TRIGGER_USER: The QDMA Subsystem for PCIe provides the User a way to send a C2H
packet to the subsystem with an indication to send out an interrupt when the subsystem is
done sending the packet to the host. This allows the user application to perform interrupt
moderation when the TRIGGER_USER mode is set.

• TRIGGER_USER_COUNT: This mode allows the QDMA Subsystem for PCIe to generate an
interrupt when the number of unread completion descriptors in the completion ring exceeds a
certain threshold. This threshold is driver programmable on a per-queue basis. When this
mode is set, the QDMA Subsystem for PCIe sends an interrupt whenever it determines that
the number of unread completion descriptors in the completion queue has exceeded the
threshold value. In this mode, the subsystem remains sensitive to any requests for interrupts
sent by the user application along with the C2H packet.

• TRIGGER_TIMER_COUNT: This mode makes The QDMA Subsystem for PCIe generate
interrupts when either sufficient time has passed or when the number of unread completion
descriptors in the completion queue has exceeded the threshold value.

• TRIGGER_USER_TIMER: In this mode, the QDMA Subsystem for PCIe remains sensitive to
any requests for interrupts sent by the user application along with the C2H packet in addition
to interrupting the host if a certain amount of time has passed.

• TRIGGER_DIS: In this mode, the QDMA Subsystem for PCIe does not send C2H completion
interrupts in spite of them being enabled for a given queue. The only way that the driver can
read the completion ring in this case is when it regularly polls the ring. The driver will have to
make use of the color bit feature provided in the completion ring when this mode is set as this
mode also disables the sending of any completion status descriptors to the completion ring.

The followings are the flow charts of different modes.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=28

Figure 7: Flowchart for EVERY Mode

Wait for Completion

Completion
received

Send Interrupt

Wait for SW update

SW update
received

Ring
empty

No

Yes

Yes

No No

Yes

X20642-040518

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=29

Figure 8: Flowchart for TIMER Mode

Wait for timer to
expire

Timer expired

Ring emptyWait for Completion

Completion
received Send Interupt

Wait for SW update

SW update
receieved

Restart timer

Yes

No

Yes

No

Yes

Yes

No

No

X20640-040518

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=30

Figure 9: Flowchart for USER Mode

Wait for Completion

Completion with User
trigger received

Send Interrupt

Wait for SW update
or User trigger

SW update
received

Completion with User
trigger received

Wait for SW update

SW update
received

Ring empty

No

No

Yes

Yes

No

No

No

Yes

Yes

X20641-040518

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=31

Figure 10: Flowchart for USER_COUNT Mode

Wait for Completion

CMP received

Threshold
exceeded or User
trigger received

Send Interrupt

Wait for SW update
or Completion with

User trigger

SW update
received

Completion with User
trigger received

Wait for SW update

SW update
received

Ring empty

Threshold
exceeded

Yes

Yes

No

Yes

Yes

No

Yes

Yes

No

No

No

Yes

No

X20639-040518

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=32

Figure 11: Flowchart for TIMER_COUNT Mode

Wait for timer to
expire

Timer expired

Ring emptyWait for Completion

Completion
received Send Interupt

Wait for SW update

SW update
receieved

Restart timer

Yes

No

Yes

No

Yes

Yes

No

No

X20640-040518

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=33

Figure 12: Flowchart for USER_TIMER Mode

Wait for Timer
expiation or User

trigger

Timer expiration
received

User trigger
received

Ring emptyWait for Completion

Send Interrupt

Wait for SW update or
User trigger

SW update
received

User trigger
received

Wait for SW update

SW update
received

Ring empty

No

NoYesYes

No

Yes

Yes

No

No

Yes

No

Yes

No

X20637-040518

C2H Timer

Figure 13: C2H Timer

Timer Expire

DMA Wr
Back

Timer

Timer Request

X20601-040218

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=34

The C2H timer is a trigger mode in the WRB context . It supports 2048 queues, and each queue
has its own timer. When the timer expires, a timer expire signal is sent to the write back module.
If multiple timers expire at the same time, then they are sent out in a round robin manner.

Reference Timer

The reference timer is based on the timer tick. The register QDMA_C2H_INT_TIMER_TICK
defines the value for a timer tick. 16 QDMA_C2H_TIMER_CNT [7:0] registers have the timer
counts based on the timer tick. The timer_ix is the index to the QDMA_C2H_TIMER_CNT
registers.

Timer Quadrant

The Timer Quadrant allocates the timer injections into four quadrants. It stalls the reference
timer when the previous quadrant still has active injections that are not yet expire. This
guarantees the new timer injection do not conflict with the old timer injections.

C2H Registers Access Type Description
QDMA_C2H_INT_TIMER_TICK RW The value of a timer tick.

QDMA_C2H_TIMER_CNT RW 16 registers. The bit [7:0] has the timer counts based on the
timer tick.

SRIOV Support

The QDMA Subsystem for PCIe provides an optional feature to support the Single Root I/O
Virtualization and Sharing (SR-IOV) based Virtualization.

The PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV) specification (available from
PCI-SIG Specifications(www.pcisig.com/specifications) standardizes the method for bypassing the
VMM involvement in datapath transactions and allows a single PCI Express® endpoint to appear
as multiple, separate PCI Express endpoints. SR-IOV classifies the functions as:

• Physical Functions (PF): Full featured PCIe® functions which include SR-IOV capabilities
among others.

• Virtual Functions (VF): PCIe functions featuring the configuration space with Base Address
Registers (BARs) but lacking the full configuration resources and controlled by the PF
configuration. The main role of the VF is data transfer.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 35Send Feedback

http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=35

When the SR-IOV capability is enabled during the QDMA Subsystem for PCIe configuration, the
subsystem allocates dedicated hardware resource which provides each VF independent DMA
(optional), memory space and interrupts. The VF configuration space can be mapped to the
virtual systems memory which enables direct access to the VF physical address including
allowing the DMA access to the virtual system using Intel® Virtualization Technology for
Directed I/O (VT-d). VT-d is responsible for I/O device assignments, the DMA, and Interrupt
remapping. Moreover, in order to protect VMs from bad memory accesses, IOMMU must be
enabled at the Host.

H2C Stream
The H2C engine is responsible for transferring data from the host and deliver it to the user logic.
The H2C engine operates on the H2C descriptors. Each descriptor specifies the start address and
the length of the data to be transferred to the user logic. The H2C engine parses the descriptor
and issues read requests to the host over PCIe, splitting the read requests at MRRS boundary.
There can be up to 256 requests outstanding to hide the host read latency. The H2C engine
implements a buffer of 32 KB to re-order the TLPs as they come back. Data is issued to the user
logic in order of the requests sent to PCIe.

Based on the context that the H2C engine receives along with the descriptor, it could
additionally be asked to send a status write back to the host once it is done issuing data to the
user logic.

The H2C engine can be operated in two modes:

• Internal mode: In internal mode, after the descriptor is fetched from the host, it is fed straight
to the H2C engine for processing. In internal mode, each descriptor transfers exactly one
packet of data.

• Bypass mode: In bypass mode, after the descriptors are fetched from the host, they are sent
to the user logic. The bypass logic stores these descriptors and then sends them back to the
QDMA Subsystem for PCIe through the descriptor bypass-in interface. The descriptors are
then fed to the H2C engine for processing.

The following are the advantages of using the bypass mode:

• The user logic can have a custom descriptor format.

• Immediate data can be passed from the software to the user logic without DMA operation.

• The user logic can do traffic management by sending the descriptors to the QDMA Subsystem
for PCIe when ready to sink all the data.

• Performs address translation.

The following figures show the internal mode and bypass mode flows.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=36

Figure 14: H2C Internal Mode Flow

SW QDMA

descriptor fetch

pointer updates

descriptor completion

DMA read

DMA completion

User

payload on AXI-ST

H2C Internal mode flow

X20643-040518

Figure 15: H2C Bypass Mode Flow

SW QDMA

Credit return

pointer updates

User

TM pointer updates

Descriptor fetch

Descriptor completion
Descriptor to bypass out

Send descriptor to

QDMA bypass in

DMA read

DMA completion
Payload on AXI-ST

H2C bypass mode flow

X20644-040518

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=37

When using the H2C engine in internal mode, each descriptor transfers exactly one packet of
data. The maximum length of the packet can be 64K-1 bytes. The descriptor format in internal
mode is shown below:

Name Size (b) Index Description
addr_h 32 [127:96] Upper 32 bits of the address.

addr_l 32 [95:64] Lower 32 bits of the address.

rsv1 16 [63:48] Reserved

len 16 [47:32] Length of data to the DMA.

rsv2 32 [31:0] Reserved

When using the H2C engine in bypass mode, each packet can span over multiple descriptors. The
maximum total length of the packet still needs to be 64K-1 bytes. In this mode, it is required that
the user will send the batch of descriptors defining a packet to QDMA without interleaving with
descriptors from other queues. The descriptor format used in this mode has two additional bits
to specify whether a descriptor is the Start-Of-Packet or End-Of-Packet descriptor. The middle
descriptors must have SOP=EOP=0. It is legal to have a descriptor with SOP=EOP=1. Shown
below is the descriptor format in the bypass mode:

Name Size (b) Index Description
addr_h 32 [127:96] Upper 32 bits of the address.

addr_l 32 [95:64] Lower 32 bits of the address.

rsv1 14 [63:50] Reserved

eop 1 [49] Descriptor marks end of packet.

sop 1 [48] Descriptor marks start of packet.

len 16 [47:32] Length of data to the DMA.

rsv2 32 [31:0] Reserved

When feeding in the descriptor on the bypass in interface, the user logic can request that the
QDMA Subsystem for PCIe sends a status write back to the host when it is done fetching the
data from the host. The user logic can also request that a status be issued when the DMA is
done. These behaviors can be controlled by using the sdi and mrkr_req bits in the bypass in
interface. Refer to the QDMA Descriptor Bypass Input Ports description for details.

An alternative H2C descriptor format can be used. This is done by resetting the
use_stm_dsc_format attribute. This alternative descriptor format has the same information
as the ones described above except the fields are in different locations. The table below describe
this other descriptor format.

Name Ssize (b) Index Description
rsv2 34 [127:94] Reserved

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=38

Name Ssize (b) Index Description
eop 1 [94] Descriptor marks end of packet.

sop 1 [93] Descriptor marks start of packet.

rsv1 13 [92:80] Reserved

len 16 [79:64] Length of data to the DMA.

addr 64 [63:0] 64b address.

The H2C engine has a data aligner that aligns the data to 0B boundary before issuing it to the
user logic. When in bypass mode, each descriptor defining the packet can have an arbitrarily
aligned address and an arbitrarily aligned length. The aligner aligns and packs the data so that a
continuous stream of data starting a 0B boundary is issued to the user logic.

QDMA Interrupts
The QDMA Subsystem for PCIe supports up to 256 MSI-X vectors, with up to 8 MSI-X vectors
per function. Legacy interrupts are not supported in the subsystem. A single MSI-X vector can be
used to support multiple queues. Each vector has an associated Interrupt Ring. The QID and
status of queues requiring service are written into the Interrupt Ring. There can be at most one
entry for each QID in the ring. When a PCIe MSI-X interrupt is received by the Host, the
software reads the Interrupt Ring to determine which queues need service. Mapping of queues
to vectors is programmable. It has independent table programming per PF. It supports all
interrupt modes for non-SR-IOV, and MSI/MSI-X for SRIOV.

Queue-Based Interrupt Visualization

Figure 16: Queue-Based Interrupt Visualization

CPU

TH0

TH

Core0

TH

TH63

Core

INT

Vec
table

MSI-X
Table

PCIe/AXI vec DMA
Followed by
Int message

QID->
Vec Map

DYN_INT_VEC63]

DYN_INT_VEC0[63:0]

INT Mux

QN

Q2
Q1
Q0

int
Write back Ptr upd

Timer expired or
count > thresh

X20599-041318

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=39

Interrupt Flow

When the H2C or C2H interrupt occur, the QID to vector RAM is read. The RAM has 2K entries
to support up to 2K queues. It also includes two portions: one for H2C, and one for C2H. It maps
the QID to the vector and indicates if it is direct interrupt mode or indirect interrupt mode. If it is
direct interrupt mode, the vector is used to generate the PCIe MSI-X message. If it is indirect
interrupt mode, the vector is used as the index of the Interrupt Context RAM.

The following is the data in the QID to vector RAM.

Signals Bits Owner Description
H2c_en_coal 1 Driver 1’b1: indirect interrupt mode.

1’b0: direct interrupt mode for H2C interrupt.

H2c_vector 8 Driver Interrupt vector for the H2C interrupt.

C2h_en_coal 1 Driver 1’b1: indirect interrupt mode.
1’b0: direct interrupt mode for C2H interrupt.

C2h_vector 8 Driver Interrupt vector for the C2H interrupt.

Direct Interrupt mode: For direct interrupt mode, the PCIe MSI-X message is out directly.

Indirect Interrupt mode: For indirect interrupt mode, it supports up to 256 Interrupt Rings and
up to 256 functions. Each function can use one Interrupt Ring or multiple Interrupt Rings.

In the indirect interrupt mode, the QDMA processes the interrupt with the following steps.

• Look up the QID to vector RAM.

• Look up the Interrupt Context RAM.

• Writes to the Interrupt Ring.

• Send out the PCIe MSI-X message.

The Interrupt Context RAM includes the information of the Interrupt Ring. It has 256 entries to
support up to 256 Interrupt Rings.

Each entry of the Interrupt Context RAM has the following information for the associated
Interrupt Ring.

Signals Bits Owner Description
Pidx 12 DMA Cumulative pointer of the Interrupt Ring entry

written.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=40

Signals Bits Owner Description
Page_Size 3 Driver Size of the Interrupt Ring.

0: 4KB
1: 8KB
2: 12KB
3: 16KB
4: 20KB
5: 24KB
6: 28KB
7: 32KB

Baddr_4k 52 Driver Base Addr[63:12]. The Interrupt Ring in memory is
4K aligned.

Color 1 DMA This bit inverts every time PIDX wraps around.

Int_st 1 DMA Interrupt state.
0: WAIT_TRIGGER
1: ISR_RUNNING

Dbg_small_page_size 1 Driver For debug purposes, supports some smaller ring
sizes.
{Dbg_small_page_size, Page_Size}:
4’b1000: 128B
4’b1001: 512B
4’b1010: 1KB

Vec 5 Driver Interrupt Vector

Vld 1 Driver Valid

After looking up the Interrupt Context RAM, it then writes to the Interrupt Ring. It also updates
the Interrupt Context RAM with the new PIDX, color, and the interrupt state.

Each entry of the Interrupt Ring has 8B data with the following information.

Signals Bits Owner Description
Pidx 12 DMA Cumulative pointer of the Interrupt Ring entry

written.

Page_Size 3 Driver Size of the Interrupt Ring.
0: 4KB
1: 8KB
2: 12KB
3: 16KB
4: 20KB
5: 24KB
6: 28KB
7: 32KB

Baddr_4k 52 Driver Base Addr[63:12]. The Interrupt Ring in memory is
4K aligned.

Color 1 DMA This bit inverts every time PIDX wraps around.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=41

Signals Bits Owner Description
Int_st 1 DMA Interrupt state.

0: WAIT_TRIGGER
1: ISR_RUNNING

Vec 6 Driver Interrupt Vector

Vld 1 Driver Valid

Finally, the QDMA Subsystem for PCIe sends out the PCIe MSI-X message using the interrupt
vector from the Interrupt Context RAM.

When the PCIe MSI-X interrupt is received by the Host, the software reads the Interrupt Ring to
determine which queues need service. After the software reads the Interrupt Ring, it will do a
dynamic pointer update for the software CIDX to indicate the cumulative pointer that the
software reads to. If the software CIDX is equal to the PIDX, this triggers a write to the Interrupt
Ring on the interrupt state of that queue. If the software CIDX is not equal to the PIDX, it sends
out another PCIe MSI-X message. Therefore, the software can read the Interrupt Ring again.

Asynchronous Internal Interrupts

The asynchronous interrupts are used for capturing events that are not synchronous to any DMA
operations, namely errors, status, and debug conditions. There is one asynchronous interrupt per
PF. Every interrupt is configurable to any one of the PF.

Figure 17: Asynchronous Interrupts

int
aggregator

int
aggregator

C2HH2C Dsc EngGibl

Source csr

Mask csr

C2HH2C Dsc EngGibl

Source csr

Mask csr

X20603-040218

In a Queue based scheme, interrupts are broadcast to all PFs and maintain status for each PF
while in the async internal scheme. All async interrupts are configured to any one of the PFs.

The Source CSR registers are write 1 to clear type. Reset does not clear the status. They operate
independent of the mask. The Mask CSR registers enables the associated source to participate in
the interrupt.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=42

Error Interrupt Handling

The Error Aggregator module aggregates all of the errors together. When the error occurs, it
generates an Error Interrupt if the ARM bit is set. The ARM bit is set by the software and cleared
by the hardware when the Error Interrupt is taken. The Interrupt Arbiter arbitrates the Error
Interrupt with the other interrupts.

The Error Interrupt supports the direct interrupt mode and indirect interrupt mode. For the direct
interrupt mode, it sends out the PCIe MSI-X message directly. For the indirect interrupt mode, it
processes the interrupt with the following steps.

1. Reads the Error Interrupt register to get the vector.

2. Looks up the Interrupt Context RAM.

3. Writes to the Interrupt Ring.

4. Sends out the PCIe MSI-X message.

The following is the data in the error interrupt register.

Signals Bits Owner Description
Err_int_arm 1 Driver ARM bit; set by software and clear by hardware.

En_coal 1 Driver 1’b1: indirect interrupt mode
1’b0: direct interrupt mode

Vec 8 Driver Interrupt Vector

Func 8 Driver Function

The following shows how Error Interrupt handling.

Figure 18: Error Interrupt Handling

C2H ST Interrupt

Ar
bi

tr
at

io
n

H2C Interrupt

C2H MM Interrupt

Error Interrupt

Interrupt
ARMed

ARM bit

Error
Aggregator

Interrupt
Handling

X20602-040418

Function Level Reset
The FLR mechanism enables software to quiesce and reset Endpoint hardware with function-
level granularity.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=43

Errors

Linkdown

If the PCIe link goes down during DMA operations, transactions may be lost and the DMA may
not be able to complete. In such cases, the AXI4 interfaces will continue to operate. Outstanding
read requests on the C2H Bridge AXI4 MM interface receive correct completions or completions
with a slave error response. The DMA will log a link down error in the status register. It is the
responsibility of the driver to have a timeout and handle recovery of a link down situation.

Parity

Pass through parity is supported on the primary data paths. Parity error can occur on C2H
streaming, H2C streaming, Memory Mapped, Bridge Master and Bridge Slave interfaces. Parity
error on Write payload can occur on C2H streaming, Memory Mapped and Bridge Slave. Double
bit error on write payload and read completions for Bridge Slave interface causes parity error.
Parity errors on requests to the PCIe are dropped by the UltraScale+™ Devices Integrated Block
for PCIe core, and a fatal error is logged by the PCIe. Parity errors are not recoverable and can
result in unexpected behavior. Any DMA during and after the parity error should be considered
invalid.

Error Aggregator

There are Leaf Error Aggregators in different places. They log the errors and propagate them to a
central place. The Central Error Aggregator aggregates the errors from all of the Leaf Error
Aggregators.

The QDMA_GLBL_ERR_STAT register is the error status register of the Central Error Aggregator.
The bit fields indicate the locations of Leaf Error Aggregators. We can then look for the error
status register of the individual Leaf Error Aggregator to find the exact error. For details, see
QDMA_GLBL_ERR_STAT (0X248).

The register QDMA_GLBL_ERR_MASK is the error mask register of the Central Error Aggregator.
It has the mask bits for the corresponding errors. When the mask bit is set, it will enable the
corresponding error to be propagated to the next level to generate an Interrupt. The detail
information of the error generated interrupt is described in the interrupt section. For details, see
QDMA_GLBL_ERR_MASK (0X24C).

Each Leaf Error Aggregator has an error status register and an error mask register. The error
status register logs the error. The hardware sets the bit when the error happens, and the
software can write 1’b1 to clear the bit if needed. The error mask register has the mask bits for
the corresponding errors. When the mask bit is set, it enables the propagation of the
corresponding error to the Central Error Aggregator. The error mask register does not affect the
error logging to the error status register.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=44

Links to the error status registers and the error mask registers information of the Leaf Error
Aggregators follows.

C2H Streaming Error

QDMA_C2H_ERR_STAT (0xAF0): The error status register of the C2H streaming errors.

QDMA_C2H_ERR_MASK (0xAF4): The error mask register. The software can set the bit to
enable the corresponding C2H streaming error to be propagated to the Central Error Aggregator.

QDMA_C2H_FIRST_ERR_QID (0xB30): The QID of the first C2H streaming error.

QDMA_C2H MM Status (0x1040)

Table 2: C2H MM Error Code (0x1058)

Bit Default Access
Type Field Description

[31:17] Reserved

[16] rdwr Read or Write Error.
0: Read error
1: Write error

[15:0] error_code If Write Error, bit position:
2: RAM uncorrectable error
1: Unsupported request
0: Function level reset
Other bits reserved
If Read Error, bit position:
1: Slave error
0: Decode error

Table 3: C2H0 MM Error Info (0x105C)

Bit Default Access
Type Field Description

[31:29] Reserved

[28:17] qid Queue ID of the descriptor.

[16] dir Direction of descriptor.

[15:0] cidx Consumer index of the descriptor.

QDMA H2C0 MM Error

H2C0 MM Status (0x1240)

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=45

Table 4: H2C0 MM Error Code (0x1258)

Bit Default Access
Type Field Description

[31:17] Reserved

[16] rdwr Read or Write Error.
0: Read error
1: Write error

[15:0] error_code If Read Error, bit position:
1: Header poisoned
2: Unsupported request or Completer Abort
3: Header byte count mismatch
4: Header param mismatch
5: Header address mismatch
8: Function level reset
16 : Data poisoned
22: PCIe reads disabled
Other bits reserved
If Write Error, bit position:
1: Slave error
0: Decode error

Table 5: H2C0 MM Error Info (0x1258)

Bit Default Access
Type Field Description

[31:29] Reserved

[28:17] qid Queue ID of the descriptor.

[16] dir Direction of descriptor.

[15:0] cidx Consumer index of the descriptor

TRQ Error

QDMA_GLBL_TRQ_ERR_STS (0x260): The error status register of the TRQ errors.

QDMA_GLBL_TRQ_ERR_MSK (0x264): The error mask register.

QDMA_GLBL_TRQ_ERR_LOG_A (0x268): The error logging register. It shows the select,
function, and address of the access when the error happens.

Descriptor Error

QDMA_GLBL_TRQ_ERR_STS (0x260): The error status register of the TRQ errors.

QDMA_GLBL_TRQ_ERR_MSK (0x264): The error mask register.

QDMA_GLBL_TRQ_ERR_LOG_A (0x268): The error logging register. It shows the select,
function, and address of the access when the error happens.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=46

RAM Double Bit Error

Table 6: QDMA_RAM_DBE_STS_A(0xfc)

Bit Default Access
Type Field Description

[31] reserved

[30] pfch_ll_ram C2H ST prefetch list RAM double bit ECC error.

[29] wrb_ctxt_ram C2H ST writeback context RAM double bit ECC error.

[28] pfch_ctxt_ram C2H ST prefetch RAM double bit ECC error.

[27] desc_req_fifo_ram C2H ST descriptor request RAM double bit ECC error.

[26] int_ctxt_ram Interrupt context RAM double bit ECC error.

[25] int_qid2vec_ram Interrupt QID2VEC RAM double bit ECC error.

[24] wrb_coal_data_ram Writeback Coalescing RAM double bit ECC error.

[23] tuser_fifo_ram C2H ST TUSER RAM double bit ECC error.

[22] qid_fifo_ram C2H ST QID FIFO RAM double bit ECC error.

[21] payload_fifo_ram C2H ST payload RAM double bit ECC error.

[20] timer_fifo_ram Timer fifo RAM double bit ECC error.

[19] pasid_ctxt_ram PASID configuration RAM double bit ECC error.

[18] dsc_cpld Descriptor engine fetch completion data RAM double
bit ECC error.

[17] dsc_cpli Descriptor engine fetch completion information RAM
double bit ECC error.

[16] dsc_sw_ctxt Descriptor engine software context RAM double bit
ECC error.

[15] dsc_crd_rcv Descriptor engine receive credit context RAM double
bit ECC error.

[14] dsc_hw_ctxt Descriptor engine hardware context RAM double bit
ECC error.

[13] func_map Function map RAM double bit ECC error.

[12] c2h_wr_brg_dat Bridge slave write data buffer double bit ECC error.

[11] c2h_rd_brg_dat Bridge slave read data buffer double bit ECC error.

[10] h2c_wr_brg_dat Bridge master write double bit ECC error.

[9] h2c_rd_brg_dat Bridge master read double bit ECC error.

[8:5] reserved

[4] mi_c2h0_dat C2H MM data buffer double bit ECC error.

[3:1] reserved

[0] mi_h2c0_dat H2C MM data buffer double bit ECC error.

Table 7: QDMA_RAM_DBE_MSK_A(0xf8)

Bit Default Access
Type Field Description

[31:0] mask Error logging enable masks. See QMD_RAM_DBE_STS
for definitions

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=47

RAM Single Error

Table 8: QDMA_RAM_SBE_STS_A(0xf4)

Bit Default Access
Type Field Description

[31] reserved

[30] pfch_ll_ram C2H ST prefetch list RAM single bit ECC error.

[29] wrb_ctxt_ram C2H ST writeback context RAM single bit ECC error.

[28] pfch_ctxt_ram C2H ST prefetch RAM single bit ECC error.

[27] desc_req_fifo_ram C2H ST descriptor request RAM single bit ECC error.

[26] int_ctxt_ram Interrupt context RAM single bit ECC error.

[25] int_qid2vec_ram Interrupt QID2VEC RAM single bit ECC error.

[24] wrb_coal_data_ram Writeback Coalescing RAM single bit ECC error.

[23] tuser_fifo_ram C2H ST TUSER RAM single bit ECC error.

[22] qid_fifo_ram C2H ST QID FIFO RAM single bit ECC error.

[21] payload_fifo_ram C2H ST payload RAM single bit ECC error.

[20] timer_fifo_ram Timer fifo RAM single bit ECC error.

[19] pasid_ctxt_ram PASID configuration RAM single bit ECC error.

[18] dsc_cpld Descriptor engine fetch completion data RAM single
bit ECC error.

[17] dsc_cpli Descriptor engine fetch completion information RAM
single bit ECC error.

[16] dsc_sw_ctxt Descriptor engine software context RAM single bit
ECC error.

[15] dsc_crd_rcv Descriptor engine receive credit context RAM single
bit ECC error.

[14] dsc_hw_ctxt Descriptor engine hardware context RAM single bit
ECC error.

[13] func_map Function map RAM single bit ECC error.

[12] c2h_wr_brg_dat Bridge slave write data buffer single bit ECC error.

[11] c2h_rd_brg_dat Bridge slave read data buffer single bit ECC error.

[10] h2c_wr_brg_dat Bridge master write single bit ECC error.

[9] h2c_rd_brg_dat Bridge master read single bit ECC error.

[8:5] reserved

[4] mi_c2h0_dat C2H MM data buffer single bit ECC error.

[3:1] reserved

[0] mi_h2c0_dat H2C MM data buffer single bit ECC error.

Table 9: QDMA_RAM_SBE_MSK_A(0xf0)

Bit Default Access
Type Field Description

[31:0] mask Error logging enable masks. See
QDMA_RAM_SBE_STS for definitions (above).

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=48

C2H Streaming Fatal Error Handling

QDMA_C2H_FATAL_ERR_STAT (0xAF8): The error status register of the C2H streaming fatal
errors.

QDMA_C2H_FATAL_ERR_MASK (0xAFC): The error mask register. The SW can set the bit to
enable the corresponding C2H fatal error to be sent to the C2H fatal error handling logic.

QDMA_C2H_FATAL_ERR_ENABLE (0xB00): This register enables two C2H streaming fata error
handling processes:

• Stop the data transfer by disabling the WRQ from the C2H DMA Write Engine.

• Invert the WPL parity on the data transfer.

Applications
The QDMA Subsystem for PCIe is used in a broad range of networking, computing, and data
storage applications.

Feature Support Roadmap
The following is the feature roadmap for the QDMA Subsystem for PCIe.

Table 10: Feature Support Roadmap

Features 2018.1 Future Release
AXI-MM and AXI-ST only support No Yes

AXI-MM and AXI-ST both supported Yes

Interrupt coalescing No Yes

Descriptor Bypass in and out No Yes

Gen1/Gen2, 64/128 bit modes Not tested Will be tested in future
release

PF Support Only 2 PF All 4 PF Support

VF Support Driver supports only 8 VF Up to 252 VFs supported

AXI-MM/AXI-ST Support for VFs AXI-MM only AXI-MM and AXI-ST both

Queues All 2K queues Queue number
configurability

Vivado® IP integrator support No Yes

Linux Driver Support Yes

DPDK Driver Support No Yes

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=49

Table 10: Feature Support Roadmap (cont'd)

Features 2018.1 Future Release
Windows Driver Support No Yes

Timing Not meeting with default
options

Timing optimization in
progress

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx® Vivado®

under the terms of the Xilinx End User License.

For more information about this subsystem, visit the QDMA Subsystem for PCIe product page
web page.

Chapter 2: Overview

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=50

Chapter 3

Product Specification

Standards
This subsystem adheres to the following standard(s):

• ARM AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

• PCI Express Base Specification v3.1

• PCI Local Bus Specification

• PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV) Specification

The PCI specifications are available at PCI-SIG Specifications (www.pcisig.com/specifications).

Minimum Device Requirements
Gen3x16 capability requires a minimum of a -2 speed grade.

Table 11: Minimum Device Requirements

Capability Link Speed Capability Link Width Supported Speed Grades
UltraScale+ Family

Gen1/Gen2 x1, x2, x4, x8, x16 -1, -1L, -1LV, -2, -2L, -2LV, -3

Gen3 X1, x2, x4 -1, -1L, -1LV, -2, -2L, -2LV, -3

X8, x16 -2, -2L, -3

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 51Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=51

Port Descriptions
The QDMA Subsystem for PCIe connects directly to the PCIe Integrated Block. The data path
interfaces to the PCIe Integrated Block IP are 64, 128, 256 or 512-bits wide, and runs at up to
250 MHz depending on the configuration of the IP. The data path width applies to all data
interfaces. Ports associated with this core are described below.

The subsystem interfaces are shown in Figure 1 in QDMA Architecture.

Note: Some tables in this port list will change in 2018.2, including, but not limited to, the QDMA
Descriptor Bypass Input/Output Ports (Ports not enabled in the IP), and the AXI4-Stream H2C/C2H
Interfaces.

QDMA Global Ports
Table 12: QDMA Global Port Descriptions

Port Name I/O Description
sys_clk I Should be driven by the ODIV2 port of reference clock

IBUFDS_GTE4. See the UltraScale+ Devices Integrated Block for PCI
Express LogiCORE IP Product Guide (PG213).

sys_clk_gt I PCIe reference clock. Should be driven from the port of reference
clock IBUFDS_GTE4. See the UltraScale+ Devices Integrated Block for
PCI Express LogiCORE IP Product Guide (PG213).

sys_rst_n I Reset from the PCIe edge connector reset signal.

pci_exp_txp
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

O PCIe TX serial interface.

pci_exp_txn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

O PCIe TX serial interface.

pci_exp_rxp
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

I PCIe RX serial interface.

pci_exp_rxn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

I PCIe RX serial interface.

user_lnk_up O Output Active-High Identifies that the PCI Express core is linked up
with a host device.

axi_aclk O User clock out. PCIe derived clock output for for all interface signals
output from and input to QDMA. Use this clock to drive inputs and
gate outputs from QDMA.

axi_aresetn O User reset out. AXI reset signal synchronous with the clock provided
on the axi_aclk output. This reset should drive all corresponding AXI
Interconnect aresetn signals.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=52

AXI Bridge Master Ports
Table 13: AXI4 Memory Mapped Master Bypass Read Address Interface Port
Descriptions

Signal Name I/O Description
m_axib_araddr
[C_M_AXI_ADDR_WIDTH-1:0]

O This signal is the address for a memory mapped read to the user
logic from the host.

m_axib_arid
[C_M_AXI_ID_WIDTH-1:0]

O Master read address ID.

m_axib_arlen[7:0] O Master read address length.

m_axib_arsize[2:0] O Master read address size.

m_axib_arprot[2:0] O 3’h0

m_axib_arvalid O The assertion of this signal means there is a valid read request to
the address on m_axib_araddr.

m_axib_arready I Master read address ready.

m_axib_arlock O 1’b0

m_axib_arcache[3:0] O 4’h0

m_axib_arburst[1:0] O Master read address burst type.

m_axib_aruser[28:0] O Master read user bits.
m_axib_aruser[7:0] = function number
m_axib_aruser[15:8] = bus number
m_axib_aruser[18:16] = bar id
m_axib_aruser[26:19] = vf offset
m_axib_aruser[28:27] = vf id

Table 14: AXI4 Memory Mapped Master Bypass Read Interface Port Descriptions

Signal Name I/O Description
m_axib_rdata
[C_M_AXI_DATA_WIDTH-1:0]

I Master read data.

m_axib_rid
[C_M_AXI_ID_WIDTH-1:0]

I Master read ID.

m_axib_rresp[1:0] I Master read response.

m_axib_rlast I Master read last.

m_axib_rvalid I Master read valid.

m_axib_rready O Master read ready.

Table 15: AXI4 Memory Mapped Master Bypass Write Address Interface Port
Descriptions

Signal Name I/O Description
m_axib_awaddr
[C_M_AXI_ADDR_WIDTH-1:0]

O This signal is the address for a memory mapped write to the user
logic from the host.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=53

Table 15: AXI4 Memory Mapped Master Bypass Write Address Interface Port
Descriptions (cont'd)

Signal Name I/O Description
m_axib_awid
[C_M_AXI_ID_WIDTH-1:0]

O Master write address ID.

m_axib_awlen[7:0] O Master write address length.

m_axib_awsize[2:0] O Master write address size.

m_axib_awburst[1:0] O Master write address burst type.

m_axib_awprot[2:0] O 3’h0

m_axib_awvalid O The assertion of this signal means there is a valid write request to
the address on m_axib_araddr.

m_axib_awready I Master write address ready.

m_axib_awlock O 1’b0

m_axib_awcache[3:0] O 4’h0

m_axib_awuser[28:0] O Master write user bits.
m_axib_awuser[7:0] = function number
m_axib_awuser[15:8] = bus number
m_axib_awuser[18:16] = bar id
m_axib_awuser[26:19] = vf offset
m_axib_awuser[28:27] = vf id

Table 16: AXI4 Memory Mapped Master Bypass Write Interface Port Descriptions

Signal Name I/O Description
m_axib_wdata
[C_M_AXI_DATA_WIDTH-1:0]

O Master write data.

m_axib_wlast O Master write last.

m_axib_wstrb
[C_M_AXI_DATA_WIDTH/8-1:0]

O Master write strobe.

m_axib_wvalid O Master write valid.

m_axib_wready I Master write ready.

Table 17: AXI4 Memory Mapped Master Bypass Write Response Interface Port
Descriptions

Signal Name I/O Description
m_axib_bvalid I Master write response valid.

m_axib_bresp[1:0] I Master write response.

m_axib_bid
[C_M_AXI_ID_WIDTH-1:0]

I Master write response ID.

m_axib_bready O Master response ready.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=54

AXI Bridge Slave Ports
Table 18: AXI Bridge Slave Port Descriptions

Port Name I/O Description
s_axib_awid[C_S_AXI_ID_WIDTH-1:0] I Slave write address ID

s_axib_awaddr[C_S_AXI_ADDR_WIDTH-
1:0]

I Slave write address

s_axib_awuser[7:0] I s_axib_awuser[7:0] indicates function_number

s_axib_awregion[3:0] I Slave write region decode

s_axib_awlen[7:0] I Slave write burst length

s_axib_awsize[2:0] I Slave write burst size

s_axib_awburst[1:0] I Slave write burst type

s_axib_awvalid I Slave address write valid

s_axib_awready O Slave address write ready

s_axib_wdata
[C_S_AXI_DATA_WIDTH-1:0]

I Slave write data

s_axib_wstrb[C_S_AXI_DATA_WIDTH/
8-1:0]

I Slave write strobe

s_axib_wlast I Slave write last

s_axib_wvalid I Slave write valid

s_axib_wready O Slave write ready

s_axib_wuser
[C_S_AXI_DATA_WIDTH/8-1:0]

I Reserved. Tie to GND.

s_axib_bid
[C_S_AXI_ID_WIDTH-1:0]

O Slave response ID

s_axib_bresp[1:0] O Slave write response

s_axib_bvalid O Slave write response valid

s_axib_bready I Slave response ready

s_axib_arid
[C_S_AXI_ID_WIDTH-1:0]

I Slave read address ID

s_axib_araddr
[C_S_AXI_ADDR_WIDTH-1:0]

I Slave read address

s_axib_arregion[3:0] I Slave read region decode

s_axib_arlen[7:0] I Slave read burst length

s_axib_arsize[2:0] I Slave read burst size

s_axib_arburst[1:0] I Slave read burst type

s_axib_arvalid I Slave read address valid

s_axib_arready O Slave read address ready

s_axib_rid
[C_S_AXI_ID_WIDTH-1:0]

O Slave read ID tag

s_axib_rdata
[C_S_AXI_ID_WIDTH-1:0]

O Slave read data

s_axib_rresp[1:0] O Slave read response

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=55

Table 18: AXI Bridge Slave Port Descriptions (cont'd)

Port Name I/O Description
s_axib_rlast O Slave read last

s_axib_rvalid O Slave read valid

s_axib_rready I Slave read ready

s_axib_ruser[C_S_AXI_DATA_WIDTH/
8-1:0]

O s_axib_aruser[7:0] indicates function number

AXI4-Lite Master Ports
Table 19: Config AXI4-Lite Memory Mapped Write Master Interface Port Descriptions

Signal Name I/O Description
m_axil_awaddr[31:0] O This signal is the address for a memory mapped write to the user

logic from the host.

m_axil_awprot[2:0] O 3’h0

m_axil_awvalid O The assertion of this signal means there is a valid write request to
the address on m_axil_awaddr.

m_axil_awready I Master write address ready.

m_axil_wdata[31:0] O Master write data.

m_axil_wstrb[3:0] O Master write strobe.

m_axil_wvalid O Master write valid.

m_axil_wready I Master write ready.

m_axil_bvalid I Master response valid.

m_axil_bresp[1:0] I

m_axil_bready O Master response valid.

Table 20: Config AXI4-Lite Memory Mapped Read Master Interface Port Descriptions

Signal Name I/O Description
m_axil_araddr[31:0] O This signal is the address for a memory mapped read to the user

logic from the host.

m_axil_arprot[2:0] O 3’h0

m_axil_arvalid O The assertion of this signal means there is a valid read request to
the address on m_axil_araddr.

m_axil_arready I Master read address ready.

m_axil_rdata[31:0] I Master read data.

m_axil_rresp[1:0] I Master read response.

m_axil_rvalid I Master read valid.

m_axil_rready O Master read ready.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=56

AXI4-Lite Slave Ports
Table 21: Config AXI4-Lite Memory Mapped Write Slave Interface Signals

Signal Name I/O Description
s_axil_awaddr[31:0] I This signal is the address for a memory mapped write to the DMA

from the user logic.

s_axil_awvalid I The assertion of this signal means there is a valid write request to
the address on s_axil_awaddr.

s_axil_awprot[2:0] I Unused

s_axil_awready O Slave write address ready.

s_axil_wdata[31:0] I Slave write data.

s_axil_wstrb[3:0] I Slave write strobe.

s_axil_wvalid I Slave write valid.

s_axil_wready O Slave write ready.

s_axil_bvalid O Slave write response valid.

s_axil_bresp[1:0] O Slave write response.

s_axil_bready I Save response ready.

Table 22: Config AXI4-Lite Memory Mapped Read Slave Interface Signals

Signal Name I/O Description
s_axil_araddr[31:0] I This signal is the address for a memory mapped read to the DMA

from the user logic.

s_axil_arprot[2:0] I Unused

s_axil_arvalid I The assertion of this signal means there is a valid read request to
the address on s_axil_araddr.

s_axil_arready O Slave read address ready.

s_axil_rdata[31:0] O Slave read data.

s_axil_rresp[1:0] O Slave read response.

s_axil_rvalid O Slave read valid.

s_axil_rready I Slave read ready.

AXI4 Memory Mapped Ports
Table 23: AXI4 Memory Mapped Read Address Interface Signals

Signal Name Direction Description
m_axi_araddr [63:0] O This signal is the address for a memory mapped read to the user

logic from the DMA.

m_axi_arid [3:0] O Standard AXI4 description, which is found in the AXI4 Protocol
Specification ARM AMBA AXI4-Stream Protocol Specification (ARM
IHI 0051A).

m_axi_arlen[7:0] O Master read burst length.

m_axi_arsize[2:0] O Master read burst size.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 57Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=57

Table 23: AXI4 Memory Mapped Read Address Interface Signals (cont'd)

Signal Name Direction Description
m_axi_arprot[2:0] O 3’h0

m_axi_arvalid O The assertion of this signal means there is a valid read request to
the address on m_axi_araddr.

m_axi_arready I Master read address ready.

m_axi_arlock O 1’b0

m_axi_arcache[3:0] O 4’h0

m_axi_arburst[1:0] O Master read burst type.

Table 24: AXI4 Memory Mapped Read Interface Signals

Signal Name Direction Description
m_axi_rdata [255:0] I Master read data.

m_axi_rid [3:0] I Master read ID.

m_axi_rresp[1:0] I Master read response.

m_axi_rlast I Master read last.

m_axi_rvalid I Master read valid.

m_axi_rready O Master read ready.

m_axi_ruser I Parity ports for read interface. This port is enabled only in
Propagate Parity mode.

Table 25: AXI4 Memory Mapped Write Address Interface Signals

Signal Name Direction Description
m_axi_awaddr[63:0] O This signal is the address for a memory mapped write to the user

logic from the DMA.

m_axi_awid[3:0] O Master write address ID.

m_axi_awlen[7:0] O Master write address length.

m_axi_awsize[2:0] O Master write address size.

m_axi_awburst[1:0] O Master write address burst type.

m_axi_awprot[2:0] O 3’h0

m_axi_awvalid O The assertion of this signal means there is a valid write request to
the address on m_axi_araddr.

m_axi_awready I Master write address ready.

m_axi_awlock O 1’b0

m_axi_awcache[3:0] O 4’h0

Table 26: AXI4 Memory Mapped Write Interface Signals

Signal Name Direction Description
m_axi_wdata[255:0] O Master write data.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=58

Table 26: AXI4 Memory Mapped Write Interface Signals (cont'd)

Signal Name Direction Description
m_axi_wlast O Master write last.

m_axi_wstrb[31:0] O Master write strobe.

m_axi_wvalid O Master write valid.

m_axi_wready I Master write ready.

m_axi_wuser O Parity ports for read interface. This port is enabled only in
Propagate Parity mode.

Table 27: AXI4 Memory Mapped Write Response Interface Signals

Signal Name Direction Description
m_axi_bvalid I Master write response valid.

m_axi_bresp[1:0] I Master write response.

m_axi_bid[3:0] I Master response ID.

m_axi_bready O Master response ready.

AXI4-Stream H2C Ports
Table 28: AXI4-Stream H2C Port Descriptions

Port Name I/O Description
m_axis_h2c_tdata
[AXI_DATA_WIDTH-1:0]

O

m_axis_h2c_dpar
[AXI_DATA_WIDTH/8-1:0]

O Odd parity calculated bit-per-byte over m_axis_h2c_tdata[255:0]
m_axis_h2c_dpar [0] is parity calculated over m_axis_h2c_tdata[31:0]
m_axis_h2c_dpar [1] is parity calculated over
m_axis_h2c_tdata[63:32] and so on

m_axis_h2c_tuser [69:0] O Contains the following information:
m_axis_h2c_tuser [10:0]: QID
m_axis_h2c_tuser [11:11]: Channel ID
m_axis_h2c_tuser [12]: SOP
m_axis_h2c_tuser [13]: EOP
m_axis_h2c_tuser [19:14]: LEB
m_axis_h2c_tuser [25:20]: MEB
m_axis_h2c_tuser [26]: WBC
m_axis_h2c_tuser [34:27]: PCIe read error
m_axis_h2c_tuser [37:35]: QDMA port ID
m_axis_h2c_tuser [69:38]: bits[31:0] of the H2C descriptor which was
used to fetch this data

m_axis_h2c_tvalid O Valid

m_axis_h2c_tlast O Indicates that this is the last cycle of the packet transfer

m_axis_h2c_tready I Ready

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=59

AXI4-Stream C2H Ports
Table 29: AXI4-Stream C2H Port Descriptions

Port Name I/O Description
s_axis_c2h_tdata
[AXI_DATA_WIDTH-1:0]

I It supports 4 data widths: 64 bits, 128 bits, 256 bits, and 512 bits

s_axis_c2h_dpar
[AXI_DATA_WIDTH/8-1:0]

I Data parity

s_axis_c2h_ctrl_len [15:0] I Length of the packet

s_axis_c2h_ctrl_qid [10:0] I Queue ID

s_axis_c2h_ctrl_user_trig I User trigger; this can trigger the interrupt and the status descriptor
write if they are enabled

s_axis_c2h_ctrl_dis_cmp I Disable completion

s_axis_c2h_ctrl_imm_data I Immediate data; This will allow only the completion and no DMA on
the data payload

s_axis_c2h_ctrl_marker I Marker message used for making sure pipeline is completely
flushed. After that, we can safely do queue invalidation. When this
bit is set, the imm_data bit has to be set too

s_axis_c2h_ctrl_port_id [2:0] I Port ID

s_axis_c2h_mty [5:0] I Empty byte in the last data packet

s_axis_c2h_tvalid I Valid

s_axis_c2h_tlast I Indicate last packet

s_axis_c2h_tready O Ready

AXI4-Stream C2H Completion Ports
Table 30: AXI4-Stream C2H Completion Port Descriptions

Port Name I/O Description
s_axis_c2h_cmpt_tdata[127:0] I Completion data from the User. This contains information that is

written to the completion ring in the host. This information includes
length of the packet transferred in bytes, error, color bit and User
data

s_axis_c2h_cmpt_size [1:0] I 00: 8B completion
01: 16B completion
10: 32B completion
11: unknown

s_axis_c2h_cmpt_dpar [15:0] I Odd parity computed as bit-per-word
s_axis_c2h_cmpt_dpar[0] is parity over s_axis_c2h_cmpt_tdata[31:0]
s_axis_c2h_cmpt_dpar[1] is parity over s_axis_c2h_cmpt_tdata[63:31]
and so on

s_axis_c2h_cmpt_tvalid I Valid

s_axis_c2h_cmpt_tlast I Indicates the end of the completion data transfer

s_axis_c2h_cmpt_tready O Ready

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=60

AXI4-Stream Drop Ports
Table 31: AXI-ST C2H Drops Port Descriptions

Port Name I/O Description
axis_c2h_drop_valid O Valid

axis_c2h_drop_qid [10:0] O QID for which the packet was dropped

axis_c2h_drop O If QDMA does not have either sufficient data buffer to store a C2H
packet or does not have enough descriptors to transfer the full
packet to host, it drops the packet. This bit indicates if the packet
was dropped or not. A packet that is not dropped is considered as
having been accepted.
0: packet was not dropped
1: packet was dropped

Configuration Management Ports
Table 32: Configuration Management Port Descriptions

Port Name I/O Description
cfg_mgmt_addr [18:0] I Read/Write Address

Configuration Space Dword-aligned address.

cfg_mgmt_write I Write Enable
Asserted for a write operation. Active-High.

cfg_mgmt_write_data [31:0] I Write Data
Write data is used to configure the Configuration and Management
registers.

cfg_mgmt_byte_enable[3:0] I Byte Enable
Byte enable for write data, where cfg_mgmt_byte_enable[0]
corresponds to cfg_mgmt_write_data[7:0], and so on.

cfg_mgmt_read I Read Enable
Asserted for a read operation. Active-High.

cfg_mgmt_read_data [31:0] O Read Data Out
Read data provides the configuration of the Configuration and
Management registers.

cfg_mgmt_read_write_done O Read/Write operation complete
Asserted for 1 cycle when the operation is complete. Active-High.

Configuration Extend Interface Ports
The Configuration Extend interface allows the core to transfer configuration information with the
user application when externally implemented configuration registers are implemented.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=61

Table 33: Configuration Extend Interface Port Descriptions

Port Name I/O Width Description
cfg_ext_read_received O 1 Configuration Extend Read Received

The core asserts this output when it has received a
configuration read request from the link. When
neither user-implemented legacy or extended
configuration space is enabled, receipt of a
configuration read results in a one-cycle assertion of
this signal, together with valid
cfg_ext_register_number and
cfg_ext_function_number. When user-implemented
legacy, extended configuration space, or both are
enabled, for the cfg_ext_register_number ranges,
0x10-0x1f or 0x100-0x3ff , respectively, this signal is
asserted, until user logic presents cfg_ext_read_data
and cfg_ext_read_data_valid. For
cfg_ext_register_number ranges outside 0x10 - 0x1f or
0x100 - 0x3ff , receipt of a configuration read always
results in a one-cycle assertion of this signal.

cfg_ext_write_received O 1 Configuration Extend Write Received
The core generates a one-cycle pulse on this output
when it has received a configuration write request
from the link.

cfg_ext_register_number O 10 Configuration Extend Register Number
The 10-bit address of the configuration register being
read or written. The data is valid when
cfg_ext_read_received or cfg_ext_write_received is
High.

cfg_ext_function_number O 8 Configuration Extend Function Number
The 8-bit function number corresponding to the
configuration read or write request. The data is valid
when cfg_ext_read_received or cfg_ext_write_received
is High.

cfg_ext_write_data O 32 Configuration Extend Write Data
Data being written into a configuration register. This
output is valid when cfg_ext_write_received is High.

cfg_ext_write_byte_enable O 4 Configuration Extend Write Byte Enable
Byte enables for a configuration write transaction.

cfg_ext_read_data I 32 Configuration Extend Read Data
You can provide data from an externally implemented
configuration register to the core through this bus.
The core samples this data on the next positive edge
of the clock after it sets cfg_ext_read_received High, if
you have set cfg_ext_read_data_valid.

cfg_ext_read_data_valid I 1 Configuration Extend Read Data Valid
The user application asserts this input to the core to
supply data from an externally implemented
configuration register. The core samples this input
data on the next positive edge of the clock after it sets
cfg_ext_read_received High.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=62

FLR Ports
Table 34: FLR Port Descriptions

Port Names I/O Description
usr_flr_fnc [7:0] O Function

The function number of the FLR status change

usr_flr_set O Set
Asserted for 1 cycle indicating that the FLR status of the function
indicated on usr_flr_fnc[7:0] is active.

usr_flr_clr O Clear
Asserted for 1 cycle indicating that the FLR status of the function
indicated on usr_flr_fnc[7:0] is completed.

usr_flr_done_fnc [7:0] I Done Function
The function for which FLR has been completed by user logic.

usr_flr_done_vld I Done Valid
Assert for one cycle to signal that FLR for the function on
usr_flr_done_fnc[7:0] has been completed.

QDMA Descriptor Bypass Input Ports
Table 35: QDMA H2C Descriptor Bypass Input Port Descriptions

Port Name I/O Description
h2c_byp_in_dsc [255:0] I H2C Bypass In Descriptor[DJ1]

The H2C descriptor provided by the User to QDMA. QDMA uses it to
fetch data from the host

h2c_byp_in_sdi I H2C Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the User to QDMA to send
the status descriptor to host and generate an interrupt to host
when the QDMA has fetched the last byte of the data associated
with this descriptor. The QDMA will honor the request to generate
an interrupt only if interrupts have been enabled in the H2C ring
context for this QID and armed by the driver

h2c_byp_in_cmpt_req I H2C Bypass In Completion Request
Indication from the User that the QDMA must send a completion
status to the User once the QDMA has completed the data transfer
of this descriptor

h2c_byp_in_dsc_sz [1:0] I Descriptor size. 1: 16B H2C streaming, 2: 32B H2C MM

h2c_byp_in_st_mm I Indicates whether this is a streaming data descriptor or memory-
mapped descriptor. 0: streaming; 1: memory-mapped

h2c_byp_in_qid [10:0] I The QID associated with the H2C descriptor ring

h2c_byp_in_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

h2c_byp_in_func [7:0] I PCIe function ID

h2c_byp_in_cidx [15:0] I The CIDX that will be used for the status descriptor update and/or
interrupt (coalescing mode). Generally the CIDX should be left
unchanged from when it was received from the descriptor bypass
output interface.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=63

Table 35: QDMA H2C Descriptor Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
h2c_byp_in_port_id [2:0] I QDMA port ID

h2c_byp_in_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

h2c_byp_in_rdy O Ready to take in descriptor

Table 36: QDMA C2H Descriptor Bypass Input Port Descriptions

Port Name I/O Description
c2h_byp_in_dsc [255:0] I The C2H descriptor that the QDMA will use to send data to the host

c2h_byp_in_sdi I C2H Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the User to QDMA to send
the status descriptor to host and generate an interrupt to host
when the QDMA has fetched the last byte of the data associated
with this descriptor. The QDMA will honor the request to generate
an interrupt only if interrupts have been enabled in the H2C ring
context for this QID and armed by the driver

c2h_byp_in_cmpt_req I C2H Bypass In Completion Request
Indication from the User that the QDMA must send a completion
status to the User once the QDMA has completed the data transfer
of this descriptor

c2h_byp_in_dsc_sz [1:0] I Descriptor size. 0: 8B for C2H streaming; 2: 32B for C2H MM

c2h_byp_in_st_mm I Indicates whether this is a streaming data descriptor or memory-
mapped descriptor. 0: streaming; 1: memory-mapped

c2h_byp_in_qid [10:0] I The QID associated with the C2H descriptor ring

c2h_byp_in_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

c2h_byp_in_func [7:0] I PCIe function ID

c2h_byp_in_cidx [15:0] I The User must echo the CIDX from the descriptor that it received on
the bypass-out interface

c2h_byp_in_port_id[2:0] I QDMA port ID

c2h_byp_in_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

c2h_byp_in_rdy O Ready to take in descriptor

QDMA Descriptor Bypass Output Ports
Table 37: QDMA H2C Descriptor Bypass Output Port Descriptions

Port Name I/O Description
h2c_byp_out_dsc [255:0] O The H2C descriptor fetched from the host

h2c_byp_out_cmpt_rsp O Indicates completion status in response to h2c_byp_in_cmpt_req

h2c_byp_out_st_mm O Indicates whether this is a streaming data descriptor or memory-
mapped descriptor. 0: streaming; 1: memory-mapped

h2c_byp_out_qid [10:0] O The QID associated with the H2C descriptor ring

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=64

Table 37: QDMA H2C Descriptor Bypass Output Port Descriptions (cont'd)

Port Name I/O Description
h2c_byp_out_error O Indicates that an error was encountered in descriptor fetch or

execution of a previous descriptor

h2c_byp_out_func [7:0] O PCIe function ID

h2c_byp_out_cidx [15:0] O H2C Bypass Out Consumer Index
The ring index of the descriptor fetched. The User must echo this
field back to QDMA when submitting the descriptor on the bypass-
in interface

h2c_byp_out_port_id [2:0] O QDMA port ID

h2c_byp_out_vld O Valid. High indicates descriptor is valid, one pulse for one descriptor

h2c_byp_out_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

Table 38: QDMA C2H Descriptor Bypass Output Port Descriptions

Port Name I/O Description
c2h_byp_out_dsc [255:0] O The C2H descriptor fetched from the host

c2h_byp_out_cmpt_rsp O Indicates completion status in response to c2h_byp_in_cmpt_req

c2h_byp_out_st_mm O Indicates whether this is a streaming data descriptor or memory-
mapped descriptor. 0: streaming; 1: memory-mapped

c2h_byp_out_qid [10:0] O The QID associated with the H2C descriptor ring

c2h_byp_out_error O Indicates that an error was encountered in descriptor fetch

c2h_byp_out_func [7:0] O PCIe function ID

c2h_byp_out_cidx [15:0] O C2H Bypass Out Consumer Index
The ring index of the descriptor fetched. The User must echo this
field back to QDMA when submitting the descriptor on the bypass-
in interface

c2h_byp_out_port_id [2:0] O QDMA port ID

c2h_byp_out_vld O Valid. High indicates descriptor is valid, one pulse for one
descriptor.

c2h_byp_out_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

QDMA Descriptor Complete Ports
Table 39: QDMA TM Credit In Port Descriptions

Port Name I/O Description
dsc_cmpt_dsc [255 : 0] O Completion status issued to the user application. This information is

delivered in response to setting the h2c_byp_in_cmpt bit on the
bypass-in interface when providing the descriptor to QDMA.

dsc_cmpt_dir O Indicates whether this completion status is for H2C or C2H
descriptor.
0: H2C
1: C2H

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=65

Table 39: QDMA TM Credit In Port Descriptions (cont'd)

Port Name I/O Description
dsc_cmpt_st_mm O Indicates whether this is a streaming data descriptor or memory-

mapped descriptor.
0: streaming
1: memory-mapped

dsc_cmpt_qid [10:0] O The QID associated with the descriptor ring for which this status
update is being issued

dsc_cmpt_last O

dsc_cmpt_error O

dsc_cmpt_func [7:0] O PCIe function ID

dsc_cmpt_cidx [15:0] O

dsc_cmpt_port_id [2:0] O QDMA port ID

dsc_cmpt_vld O

dsc_cmpt_rdy I

QDMA Descriptor Credit Input Ports
Table 40: QDMA Descriptor Credit Input Port Descriptions

Port Name I/O Description
dsc_crdt_in_vld I Valid

dsc_crdt_in_rdy O Ready

dsc_crdt_in_dir I Indicates whether this completion status is for H2C or C2H
descriptor ring.
0: H2C
1: C2H

dsc_crdt_in_qid [10:0] I The QID associated with the descriptor ring for which this status
update is being issued

dsc_crdt_in_crdt [15:0] I The number of descriptor credits that the User is giving to QDMA to
fetch descriptors from the host

QDMA Traffic Manager Credit Output Ports
Table 41: QDMA TM Credit Output Port Descriptions

Port Name I/O Description
tm_dsc_sts_vld O Valid

tm_dsc_sts_byp O Shows the bypass bit in the SW descriptor context

tm_dsc_sts_dir O Indicates whether the status update is for a H2C or C2H descriptor
ring.
0: H2C
1: C2H

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=66

Table 41: QDMA TM Credit Output Port Descriptions (cont'd)

Port Name I/O Description
tm_dsc_sts_mm O Indicates whether the status update is for a streaming or memory-

mapped User.
0: streaming
1: memory-mapped

tm_dsc_sts_qid [10:0] O The QID of the ring

tm_dsc_sts_avl [7:0] O The number of new descriptors that have been posted to the ring
since the last time this update was sent.

tm_dsc_sts_qinv O If set, it indicates that the queue has been invalidated. This is used
by the user application to reconcile the credit accounting between
the user application and QDMA.

tm_dsc_sts_irq_arm O If set, it indicates to the User that the driver is ready to accept
interrupts

tm_dsc_sts_port_id [2:0] O QDMA port ID

tm_dsc_sts_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

User Interrupts
Table 42: User Interrupts Port Descriptions

Port Name I/O Description
usr_irq_in_vld I Valid

An assertion indicates that an interrupt associated with the vector,
function, and pending fields on the bus should be generated to
PCIe. Once asserted, Usr_irq_in_vld must remain high until
usr_irq_out_ack is asserted by the DMA.

usr_irq_in_vec [4:0] I Vector
The MSIX vector to be sent.

usr_irq_in_fnc [7:0] I Function
The function of the vector to be sent.

usr_irq_out_ack[4:0] O Interrupt Acknowledge
An assertion of the acknowledge bit indicates that the interrupt was
transmitted on the link the user logic must wait for this pulse before
signaling another interrupt condition.

usr_irq_out_fail O Interrupt Fail
An assertion of fail indicates that the interrupt request was aborted
before transmission on the link.

Register Space
Table 43: QDMA Address Register Space

Target Name Base (Hex) Byte size (dec) Notes
QDMA_TRQ_SEL_GLBL1 (0x00000) 00000000 256 QDMA Configuration CSR space

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=67

Table 43: QDMA Address Register Space (cont'd)

Target Name Base (Hex) Byte size (dec) Notes
QDMA_TRQ_SEL_GLBL2 (0x00100) 00000100 256 Driver visible attribute space

QDMA_TRQ_SEL_GLBL (0x00200) 00000200 512 QDMA CSR space

QDMA_TRQ_SEL_FMAP (0x00400) 00000400 1024 Functional mapping register space

QDMA_TRQ_SEL_IND (0x00800) 00000800 512 Indirect context register space

QDMA_TRQ_SEL_C2H (0x00A00) 00000A00 512 Card to Host Streaming register space

QDMA_TRQ_SEL_C2H_MM (0x1000) 00001000 256 Card to Host AXI-MM register space

QDMA_TRQ_SEL_H2C_MM (0x1200) 00001200 256 Host to Card AXI-MM register space

QDMA_TRQ_MSIX (0x1400) 00001400 4096 Space for 32 MSIX vectors and PBA

QDMA_TRQ_EXT (0x2400) 00002400 16384 External register space

QDMA_TRQ_SEL_QUEUE_PF (0x6400) 00006400 32768 PF Direct QCSR (16B per Q, up to max
of 2048 Qs per function)

PF Top Register Address 0000E3FF 58368 PF BarAddr need to be 64KB align

QDMA_TRQ_MSIX_VF (0x0000) 00000000 4096 Space for 32 MSIX vectors and PBA

QDMA_TRQ_EXT_VF (0x1000) 00001000 8192 External virtual function register space

QDMA_TRQ_SEL_QUEUE_VF (0x3000) 00003000 32768 VF Direct QCSR (16B per Q, up to max
of 2048 Qs per function)

VF Top Register Address 0000B000 45056 VF BarAddr alignment should be on
largest VF bar window

QDMA_TRQ_SEL_GLBL1 (0x00000)
Table 44: QDMA_TRQ_SEL_GLBL1 (0x00000) Register Space

Register Name Address (hex) Description
Config Block Identifier (0x00) 0x00 Configuration block Identifier register

Config Block BusDev (0x04) 0x04 Bus device function register

Config Block PCIE Max Payload Size (0x08) 0x08 Max Payload size

Config Block PCIE Max Read Request Size
(0x0C)

0x0C Max read request size

Config Block System ID (0x10) 0x10 System ID register

Config Block MSI Enable (0x14) 0x14 Interrupt config register

Config Block PCIE Data Width (0x18) 0x18 PCIe data width register

Config PCIE Control (0x1C) 0x1C PCIe control register

Config AXI User Max Payload Size (0x40) 0x40 AXI Max Payload size register

Config AXI User Max Read Request Size (0x44) 0x44 AXI Max Read Request register

Config Write Flush Timeout (0x60) 0x60 Config Write timeout control register

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=68

Config Block Identifier (0x00)

Table 45: Config Block Identifier (0x00)

Bit Default
Access
Type Field Description

31:20 12’h1fd RO Identifier DMA Subsystem for PCIe identifier

19:16 4’h3 RO Config_block_identifier Config Identifier

15:8 8’h0 RO Reserved Reserved

7:0 8'h00 RO Version Version

Config Block BusDev (0x04)

Table 46: Config Block BusDev (0x04)

Bit Default
Access
Type Field Description

[15:0] PCIe IP RO BDF bus_dev
Bus, device, and function

Config Block PCIE Max Payload Size (0x08)

Table 47: Config Block PCIE Max Payload Size (0x08)

Bit Default
Access
Type Field Description

[2:0] PCIe IP RO pcie_max_payload pcie_max_payload
Maximum write payload size. This is the lesser of the
PCIe IP MPS and DMA Subsystem for PCIe
parameters.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=69

Config Block PCIE Max Read Request Size (0x0C)

Table 48: Config Block PCIE Max Read Request Size (0x0C)

Bit Default Access
Type Field Description

[2:0] PCIe IP RO pcie_max_read pcie_max_read
Maximum read request size. This is the lesser of the
PCIe IP MRRS and DMA Subsystem for PCIe
parameters.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Config Block System ID (0x10)

Table 49: Config Block System ID (0x10)

Bit Default Access
Type Field Description

[15:0] 16’hff01 RO system_id system_id
DMA Subsystem for PCIe system ID

Config Block MSI Enable (0x14)

Table 50: Config Block MSI Enable (0x14)

Bit Default Access
Type Field Description

[0] PCIe IP RO MSI_enable MSI_en
MSI Enable

[1] PCIe IP RO MSIX_enable MSI-X Enable

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=70

Config Block PCIE Data Width (0x18)

Table 51: Config Block PCIE Data Width (0x18)

Bit Default Access
Type Field Description

[2:0] C_DAT_WID
TH

RO PCIe_AXI4_stream_width pcie_width
PCIe AXI4-Stream Width
0: 64 bits
1: 128 bits
2: 256 bits
3: 512 bits

Config PCIE Control (0x1C)

Table 52: Config PCIE Control (0x1C)

Bit Default Access
Type Field Description

[0] 1’b1 RW Relaxed_ordering Relaxed Ordering
PCIe read request TLPs are generated with the
relaxed ordering bit set.

Config AXI User Max Payload Size (0x40)

Table 53: Config AXI User Max Payload Size (0x40)

Bit Default Access
Type Field Description

6:4 3’h5 RO user_max_payload_issued user_eff_payload
The actual maximum payload size issued to the user
application. This value might be lower than
user_prg_payload due to IP configuration or
datapath width.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

2:0 3’h5 RW user_max_payload_prog user_prg_payload
The programmed maximum payload size issued to
the user application.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=71

Config AXI User Max Read Request Size (0x44)

Table 54: Config AXI User Max Read Request Size (0x44)

Bit Default Access
Type Field Description

6:4 3’h5 RO usr_max_read_request_is
sued

user_eff_read
Maximum read request size issued to the user
application. This value may be lower than
user_max_read due to PCIe configuration or
datapath width.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

2:0 3’h5 RW usr_max_read_request_pr
og

user_prg_read
Maximum read request size issued to the user
application.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Config Write Flush Timeout (0x60)

Table 55: Config Write Flush Timeout (0x60)

Bit Default Access
Type Field Description

4:0 5’h0 RW Write_flush_timeout Write Flush Timeout
Applies to AXI4-Stream C2H channels. This register
specifies the number of clock cycles a channel waits
for data before flushing the write data it already
received from PCIe. This action closes the descriptor
and generates a writeback. A value of 0 disables the
timeout. The timeout value in clocks = 2 value .

QDMA_TRQ_SEL_GLBL2 (0x00100)
Table 56: QDMA_TRQ_SEL_GLBL2 (0x00100) Register Space

Register Address Description
QDMA_GLBL2_IDENTIFIER 0x100 Identifier 0x1FD3xxxx

QDMA_GLBL2_PF_BARLITE_INT 0x104 PF BAR information for internal DMA registers

QDMA_GLBL2_PF_VF_BARLITE_INT 0x108 VF BAR information for internal DMA registers

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=72

Table 56: QDMA_TRQ_SEL_GLBL2 (0x00100) Register Space (cont'd)

Register Address Description
QDMA_GLBL2_PF_BARLITE_EXT 0x10C PF BAR information for External AXI-Lite Msater

QDMA_GLBL2_PF_VF_BARLITE_EXT 0x110 VF BAR information for External AXI-Lite Master

QDMA_GLBL2_CHANNEL_INST 0x114

QDMA_GLBL2_CHANNEL_MDMA 0x118

QDMA_GLBL2_CHANNEL_STRM 0x11C

QDMA_GLBL2_MDMA_CAP 0x120

QDMA_GLBL2_XDMA_CAP 0x124

QDMA_GLBL2_PASID_CAP 0x128

QDMA_GLBL2_FUNC_RET 0x12C

QDMA_TRQ_SEL_GLBL (0x00200)
Table 57: QDMA_TRQ_SEL_GLBL (0x00200) Register Space

Registers (Address) Address Description
QDMA_GLBL_RNG_SZ (0x204-0x240) 0x204-0x240 Global ring size registers.

16 different ring size can be set

QDMA_GLBL_SCRATCH (0x244) 0x244 Reserved

QDMA_GLBL_ERR_STAT (0X248) 0x248 Global Error status

QDMA_GLBL_ERR_MASK (0X24C) 0x24C Global Error mask enable

QDMA_GLBL_DSC_CFG (0x250) 0x250 Descriptor configuration and C2H completion
accumulation

QDMA_GLBL_DSC_ERR_STS (0x254) 0x254 Descriptor Error status bits

QDMA_GLBL_DSC_ERR_MSK (0x258) 0x258 Descriptor Error mask enable

QDMA_GLBL_DSC_ERR_LOG0 (0x25C) 0x25C Descriptor Error information

QDMA_GLBL_DSC_ERR_LOG1 (0x260) 0x260 Descriptor Type of error

QDMA_GLBL_TRQ_ERR_STS (0x264) 0x264 Address Target Error status

QDMA_GLBL_TRQ_ERR_MSK (0x268) 0x268 Address Target Error mask enable

QDMA_GLBL_TRQ_ERR_LOG (0x26C) 0x26C Address Target Error information

QDMA_GLBL_RNG_SZ (0x204-0x240)

Table 58: QDMA_GLBL_RNG_SZ (0x204-0x240)

Bit Default Access
Type Field Description

31:16 16’h0 NA Reserved

15:0 16’h0 RW Ring_size Ring Size (including Write back status location)

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=73

Global ring size is a group of 16 registers that is used by the descriptor and writeback context to
select its ring size via the ring size index field.

Address = 0x200 + ((index + 1) *4)
For index=0, Ring Size Register 0 is located at address 0x204
For index=1, Ring Size Register 1 is located at address 0x208

QDMA_GLBL_ERR_STAT (0X248)

Table 59: QDMA_GLBL_ERR_STAT (0X248)

Bit Default Access
Type Field Description

[31:9] 0 NA Reserved Reserved

[8:0] 0 RW1C error Bit Error_location
8 err_c2h_st;
7 Reserved;
6 err_c2h_mm_0;
5 Reserved;
4 err_h2c_mm_0;
3 err_trq;
2 err_dsc;
1 err_ram_dbe;
0 err_ram_sbe

QDMA_GLBL_ERR_MASK (0X24C)

Table 60: QDMA_GLBL_ERR_MASK (0X24C)

Bit Default Access
Type Field Description

[31:9] 0 Reserved Reserved

[8:0] 0 RW mask Output error enable mask. See
QDMA_GLBL_ERR_STAT_A definition

QDMA_GLBL_DSC_CFG (0x250)

Table 61: QDMA_GLBL_DSC_CFG (0x250)

Bit Default Access
Type Field Description

[31:10] 0 NA Reserved Reserved

[9] 0 RW Unc_ovr_cor Uncorrectable log overwrite correctable

[8] 0 RW ctxt_fer_dis Log both dsc and dma error bit in context, not just
first

[7:6] 0 NA Reserved Reserved

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=74

Table 61: QDMA_GLBL_DSC_CFG (0x250) (cont'd)

Bit Default Access
Type Field Description

[5:3] 0 RW Max_dsc_fetch Max nuber of descriptors to fetch in one request. 8 *
2^val // Max value is 6

[2:0] 0 RW Wb_acc_int Writeback accumulation 2^(val+1); Max 256;

Write back accumulation value is calculated as 2^(register bit [2:0]). Maximum accumulation is
256. Accumulation can be disabled via queue context

QDMA_GLBL_DSC_ERR_STS (0x254)

Table 62: QDMA_GLBL_DSC_ERR_STS (0x254)

Bit Default Access
Type Field Description

[31] 0 RW1C error COR_ERR_CPLI_RAM_SBE

[30] 0 RW1C error COR_ERR_CPLD_RAM_SBE

[29] 0 RW1C error COR_ERR_HW_CTXT_RAM_SBE

[28] 0 RW1C error COR_ERR_CRD_RCV_RAM_SBE

[27] 0 RW1C error COR_ERR_SW_CTXT_RAM_SBE

[26] 0 RW1C error UNC_ERR_CPLI_RAM_DBE

[25] 0 RW1C error UNC_ERR_CPLD_RAM_DBE

[24] 0 RW1C error UNC_ERR_HW_CTXT_RAM_DBE

[23] 0 RW1C error UNC_ERR_CRD_RCV_RAM_DBE

[22] 0 RW1C error UNC_ERR_SW_CTXT_RAM_DBE

[20] 0 RW1C error UNC_ERR_DMA

[19] 0 RW1C error UNC_ERR_WR_FLR

[18] 0 RW1C error UNC_ERR_WR_UR

[17] 0 RW1C error UNC_ERR_DAT_PARITY

[16] 0 RW1C error UNC_ERR_DAT_POISON

[9] 0 RW1C error UNC_ERR_HDR_TIMEOUT

[5] 0 RW1C error UNC_ERR_HDR_FLR

[4] 0 RW1C error UNC_ERR_HDR_TAG

[3] 0 RW1C error UNC_ERR_HDR_ADDR

[2] 0 RW1C error UNC_ERR_HDR_PARAM

[1] 0 RW1C error UNC_ERR_HDR_UR_CA

[0] 0 RW1C error UNC_ERR_HDR_POISON

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=75

QDMA_GLBL_DSC_ERR_MSK (0x258)

Table 63: QDMA_GLBL_DSC_ERR_MSK (0x258)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Error logging enable masks. See
QDMA_GLBL_DSC_ERR_STS_A .

QDMA_GLBL_DSC_ERR_LOG0 (0x25C)

Table 64: QDMA_GLBL_DSC_ERR_LOG0 (0x25C)

Bit Default Access
Type Field Description

[31:29] 0 RW Reserved Reserved

[28:17] 0 RW qid Queue id of error

[16] 0 RW Sel DMA direction of error
0: H2C
1: C2H

[15:0] 0 RW cidx Consumer index of error

QDMA_GLBL_DSC_ERR_LOG1 (0x260)

Table 65: QDMA_GLBL_DSC_ERR_LOG1 (0x260)

Bit Default Access
Type Field Description

[31:9] 0 RW Reserved Reserved

[3:0] 0 RW sub_type Error sub-type. For update_err only.
0: non update_err
1: PIDX update exceeded 255
2: PIDX update overflow. Too many descriptors
posted compared to ring size.

[4:0] 0 RW err_type Error type. If QMDA_GLBL_DSC_ERR_LOG0 valid is set,
this indicates which unmasked error happened first
and the error type in the status register that is
recorded in the logs.

QDMA_GLBL_TRQ_ERR_STS (0x264)

Table 66: QDMA_GLBL_TRQ_ERR_STS (0x264)

Bit Default Access
Type Field Description

[31:1] 0 NA Reserved Reserved

[0] 0 RW1C trq_err Error valid

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=76

QDMA_GLBL_TRQ_ERR_MSK (0x268)

Table 67: QDMA_GLBL_TRQ_ERR_MSK (0x268)

Bit Default Access
Type Field Description

[31:1] 0 NA Reserved Reserved

[0] 0 RW mask Mask enable

QDMA_GLBL_TRQ_ERR_LOG (0x26C)

Table 68: QDMA_GLBL_TRQ_ERR_LOG (0x26C)

Bit Default Access
Type Field Description

[31:28] 0 NA Reserved Reserved

[27:24] 0 RW Select Register access space select
0 : Reserved
1 : QDMA_TRQ_SEL_GLBL1
2: QDMA_TRQ_SEL_GLBL2
3: QDMA_TRQ_SEL_GLBL
4: QDMA_TRQ_SEL_FMAP
5: QDMA_TRQ_SEL_IND
6: QDMA_TRQ_SEL_C2H
7: Reserved
8: Reserved
9: QDMA_TRQ_SEL_C2H_MM0
10: Reserved
11: QDMA_TRQ_SEL_H2C_MM0
12: Reserved
13: QDMA_TRQ_SEL_QUEUE_PF

[23:16] 0 RW function Register access space function

[15:0] 0 RW Address Register access space address

QDMA_TRQ_SEL_FMAP (0x00400)
Table 69: QDMA_TRQ_SEL_FMAP (0x00400) Register Space

Registers (Address) Address description
QDMA_TRQ_SEL_FMAP (0x400-0x7FC) 0x400 -0x7FC Function map

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=77

QDMA_TRQ_SEL_FMAP (0x400-0x7FC)

Function map is used to map a consecutive block of queue(s) to a function. This can be done
from any PF.

Table 70: QDMA_TRQ_SEL_FMAP (0x400-0x7FC)

Bit Default Access
Type Field Description

[31:23] 0 NA Reserved Reserved

[22:11] 0 RW Qid_max Queue count

[10:0] 0 RW Qid_base Number of Queues for a function

Register address for each function is calculated as 0x400+(Function number *4)

• function number 0, will be written to address 0x400

• function number 1, will be written to address 0x404, etc.

• last function number will be written to address 0x7FC

QDMA_TRQ_SEL_IND (0x00800)
Table 71: QDMA_TRQ_SEL_IND (0x00800) Register Space

Registers (Address) Address Description
QDMA_IND_CTXT_DATA_3 (0x804) 0x804 Context data (refer to individual

context structure)

QDMA_IND_CTXT_DATA_2 (0x808) 0x808 Context data (refer to individual
context structure)

QDMA_IND_CTXT_DATA_1 (0x80C) 0x80C Context data (refer to individual
context structure)

QDMA_IND_CTXT_DATA_0 (0x810) 0x810 Context data (refer to individual
context structure)

QDMA_IND_CTXT_MASK_3 (0x814) 0x814 Write enable mask

QDMA_IND_CTXT_MASK_2 (0x818) 0x818 Write enable mask

QDMA_IND_CTXT_MASK_1 (0x81C) 0x81C Write enable mask

QDMA_IND_CTXT_MASK_0 (0x820) 0x820 Write enable mask

QDMA_IND_CTXT_CMD (0x824) 0x824 Context Command

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=78

QDMA_IND_CTXT_DATA_3 (0x804)

Table 72: QDMA_IND_CTXT_DATA_3 (0x804)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [31:0]

QDMA_IND_CTXT_DATA_2 (0x808)

Table 73: QDMA_IND_CTXT_DATA_2 (0x808)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [63:32]

QDMA_IND_CTXT_DATA_1 (0x80C)

Table 74: QDMA_IND_CTXT_DATA_1 (0x80C)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [95:64]

QDMA_IND_CTXT_DATA_0 (0x810)

Table 75: QDMA_IND_CTXT_DATA_0 (0x810)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [127:96]

All 4 registers (0x804, 0x808, 0x80C, 0x810) constitute context data for a given queue.

QDMA_IND_CTXT_MASK_3 (0x814)

Set the mask to write corresponding data bits.

Table 76: QDMA_IND_CTXT_MASK_3 (0x814)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [127:96]

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=79

QDMA_IND_CTXT_MASK_2 (0x818)

Set the mask to write corresponding data bits.

Table 77: QDMA_IND_CTXT_MASK_2 (0x818)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [95:64]

QDMA_IND_CTXT_MASK_1 (0x81C)

Set the mask to write corresponding data bits.

Table 78: QDMA_IND_CTXT_MASK_1 (0x81C)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [63:32]

QDMA_IND_CTXT_MASK_0 (0x820)

Set the mask to write corresponding data bits.

Table 79: QDMA_IND_CTXT_MASK_0 (0x820)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [31:0]

All 4 registers (0x814, 0x818, 0x81C, 0x820) constitute context mask for a given queue.

QDMA_IND_CTXT_CMD (0x824)

Table 80: QDMA_IND_CTXT_CMD (0x824)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved Reserved

[17:7] 0 RW Qid Queue ID for context

[6:5] 0 RW Op Opcode
QDMA_CTXT_CMD_CLR = 0
QDMA_CTXT_CMD_WR = 1
QDMA_CTXT_CMD_RD = 2
QDMA_CTXT_CMD_INV = 3

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=80

Table 80: QDMA_IND_CTXT_CMD (0x824) (cont'd)

Bit Default Access
Type Field Description

[4:1] 0 RW Sel QDMA_CTXT_SELC_DEC_SW_C2H = 0
QDMA_CTXT_SELC_DEC_SW_H2C = 1
QDMA_CTXT_SELC_DEC_HW_C2H = 2
QDMA_CTXT_SELC_DEC_HW_H2C = 3
QDMA_CTXT_SELC_DEC_CR_C2H = 4
QDMA_CTXT_SELC_DEC_CR_C2H = 5
QDMA_CTXT_SELC_WRB = 6
QDMA_CTXT_SELC_PFTCH = 7
QDMA_CTXT_SELC_INT_COAL = 8

[0] 0 RW busy Write will be dropped when busy = 1
Read data is invalid when busy = 1

QDMA_TRQ_SEL_C2H (0x00A00)
Table 81: QDMA_TRQ_SEL_C2H (0x00A00) Register Space

Registers (Address) Address description
QDMA_C2H_TIMER_CNT[16]
(0xA00-0xA3C)

0xA00-0xA3C timer_count

QDMA_C2H_CNT_TH[16] (0xA40-0xA7C) 0xA40-0xA7C threshold_count

QDMA_C2H_QID2VEC_MAP_QID (0xA80) 0xA80 The Queue ID index of the Qid2Vec
RAM

QDMA_C2H_QID2VEC_MAP (0xA84) 0xA84 Map Queue ID to Vector

QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTE
D (0XA88)

0xA88 Number of C2H packet accepted

QDMA_C2H_STAT_S_AXIS_WRB_ACCEPT
ED (0xA8C)

0xA8C Number of C2H WRB packet accepted

QDMA_C2H_STAT_DESC_RSP_PKT_ACCE
PTED (0xA90)

0xA90 Number of desc_rsp packet accepted
from the Prefetch

QDMA_C2H_STAT_AXIS_PKG_CMP
(0xA94)

0xA94 Number of axis packet completed from
the C2H DMA Write Engine

QDMA_C2H_STAT_DESC_RSP_ACCEPTED
(0xA98)

0xA98 Number of desc_rsp accepted including
drop and error from the Prefetch

QDMA_C2H_STAT_DESC_RSP_CMP
(0xA9C)

0xA9C Number of desc_rsp completed
including drop and error in the C2H
DMA Write Engine

QDMA_C2H_STAT_WRQ_OUT (0xAA0) 0xAA0 Number of WRQ driven from the C2H
DMA Write Engine

QDMA_C2H_STAT_WPL_REN_ACCEPTED
(0xAA4)

0xAA4 Number of WPL REN accepted in the
C2H DMA Write Engine

QDMA_C2H_STAT_TOTAL_WRQ_LEN
(0xAA8)

0xAA8 Number of total WRQ length (including
the empty packets) from the C2H DMA
Write Engine

QDMA_C2H_STAT_TOTAL_WPL_LEN
(0xAAC)

0xAAC Number of total WPL length (including
the empty packets) from the C2H DMA
Write Engine

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=81

Table 81: QDMA_TRQ_SEL_C2H (0x00A00) Register Space (cont'd)

Registers (Address) Address description
QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC) 0xAB0-0xAEC Buffer size choices

QDMA_C2H_ERR_STAT (0xAF0) 0xAF0 C2H error status

QDMA_C2H_ERR_MASK (0xAF4) 0xAF4 C2H error enable mask

QDMA_C2H_FATAL_ERR_STAT (0xAF8) 0xAF8 C2H fatal error status

QDMA_C2H_FATAL_ERR_MASK (0xAFC) 0xAFC C2H fatal error enable mask

QDMA_C2H_FATAL_ERR_ENABLE
(0xB00)

0xB00 Enable the C2H fatal error action
process

QDMA_C2H_ERR_INT (0B04) 0xB04 C2H error generated interrupt

QDMA_C2H_PFCH_CFG (0B08) 0xB08 Prefetch configuration

QDMA_C2H_INT_TIMER_TICK (0xB0C) 0xB0C C2H interrupt timer tick

QDMA_C2H_STAT_DESC_RSP_DROP_ACC
EPTED (0xB10)

0xB10 Number of dsc rsp with drop accepted

QDMA_C2H_STAT_DESC_RSP_ERR_ACCE
PTED (0xB14)

0xB14 Number of dsc rsp with error accepted

QDMA_C2H_STAT_DESC_REQ (0xB18) 0xB18 Number of dsc request sent out from
the C2H DMA Write Engine

QDMA_C2H_STAT_DEBUG_DMA_ENG_0
(0xB1C)

0xB1C Debug registers 0

QDMA_C2H_STAT_DEBUG_DMA_ENG_1
(0xB20)

0xB20 Debug registers 1

QDMA_C2H_STAT_DEBUG_DMA_ENG_2
(0xB24)

0xB24 Debug registers 2

QDMA_C2H_STAT_DEBUG_DMA_ENG_3
(0xB28)

0xB28 Debug registers 3

QDMA_C2H_DBG_PFCH_ERR_CTXT
(0xB2C)

0xB2C Debug Prefetch error

QDMA_C2H_FIRST_ERR_QID (0xB30) 0xB30 The Qid of the first C2H error

QDMA_STAT_NUM_WRB_IN (0xB34) 0xB34 Number of WRB passed from
DmaWrEnginre to Wrb block

QDMA_STAT_NUM_WRB_OUT (0xB38) 0xB38 Number of WRB(excluding STAT_DESC)
passed from Wrb to WrbCoal block

QDMA_STAT_NUM_WRB_DRP (0xB3C) 0xB3C Number of WRB dropped inside Wrb
block

QDMA_STAT_NUM_STAT_DESC_OUT
(0xB40)

0xB40 Number of STAT_DESC issued from Wrb
to WrbCoal block

QDMA_STAT_NUM_DSC_CRDT_SENT
(0xB44)

0xB44 An accounting of the number of
descriptor credits sent out v/s
received(as a result of q invalidations)

QDMA_STAT_NUM_FCH_DSC_RCVD
(0xB48)

0xB48 Number of descriptors received from
the fetch engine

QDMA_STAT_NUM_BYP_DSC_RCVD
(0XB4C)

0xB4C Number of descriptors received from
the bypass path

QDMA_C2H_WRB_COAL_CFG (0xB50) 0xB50 C2H completion coalesce configuration

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=82

QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C)

Table 82: QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C)

Bit Default Access
Type Field Description

[31:8] 0 NA Reserved Reserved

[7:0] 0 RW Timer_count Timer threshold

Timer Threshold is a group of 16 registers that is used by the C2H writeback context to select its
timer value using the timer count index field.

QDMA_C2H_CNT_TH[16] (0xA40-0xA7C)

Table 83: QDMA_C2H_CNT_TH[16] (0xA40-0xA7C)

Bit Default Access
Type Field Description

[31:8] 0 NA Reserved Reserved

[7:0] 0 RW Threshold_count Count threshold

Count Threshold is a group of 16 registers that is used by the C2H writeback context to select its
count threshold using the count threshold index field.

QDMA_C2H_QID2VEC_MAP_QID (0xA80)

Table 84: QDMA_C2H_QID2VEC_MAP_QID (0xA80)

Bit Default Access
Type Field Description

[31:11] 0 NA Reserved Reserved

[10:0] 0 RW Qid Qid

QDMA_C2H_QID2VEC_MAP (0xA84)

Table 85: QDMA_C2H_QID2VEC_MAP (0xA84)

Bit Default Access
Type Field Description

[31:19] 0 NA Reserved Reserved

[18] 0 RW H2c_en_coal Enable the H2C interrupt coalescing

[17:9] 0 RW H2c_vector H2C Vector

[8] 0 RW C2h_en_coal Enable the C2H interrupt coalescing

[7:0] 0 RW C2h_vector C2H Vector

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=83

The interrupt Qid to Vector mapping is used to map each queue to the respective interrupt
vector (max 32) or an interrupt coalescing ring index (max 256) if the interrupt coalescing is
enabled.

The SW first writes to the QDMA_C2H_QID2VEC_MAP_QID register to indicate the Qid. Then
it can read or writes to the QDMA_C2H_QID2VEC_MAP register to write or read the
information of the vector mapping and the interrupt coalescing enable.

QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED (0XA88)

Table 86: QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED (0XA88)

Bit Default Access
Type Field Description

[31:0] 0 RO C2h_accepted Number of C2H packet accepted from the user
application.

QDMA_C2H_STAT_S_AXIS_WRB_ACCEPTED (0xA8C)

Table 87: QDMA_C2H_STAT_S_AXIS_WRB_ACCEPTED (0xA8C)

Bit Default Access
Type Field Description

[31:0] 0 RO Wrb_accepted Number of C2H write back packet accepted from the
user application.

QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED (0xA90)

Table 88: QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED (0xA90)

Bit Default Access
Type Field Description

[31:0] 0 RO Dsc_rsp_pkt_accepted Number of desc_rsp packet accepted.

QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94)

Table 89: QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94)

Bit Default Access
Type Field Description

[31:0] 0 RO Pkg_cmp The number of C2H packets completed from the C2H
DMA write engine.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=84

QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98)

Table 90: QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98)

Bit Default Access
Type Field Description

[31:0] 0 RO Dsc_rsp_accepted The number of desc_rsp accepted including drop and
error.

QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C)

Table 91: QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C)

Bit Default Access
Type Field Description

[31:0] 0 RO Dsc_rsp_cmp The number of desc_rsp completed, including drop
and error in the C2H DMA write engine.

QDMA_C2H_STAT_WRQ_OUT (0xAA0)

Table 92: QDMA_C2H_STAT_WRQ_OUT (0xAA0)

Bit Default Access
Type Field Description

[31:0] 0 RO Wrq_out The number of WRQ driven from the C2H DMA write
engine.

QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4)

Table 93: QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4)

Bit Default Access
Type Field Description

[31:0] 0 RO Wpl_ren_accepted The number of WPL REN accepted in the C2H DMA
write engine.

QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8)

Table 94: QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8)

Bit Default Access
Type Field Description

[31:0] 0 RO Total_wrq_len The number of total WRQ length (including the
empty packets) from the C2H DMA write engine.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=85

QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC)

Table 95: QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC)

Bit Default Access
Type Field Description

[31:0] 0 RO Total_wpl_len The number of total WPL length (including the empty
packets) from the C2H DMA write engine.

QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC)

Table 96: QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC)

Bit Default Access
Type Field Description

[31:0] 0 RW Size C2H Buffer size for each descriptor in a given queue.

There are 16 registers which can have different C2H buffer sizes. Buffer selection can be done in
context programming.

QDMA_C2H_ERR_STAT (0xAF0)

Table 97: QDMA_C2H_ERR_STAT (0xAF0)

Bit Default Access
Type Field Description

[31:13] 0 NA Rsvd Reserved

[12] 0 RW wrb_inv_q_err Flags the error if the SW updates an invalidated
queue. When it does, the Write back pointer update.

[11] 0 RW port_id_byp_in_mismatch Port_id from the C2H packet and the Port_id from the
bypass_in don’t match

[10] 0 RW port_id_ctxt_mismatch Port_id from the C2H packet and the Port_id in the
Prefetch context don’t match

[9] 0 RW err_desc_cnt Flag the error if the number of the descriptors in a
packet is larger than 7

[8] 0 RW timer_quad_cnt_err The total amount of the timers in the Timer FIFOs
should match with the total count from the timer
quadrant

[7] 0 RW msi_int_fail The msix interrupt message got a FAIL response

[6] 0 RW eng_wpl_data_par_err Data parity error

[5] 0 RW Rsvd1 Reserved

[4] 0 RW Rsvd2 Reserved

[3] 0 RW qid_mismatch Flag the error if the Qid from the s_axis_c2h_ctrl.qid
doesn’t match the Qid on the s_axis_wrb_data

[2] 0 RW Rsvd3 Reserved

[1] 0 RW len_mismatch Flag the error if the total packet length doesn’t
match the signal from the s_axis_c2h_ctrl.len

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=86

Table 97: QDMA_C2H_ERR_STAT (0xAF0) (cont'd)

Bit Default Access
Type Field Description

[0] 0 RW mty_mismatch The Mty should be 0 if it is not the last packet. Flag
the error if it is not the case

This is the error logging register for the C2H errors. The HW writes to the register when the
error happens. The SW can write 1’b1 to clear the error if it wants to. The
QDMA_C2H_ERR_MASK register doesn’t affect the error logging.

QDMA_C2H_ERR_MASK (0xAF4)

Table 98: QDMA_C2H_ERR_MASK (0xAF4)

Bit Default Access
Type Field Description

[31:0] 0 RW c2h_err_en_mask C2H error enable mask

The SW can set the bit to enable the corresponding C2H error to be propagated to the error
aggregator.

QDMA_C2H_FATAL_ERR_STAT (0xAF8)

Table 99: QDMA_C2H_FATAL_ERR_STAT (0xAF8)

Bit Default Access
Type Field Description

[31:21] 0 RO Reserved Reserved

[18] 0 RO wpl_data_par_err Ram double bit error

[17] 0 RO payload_fifo_ram_rdbe Ram double bit error

[16] 0 RO qid_fifo_ram_rdbe Ram double bit error

[15] 0 RO tuser_fifo_ram_rdbe Ram double bit error

[14] 0 RO wrb_coal_data_ram_rdbe Ram double bit error

[13] 0 RO int_qid2vec_ram_rdbe Ram double bit error

[12] 0 RO int_ctxt_ram_rdbe Ram double bit error

[11] 0 RO desc_req_fifo_ram_rdbe Ram double bit error

[10] 0 RO pfch_ctxt_ram_rdbe Ram double bit error

[9] 0 RO wrb_ctxt_ram_rdbe Ram double bit error

[8] 0 RO pfch_ll_ram_rdbe Ram double bit error

[7:4] 0 RO timer_fifo_ram_rdbe Ram double bit error

[3] 0 RO Qid_mismatch Flag the error if the Qid from the s_axis_c2h_ctrl.qid
doesn’t match the Qid on the s_axis_wrb_data

[2] 0 RO Rsvd Reserved

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=87

Table 99: QDMA_C2H_FATAL_ERR_STAT (0xAF8) (cont'd)

Bit Default Access
Type Field Description

[1] 0 RO Len_mismatch Flag the error if the total packet length doesn’t
match the signal from the s_axis_c2h_ctrl.len

[0] 0 RO Mty_mismatch The Mty should be 0 if it is not the last packet. Flag
the error if it is not the case

This is the error logging register for the C2H fatal errors. The HW writes to the register when the
error happens. The SW can write 1’b1 to clear the error if it wants to. The
QDMA_C2H_FATAL_ERR_MASK register doesn’t affect the error logging.

QDMA_C2H_FATAL_ERR_MASK (0xAFC)

Table 100: QDMA_C2H_FATAL_ERR_MASK (0xAFC)

Bit Default Access
Type Field Description

[31:0] 0 RW c2h_fatal_err_en_mask C2H fatal error enable mask

The software can set the bit to enable the corresponding C2H fatal error to be sent to the C2H
fatal error handling logic.

QDMA_C2H_FATAL_ERR_ENABLE (0xB00)

Table 101: QDMA_C2H_FATAL_ERR_ENABLE (0xB00)

Bit Default Access
Type Field Description

[31:2] 0 RW Reserved

[1] 0 RW Enable_wpl_par_inv Enable the C2H Wpl parity inversion when fatal error
happens

[0] 0 RW Enable_wrq_dis Enable the C2H Wrq disable when fatal error
happens

This register can enable the C2H fatal error handling process.

• Stop the data transfer by disabling the Wrq

• Invert the WPL parity on the data transfer

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=88

QDMA_C2H_ERR_INT (0B04)

Table 102: QDMA_C2H_ERR_INT (0B04)

Bit Default Access
Type Field Description

[31:11] 0 NA Reserved Reserved

[10] 0 RW Err_int_arm The SW sets the bit to arm the interrupt. The HW
clears the bit when the interrupt is taken by the
Interrupt Module.

[9] 0 RW En_coal 1’b1: indirect interrupt; 1’b0: direct interrupt

[8] 0 RW Vec For the direct interrupt, this is the interrupt vector;
For the indirect interrupt, this is the Interrupt
Coalescing Context RAM index

[7:0] 0 RW Func Function

This register is for the error generated interrupt.

QDMA_C2H_PFCH_CFG (0B08)

Table 103: QDMA_C2H_PFCH_CFG (0B08)

Bit Default Access
Type Field Description

[31:25] 0 RW Evt_qcnt_th Start Eviction when pfch qcnt >= evt_qcnt_th; The
evc_qcnt_th should always be less than pfch_qcnt

[24:16] 0 RW Pfch_qcnt Max pfch qcnt allowed. Recommended value is <60

[15:8] 0 RW Num_pfch Controls number of entries prefetched in cache per
queue. Recommended value is 8.

[7:0] 0 RW Pfch_fl_th Stop prefetch when FL Free count <= pfch_fl_th,
minimum value is 16

QDMA_C2H_INT_TIMER_TICK (0xB0C)

Table 104: QDMA_C2H_INT_TIMER_TICK (0xB0C)

Bit Default Access
Type Field Description

[31:0] 0 RW Timer_tick Value of a C2H timer tick

QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED (0xB10)

Table 105: QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED (0xB10)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_drop_accepted Number of desc rsp with drop accepted

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=89

QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED (0xB14)

Table 106: QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED (0xB14)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_err_accepted Number of desc rsp with error accepted

QDMA_C2H_STAT_DESC_REQ (0xB18)

Table 107: QDMA_C2H_STAT_DESC_REQ (0xB18)

Bit Default Access
Type Field Description

[31:0] 0 RO Desc_req Number of desc request sent out from the C2H DMA
Write Engine

QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C)

Table 108: QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C)

Bit Default Access
Type Field Description

[31] 0 NA Reserved Reserved

[30:28] RO wrb_fifo_out_cnt count of wrb fifo

[27:18] RO qid_fifo_out_cnt count of qid fifo

[17:8] RO payload_fifo_out_cnt count of payload fifo

[7:5] RO wrq_fifo_out_cnt count of wrq fifo

[4] RO wrb_sm_cs write back state machine

[3:0] RO main_sm_cs main state machine

This is the debug register for the C2H Dma Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20)

Table 109: QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20)

Bit Default Access
Type Field Description

[31] 0 NA Reserved Reserved

[30] RO desc_rsp_last desc_rsp_last signal

[29:20] RO payload_fifo_in_cnt number of incoming entries to payload fifo

[19:10] RO payload_fifo_output_cnt number of popup entries from payload fifo

[9:0] RO qid_fifo_in_cnt number of incoming entries to qid fifo

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=90

This is the debug register for the C2H Dma Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24)

Table 110: QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24)

Bit Default Access
Type Field Description

[31:30] 0 NA Reserved Reserved

[29:20] RO wrb_fifo_in_cnt number of incoming entries to wrb fifo

[19:10] RO wrb_fifo_output_cnt number of popup entries from wrb fifo

[9:0] RO qid_fifo_output_cnt number of popup entries from qid fifo

This is the debug register for the C2H Dma Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28)

Table 111: QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28)

Bit Default Access
Type Field Description

[31:30] 0 NA Reserved Reserved

[29:20] RO addr_4k_split_cnt number of cases when it crosses the 4k address
boundary

[19:10] RO wrq_fifo_in_cnt number of incoming entries to wrq fifo

[9:0] RO wrq_fifo_output_cnt number of popup entries from wrq fifo

QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C)

Table 112: QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C)

Bit Default Access
Type Field Description

[31:14] 0 RW Reserved Reserved

[13] 0 RW Err_stat Error status
For read command
if Queue is valid, err_stat = 0
If Queue is invalid err_stat = 1

[12] 0 RW Cmd_wr Command to write or read.
1: write
0: read

[11:1] 0 RW Qid Queue ID.

[0] 0 RW done Done. Operation finished

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=91

QDMA_C2H_FIRST_ERR_QID (0xB30)

Table 113: QDMA_C2H_FIRST_ERR_QID (0xB30)

Bit Default Access
Type Field Description

[31:20] NA Reserved Reserved

[20:16] 0 RO Err_type 4’b1111: NA
4’b1100: wrb_inv_q_err
4’b1011: port_id_ctxt_mismatch
4’b1010: port_id_byp_in_mismatch
4’b1001: err_desc_cnt
4’b1000: timer_quad_cnt_err
4’b0111: msi_int_fail
4’b0110: eng_wpl_data_par_err
4’b0100: desc_rsp_error
4’b0011: qid_mismatch
4’b0001: len_mismatch
4’b0000: mty_mismatch

[15:12] NA Reserved

[11:0] 0 RO Qid The Qid of the first C2H error

QDMA_STAT_NUM_WRB_IN (0xB34)

Table 114: QDMA_STAT_NUM_WRB_IN (0xB34)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved Reserved

[15:0] 0 RO wrb_cnt The number of WRB passed from DmaWrEnginre to
Wrb block.

QDMA_STAT_NUM_WRB_OUT (0xB38)

Table 115: QDMA_STAT_NUM_WRB_OUT (0xB38)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved Reserved

[15:0] 0 RO wrb_cnt Number of WRB(excluding STAT_DESC) passed from
Wrb to WrbCoal block

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=92

QDMA_STAT_NUM_WRB_DRP (0xB3C)

Table 116: QDMA_STAT_NUM_WRB_DRP (0xB3C)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved Reserved

[15:0] 0 RO wrb_cnt Number of WRB dropped inside Wrb block

QDMA_STAT_NUM_STAT_DESC_OUT (0xB40)

Table 117: QDMA_STAT_NUM_STAT_DESC_OUT (0xB40)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved Reserved

[15:0] 0 RO stat_desc_cnt Number of STAT_DESC issued from Wrb to WrbCoal
block

QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44)

Table 118: QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved Reserved

[15:0] 0 RO crdt_cnt An accounting of the number of descriptor credits
sent out versus received (as a result of q
invalidations).

QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48)

Table 119: QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved Reserved

[15:0] 0 RO dsc_cnt Number of descriptors received from the fetch
engine

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=93

QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C)

Table 120: QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C)

Bit Default Access
Type Field Description

[31:11] 0 NA Reserved Reserved

[10:0] 0 RO dsc_cnt Number of descriptors received from the bypass
path

QDMA_C2H_WRB_COAL_CFG (0xB50)

Table 121: QDMA_C2H_WRB_COAL_CFG (0xB50)

Bit Default Access
Type Field Description

[31:26] 0 RW max_buf_sz To make the design see a certain value of the
coalesce buffer. Used to hit coverage

[25:14] 0 RW tick_val coalesce buffer timer tick value

[13:2] 0 RW tick_cnt coalesce buffer timer count value

[1] 0 RW set_glb_flush makes coalesce buffer flush an entry as soon as it as
a WRB in it

[0] 0 RW done_glb_flush coalesce buffer sets this bit when it flushes an entry

QDMA_TRQ_SEL_C2H_MM (0x1000)
Table 122: QDMA_TRQ_SEL_C2H_MM (0x1000) Register Space

Registers Address Description
C2H MM Control 0x04 Channel control bits

0x08 Channel control bits W1S

0x0C Channel control bits C1S

C2H MM Status 0x40 Status bits

0x44 Status clear

C2H Completed Descriptor Count 0x48 Completed Descriptor count

C2H MM Control

Table 123: C2H Channel Control (0x04)

Bit Default Access
Type Field Description

31:28 Reserved Reserved

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=94

Table 123: C2H Channel Control (0x04) (cont'd)

Bit Default Access
Type Field Description

27 0x0 RW c2h_stream_wrb_disable Disables the metadata writeback for C2H AXI4-
Stream. No effect if the channel is configured to use
AXI Memory Mapped.

26 0x0 RW pollmode_wrb_enable pollmode_wb_enable
Poll mode writeback enable.
When this bit is set, the DMA writes back the
completed descriptor count when a descriptor with
the Completed bit set, is completed.

25 1’b0 RW non_inc_mode non_inc_mode
Non-incrementing address mode. Applies to
m_axi_araddr interface only.

23:19 5’h0 RW desc_error desc_error
Set to all 1s (0x1F) to enable logging of
Status.Desc_error and to stop the engine if the error
is detected.

13:9 5’h0 RW read_error read_error
Set to all 1s (0x1F) to enable logging of
Status.Read_error and to stop the engine if the error
is detected

6 1’b0 RW idle_stopped idle_stopped
Set to 1 to enable logging of Status.Idle_stopped

5 1’b0 RW invalid_length invalid_length
Set to 1 to enable logging of Status.Invalid_length

4 1’b0 RW magic_stopped magic_stopped
Set to 1 to enable logging of Status.Magic_stopped

3 1’b0 RW align_mismatch align_mismatch
Set to 1 to enable logging of Status.Align_mismatch

2 1’b0 RW desc_completed desc_completed
Set to 1 to enable logging of
Status.Descriptor_completed

1 1’b0 RW desc_stopped desc_stopped
Set to 1 to enable logging of
Status.Descriptor_stopped

0 1’b0 RW run run
Set to 1 to start the SGDMA engine. Reset to 0 to stop
the transfer, if the engine is busy it completes the
current descriptor.

Table 124: C2H Channel Control (0x08)

Bit Default Access
Type Field Description

W1S Control
Bit descriptions are the same as in C2H Channel
Control (0x04).

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=95

Table 125: C2H Channel Control (0x0C)

Bit Default Access
Type Field Description

W1C Control
Bit descriptions are the same as in C2H Channel
Control (0x04).

C2H MM Status

Table 126: C2H Channel Status (0x40)

Bit Default Access
Type Field Description

23:19 5’h0 RW1C desc_error descr_error[4:0]
Reset (0) on setting the Control register Run bit.
Bit position:
4:Unexpected completion
3: Header EP
2: Parity error
1: Completer abort
0: Unsupported request

13:9 5’h0 RW1C read_error read_error[4:0]
Reset (0) on setting the Control register Run bit.
Bit position:
4-2: Reserved
1: Slave error
0: Decode error

6 1’b0 RW1C idle_stopped idle_stopped
Reset (0) on setting the Control register Run bit. Set
when the engine is idle after resetting the Control
register Run bit if the Control register ie_idle_stopped
bit is set.

5 1’b0 RW1C invalid_length invalid_length
Reset on setting the Control register Run bit. Set
when the descriptor length is not a multiple of the
data width of an AXI4-Stream channel and the
Control register ie_invalid_length bit is set.

4 1’b0 RW1C magic_stopped magic_stopped
Reset on setting the Control register Run bit. Set
when the engine encounters a descriptor with invalid
magic and stopped if the Control register
ie_magic_stopped bit is set.

3 13’b0 RW1C align_mismatch align_mismatch
Source and destination address on descriptor are not
properly aligned to each other.

2 1’b0 RW1C descriptor_completed descriptor_completed
Reset on setting the Control register Run bit. Set
after the engine has completed a descriptor with the
COMPLETE bit set if the Control register
ie_descriptor_completed bit is set.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=96

Table 126: C2H Channel Status (0x40) (cont'd)

Bit Default Access
Type Field Description

1 1’b0 RW1C descriptor_stopped descriptor_stopped
Reset on setting the Control register Run bit. Set
after the engine completed a descriptor with the
STOP bit set if the Control register ie_magic_stopped
bit is set.

0 1’b0 RO busy busy
Set if the SGDMA engine is busy. Zero when it is idle.

Table 127: C2H Channel Status (0x44)

Bit Default Access
Type Field Description

23:1 RC Status
Bit descriptions are the same as in C2H Channel
Status (0x40).

C2H Completed Descriptor Count

Table 128: C2H Channel Completed Descriptor Count (0x48)

Bit Default Access
Type Field Description

31:0 32’h0 RO c2h_compl_desc_count c2h_compl_desc_count
The number of completed descriptors update by the
engine after completing each descriptor in the list.
Reset to 0 on rising edge of Control register, run bit
(See C2H Channel Control (0x04).).

QDMA_TRQ_SEL_H2C_MM (0x1200)
Table 129: QDMA_TRQ_SEL_H2C_MM (0x1200) Register Space

Register Address Description
H2C MM Control 0x04 Channel control bits

0x08 Channel control bits W1S

0x0C Channel control bits C1S

H2C MM Status 0x40 Status bits

0x44 Status clear

H2C Completed Descriptor Count 0x48 Completed Descriptor count

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=97

H2C MM Control

Table 130: H2C Channel Control (0x04)

Bit Default Access
Type Field Description

31:28 Reserved Reserved

27 1’b0 RW h2c_stream_wrb_disable When set write back information for H2C in AXI-
Stream mode is disabled, default write back is
enabled.

26 0x0 RW pollmode_wrb_enable pollmode_wrb_enable
Poll mode writeback enable.
When this bit is set the DMA writes back the
completed descriptor count when a descriptor with
the Completed bit set, is completed.

25 1’b0 RW non_inc_mode non_inc_mode
Non-incrementing address mode. Applies to
m_axi_araddr interface only.

23:19 5’h0 RW desc_error desc_error
Set to all 1s (0x1F) to enable logging of
Status.Desc_error and to stop the engine if the error
is detected.

18:14 5’h0 RW write_error write_error
Set to all 1s (0x1F) to enable logging of
Status.Write_error and to stop the engine if the error
is detected.

13:9 5’h0 RW read_error read_error
Set to all 1s (0x1F) to enable logging of
Status.Read_error and to stop the engine if the error
is detected.

8:7 Reserved Reserved

6 1’b0 RW idle_stopped idle_stopped
Set to 1 to enable logging of Status.Idle_stopped

5 1’b0 RW invalid_length invalid_length
Set to 1 to enable logging of Status.Invalid_length

4 1’b0 RW magic_stopped magic_stopped
Set to 1 to enable logging of Status.Magic_stopped

3 1’b0 RW align_mismatch align_mismatch
Set to 1 to enable logging of Status.Align_mismatch

2 1’b0 RW desc_completed desc_completed
Set to 1 to enable logging of
Status.Descriptor_completed

1 1’b0 RW desc_stopped desc_stopped
Set to 1 to enable logging of
Status.Descriptor_stopped

0 1’b0 RW run run
Set to 1 to start the SGDMA engine. Reset to 0 to stop
transfer; if the engine is busy it completes the
current descriptor.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=98

ie_* register bits are interrupt enabled. When this condition is met and proper interrupt masks
are set interrupt will be generated.

Table 131: H2C Channel Control (0x08)

Bit Default Access
Type Field Description

26:0 W1S Control
Bit descriptions are the same as in H2C Channel
Control (0x04).

Table 132: H2C Channel Control (0x0C)

Bit Default Access
Type Field Description

26:0 W1C Control
Bit descriptions are the same as in H2C Channel
Control (0x04).

H2C MM Status

Table 133: H2C Channel Status (0x40)

Bit Default Access
Type Field Description

23:19 5’h0 RW1C h2c_desc_err descr_error[4:0]
Reset (0) on setting the Control register Run bit.
4: Unexpected completion
3: Header EP
2: Parity error
1: Completer abort
0: Unsupported request

18:14 5’h0 RW1C write_error write_error[4:0]
Reset (0) on setting the Control register Run bit.
Bit position:
4-2: Reserved
1: Slave error
0: Decode error

13:9 5’h0 RW1C read_error read_error[4:0]
Reset (0) on setting the Control register Run bit.
Bit position
4: Unexpected completion
3: Header EP
2: Parity error
1: Completer abort
0: Unsupported request

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=99

Table 133: H2C Channel Status (0x40) (cont'd)

Bit Default Access
Type Field Description

6 1’b0 RW1C idle_stopped idle_stopped
Reset (0) on setting the Control register Run bit. Set
when the engine is idle after resetting the Control
register Run bit if the Control register ie_idle_stopped
bit is set.

5 1’b0 RW1C invalid_length invalid_length
Reset on setting the Control register Run bit. Set
when the descriptor length is not a multiple of the
data width of an AXI4-Stream channel and the
Control register ie_invalid_length bit is set.

4 1’b0 RW1C magic_stopped magic_stopped
Reset on setting the Control register Run bit. Set
when the engine encounters a descriptor with invalid
magic and stopped if the Control register
ie_magic_stopped bit is set.

3 1’b0 RW1C align_mismatch align_mismatch
Source and destination address on descriptor are not
properly aligned to each other.

2 1’b0 RW1C desc_completed desc_completed
Reset on setting the Control register Run bit. Set
after the engine has completed a descriptor with the
COMPLETE bit set if the Control register
ie_descriptor_stopped bit is set.

1 1’b0 RW1C desc_stopped desc_stopped
Reset on setting Control register Run bit. Set after
the engine completed a descriptor with the STOP bit
set if the Control register ie_descriptor_stopped bit is
set.

0 1’b0 RO busy busy
Set if the SGDMA engine is busy. Zero when it is idle.

Table 134: H2C Channel Status (0x44)

Bit Default Access
Type Field Description

23:1 RC Status
Clear on Read. Bit description is the same as in H2C
Channel Status (0x40).
Bit 0 cannot be cleared.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=100

H2C Completed Descriptor Count

Table 135: H2C Channel Completed Descriptor Count (0x48)

Bit Default Access
Type Field Description

31:0 32’h0 RO h2c_compl_desc_count The number of competed descriptors update by the
engine after completing each descriptor in the list.
Reset to 0 on rising edge of Control register Run bit.
See H2C Channel Control (0x04).

QDMA_TRQ_MSIX (0x1400)

QDMA_TRQ_EXT (0x2400)
Table 136: QDMA_TRQ_EXT (0x2400) Register Space

Register Address Description
Function Status Register (0x0) 0x00 Status bits

Function Command Register (0x04) 0x04 Command register bits

Target Function Register (0x0C) 0x0C Function configuration register

PF Acknowledge Registers (0x20-0x3C) 0x20-0x3C PF acknowledge

Incoming Message Memory
(0x40-0x7C)

0x40-0x7C Incoming message

Outgoing Message Memory
(0x80-0xCC)

0x80-0xCC Outgoing message

FLR Control/Status Register (0x100) 0x100 FLR control and status

Mailbox Addressing

PF addressing:

Addr = PF_Bar_offset + PF_Start_offset + CSR_addr

• PF_Start_offset = 0x2400

VF addressing:

Addr = VF_Bar_offset + VF_Start_offset + VF_offset + CSR_addr

• VF_Start_offset = 0x1000

• VF_offset = VFG_offset * VF_apperture_size

• VFG_offset is the function offset within the vfg.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=101

• VF_apperture_size = 32KB (GUI option can be changed)

Function Status Register (0x0)

Table 137: Function Status Register (0x0)

Bit Default Access
Type Field Description

[31:12] 0 NA Reserved Reserved

11-4 0 RO cur_src_fn This field is for PF use only.
The source function number of the message on the
top of the incoming request queue.

2 0 RO ack_status This field is for PF use only.
The status bit will be set when any bit in the
acknowledgement status register is asserted.

1 0 RO o_msg_status For VF: The status bit will be set when VF driver write
msg_send to its command register. When The
associated PF driver send acknowledgement to this
VF, the hardware clear this field. The VF driver is not
allow to update any content in its outgoing mailbox
memory (OMM) while o_msg_status is asserted. Any
illegal write to the OMM will be discarded (optionally,
case an error in the AXI4L response channel)
For PF: The field indicated the message status of the
target FN which is specified in the Target FN Register.
The status bit will be set when PF driver sends
msg_send command. When the corresponding
function driver send acknowledgement by sending
msg_rcv, the hardware clear this field. The PF driver
is not allow to update any content in its outgoing
mailbox memory (OMM) while
o_msg_status(target_fn_id) is asserted. Any illegal
write to the OMM will be discarded (optionally, case
an error in the AXI4L response channel)

0 0 RO i_msg_status For VF: When asserted, a message in the VF’s
incoming Mailbox memory is pending for process.
The field will be cleared once the VF driver write
msg_rcv to its command register.

For PF: When asserted, the messages in the incoming
Mailbox memory are pending for process. The field
will be cleared only when the event queue is empty.

Function Command Register (0x04)

Table 138: Function Command Register (0x04)

Bit Default Access
Type Field Description

[31:3] 0 NA Reserved Reserved

2 0 RO Reserved Reserved

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=102

Table 138: Function Command Register (0x04) (cont'd)

Bit Default Access
Type Field Description

1 0 RW msg_rcv For VF: VF marks the message in its Incoming
Mailbox Memory as received. Hardware asserts the
acknowledgement bit of the associated PF.
For PF: PF marks the message send by target_fn as
received. The hardware will
Refresh the i_msg_status of the PF
Clear the o_msg_status of the target_fn

0 0 RW msg_send For VF: VF marks the current message in its own
Outgoing Mailbox as valid.
For PF:
Current target_fn_id belongs to a VF: PF finished
writing a message into the Incoming Mailbox
memory of the VF with target_fn_id. The hardware
sets the i_msg_status field of the target FN’s status
register.
Current target_fn_id belongs to a PF: PF finished
writing a message into its own outgoing Mailbox
memory. Hardware will push the message to the
event queue of the PF with target_fn_id.

Target Function Register (0x0C)

Table 139: Target Function Register (0x0C)

Bit Default Access
Type Field Description

[31:8] 0 NA Reserved Reserved

[7:0] 0 RW target_fn_id This field is for PF use only.
The FN number which the current operation is
targeting at.

PF Acknowledge Registers (0x20-0x3C)

Table 140: PF Acknowledge Registers (0x20-0x3C)

Register Addr Default Access
Type Field Width Description

Ack0 0x20 0 RW 32 Acknowledgement from FN 31~0

Ack1 0x24 0 RW 32 Acknowledgement from FN 63~32

Ack2 0x28 0 RW 32 Acknowledgement from FN 95~64

Ack3 0x2c 0 RW 32 Acknowledgement from FN 127~96

Ack4 0x30 0 RW 32 Acknowledgement from FN 159~128

Ack5 0x34 0 RW 32 Acknowledgement from FN 191~160

Ack6 0x38 0 RW 32 Acknowledgement from FN 223~192

Ack7 0x3c 0 RW 32 Acknowledgement from FN 255~224

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=103

Incoming Message Memory (0x40-0x7C)

Table 141: Incoming Message Memory (0x40-0x7C)

Register Addr Default Access
Type Field Width Description

i_msg_0 0x40 0 RW 32 Input message byte 3 ~ 0

i_msg_1 0x44 0 RW 32 Input message byte 7 ~ 4

i_msg_2 0x48 0 RW 32 Input message byte 11 ~ 8

i_msg_3 0x4c 0 RW 32 Input message byte 15 ~ 12

i_msg_4 0x50 0 RW 32 Input message byte 19 ~ 16

i_msg_5 0x54 0 RW 32 Input message byte 25 ~ 20

i_msg_6 0x58 0 RW 32 Input message byte 27 ~ 24

i_msg_7 0x5c 0 RW 32 Input message byte 31 ~ 28

i_msg_8 0x60 0 RW 32 Input message byte 35 ~ 32

i_msg_9 0x64 0 RW 32 Input message byte 39 ~ 36

i_msg_10 0x68 0 RW 32 Input message byte 43 ~ 40

i_msg_11 0x6c 0 RW 32 Input message byte 47 ~ 44

i_msg_12 0x70 0 RW 32 Input message byte 51 ~ 48

i_msg_13 0x74 0 RW 32 Input message byte 55 ~ 52

i_msg_14 0x78 0 RW 32 Input message byte 59 ~ 56

i_msg_15 0x7c 0 RW 32 Input message byte 63 ~ 60

Outgoing Message Memory (0x80-0xCC)

Table 142: Outgoing Message Memory (0x80-0xCC)

Register Addr Default Access
Type Field Width Description

o_msg_0 0x80 0 RW 32 Output message byte 3 ~ 0

o_msg_1 0x84 0 RW 32 Output message byte 7 ~ 4

o_msg_2 0x88 0 RW 32 Output message byte 11 ~ 8

o_msg_3 0x8c 0 RW 32 Output message byte 15 ~ 12

o_msg_4 0xa0 0 RW 32 Output message byte 19 ~ 16

o_msg_5 0xa4 0 RW 32 Output message byte 25 ~ 20

o_msg_6 0xa8 0 RW 32 Output message byte 27 ~ 24

o_msg_7 0xac 0 RW 32 Output message byte 31 ~ 28

o_msg_8 0xb0 0 RW 32 Output message byte 35 ~ 32

o_msg_9 0xb4 0 RW 32 Output message byte 39 ~ 36

o_msg_10 0xb8 0 RW 32 Output message byte 43 ~ 40

o_msg_11 0xbc 0 RW 32 Output message byte 47 ~ 44

o_msg_12 0xc0 0 RW 32 Output message byte 51 ~ 48

o_msg_13 0xc4 0 RW 32 Output message byte 55 ~ 52

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=104

Table 142: Outgoing Message Memory (0x80-0xCC) (cont'd)

Register Addr Default Access
Type Field Width Description

o_msg_14 0xc8 0 RW 32 Output message byte 59 ~ 56

o_msg_15 0xcc 0 RW 32 Output message byte 63 ~ 60

FLR Control/Status Register (0x100)

Table 143: FLR Control/Status Register (0x100)

Bit Default Access
Type Field Description

[31:1] 0 NA Reserved Reserved

0 0 RW Flr_status Software write 1 to initiate the Function Level Reset
(FLR) for the associated function. The field is kept
asserted during the FLR process. Once the FLR is
done, the hardware de-asserts this field.

QDMA_TRQ_SEL_QUEUE_PF (0x6400)
Table 144: QDMA_TRQ_SEL_QUEUE_PF (0x6400) Register Space

Register Address Description
QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400) 0x6400-0xB3F0 Interrupt Ring Consumer Index (CIDX)

QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404) 0x6404-0xB3F4 H2C Descriptor producer index (PIDX)

QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408) 0x6408-0xB3F8 C2H Descriptor Producer Index (PIDX)

QDMA_DMAP_SEL_WRB_CIDX[2048] (0x640C) 0x640C-0xB3FC C2H Write back Consumer Index (CIDX)

There are 2048 Queues, each Queue will have each of above 4 registers. All these registers can
be dynamically updated at any point of time. This set of register can be accessed based on the
Queue number.

Queue number is absolute Qnumber [0 to 2047].
Interrupt CIDX address = 0x6400 + Qnumber*16
H2C PIDX address = 0x6404 + Qnumber*16
C2H PIDX address = 0x6408 + Qnumber*16
Write Back CIDX address = 0x640C + Qnumber*16

For Queue 0:

0x6400 correspond to QDMA_DMAP_SEL_INT_CIDX
0c6404 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x6408 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x640C correspond to QDMA_DMAP_SEL_WRB_CIDX

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=105

For Queue 1:

0x6410 correspond to QDMA_DMAP_SEL_INT_CIDX
0c6414 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x6418 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x641C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 2:

0x6420 correspond to QDMA_DMAP_SEL_INT_CIDX
0c6424 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x6428 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x642C correspond to QDMA_DMAP_SEL_WRB_CIDX

QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400)

Table 145: QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved Reserved

[16] 0 RW Sel 1’b0: H2C; 1’b1: C2H

[15:0] 0 RW Sw_cdix Software Consumer index (CIDX)

QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404)

Table 146: QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved Reserved

[16] 0 RW irq_en Interrupt arm, interrupt enable

[15:0] 0 RW h2c_pidx H2C Producer Index

QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408)

Table 147: QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved Reserved

[16] 0 RW irq_en Interrupt arm, interrupt enable

[15:0] 0 RW c2h_pidx C2H Producer Index

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=106

QDMA_DMAP_SEL_WRB_CIDX[2048] (0x640C)

Table 148: QDMA_DMAP_SEL_WRB_CIDX[2048] (0x640C)

Bit Default Access
Type Field Description

[31:29] 0 NA Reserved Reserved

[28] 0 RW irq_en_wrb Enable Interrupt for WRB

[27] 0 RW en_sts_desc_wrb Enable Status Descriptor for WRB

[26:24] 0 RW trigger_mode Trigger mode
WRB_TRIG_DIS,
WRB_TRIG_ANY,
WRB_TRIG_TIMER,
WRB_TRIG_CNT,
WRB_TRIG_COMBO,
WRB_TRIG_USR

[23:20] 0 RW c2h_timer_cnt_index Index to QDMA_C2H_TIMER_CNT

[19:16] 0 RW c2h_count_threshhold Index to QDMA_C2H_CNT_TH

[15:0] 0 RW wrb_cidx Write back Consumer Index (CIDX)

QDMA_TRQ_MSIX_VF (0x0000)
VF functions can access the MSIX table with offset (0x0000) from that function. The description
for this register space is the same as QDMA_TRQ_MSIX (0x1400).

QDMA_TRQ_EXT_VF (0x1000)
VF functions can access External registers (Mali box and flr registers) with offset (0x1000). The
description for this register space is the same as QDMA_TRQ_EXT (0x2400). There are some
restrictions as noted in the register descriptions.

QDMA_TRQ_SEL_QUEUE_VF (0x3000)
VF functions can access direct update registers per queue with offset (0x3000). The description
for this register space is the same as QDMA_TRQ_SEL_QUEUE_PF (0x6400).

These sets of registers can be accessed based on Queue number. And Queue number is absolute
Qnumber. [0 to 2047].

Interrupt CIDX address = 0x3000 + Qnumber*16
H2C PIDX address = 0x3004 + Qnumber*16
C3H PIDX address = 0x3008 + Qnumber*16
Write Back CIDX address = 0x300C + Qnumber*16

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=107

For Queue 0 0x3000 correspond to QDMA_DMAP_SEL_INT_CIDX
0c3004 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x3008 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x300C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 1 0x3010 correspond to QDMA_DMAP_SEL_INT_CIDX
0c3014 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x3018 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x301C correspond to QDMA_DMAP_SEL_WRB_CIDX

Context Structure Definition

Software Descriptor Context Structure (0x0 C2H and
0x1 H2C)

The descriptor context is used by the descriptor engine.

Table 149: Software Descriptor Context Structure Definition

Bit Bit Width Field Name Group Description
[127:64] 64 dsc_base dsc_base Base address of Descriptor Ring

[63:61] 3 rsv dsc_sts Reserved for status

[60] 1 err_wb_sent “

[59:58] 2 err “ Error status. Bit[1] dma, Bit[0] dsc

[57] 1 irq_no_last “ No interrupt was sent and pidx/cidx was idle

[56] 1 irq_pnd “ Interrupt pending

[55:54] 2 rsv0 dsc_ctrl Reserved for control

[53] 1 irq_en “ Interrupt enable

[52] 1 wbk_en “ Writeback enable (Disable for C2H stream)

[51] 1 mm_chn “ If 32B descriptor which MM channel to use

[50] 1 byp “ Send to descriptor bypass out

[49:48] 2 dsc_sz “ Descriptor size. 0: 8B, 1:16B; 2:32B; 3:rsv

[47:44] 4 rng_sz “ Descriptor ring size index to ring size registers

[43:36] 8 fnc_id “ Function ID

[35] 1 wbi_acc_en “ Write back/Interrupt after accumulation

[34] 1 wbi_chk “ Writeback/Interrupt after pending check

[33] 1 fcrd_en “ Enable fetch credit

[32] 1 qen “ valid

[31:17] 15 rsv dsc_pidx Reserved

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=108

Table 149: Software Descriptor Context Structure Definition (cont'd)

Bit Bit Width Field Name Group Description
[16] 1 irq_ack “ Interrupt Ack

[15:0] 16 pidx “ Producer Index

Hardware Descriptor Context Structure (0x2 C2H and
0x3 H2C)
Table 150: Hardware Descriptor Context Structure Definition

Bit Bit Width Field Name Description
[47:42] 6 rsvd Reserved

[41] 1 idl_stp_b Queue invalid and no descriptors pending

[40] 1 pnd Descriptor pending

[39:32] 8 wb_acc Writeback accumulator count

[31:16] 16 crd_use credit use

[15:0] 16 cidx Consumer Index

Credit Descriptor Context Structure
Table 151: Credit Descriptor Context Structure Definition

Bit Bit Width Field Name Description
[31:16] 6 rsvd Reserved

[15:0] 16 credt Hardware Credit that is processed by DESC fetch
engine

C2H CMPT Context Structure (0x6)
The writeback context is used by the writeback engine.

Table 152: C2H Writeback Context Structure Defintion

Bit Bit Width Field Name Description
[127:123] 5 rsvd Reserved

[122:121] 2 err Error

[120] 1 valid Context is valid

[119:104] 16 cidx Initial Consumer Index

[103:88] 16 pidx Initial Producer Index

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=109

Table 152: C2H Writeback Context Structure Defintion (cont'd)

Bit Bit Width Field Name Description
[87:86] 2 desc_size Descriptor Size:

8B:0
16B:1
32B:2
Unknown:3

[85:28] 58 baddr_64 Base address of Writeback ring – bit[63:6]

[27:24] 4 qsize_idx Writeback ring size index to ring size registers

[23] 1 color Initial color bit to be used on writeback

[22:21] 2 int_st Interrupt State: ISR:0, TRIG:1, ARMED:2

[20:17] 4 timer_idx Index to timer register to Wrb trigger timer

[16:13] 4 counter_idx Index to counter register to Wrb on trigger counter

[12:5] 8 fnc_id Function ID

[4:2] 3 trig_mode Trigger Mode:
Disable:0
Any:1
Timer:2
Counter:3
Combo:4
User:5

[1] 1 en_int Cause Interrupt on Writeback

[0] 1 en_stat_desc Cause Status Descriptor write on Writeback

C2H Prefetch Context Structure (0x7)
The prefetch context is used by the C2H prefetch engine which interact between descriptor
fetch engine and DMA write engine to pair up the descriptor and its payload.

Table 153: C2H Prefetch Context Structure Definition

Bit Bit Width Field Name Bit
Location Description

[45] 1 valid [45] Context is valid

[44:29] 16 sw_crdt [44:29] Software credit (RO)

[28:28] 1 pfch [28:28] Queue is in prefetch

[27:27] 1 pfch_en [27:27] Enable prefetch

[26:16] 11 rsv [26:16] Reserve

[15:13] 3 port_id [15:13] Port ID

[12:5] 8 fnc_id [12:5] Function ID

[4:1] 4 buf_size_idx [4:1] Buffer size index

[0] 1 bypass [0] C2H is in bypass mode

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=110

Interrupt Context Structure (0x8)
Table 154: Interrupt Context Structure Definition

Bit Bit Width Field Name Description
[75:64] 12 pidx Producer Index

[63:61] 3 page_size Page size

[60:9] 52 baddr_4k Base address of Interrupt ring – bit[63:12]

[8] 1 color Color bit

[7] 1 int_st Interrupt ISM Status: WAIT_TRIGGER:0, ISR_RUNNING:1

[6:1] 6 vec Vector ID

[0] 1 valid Valid

Queue Entry Structure
Note: Descriptor formats for AXI4-Stream H2C Descriptors and AXI4-Stream C2H Descriptors will change
in 2018.2.

AXI4-Stream C2H Descriptor (8B)
Table 155: AXI4-Stream C2H Descriptor Structure

Bit Bit Width Field Name Description
[63:0] 64 addr Destination Address

AXI4-Stream H2C Descriptor (16B)
Table 156: AXI4-Stream H2C Descriptor Structure

Bit Bit Width Field Name Description
[127:95] 33 rsvd Reserved

[94] 1 eop End of Packet

[93] 1 sop Start of Packet

[92] 1 dv Descriptor Valid

[91:64] 28 lengthInByte Read length in byte

[63:0] 64 addr Source Address

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=111

AXI4 Memory Mapped Descriptor for H2C and C2H
(32B)
Table 157: AXI4 Memory Mapped Descriptor Structure for H2C and C2H

Bit Bit Width Field Name Description
[256:192] 64 rsvd1 Reserved

[191:64] 64 dst_addr Destination Address

[127:95] 33 rsvd0 Reserved

[94] 1 eop End of Packet

[93] 1 sop Start of Packet

[92] 1 dv Descriptor Valid

[91:64] 28 lengthInByte Read length in byte

[63:0] 64 src_addr Source Address

Writeback Structure

AXI4-Stream C2H Writeback Entry Structure

The writeback header is an entry in the writeback ring.

Table 158: AXI4-Stream C2H Writeback Entry Structure

Bit Bit Width Field Name Description
[255:20]
[127:20]
[63:20]

236 bits
108 bits
44 bits

User defined User defined bits for 32 Bytes settings.
User defined bits for 16 Bytes settings.
User defined bits for 8 Bytes settings.

[19:4] 16 Len Total length for this transfer (Could be sum of multiple
descriptor)

[3:3] 1 Reserved Reserved

[2:2] 1 Err Write back entry Error

[1:1] 1 Color Cause Status Descriptor write on Writeback

[0:0] 1 Reserved Reserved

AXI4-Stream C2H Writeback Status Structure

The C2H writeback status register is located at the last location of writeback ring, that is,
Writeback Ring Base Address + (Size of the Writeback length (8,16,32) * (Writeback Ring Size –
1)).

When Writeback Status Descriptor is enabled, the PIDX is used to indicate the currently
available writeback to be processed.

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=112

Table 159: AXI4-Stream C2H Writeback Status Structure

Bit Bit Width Field Name Description
[63:35] 29 Reserve Reserved

[34:33] 2 int_state Interrupt State: ISR:0, TRIG:1, ARMED:2

[32] 1 color Color status bit

[31:16] 16 cidx Consumer Index (RO)

[15:0] 16 pidx Producer Index

AXI4-Stream H2C Writeback Status Structure

The H2C writeback status register is located after the last entry of the H2C descriptor list.

Table 160: AXI4-Stream H2C Writeback Status Structure

Bit Bit Width Field Name Description
[63:32] 32 Reserved1 Reserved

[31:16] 16 cidx Consumer Index

[15:0] 16 Reserved0 Producer Index (Reserved)

AXI4 Memory Mapped Writeback Status Structure for H2C and C2H

The MM writeback status register is located after the last entry of the (H2C or C2H) descriptor.

Table 161: AXI4 Memory Mapped Writeback Status Structure for H2C and C2H

Bit Bit Width Field Name Description
[63:32] 32 Reserved1 Reserved

[31:16] 16 cidx Consumer Index

[15:0] 16 Reserved0 Producer Index (Reserved)

Chapter 3: Product Specification

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=113

Chapter 4

Designing with the Subsystem

General Design Guidelines

Use the Example Design
Each instance of the QDMA Subsystem for PCIe created by the Vivado® design tool is delivered
with an example design that can be implemented in a device and then simulated. This design can
be used as a starting point for your own design or can be used to sanity-check your application in
the event of difficulty. See the Example Design content for information about using and
customizing the example designs for the subsystem.

Registering Signals
To simplify timing and increase system performance in an programmable device design, keep all
inputs and outputs registered between the user application and the subsystem. This means that
all inputs and outputs from the user application should come from, or connect to, a flip-flop.
While registering signals might not be possible for all paths, it simplifies timing analysis and
makes it easier for the Xilinx® tools to place and route the design.

Recognize Timing Critical Signals
The constraints provided with the example design identify the critical signals and timing
constraints that should be applied.

Related Information
Xilinx Resources

Chapter 4: Designing with the Subsystem

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=114

Make Only Allowed Modifications
You should not modify the subsystem. Any modifications can have adverse effects on system
timing and protocol compliance. Supported user configurations of the subsystem can only be
made by selecting the options in the customization IP dialog box when the subsystem is
generated.

Clocking
Figure 20: Clocking

GTY/GTH

IBUFDS_
GTE4

CLKP

CLKN

REF_CLK TXOUTCLK

BUFG_GT

BUFG_GT

BUFG_GT

BUFG_GT

PIPE_CLK

CORE_CLK

CORE_CLK_MI*

MCAP_CLK

EN Gen
Soft

Logic
USER_CLK_EN

To User Logic
To Block RAMS
To AXI4ST I/F Bridge (Gen3x16)

USER_CLK

USER_CLK2 (core_clk) To AXI4ST I/F Bridge (Gen3x16)

To Block RAMS
CORE_CLK

PIPE_CLK

To GTH/GTY
To PIPE I/F Soft Logic

Dynamic Speed
Switch

(Gen2 & Gen 3)

PCIE40E4

X20597-040218

Chapter 4: Designing with the Subsystem

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=115

PCIe clocks (pipe_clk, core_clk, user_clk, and mcap_clk) are all driven by bufg_gt
sourced from txoutclk pin. These clocks are derived clock from gtrefclk0 through a CPLL.
In an application where QPLL is used, QPLL is only provided to the GT PCS/ PMA block while
txoutclk continues to be derived from a CPLL. All user interface signals of the IP are timed
with respect to the same clock (user_clk) which can have a frequency of 62.5,125 or 250 MHz
depending on the link speed and width configured. The QDMA Subsystem for PCIe and the user
logic primarily work on user_clk.

Chapter 4: Designing with the Subsystem

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=116

Chapter 5

Design Flow Steps
This section describes customizing and generating the subsystem, constraining the subsystem,
and the simulation, synthesis and implementation steps that are specific to this IP subsystem.
More detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

Customizing and Generating the
Subsystem
This section includes information about using Xilinx® tools to customize and generate the
subsystem in the Vivado® Design Suite.

If you are customizing and generating the subsystem in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for detailed
information. IP integrator might auto-compute certain configuration values when validating or
generating the design. To check whether the values do change, see the description of the
parameter in this chapter. To view the parameter value, run the validate_bd_design
command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters
associated with the IP subsystem using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or right-
click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) and the Vivado
Design Suite User Guide: Getting Started (UG910).

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 117Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=117

Figures in this chapter are illustrations of the Vivado IDE. The layout depicted here might vary
from the current version.

Basic Tab
The Basic Tab is shown in the following figure.

Figure 21: Basic Tab

• Mode: Allows you to select the Basic or Advanced mode of the configuration of core.

• Device /Port Type: Only PCI Express® Endpoint device mode is supported.

• GT Selection/Enable GT Quad Selection: Select the Quad in which lane 0 is located.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=118

• PCIe Block Location: Selects from the available integrated blocks to enable generation of
location-specific constraint files and pinouts. This selection is used in the default example
design scripts. This option is not available if a Xilinx Development Board is selected.

• Lane Width: The core requires the selection of the initial lane width. The UltraScale+ Devices
Integrated Block for PCI Express LogiCORE IP Product Guide (PG213) define the available widths
and associated generated core. Wider lane width cores can train down to smaller lane widths
if attached to a smaller lane-width device. Options are 4, 8, or 16 lanes.

• Maximum Link Speed: The core allows you to select the Maximum Link Speed supported by
the device. TheUltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide
(PG213) define the lane widths and link speeds supported by the device. Higher link speed
cores are capable of training to a lower link speed if connected to a lower link speed capable
device. Default option is Gen3.

• Reference Clock Frequency: The default is 100 MHz.

• Reset Source: You can choose one of:

• User Reset: The user reset comes from PCIe core after the link is established. When the
PCIe link goes down, the user reset is asserted and the core goes to reset mode. And when
the link comes back up, the user reset is deasserted.

• Phy Ready: When selected, the core is not affected by PCIe link status.

• Total Physical Functions: you can choose between 1 or 2 physical function being present in
the core.

• AXI Data Width: Select 128, 256 bit, or 512 bit (only for UltraScale+). The core allows you to
select the Interface Width, as defined in the UltraScale+ Devices Integrated Block for PCI Express
LogiCORE IP Product Guide (PG213). The default interface width set in the Customize IP dialog
box is the lowest possible interface width.

• AXI Clock Frequency: 250 MHz depending on the lane width/speed.

• DMA Interface Option: AXI4 Memory Mapped and AXI4-Stream.

• AXI Lite Slave Interface: Select to enable the AXI4-Lite slave interface.

• Enable PIPE Simulation: Enable pipe simulation for faster simulation. This is used only for
simulation.

• Enable GT DRP Ports: Enable GT-specific DRP ports.

• Enable PCIe DRP Ports: Enable PCIe-specific DRP ports.

• Additional Transceiver Control and Status Ports: Select to enable any additional ports.

• System Reset polarity: System Reset polarity can be selected to be active high or low.

• Tandem Configuration or Partial Reconfiguration: Select the Tandem Configuration or Partial
Reconfiguration feature, if applicable to your design.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 119Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=119

Capabilities Tab
The Capabilities Tab is shown in the following figure.

Figure 22: Capabilities Tab

• SRIOV Capability: Enables Single Root Port I/O Virtualization (SR-IOV) capabilities. The
integrated block implements extended SR-IOV PCIe. When this is enabled, SR-IOV is
implemented on all selected physical functions. When SR-IOV capabilities are enabled only
MSI-X interrupt is supported.

• Enable Mailbox among functions: This is a Mailbox system to communicate between different
functions. When SR-IOV Capability is enabled, Enable Mailbox among functions will be
enabled by default.

• Total Physical Functions: A maximum of two Physical Functions can be enabled.

• PF - ID Initial Values:

• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers are
assigned by the PCI Special Interest Group to guarantee that each identifier is unique. The
default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor identification number here.
FFFFh is reserved.

• Device ID: A unique identifier for the application; the default value, which depends on the
configuration selected, is 70h. This field can be any value; change this value for the
application.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=120

The Device ID parameter is evaluated based on:

• The device family (9 for UltraScale+™, 8 for UltraScale, 7 for 7 Series devices)

• EP or RP mode

• Link width

• Link speed

If any of the above values are changed, the Device ID value will be re-evaluated, replacing the
previous set value.

TIP: It is always recommended that the link width, speed and Device Port type be changed first and
then the Device ID value. Make sure the Device ID value is set correctly before generating the IP.

• Revision ID: Indicates the revision of the device or application; an extension of the Device ID.
The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or application. Enter a
Subsystem Vendor ID here; the default value is 10EEh. Typically, this value is the same as
Vendor ID. Setting the value to 0000h can cause compliance testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This value is
typically the same as the Device ID; the default value depends on the lane width and link
speed selected. Setting the value to 0000h can cause compliance testing issues.

• Class Code: The Class Code identifies the general function of a device.

• Use Classcode Lookup Assistant: If selected, the Class Code Look-up Assistant provides the
Base Class, Sub-Class and Interface values for a selected general function of a device. This
Look-up Assistant tool only displays the three values for a selected function. You must enter
the values in Class Code for these values to be translated into device settings..

• Base Class: Broadly identifies the type of function performed by the device..

• Subclass: More specifically identifies the device function..

• Interface: Defines a specific register-level programming interface, if any, allowing device-
independent software to interface with the device.

PCIe BARs Tab
The PCIe BARs Tab is shown in the following figure.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=121

Figure 23: PCIe BARs Tab

• Base Address Register Overview: In Endpoint configuration, the core supports up to six 32-bit
BARs or three 64-bit BARs, and the Expansion read-only memory (ROM) BAR. In Root Port
configuration, the core supports up to two 32-bit BARs or one 64-bit BAR, and the Expansion
ROM BAR. BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 128 bytes or as large as 2 gigabytes.
Used for DMA, AXI Lite Master or AXI Bridge Master.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 Exabytes.
Used for DMA, AXI Lite Master or AXI Bridge Master.

All BAR register shared these options:

• BAR: Click the checkbox to enable the BAR. Deselect the checkbox to disable the BAR.

• Type: Select from DMA (fixed BAR0), AXI Lite Master (fixed to BAR1, if enabled) or AXI
Bridge Master (fixed to BAR2, if enabled). All other BARs, you can select between AXI List
Master and AXI Bridge Master.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=122

• DMA: DMA is fixed in BAR0 space and for all PFs. You can select DMA Mailbox Management
rather than DMA; however, DMA Mailbox Management does not allow you to perform any
DMA operations. After selecting the DMA Mailbox Management option, the host has access
to the extended Mailbox space. For details about this space, see the QDMA_TRQ_EXT
(0x2400) register space.

• AXI Lite Master: Use this option to select or deselect the AXI Lite Master interface BAR
space. The Size, scale and address translation are configurable.

• Bypass AXI Master: Use this option to select or deselect the AXI Bridge Master interface BAR
space. The Size, scale and address translation are configurable.

• Size: The available Size range depends on the 32-bit or 64-bit bar selected.

• Value: The value assigned to the BAR based on the current selections.

• Disabling Unused Resources: For best results, disable unused base address registers to
conserve system resources. A base address register is disabled by deselecting unused BARs in
the Customize IP dialog box.

SRIOV Config Tab
The SRIOV Config tab allows you to specify the SR-IOV capability for a physical function (PF).
The information is used to construct the SR-IOV capability structure. Virtual functions do not
exist on power-on. It is the function of the system software to discover and enable VFs based on
system capability. The VF support is discovered by scanning the SR-IOV capability structure for
each PF.

Note: When SRIOV Capability is selected in Capabilities Tab, the SRIOV Config tab will appear.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=123

The SRIOV Config Tab is shown in the following figure.

Figure 24: SRIOV Config Tab

• General SRIOV Config: This value specifies the offset of the first PF with at least one enabled
VF. When ARI is enabled, allowed value is 'd4 or 'd64, and the total number of VF in all PFs
plus this field must not be greater than 256. When ARI is disabled, this field will be set to 1 to
support 1PFplus 7VF non-ARI SRIOV configurations only.

• Cap Version: Indicates the 4-bit SR-IOV Capability version for the physical function.

• Number of PFx VFs: Indicates the number of virtual functions associated to the physical
function. A total of 252 virtual functions are available that can be flexibly used across the four
physical functions.

• PFx Dependency Link: Indicates the SR-IOV Functional Dependency Link for the physical
function. The programming model for a device can have vendor-specific dependencies
between sets of functions. The Function Dependency Link field is used to describe these
dependencies.

• First VF Offset: Indicates the offset of the first virtual function (VF) for the physical function
(PF). PF0 always resides at Offset 0, and PF1 always resides at Offset 1. Six virtual functions
are available in the Gen3 Integrated Block for PCIe core and reside at the function number
range 64–69. Virtual functions are mapped sequentially with VFs for PF0 taking precedence.
For example, if PF0 has two virtual functions and PF1 has three, the following mapping
occurs:

The PFx_FIRST_VF_OFFSET is calculated by taking the first offset of the virtual function and
subtracting that from the offset of the physical function.

PFx_FIRST_VF_OFFSET = (PFx first VF offset - PFx offset)

In the example above, the following offsets are used:

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=124

PF0_FIRST_VF_OFFSET = (64 - 0) = 64
PF1_FIRST_VF_OFFSET = (66 - 1) = 65

PF0 is always 64 assuming that PF0 has one or more virtual functions. The initial offset for
PF1 is a function of how many VFs are attached to PF0 and is defined in the following pseudo
code:

PF1_FIRST_VF_OFFSET = 63 + NUM_PF0_VFS

• VF Device ID: Indicates the 16-bit Device ID for all virtual functions associated with the
physical function.

• SRIOV Supported Page Size: Indicates the page size supported by the physical function. This
physical function supports a page size of 2n+12, if bit n of the 32-bit register is set.

SRIOV VF BARs Tab
The SRIOV VF BARs Tab is shown in the following figure.

Figure 25: SRIOV VF BARs Tab

The SRIOV VF BARs tab enables you to configure the base address registers (BARs) for all virtual
function (VFs) within a virtual function group (VFG). All the VFs within the same VFG share the
same BASE ADDRESS Registers (BARS) configurations. Each Virtual Function supports up to six
32-bit BARs or three 64-bit BARs. Virtual Function BARs can be configured without any
dependency on the settings of the associated Physical Functions BARs,

• BAR: Select applicable BARs using the checkboxes.

• Type: Select the relevant option:

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=125

• DMA: Is fixed to BAR0 space.

• AXI Lite Master: Is fixed to BAR1 space.

• AXI Master Master: Is fixed to BAR2 space.For all other bars user have option to select
AXI-Lite Master or AXI Bridge Master.

Note: The current IP supports at most one DMA BAR (or a management BAR given only mailbox is
required) for one VF. The other bars can be configured as AXI4-Lite Master to access the assigned memory
space through the AXI4-Lite bus. Virtual Function BARs do not support I/O space and must be configured
to map to the appropriate memory space.

• 64-bit:

VF BARs can be either 64-bit or 32-bit:

• 64-bit addressing is supported for the DMA bar.

• When a BAR is set as 64 bits, it uses the next BAR for the extended address space and
makes the next BAR inaccessible.

• No VF bar can be configured as Prefetchable.

• Size: The available Size range depends on the 32-bit or 64-bit bar selected. The Supported
Page Sizes field indicates all the page sizes supported by the PF and, as required by the SR-
IOV specification. Based on the Supported Page Size field, the system software sets the
System Page Size field which is used to map the VF BAR memory addresses. Each VF BAR
address is aligned to the system page boundary.

• Value: The value assigned to the BAR based on the current selections.

PCIe MISC Tab
Figure 26: PCIe MISC Tab

• MSI-X Capabilities: MSI-X is enabled as default.The MSI-X settings for different physical
functions can be set as required.

• MSIx Table Settings: Defines the MSI-X Table Structure.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=126

• Table Size: Specifies the MSI-X Table size. The default is 8 (8 interrupt vectors per
function).

• Table Offset: Specifies the offset from the Base addres Register (BAR)in DMA configiration
space used to map function in MSI-X Table onto memory space. Table space should be
between 0x1400 to 0x2400.

• BAR Indicator: Is fixed to DMA BAR which is BAR0.

• MSI-X Pending Bit Array Settings:

• PBA Offset: Specifies the offset from the DMA BAR register that point so the base of MSI-
X PDB. Table space should be between 0x1400 to 0x2400.

• PBA BAR Indicator: Is fixed to DMA BAR which is BAR0.

• Finite Completion Credits: In systems which support fine completion credits, this option can
be enabled for better performance.

• Extended Tag: By default for UltraScale+™ devices the Extended Tab option gives 256 Tags. If
Extended Tag option is not selected DMA will use 32 tags.

• Configuration Extended Interface: PCIe extended interface can be selected for more
configuration space. When Configuration Extednd Interface is selected user is responsible for
adding logic to extend the interface to make it work properly.

• Access Control Server (ACS) Enable:

ACS is selected by default.

• Configuration Management Interface: PCIe configuration Management interface can be
enabled and brought to the top level when this option is selected.

PCIe DMA Tab
The PCIe DMA Tab is shown in the following figure.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=127

Figure 27: PCIe DMA Tab

• Number of Request IDs for Read channel: Select the maximum number of outstanding
request per channel. Select from 2 to 64.

• Number of Request IDs for Write channel: Select maximum number of outstanding request
per channel. Select from 2 to 32.

User Parameters
This section does not apply to this subsystem.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=128

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896).

Constraining the Subsystem
Required Constraints

The QDMA Subsystem for PCIe requires the specification of timing and other physical
implementation constraints to meet specified performance requirements for PCI Express®. These
constraints are provided in a Xilinx Design Constraints (XDC) file. Pinouts and hierarchy names in
the generated XDC correspond to the provided example design.

IMPORTANT!: If the example design top file is not used, copy the IBUFDS_GTE4 instance for the
reference clock, IBUF Instance for sys_rst and also the location and timing constraints associated
with them into your local design top.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx® tools. For additional details on
the definition and use of an XDC or specific constraints, see Vivado Design Suite User Guide: Using
Constraints (UG903).

Constraints provided with the Integrated Block for PCIe solution have been tested in hardware
and provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support is not
provided for designs that deviate from the provided constraints.

Device, Package, and Speed Grade Selections

The device selection portion of the XDC informs the implementation tools which part, package,
and speed grade to target for the design.

The device selection section always contains a part selection line, but can also contain part or
package-specific options. An example part selection line follows:

CONFIG PART = xcvu9p-flgb2104-2-i

Clock Frequencies

For detailed information about clock requirements, see the UltraScale+ Devices Integrated Block
for PCI Express LogiCORE IP Product Guide (PG213).

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 129Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=129

Clock Management

For detailed information about clock requirements, see the UltraScale+ Devices Integrated Block
for PCI Express LogiCORE IP Product Guide (PG213).

Clock Placement

For detailed information about clock requirements, see the UltraScale+ Devices Integrated Block
for PCI Express LogiCORE IP Product Guide (PG213).

Banking

This section is not applicable for this IP subsystem.

Transceiver Placement

This section is not applicable for this IP subsystem.

I/O Standard and Placement

This section is not applicable for this IP subsystem.

Relocating the Integrated Block Core

By default, the IP core-level constraints lock block RAMs, transceivers, and the PCIe block to the
recommended location. To relocate these blocks, you must override the constraints for these
blocks in the XDC constraint file. To do so:

1. Copy the constraints for the block that needs to be overwritten from the core-level XDC
constraint file.

2. Place the constraints in the user XDC constraint file.

3. Update the constraints with the new location.

The user XDC constraints are usually scoped to the top-level of the design; therefore, ensure that
the cells referred by the constraints are still valid after copying and pasting them. Typically, you
need to update the module path with the full hierarchy name.

Note: If there are locations that need to be swapped (that is, the new location is currently being occupied
by another module), there are two ways to do this:

• If there is a temporary location available, move the first module out of the way to a new
temporary location first. Then, move the second module to the location that was occupied by
the first module. Next, move the first module to the location of the second module. These
steps can be done in XDC constraint file.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=130

• If there is no other location available to be used as a temporary location, use the
reset_property command from Tcl command window on the first module before
relocating the second module to this location. The reset_property command cannot be
done in the XDC constraint file and must be called from the Tcl command file or typed directly
into the Tcl Console.

Simulation
For comprehensive information about Vivado® simulation components, as well as information
about using supported third-party tools, see the Vivado Design Suite User Guide: Logic Simulation
(UG900).

Basic Simulation

Simulation models for AXI-MM and AXI-ST options can be generated and simulated. The simple
simulation model options enabled you to develop complex designs.

AXI-MM Mode

The example design for the AXI4 Memory Mapped (AXI-MM) mode has 512 KB block RAM on
the user side, so data can be written to the block RAM and read from block RAM to the Host.
After H2C transfer is started DMA reads data from the Host memory and writes to the block
RAM. Then, the C2H transfer is started and the DMA reads data from the block RAM and writes
to the Host memory. The original data is compared with the C2H write data. H2C and C2H are
setup with one descriptor each, and the total transfer size is 128 bytes.

More detailed steps are described in Reference Software Driver Flow.

AXI-ST Mode

The example design for the AXI4-Stream (AXI_ST) mode has data checker to check the data from
H2C transfer and has data genertator for C2H transfer.

After H2C transfer is started the DMA engine reads data from the Host memory and writes to
the user side. Once the transfer is completed DMA updated Write Back status and generates
Interrupt (if enabled). The data checker on the user side checks for a predefined data to be
present, and the result is posted in a predefined address for the user to read.

After C2H transfer is started the data generator, the user side generates predefine data and
associated control signals. The DMA transfers data to the Host, updates the write back status,
and generates interrupt (if enabled).

H2C and C2H are setup with one descriptor each, and the total transfer size is 128 bytes.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 131Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=131

More detailed steps are described in Reference Software Driver Flow.

PIPE Mode Simulation
The QDMA Subsystem for PCIe supports the PIPE mode simulation where the PIPE interface of
the core is connected to the PIPE interface of the link partner. This mode increases the
simulation speed.

Use the Enable PIPE Simulation option on the Basic tab of the Customize IP dialog box to enable
PIPE mode simulation in the current Vivado® Design Suite solution example design, in either
Endpoint mode or Root Port mode. The External PIPE Interface signals are generated at the core
boundary for access to the external device. Enabling this feature also provides the necessary
hooks to use third-party PCI Express® VIPs/BFMs instead of the Root Port model provided with
the example design.

The tables below describe the PIPE bus signals available at the top level of the core and their
corresponding mapping inside the EP core (pcie_top) PIPE signals.

Table 164: Common In/Out Commands and Endpoint PIPE Signals Mappings

In Commands
Endpoint PIPE

Signals Mapping
Out Commands

Endpoint PIPE

Signals Mapping

common_commands_in[2
5:0]

not used common_commands_ou
t[0]

pipe_clk1

common_commands_ou
t[2:1]

pipe_tx_rate_gt2

common_commands_ou
t[3]

pipe_tx_rcvr_det_gt

common_commands_ou
t[6:4]

pipe_tx_margin_gt

common_commands_ou
t[7]

pipe_tx_swing_gt

common_commands_ou
t[8]

pipe_tx_reset_gt

common_commands_ou
t[9]

pipe_tx_deemph_gt

common_commands_ou
t[16:10]

not used3

Notes:

1. pipe_clk is an output clock based on the core configuration. For Gen1 rate, pipe_clk is 125 MHz. For Gen2 and Gen3,
pipe_clk is 250 MHz

2. pipe_tx_rate_gt indicates the pipe rate (2’b00-Gen1, 2’b01-Gen2, and 2’b10-Gen3)

3. The functionality of this port has been deprecated and it can be left unconnected.

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=132

Table 165: Input/Output Bus with Endpoint PIPE Signals Mapping

Input Bus
Endpoint PIPE

Signals Mapping
Output Bus

Endpoint PIPE

Signals Mapping

pipe_rx_0_sigs[31:0] pipe_rx0_data_gt pipe_tx_0_sigs[31: 0] pipe_tx0_data_gt

pipe_rx_0_sigs[33:32] pipe_rx0_char_is_k_gt pipe_tx_0_sigs[33:32] pipe_tx0_char_is_k_gt

pipe_rx_0_sigs[34] pipe_rx0_elec_idle_gt pipe_tx_0_sigs[34] pipe_tx0_elec_idle_gt

pipe_rx_0_sigs[35] pipe_rx0_data_valid_gt pipe_tx_0_sigs[35] pipe_tx0_data_valid_gt

pipe_rx_0_sigs[36] pipe_rx0_start_block_gt pipe_tx_0_sigs[36] pipe_tx0_start_block_gt

pipe_rx_0_sigs[38:37] pipe_rx0_syncheader_gt pipe_tx_0_sigs[38:37] pipe_tx0_syncheader_gt

pipe_rx_0_sigs[83:39] not used pipe_tx_0_sigs[39] pipe_tx0_polarity_gt

pipe_tx_0_sigs[41:40] pipe_tx0_powerdown_gt

pipe_tx_0_sigs[69:42] not used1

Notes:

1. The functionality of this port has been deprecated and it can be left unconnected.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: Designing
with IP (UG896).

Chapter 5: Design Flow Steps

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 133Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=133

Chapter 6

Example Design
This chapter contains information about the AXI Memory Mapped and AXI Stream default
example design provided in the Vivado Design Suite.

Figure 28: Subsystem Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM
Host

FPGA

Data
Checker

AXI-MM

Data
Generator

AXI-St H2C

AXI-St
C2H

BRAM

AXI-Lite
Master

X20636-040518

AXI4 Memory Mapped and AXI Stream
Default Example Design
In order to test the AXI4-Stream and AXI4 Memory Mapped interface, there is some logic
implemented in FPGA. When the example design is generated for QDMA Subsystem for PCIe,
the modules that are generated are for testing purposes only. In the example design:

• The AXI4 MM interface is connected to the 512 KB block RAM.

• The AXI4-Stream interface is connected to custom data generator and data checker module

• The data generator and checker works only with predefined pattern, which is a 16-bit
incremental pattern starting with 0. This data file is included in driver package.

Chapter 6: Example Design

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=134

The pattern generator and checker can be controlled using the registers below. These registers
can only be controlled through the AXI4-Lite Master interface. To test the QDMA Subsystem for
PCIe's AXI4-Stream interface, ensure that the AXI4-Lite Master interface is present on BAR1
when using the example design.

Table 166: Example Design Registers

Registers Address Description
C2H_ST_QID (0x000) 0x000 AXI-St C2H Queue id

C2H_ST_LEN (0x004) 0x004 AXI-St C2H transfer length

C2H_CONTROL_REG (0x008) 0x008 AXI-ST C2H pattern generator control

H2C_CONTROL_REG (0x00C) 0x00C AXI-ST H2C Control

H2C_STATUS (0x010) 0x010 AXI-St H2C Status

C2H_PACKET_COUNT (0x020) 0x020 AXI-St C2H number of packets to
transfer

C2H_COMPLETION_DATA_0 (0x030) to
C2H_COMPLETION_DATA_7 (0x04C)

0x4C-0x030 AXI-ST C2H Write back data

C2H_COMPLETION_SIZE (0x050) 0x050 AXI-St C2H Write data size.

SCRATCH_REG0 (0x060) 0x060 Scratch register 0

SCRATCH_REG1 (0x064) 0x064 Scratch register 1

C2H_PACKETS_DROP (0x088) 0x088 AXI-St C2H Packets drop count

C2H_PACKETS_ACCEPTED (0x08C) 0x08C AXI-St C2H Packets accepted count

C2H_ST_QID (0x000)
Table 167: C2H_ST_QID (0x000)

Bit Default Access Type Field Description
[31:11] 0 NA Reserved

[10:0] 0 RW C2h_st_qid AXI- Streaming C2h
Queue id

C2H_ST_LEN (0x004)

Table 168: C2H_ST_LEN (0x004)

Bit Default Access Type Field Description
[31:16] 0 NA Reserved

[15:0] 0 RW C2h_st_len AXI- Streaming C2h
Queue id

Chapter 6: Example Design

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=135

C2H_CONTROL_REG (0x008)
Table 169: C2H_CONTROL_REG (0x008)

Bit Default Access Type Field Description
[31:2] 0 NA Reserved

[1] 0 RW Start AXI-St C2H
transfer

[0] 0 NA Reserved

H2C_CONTROL_REG (0x00C)
Table 170: H2C_CONTROL_REG (0x00C)

Bit Default Access Type Field Description
[31:1] 0 NA Reserved

[0] 0 RW Clear match bit for
H2C transfer

H2C_STATUS (0x010)
Table 171: H2C_STATUS (0x010)

Bit Default Access Type Field Description
[31:15] 0 NA Reserved

[14:4] 0 R H2C transfer Queue ID

[3:1] 0 NA Reserved

[0] 0 R H2C transfer match

C2H_PACKET_COUNT (0x020)
Table 172: C2H_PACKET_COUNT (0x020)

Bit Default Access Type Field Description
[31:10] 0 NA Reserved

[9:0] 0 RW AIX-St C2H number of
packet to transfer

Chapter 6: Example Design

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=136

C2H_COMPLETION_DATA_0 (0x030)
Table 173: C2H_COMPLETION_DATA_0 (0x030)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[31:0]

C2H_COMPLETION_DATA_1 (0x034)
Table 174: C2H_COMPLETION_DATA_1 (0x034)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[63:32]

C2H_COMPLETION_DATA_2 (0x038)
Table 175: C2H_COMPLETION_DATA_2 (0x038)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[95:64]

C2H_COMPLETION_DATA_3 (0x03C)
Table 176: C2H_COMPLETION_DATA_3 (0x03C)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[127:96]

C2H_COMPLETION_DATA_4 (0x040)
Table 177: C2H_COMPLETION_DATA_4 (0x040)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[159:128]

Chapter 6: Example Design

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=137

C2H_COMPLETION_DATA_5 (0x044)
Table 178: C2H_COMPLETION_DATA_5 (0x044)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[191:160]

C2H_COMPLETION_DATA_6 (0x048)
Table 179: C2H_COMPLETION_DATA_6 (0x048)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[223:192]

C2H_COMPLETION_DATA_7 (0x04C)
Table 180: C2H_COMPLETION_DATA_7 (0x04C)

Bit Default Access Type Field Description
[31:0] 0 NA AXI-ST C2H

Completion Data
[255:224]

C2H_COMPLETION_SIZE (0x050)
Table 181: C2H_COMPLETION_SIZE (0x050)

Bit Default Access Type Field Description
[31:0] 0 NA Reserved

[1:0] 0 RW AXI-St C2H completion
data size
00 : 8 Bytes
01 : 16 bytes
10: 32 Bytes
11 : Reserved

Chapter 6: Example Design

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=138

SCRATCH_REG0 (0x060)
Table 182: SCRATCH_REG0 (0x060)

Bit Default Access Type Field Description
[31:0] 0 RW Scratch register

SCRATCH_REG1 (0x064)
Table 183: SCRATCH_REG1 (0x064)

Bit Default Access Type Field Description
[31:0] 0 RW Scratch register

C2H_PACKETS_DROP (0x088)
Table 184: C2H_PACKETS_DROP (0x088)

Bit Default Access Type Field Description
[31:0] 0 R AXI-St C2H

packet(descriptor)
drop per transfer

Each AXI-St C2H transfer can contain one or more descriptor depending on transfer size and
C2H buffer size. This register represents how many of the descriptors were dropped in current
transfer. This register will reset to 0 in beginning of transfer.

C2H_PACKETS_ACCEPTED (0x08C)
Table 185: C2H_PACKETS_ACCEPTED (0x08C)

Bit Default Access Type Field Description
[31:0] 0 R AX-st C2H

packet(descriptor)
accepted per transfer

Each AXI-St C2H transfer can contain one or more descriptor depending on transfer size and
C2H buffer size. This register represents how many of the descriptors were accepted in current
transfer. This register will reset to 0 in beginning of transfer.

Chapter 6: Example Design

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=139

Appendix A

Upgrading

Comparing With DMA/Bridge Subsystem
for PCI Express
The table below describes the differences between the DMA/Bridge Subsystem for PCI Express®

and QDMA Subsystem for PCI Express.

Table 186: Subsystem Comparison

DMA/Bridge Subsystem QDMA Subsystem
Configuration Up to Gen3x16 Up to Gen3x16

Channels/Queues 4 H2C, 4 C2H channels with 1PF Up to 2K queues (All can be assigned to one PF
or distributed amongst all 4)

SR-IOV Not Supported Supported (4 PF/252 VFs)

User Interface Configured with AXI-MM OR AXI-ST, but
not both

Each queue will have a context which will tell
whether it goes to a AXI4-Memory or AXI4-
Stream

User Interrupts Up to 16 user interrupts Interrupt coalescing per function

Device Support Supported for 7 Series Gen2 to UltraScale
+™ devices.

Only supported for UltraScale+ devices.

Interrupts Legacy, MSI, MSI-X supported MSI-X Supported for PFs
Only MSI-X Supported for VFs

Driver Support Linux, Windows Example Drivers Linux (in 2018.1), Windows and DPDK (in a future
release)

Appendix A: Upgrading

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=140

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the subsystem, the Xilinx Support web page
contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support.

Documentation
This product guide is the main document associated with the subsystem. This guide, along with
documentation related to all products that aid in the design process, can be found on the Xilinx
Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

The Solution Center specific to the QDMA Subsystem for PCIe is the Xilinx Solution Center for
PCI Express.

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 141Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
http://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=141

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Answer Records for this subsystem can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Subsystem

AR 70927.

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are many tools available to address QDMA Subsystem for PCIe design issues. It is
important to know which tools are useful for debugging various situations.

Appendix B: Debugging

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 142Send Feedback

https://www.xilinx.com/support.html
http://www.xilinx.com/support/answers/70927.htm
https://www.xilinx.com/support.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=142

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into
your design. The debug feature also allows you to set trigger conditions to capture application
and integrated block port signals in hardware. Captured signals can then be analyzed. This
feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx®

devices.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores, including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908).

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado® debug feature is a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the debug feature for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the example
design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in hardware but
not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are
active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the
locked port.

• If your outputs go to 0, check your licensing.

Appendix B: Debugging

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 143Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=143

Appendix C

Application Software Development

Device Drivers
Figure 29: Device Drivers

X.86 Linux Host

User Space
Kernel Space

DPDKTest App

X.86 Linux Host

User Space
Test App

Kernel Space
XDMA Driver

X.86 Windows Host

User Space
Test App

Kernel Space
XDMA Driver

XDMA PMD

UIO VFIO

Xilinx All Programmable
Device

(XDMA Example Design)

PCIe

Xilinx All Programmable
Device

(XDMA Example Design)

PCIe

Xilinx All Programmable
Device

(XDMA Example Design)

PCIe

Linux Kernel Driver
Usage model

§ DPDK (Data Plan Dev Kit) PMD
(Poll Mode Driver) usage model

§ DPDK provides ability to create
user space applications without
data copy associated wit system
calls

Windows Kernel Driver
Usage model

X20600-040218

The above figure shows the usage model of Linux and Windows QDMA software drivers. The
QDMA Subsystem for PCIe example design is implemented on a Xilinx® FPGA, which is
connected to an X86 host through PCI Express.

• In the first use mode, the QDMA driver in kernel space runs on Linux, whereas the test
application runs in user space.

• In the second use mode, we utilize Data Plan Dev Kit (DPDK) to develop a QDMA Poll Mode
Driver (PMD) running entirely in the user space, and use the UIO and VFIO kernel framework
to communicate with the FPGA.

• In the third usage mode, the QDMA driver runs in kernel space on Windows, whereas the test
application runs in the user space.

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=144

Linux DMA Software Architecture (PF/VF)
Figure 30: Linux DMA Software Architecture

dmacti Standard Linux testing tools: dd, flo, ...

Xilinx-dma-common

Netlink socket Character device

Device management

Qdma-core

Q. Management Q. Descriptor Ring Management

PF/VF mailbox

Device management

DMA Q/Engine management

DMA operations

Xilinx s/w components

netlink

NETLINK_GENERIC

character device

VFS ops.

Exported

Kernel Apls

MQ-cmd + Descriptors

H2C Queue C2H QueueXilinx FPGA H2C Queue C2H Queue H2C Queue C2H Queue

X20598-040218

The QDMA driver consists of the following three major components:

• Device control tool: Creates a netlink socket for PCIe device query, queue management,
reading the context of a queue, etc.

• DMA tool: Is the user space application to initiate a DMA transaction. You can use standard
Linux utility dd or fio, or use the example application in the driver package.

• Kernel space driver: Creates the descriptors and translates the user space function into low-
level command to interact with the FPGA device.

Using the Driver
1. Download the driver from AR 70928.

2. Compile the driver.

make install

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 145Send Feedback

http://www.xilinx.com/support/answers/70928.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=145

TIP: Run make in the top level of the QDMA driver folder.

3. Load the kernel driver module.

modprobe qdma

4. Manage the device.

dmactl dev list // list all QDMA function

5. Add a queue.

dmactl qdma<N> q add mode <mm|st> dir <h2c|c2h>

It allocates resources for setting up the queue. Each added queue will appear as a character
device on the host, which can be opened to perform DMA transaction.

<N> is the QDMA function number obtained from “./dmactl dev list”.
<mm|st> selects either memory mapped (mm) or streaming (st) mode.
<mm|st> selects either memory mapped (mm) or streaming (st) mode.

6. Start a queue.

dmactl qdma<N> q <id> start

It configures and sets up the queue on the FPGA. The queue is read to be used since then.

<N> is the QDMA function number obtained from “./dmactl dev list”. <id> is the queue index.

7. Start DMA transaction.

cd ./tool
./dma_to_device -d <device> -a <address> -s <size> -o <offset> -c
<count> -f <file>
./dma_from_device -d <device> -a <address> -s <size> -o <offset> -c
<count> -f <file>

<device> is the name of the character device.
<address> is the start address on the AXI bus.
<size> is the size of a single DMA transfer in bytes.
<offset> is the page offset of a transfer.
<count> is the number of transfers.
<file> is the file name to dump all data transfer, which is optional.

8. Stop a queue.

dmactl qdma<N> q <id> stop

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=146

It removes a queue on the FPGA.

<N> is the QDMA function number obtained from “dmactl dev list”.
<id> is the queue index.

9. Delete a queue.

dmactl qdma<N> q <id> del

It releases the resources, which is allocated on the host.

<N> is the QDMA function number obtained from “dmactl dev list”.
<id> is the queue index.

Reference Software Driver Flow

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=147

AXI4-Memory Map Flow Chart
Figure 31: AXI4-Memory Map Flow Chart

Start the H2C engine by writing 0x1204 value 0x001.

Set up a ring buffer for the H2C descriptor, following the AXI-MM descriptor format.
Also, set up one more entry for write back status.

Follow the same for all desired Queues.

Set up a ring buffer for the C2H descriptor, following the AXI-MM descriptor format.
Also, set up one more entry for write back status.

Follow the same for all desired Queues.

Load the driver for the AXI-MM
transfer (setup).

Write the global ring size to register 0x204: value 8 (ring size of 8).
16 different ring sizes can be set up; each Queue can use any ring size.

Set up the Mask for indirect write to queue context.
Write to address 0x814, 0x818, 0x1C, 0x820 with value of 32'hffff_ffff.

This enables all bits to be written.

Write the Global Function Map register 0x400.
This indicates how many Queues are available for a given function.

Clear the Hardware Context for H2C and C2H Queues.
Write to address 0x824 value 0x06 for H2C, Queue 0.
Wire to address 0x824 value 0x04 for C2H, Queue 0.

Write the indirect context values at register 0x804,
0x808,0x80C and 0x810 for the H2C transfer. Then, update the

the context value to the proper Queues by writing to 0x824.

Write the indirect context values at register 0x804,
0x808,0x80C and 0x810 for the C2H transfer. Then, update the

context value to the proper Queues by writing to 0x824.

Start the C2H engine by writing 0x1004 value 0x001.

H2C C2H

X20550-041418

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=148

AXI4 Memory Mapped C2H Flow
Figure 32: AXI4 Memory Mapped C2H Flow Diagram

The DMA initiates the descriptor fetch request for one or more
descriptors depending on the PIDX credit update.

The DMA receives one or more descriptors.

Is this the last
descriptor The DMA reads data from (Card) source address for

a given descriptor.

Stop fetching descriptor from
the host.

Stop fetching data from the
card.

Transmit data to the PCIe to (Host) destination address.

Is there more data
to transfer

The application program initiates the C2H transfer, with transfer length and receive buffer location.

Yes

No

Yes

No

Yes

No

Exit application
program.

The application program reads the transfer data
from the assigned buffer and writes to a file.

The Driver updates the C2H Descriptor ring buffer based on the length and data
address. This can take one or more descriptor entry based on transfer size (credits).

The Driver starts the C2H transfer by writing the number of PIDX credits to the AXI-
MM C2H PIDX direct address 0x6408 (for Queue 0).

The DMA writes the Write Back Status (CIDX) to the C2H descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by the DMA, and
compares with the PIDX and completes the transfer.

Are there any more
descriptors left

X20525-041418

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=149

AXI4 Memory Mapped H2C Flow
Figure 33: AXI4 Memory Mapped H2C Flow Diagram

The Driver starts the H2C transfer by writing the number of PIDX credits to the AXI-MM H2C
PIDX direct address 0x6404 (for Queue 0).

The DMA initiates the Descriptor fetch request for one or
more descriptors depending on PIDX updates.

The DMA receives one or more descriptors depending on
the adjacent descriptor count.

Is this the last
descriptor

The DMA sends read request to the (Host) source
address based on the first available descriptor.

Stop fetching the descriptor from
host.

The DMA receives the data from the Host for that
descriptor.

Stop fetching data from Host.

Transmit data on the (Card) AXI-MM Master interface.

Is there more data
to transfer

The application program initiates the H2C transfer, with transfer length and buffer location
where data is stored.

Yes

No

Yes

No

Yes

No

The Driver updates the H2C Descriptor ring buffer based on the length and data address.
This can take one or more descriptor entries based on transfer size.

The DMA writes the Write Back Status (CIDX) to H2C descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by DMA, and compares
with PIDX and completes the transfer.

Exit application
program.

Are there any more
descriptors left

X20526-041418

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=150

AXI4-Stream Flow Chart
Figure 34: AXI4-Stream Flow Chart

Set up a ring buffer for the H2C descriptor, following the AXI-ST H2C descriptor
format. Also, set up one entry for the write back status.

Follow the same for all desired Queues.

Set up a ring buffer for C2H descriptor, Follow AXI-ST C2H descriptor format. Also
setup one more entree for write back status

Follow the same sets for all desired Queues

Load the driver for AXI-ST
transfer (setup).

Write the global ring size to register 0x204: value 8 (ring size of 8).
16 different ring sizes can be set up; each Queue can use any ring sizes.

Set up the Mask for indirect write to queue context.
Write to address 0x814, 0x818, 0x1C, 0x820 with value of 32'hffff_ffff. This enables

all bits to be written.

Write the Global Function Map register 0x400.
This identifies how many Queues there are for a given function.

Clear the Hardware Context for H2C and C2H for all desired Queues.
Write to address 0x824 value 0x06 for H2C, (for Queue 0).
Wire to address 0x824 value 0x04 for C2H, (for Queue 0).

Write the indirect context values at register 0x804, 0x808,0x80C and 0x810 for H2C
transfer, and then update the context value to proper Queues by writing to 0x824.

Write the indirect context values at register 0x804, 0x808,0x80C and 0x810 for C2H
transfer, and then update the context value to proper Queue’s by writing to 0x824.

Program the C2H buffer size 0x32h1000 (4KBytes) to address 0xAB0.

Set up a ring buffer for the C2H descriptor, following the AXI-ST C2H descriptor
format. Also, set up one entry for write back status.

Follow the same for all desired Queues.

Set up a ring buffer for the C2H Write Back descriptor, following the AXI-ST WRB
descriptor format. Also, set up one entry for write back status.

Follow the same for all desired Queues

C2H

Write Back Context programming.
Program the indirect context values at register 0x804, 0x808,0x80C and 0x810 for

Write Back context, and then update the context value to proper Queues by writing to
0x824.

Program the Write Back Context update to enable the Write back status. Write
32'h09000000 to 0x640C (for Queue 0).

Prefetch Context programming.
Program the indirect context values at register 0x804, 0x808,0x80C and 0x810 for

Prefetch context, and then update the context value to proper Queues by writing to
0x824.

H2C

X20551-041418

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=151

AXI4-Stream C2H Flow
Figure 35: AXI4-Stream C2H Flow Diagram

The DMA writes the Completion Status (PIDX) to
the Completion descriptor ring.

Based on the descriptor credits, the user application sends
C2H data.

The DMA reads data from Card.

Did DMA receive
tlast

Stop reading data from Card.
The DMA transmits one C2H buffer size worth

of data to the Host destination address.

Is there more
data to transfer

The application program initiates the C2H transfer, with transfer length and receive buffer location.

Yes

No

Yes

No

Exit the application
program.

Application program reads transfer data from
assigned buffer and writes to a file

The DMA writes the Completion data (length of
transfer, color bit, etc.) to the Completion descriptor.

The Driver reads the Completion Status (PIDX), which signals transfer
completed. The Driver also looks at the Completion entry to check for transfer

length. The color bit is used to ensure the Driver does not overflow the
Completion ring.

The Driver starts the C2H transfer by writing the number of PIDX
credits to AXI-MM C2H PIDX direct address 0x6408 (for Queue 0). The
number of PIDX credits can be larger than that of the actual tranfers.

The Driver updates the Completion CIDX to
match the DMA’s Completion PIDX. For the

DMA this signifies that the driver has
processed the C2H data.

The DMA sends descriptor credits to the user application
through the tm_dsc_sts interface.

The DMA initiates the descriptor fetch request for one or
more descriptors depending on the C2H data received.

The DMA receives one
or more descriptors.

Is there more
data

Stop fetching descriptor

No

Yes

X20527-041418

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=152

AXI4-Stream H2C Flow
Figure 36: AXI4-Stream H2C Flow Diagram

The Driver starts the H2C transfer by writing the number of PIDX
credits to AXI-MM H2C PIDX direct address 0x6404 (for Queue 0).

The DMA initiates the Descriptor fetch request for one or
more descriptors depending on the PIDX credit update.

The DMA receives one or more descriptors.

Is this the last
descriptor

The DMA sends the read request to the (Host) source
address based on the first available descriptor.

Stop fetching the descriptor
from host The DMA receives data from the Host for that descriptor.

Are there any more
descriptors left

Stop fetching data from the
Host.

Transmit the data on the (Card) AXI-MM Master interface.

Is there more data
to transfer

The application program initiates the H2C transfer, with transfer length and buffer location
where data is stored.

Yes

No

Yes

No

Yes

No

The Driver updates the Descriptor ring buffer based on the length and data address.
This can take one or more descriptor entries based on transfer size (credits).

The DMA writes the Write Back Status (CIDX) to the
H2C descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by the DMA, and
compares it with the PIDX and completes the transfer.

Exit the application
program.

X20528-041418

Appendix C: Application Software Development

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=153

Appendix D

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design
Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx Documentation
Navigator (DocNav):

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the
Xilinx website.

Appendix D: Additional Resources and Legal Notices

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 154Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=154

References
These documents provide supplemental material useful with this product guide:

1. ARM AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

2. PCI-SIG Specifications (www.pcisig.com/specifications)

3. Virtex-7 FPGA Integrated Block for PCI Express LogiCORE IP Product Guide (PG023)

4. 7 Series FPGAs Integrated Block for PCI Express LogiCORE IP Product Guide (PG054)

5. UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)

6. AXI Bridge for PCI Express Gen3 Subsystem Product Guide (PG194)

7. DMA/Bridge Subsystem for PCI Express Product Guide (PG195)

8. UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)

9. Vivado Design Suite: AXI Reference Guide (UG1037)

10. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

11. Vivado Design Suite User Guide: Designing with IP (UG896)

12. Vivado Design Suite User Guide: Getting Started (UG910)

13. Vivado Design Suite User Guide: Logic Simulation (UG900)

14. Vivado Design Suite User Guide: Using Constraints (UG903)

15. Vivado Design Suite User Guide: Programming and Debugging (UG908)

Training Resources
1. Vivado Design Suite Hands-on Introductory Workshop

2. Vivado Design Suite Tool Flow

Revision History
The following table shows the revision history for this document.

Appendix D: Additional Resources and Legal Notices

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 155Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.pcisig.com/specifications
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_7x;v=latest;d=pg054-7series-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xdma;v=latest;d=pg195-pcie-dma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/training/vivado/vivado-intro-workshop.htm
https://www.xilinx.com/training/vivado/vivado-design-suite-tool-flow.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=155

Section Revision Summary
04/17/2018 v1.0

Initial Xilinx release.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix D: Additional Resources and Legal Notices

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 156Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=156

Copyright

© Copyright 2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zynq, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. All other trademarks are the property of their respective owners.

Appendix D: Additional Resources and Legal Notices

PG302 (v1.0) April 17, 2018 www.xilinx.com [placeholder text]
QDMA Subsystem for PCIe 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v1.0&releaseVersion=1.0&docPage=157

	QDMA Subsystem for PCI Express v1.0
	Table of Contents
	Ch. 1: IP Facts
	Features
	IP Facts

	Ch. 2: Overview
	Glossary
	QDMA Architecture
	PCIe CQ/CC
	PCIe RQ/RC
	PCIe Configuration
	Interrupt Module
	Descriptor Engine
	H2C MM Engine
	C2H MM Engine
	H2C Stream Engine
	C2H Stream Engine
	Bridge Master AXI Memory Mapped Interface
	Bridge Master AXI4-Lite Interface
	PCIe to AXI BARs
	Bridge Slave AXI Memory Mapped Interface
	Bridge Slave AXI4-Lite Interface
	AXI to PCIe BARs
	SR-IOV Support

	QDMA Operations
	Theory of Rings
	H2C and C2H Circular Buffer Queues

	C2H DMA Write Back
	Descriptor Bypass
	H2C Descriptor Bypass
	C2H Descriptor Bypass

	C2H Stream
	C2H Descriptor
	C2H DMA Write Engine
	C2H Completion
	C2H Interrupt Moderation
	C2H Timer
	Reference Timer
	Timer Quadrant
	SRIOV Support

	H2C Stream
	QDMA Interrupts
	Queue-Based Interrupt Visualization
	Interrupt Flow
	Asynchronous Internal Interrupts
	Error Interrupt Handling

	Function Level Reset
	Errors
	Linkdown
	Parity
	Error Aggregator
	C2H Streaming Fatal Error Handling

	Applications
	Feature Support Roadmap
	Licensing and Ordering

	Ch. 3: Product Specification
	Standards
	Minimum Device Requirements
	Port Descriptions
	QDMA Global Ports
	AXI Bridge Master Ports
	AXI Bridge Slave Ports
	AXI4-Lite Master Ports
	AXI4-Lite Slave Ports
	AXI4 Memory Mapped Ports
	AXI4-Stream H2C Ports
	AXI4-Stream C2H Ports
	AXI4-Stream C2H Completion Ports
	AXI4-Stream Drop Ports
	Configuration Management Ports
	Configuration Extend Interface Ports
	FLR Ports
	QDMA Descriptor Bypass Input Ports
	QDMA Descriptor Bypass Output Ports
	QDMA Descriptor Complete Ports
	QDMA Descriptor Credit Input Ports
	QDMA Traffic Manager Credit Output Ports
	User Interrupts

	Register Space
	QDMA_TRQ_SEL_GLBL1 (0x00000)
	Config Block Identifier (0x00)
	Config Block BusDev (0x04)
	Config Block PCIE Max Payload Size (0x08)
	Config Block PCIE Max Read Request Size (0x0C)
	Config Block System ID (0x10)
	Config Block MSI Enable (0x14)
	Config Block PCIE Data Width (0x18)
	Config PCIE Control (0x1C)
	Config AXI User Max Payload Size (0x40)
	Config AXI User Max Read Request Size (0x44)
	Config Write Flush Timeout (0x60)

	QDMA_TRQ_SEL_GLBL2 (0x00100)
	QDMA_TRQ_SEL_GLBL (0x00200)
	QDMA_GLBL_RNG_SZ (0x204-0x240)
	QDMA_GLBL_ERR_STAT (0X248)
	QDMA_GLBL_ERR_MASK (0X24C)
	QDMA_GLBL_DSC_CFG (0x250)
	QDMA_GLBL_DSC_ERR_STS (0x254)
	QDMA_GLBL_DSC_ERR_MSK (0x258)
	QDMA_GLBL_DSC_ERR_LOG0 (0x25C)
	QDMA_GLBL_DSC_ERR_LOG1 (0x260)
	QDMA_GLBL_TRQ_ERR_STS (0x264)
	QDMA_GLBL_TRQ_ERR_MSK (0x268)
	QDMA_GLBL_TRQ_ERR_LOG (0x26C)

	QDMA_TRQ_SEL_FMAP (0x00400)
	QDMA_TRQ_SEL_FMAP (0x400-0x7FC)

	QDMA_TRQ_SEL_IND (0x00800)
	QDMA_IND_CTXT_DATA_3 (0x804)
	QDMA_IND_CTXT_DATA_2 (0x808)
	QDMA_IND_CTXT_DATA_1 (0x80C)
	QDMA_IND_CTXT_DATA_0 (0x810)
	QDMA_IND_CTXT_MASK_3 (0x814)
	QDMA_IND_CTXT_MASK_2 (0x818)
	QDMA_IND_CTXT_MASK_1 (0x81C)
	QDMA_IND_CTXT_MASK_0 (0x820)
	QDMA_IND_CTXT_CMD (0x824)

	QDMA_TRQ_SEL_C2H (0x00A00)
	QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C)
	QDMA_C2H_CNT_TH[16] (0xA40-0xA7C)
	QDMA_C2H_QID2VEC_MAP_QID (0xA80)
	QDMA_C2H_QID2VEC_MAP (0xA84)
	QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED (0XA88)
	QDMA_C2H_STAT_S_AXIS_WRB_ACCEPTED (0xA8C)
	QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED (0xA90)
	QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94)
	QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98)
	QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C)
	QDMA_C2H_STAT_WRQ_OUT (0xAA0)
	QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4)
	QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8)
	QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC)
	QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC)
	QDMA_C2H_ERR_STAT (0xAF0)
	QDMA_C2H_ERR_MASK (0xAF4)
	QDMA_C2H_FATAL_ERR_STAT (0xAF8)
	QDMA_C2H_FATAL_ERR_MASK (0xAFC)
	QDMA_C2H_FATAL_ERR_ENABLE (0xB00)
	QDMA_C2H_ERR_INT (0B04)
	QDMA_C2H_PFCH_CFG (0B08)
	QDMA_C2H_INT_TIMER_TICK (0xB0C)
	QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED (0xB10)
	QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED (0xB14)
	QDMA_C2H_STAT_DESC_REQ (0xB18)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28)
	QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C)
	QDMA_C2H_FIRST_ERR_QID (0xB30)
	QDMA_STAT_NUM_WRB_IN (0xB34)
	QDMA_STAT_NUM_WRB_OUT (0xB38)
	QDMA_STAT_NUM_WRB_DRP (0xB3C)
	QDMA_STAT_NUM_STAT_DESC_OUT (0xB40)
	QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44)
	QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48)
	QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C)
	QDMA_C2H_WRB_COAL_CFG (0xB50)

	QDMA_TRQ_SEL_C2H_MM (0x1000)
	C2H MM Control
	C2H MM Status
	C2H Completed Descriptor Count

	QDMA_TRQ_SEL_H2C_MM (0x1200)
	H2C MM Control
	H2C MM Status
	H2C Completed Descriptor Count

	QDMA_TRQ_MSIX (0x1400)
	QDMA_TRQ_EXT (0x2400)
	Function Status Register (0x0)
	Function Command Register (0x04)
	Target Function Register (0x0C)
	PF Acknowledge Registers (0x20-0x3C)
	Incoming Message Memory (0x40-0x7C)
	Outgoing Message Memory (0x80-0xCC)
	FLR Control/Status Register (0x100)

	QDMA_TRQ_SEL_QUEUE_PF (0x6400)
	QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400)
	QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404)
	QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408)
	QDMA_DMAP_SEL_WRB_CIDX[2048] (0x640C)

	QDMA_TRQ_MSIX_VF (0x0000)
	QDMA_TRQ_EXT_VF (0x1000)
	QDMA_TRQ_SEL_QUEUE_VF (0x3000)

	Context Structure Definition
	Software Descriptor Context Structure (0x0 C2H and 0x1 H2C)
	Hardware Descriptor Context Structure (0x2 C2H and 0x3 H2C)
	Credit Descriptor Context Structure
	C2H CMPT Context Structure (0x6)
	C2H Prefetch Context Structure (0x7)
	Interrupt Context Structure (0x8)

	Queue Entry Structure
	AXI4-Stream C2H Descriptor (8B)
	AXI4-Stream H2C Descriptor (16B)
	AXI4 Memory Mapped Descriptor for H2C and C2H (32B)
	Writeback Structure
	AXI4-Stream C2H Writeback Entry Structure
	AXI4-Stream C2H Writeback Status Structure
	AXI4-Stream H2C Writeback Status Structure
	AXI4 Memory Mapped Writeback Status Structure for H2C and C2H

	Ch. 4: Designing with the Subsystem
	General Design Guidelines
	Use the Example Design
	Registering Signals
	Recognize Timing Critical Signals
	Make Only Allowed Modifications

	Clocking

	Ch. 5: Design Flow Steps
	Customizing and Generating the Subsystem
	Basic Tab
	Capabilities Tab
	PCIe BARs Tab
	SRIOV Config Tab
	SRIOV VF BARs Tab
	PCIe MISC Tab
	PCIe DMA Tab
	User Parameters
	Output Generation

	Constraining the Subsystem
	Simulation
	Basic Simulation
	PIPE Mode Simulation

	Synthesis and Implementation

	Ch. 6: Example Design
	AXI4 Memory Mapped and AXI Stream Default Example Design
	C2H_ST_QID (0x000)
	C2H_ST_LEN (0x004)
	C2H_CONTROL_REG (0x008)
	H2C_CONTROL_REG (0x00C)
	H2C_STATUS (0x010)
	C2H_PACKET_COUNT (0x020)
	C2H_COMPLETION_DATA_0 (0x030)
	C2H_COMPLETION_DATA_1 (0x034)
	C2H_COMPLETION_DATA_2 (0x038)
	C2H_COMPLETION_DATA_3 (0x03C)
	C2H_COMPLETION_DATA_4 (0x040)
	C2H_COMPLETION_DATA_5 (0x044)
	C2H_COMPLETION_DATA_6 (0x048)
	C2H_COMPLETION_DATA_7 (0x04C)
	C2H_COMPLETION_SIZE (0x050)
	SCRATCH_REG0 (0x060)
	SCRATCH_REG1 (0x064)
	C2H_PACKETS_DROP (0x088)
	C2H_PACKETS_ACCEPTED (0x08C)

	Appx. A: Upgrading
	Comparing With DMA/Bridge Subsystem for PCI Express

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Subsystem

	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature

	Hardware Debug
	General Checks

	Appx. C: Application Software Development
	Device Drivers
	Linux DMA Software Architecture (PF/VF)
	Using the Driver
	Reference Software Driver Flow
	AXI4-Memory Map Flow Chart
	AXI4 Memory Mapped C2H Flow
	AXI4 Memory Mapped H2C Flow
	AXI4-Stream Flow Chart
	AXI4-Stream C2H Flow
	AXI4-Stream H2C Flow

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Revision History
	Please Read: Important Legal Notices

