
DDS Compiler v6.0

LogiCORE IP Product Guide

Vivado Design Suite
PG141 January 21, 2021

DDS Compiler v6.0 2
PG141 January 21, 2021 www.xilinx.com

Table of Contents
IP Facts

Chapter 1: Overview
Navigating Content by Design Process . 5
Applications . 5
Licensing and Ordering . 6

Chapter 2: Product Specification
Performance. 9
Resource Utilization. 9
Port Descriptions . 9

Chapter 3: Designing with the Core
General Description . 12
Theory of Operation . 12
Multichannel . 27
Design Examples . 27
Clocking. 28
Resets . 28
Protocol Description . 30

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 39
System Generator for DSP. 50
Constraining the Core . 51
Simulation . 52
Synthesis and Implementation . 52

Chapter 5: C Model
Features . 53
Overview . 53
Installation . 55
C Model Interface. 55

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=2

DDS Compiler v6.0 3
PG141 January 21, 2021 www.xilinx.com

Data Format . 59
Compiling . 59
Linking. 60
Example . 60
MATLAB Interface . 61

Chapter 6: Test Bench
Demonstration Test Bench . 64

Appendix A: Upgrading
Migrating to the Vivado Design Suite. 67
Upgrading in the Vivado Design Suite . 67

Appendix B: Debugging
Finding Help on Xilinx.com . 73
Debug Tools . 74
AXI4-Stream Interface Debug . 75

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 76
Documentation Navigator and Design Hubs . 76
References . 77
Revision History . 78
Please Read: Important Legal Notices . 79

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=3

DDS Compiler v6.0 4
PG141 January 21, 2021 www.xilinx.com Product Specification

Introduction
The Xilinx® LogiCORE™ IP Direct Digital
Synthesizer (DDS) Compiler core implements
high performance, optimized Phase Generation
and Phase to Sinusoid circuits with AXI4-Stream
compliant interfaces.

The core sources sinusoidal waveforms for use
in many applications. A DDS consists of a Phase
Generator and a SIN/COS Lookup Table (phase to
sinusoid conversion). These parts are available
individually or combined using this core.

Features
• Phase Generator and SIN/COS Lookup table

can be generated individually or together
with optional dither to provide a complete
DDS solution.

• Rasterized feature eliminates phase noise
from phase truncation.

• Sine, cosine, or quadrature outputs.
• Optional per-channel resynchronization of

accumulated phase.
• Lookup table can be stored in distributed

or block RAM.
• Optional phase dithering spreads the

spectral line energy for greater Spurious
Free Dynamic Range (SFDR).

• Phase dithering or Taylor series correction
options provide high dynamic range signals
using minimal FPGA resources. Supports
SFDR from 18 dB to 150 dB.

• Up to 16 independent time-multiplexed
channels.

• Fine frequency resolution using up to
48-bit phase accumulator with DSP slice or
FPAGA logic options.

• 3-bit to 26-bit signed output sample
precision.

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported
Device Family(1)

Versal™ ACAP
UltraScale+™ Families

UltraScale™ Architecture
Zynq®-7000 SoC

7 Series
Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web page

Provided with Core
Design Files Encrypted RTL
Example Design Not Provided
Test Bench VHDL
Constraints File Not Provided
Simulation
Model Encrypted VHDL

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite
System Generator for DSP

Simulation For the supported simulators, see the
Xilinx Design Tools: Release Notes Guide

Support
Release Notes
and Known
Issues

Master Answer Record: 54498

All Vivado IP
Change Logs Master Vivado IP Change Logs: 72775

Provided by Xilinx at the Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP

catalog.
2. For the supported versions of the tools, see the Xilinx Design

Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/support/answers/54498.htm
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=dds-compiler.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=dds-compiler.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=4

DDS Compiler v6.0 5
PG141 January 21, 2021 www.xilinx.com

Chapter 1

Overview
Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important
components in many digital communication systems. Quadrature synthesizers are used for
constructing digital down and up converters, demodulators, and implementing various
types of modulation schemes, including PSK (phase shift keying), FSK (frequency shift
keying), and MSK (minimum shift keying). A common method for digitally generating a
complex or real valued sinusoid employs a lookup table scheme. The lookup table stores
samples of a sinusoid. A digital integrator is used to generate a suitable phase argument
that is mapped by the lookup table to the desired output waveform. A simple user interface
accepts system-level parameters such as the desired output frequency and spur
suppression of the generated waveforms.

Navigating Content by Design Process
 Xilinx documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

° Port Descriptions in Chapter 2

° Clocking in Chapter 3

° Resets in Chapter 3

° Customizing and Generating the Core in Chapter 4

Applications
• Digital radios and modems
• Software-defined radios (SDR)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=5

DDS Compiler v6.0 6
PG141 January 21, 2021 www.xilinx.com

Chapter 1: Overview

• Digital down/up converters for cellular and PCS base stations
• Waveform synthesis in digital phase locked loops
• Generating injection frequencies for analog mixers

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx
Vivado® Design Suite under the terms of the Xilinx End User License.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual
Property page. For information about pricing and availability of other Xilinx LogiCORE IP
modules and tools, contact your local Xilinx sales representative.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=6

DDS Compiler v6.0 7
PG141 January 21, 2021 www.xilinx.com

Chapter 2

Product Specification
Figure 2-1 provides a block diagram of the DDS Compiler core. The core consist of two main
parts, a Phase Generator and SIN/COS LUT, which can be used independently or together
with an optional dither generator to create a DDS capability. A time-division (TDM)
multichannel capability is supported, with independently configurable phase increment
and offset parameters.

Phase Generator
The Phase Generator consists of an accumulator followed by an optional adder to provide
addition of phase offset. When the core is customized, the phase increment (PINC) and
phase offset (POFF) can be independently configured to be either fixed, programmable
(using the CONFIG channel) or streaming (using the input PHASE channel).

X-Ref Target - Figure 2-1

Figure 2-1: DDS Core Architecture

s_axis_config_tvalid
s_axis_config_tready
s_axis_config_tdata
s_axis_config_tlast

s_axis_phase_tvalid
s_axis_phase_tready
s_axis_phase_tdata
s_axis_phase_tlast

master
i/f

master
i/f

Channel
Counter

aclk
aclken
aresetn

PINC
POFF
RAM

Dither
Generator

Phase
Accumulator +

SIN/
COS
LUT

Optional
Taylor
Series

Correction

m_axis_data_tvalid
m_axis_data_tready
m_axis_data_tdata
m_axis_data_tuser
m_axis_data_tlast

event_s_phase_chanid_incorrect
event_s_phase_tlast_missing
event_s_phase_tlast_unexpected
event_s_config_tlast_missing
event_s_config_tlast_unexpected

m_axis_phase_tvalid
m_axis_phase_tready
m_axis_phase_tdata
m_axis_phase_tuser
m_axis_phase_tlast

slave
i/f

slave
i/f

+

=

PHASE_IN

PINC

POFF

X13213

resync event_phase_in_invalid

>=

>=

event_pinc_invalid

>=

event_poff_invalid

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=7

DDS Compiler v6.0 8
PG141 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

When set to fixed, the DDS output frequency is set when the core is customized and cannot
be adjusted after the core is embedded in a design.

When set to programmable, the CONFIG channel TDATA field has a subfield for the input in
question (PINC or POFF) or both if both have been selected to be programmable. If neither
PINC nor POFF is set to programmable, there is no CONFIG channel.

When set to streaming, the input PHASE channel TDATA field has a subfield for the input in
question (PINC or POFF) or both if both have been selected to be streaming. If neither PINC
nor POFF is set to streaming, and the core is configured to have a Phase Generator, then
there is no input PHASE channel.

When PINC is set to streaming, an optional RESYNC streaming input can be configured.
When asserted, this signal resets the accumulated phase of the channel in question.

When rasterized mode is selected, the hardware values of PINC and POFF that are input or
configured must be 0 to Modulus-1. This corresponds to a full circle. So for negative PINC
or POFF values, add the Modulus to the negative value desired to map to the required
range. For example with Modulus = 100, the required range is 0 to 99. An angle of -90°
would be -25 with this Modulus. Adding 100 gives 75 (270°).

When using system parameters, PINC and POFF are not input directly, but are calculated
from the input Output Frequencies and Phase Angles. Beware that for small values of
Modulus, the available values are relatively far apart, so the actual output frequency or
phase angle may differ significantly from the desired value as displayed in the Additional
Summary tab.

SIN/COS LUT
When configured as a SIN/COS LUT only, the Phase Generator is not implemented and the
PHASE_IN signal is input using the input PHASE channel and transformed into sine and
cosine outputs using a look-up table. Efficient memory usage is achieved by exploiting the
symmetry of sinusoid waveforms. The core can be configured for sine only output, cosine
only output or both (quadrature) output. Each output can be configured independently to
be negated. Precision can be increased using optional Taylor series correction. This exploits
DSP slices on FPGA families that support them to achieve high SFDR with high speed
operation.

Phase Generator and SIN/COS LUT (DDS)
The Phase Generator is used in conjunction with the SIN/COS LUT to provide either a phase
truncated DDS or Taylor series corrected DDS. An optional dither generator can be added
between the two blocks to provide a phase dithered DDS.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=8

DDS Compiler v6.0 9
PG141 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

Performance
This section details the performance information for various core configurations.

Latency
The latency of the core can be specified through the user interface in the Vivado Integrated
Design Environment (IDE) or be automatically set to the optimum value based upon the
Optimization Goal.

For streaming inputs (s_axis_phase_t*) the latency specifies the minimum number of
cycles between input and the associated output.

For configuration inputs, the latency is the minimum latency from the first cycle aresetn
becomes inactive until a valid output. The latency from configuration channel inputs to
output channel outputs is not deterministic because configuration inputs are synchronized
to the internal channel counter phase, thus introducing a delay which is unknown external
to the core.

IMPORTANT: Xilinx recommends that CE and TVALID on input are not both used to control data into
the core as this can lead to obscure latency. For instance if TREADY is not used, data samples are pushed
through the core by TVALID on input and hence setting TVALID Low freezes data in transit much like
clock enable. Xilinx recommends that full AXI4-Stream protocol is used where latency is variable, but
no data is lost. If deterministic latency is required, Xilinx recommends that you fix either CE or TVALID
High and control data flow using the other.

Throughput
The DDS Compiler core supports full throughput in all configurations (one output for every
cycle).

Resource Utilization
For details about resource utilization, visit Performance and Resource Utilization.

Port Descriptions
The DDS Compiler core pinout is shown in Figure 2-2. All of the possible pins are shown,
though the specific pins in any instance depend upon parameters specified when the core
is generated.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=dds-compiler.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=9

DDS Compiler v6.0 10
PG141 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

Table 2-1 summarizes the pinout of the core. If an active-Low input is required for a specific
control pin, an inverter must be placed in the path to the pin and is absorbed appropriately
during mapping.

X-Ref Target - Figure 2-2

Figure 2-2: Core Pinout

Table 2-1: Core Signal Pinout
Name Direction Optional Description
aclk Input No Rising edge clock
aclken Input Yes Active-High clock enable

aresetn Input Yes
Active-Low synchronous clear. Always takes priority
over aclken. aresetn must be driven Low for a
minimum of two cycles to reset the core.

s_axis_config_tvalid Input Yes TVALID for CONFIG channel
s_axis_config_tready Output Yes TREADY for CONFIG channel

s_axis_config_tdata(1) Input Yes TDATA for CONFIG channel. See CONFIG Channel
TDATA Structure for internal structure and width,

s_axis_config_tlast Input Yes TLAST for CONFIG channel. See CONFIG Channel.
s_axis_phase_tvalid Input Yes TVALID for input PHASE channel
s_axis_phase_tready Output Yes TREADY for input PHASE channel

s_axis_phase_tdata(1) Input Yes
TDATA for input PHASE channel. See Input PHASE
Channel TDATA Structure for internal structure and
width.

s_axis_phase_tuser Input Yes TUSER for input PHASE channel. See Input PHASE
Channel TUSER Structure for internal structure.

aclk
aclken
aresetn

s_axis_config_tvalid

s_axis_config_tlast
s_axis_phase_tvalid
s_axis_phase_tready
s_axis_phase_tdata
s_axis_phase_tuser
s_axis_phase_tlast

s_axis_config_tdata
s_axis_config_tready

event_s_phase_tlast_missing
event_s_phase_tlast_unexpected
event_s_phase_chanid_incorrect

event_s_config_tlast_missing
event_s_config_tlast_unexpected

event_pinc_invalid
event_poff_invalid

event_phase_in_invalid

m_axis_phase_tvalid
m_axis_phase_tready
m_axis_phase_tdata
m_axis_phase_tuser
m_axis_phase_tlast

m_axis_data_tvalid
m_axis_data_tready
m_axis_data_tdata
m_axis_data_tuser
m_axis_data_tlast

X13212

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=10

DDS Compiler v6.0 11
PG141 January 21, 2021 www.xilinx.com

Chapter 2: Product Specification

s_axis_phase_tlast Input Yes TLAST for input PHASE channel. See Input PHASE
Channel TLAST Options.

m_axis_phase_tvalid Output Yes TVALID for output PHASE channel.
m_axis_phase_tready Input Yes TREADY for output PHASE channel.

m_axis_phase_tdata Output Yes TDATA for output PHASE channel. See Output PHASE
Channel TDATA Structure - Conventional DDS.

m_axis_phase_tuser Output Yes TUSER for output PHASE channel. See Output PHASE
Channel TUSER Structure.

m_axis_phase_tlast Output Yes TLAST for output PHASE channel. See Output PHASE
Channel TLAST Options.

m_axis_data_tvalid Output Yes TVALID for output DATA channel.
m_axis_data_tready Input Yes TREADY for output DATA channel.

m_axis_data_tdata Output Yes TDATA for output DATA channel. See Output DATA
Channel TDATA Structure.

m_axis_data_tuser Output Yes TUSER for output DATA channel. See Output DATA
Channel TUSER Structure.

m_axis_data_tlast Output Yes TLAST for output DATA channel. See Output DATA
Channel TLAST Options.

event_s_phase_
tlast_missing Output

No
(But leave

unconnected
to remove
associated
circuitry)

Asserted when the transfer to the s_axis_phase
channel for the last channel (in multichannel
configurations) does not have tlast asserted.

event_s_phase_
tlast_unexpected Output

Asserted when TLAST is asserted for a the transfer to
the s_axis_phase channel which is not for the last
channel (in multichannel configurations).

event_s_phase_
chanid_incorrect Output

Asserted when the chanid field (subfield of TUSER in
s_axis_phase) does not agree with the internal
expectation of channel number.

event_pinc_invalid Output
Asserted when the value of PINC to be accumulated
is out of range. Applies to rasterized configurations
only.

event_poff_invalid Output
Asserted when the value of POFF to be accumulated
is out of range. Applies to rasterized configurations
only.

event_phase_
in_ invalid Output

Asserted when the value of Phase_In is out of range.
Applies to rasterized and SIN_COS_LUT
configurations only.

event_s_config_
tlast_missing Output

Asserted when the last transfer (for the last channel)
to the s_axis_config channel is not accompanied with
TLAST asserted.

event_s_config_
tlast_unexpected Output

Asserted when a transfer to the s_axis_config channel
has TLAST asserted when it is not the transfer
associated with the last channel.

Notes:
1. When in rasterized mode, the input values of PINC, POFF or PHASE_IN must be between 0 and Modulus-1.

Table 2-1: Core Signal Pinout (Cont’d)
Name Direction Optional Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=11

DDS Compiler v6.0 12
PG141 January 21, 2021 www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

General Description
Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important
components in many digital communication systems. Quadrature synthesizers are used for
constructing digital down and up converters, demodulators, and implementing various
types of modulation schemes, including PSK (phase shift keying), FSK (frequency shift
keying), and MSK (minimum shift keying). A common method for digitally generating a
complex or real valued sinusoid employs a lookup table scheme. The lookup table stores
samples of a sinusoid. A digital integrator is used to generate a suitable phase argument
that is mapped by the lookup table to the desired output waveform. A simple user interface
accepts system-level parameters such as the desired output frequency and spur
suppression of the generated waveforms.

Theory of Operation
The standard mode of the DDS Compiler core uses phase truncation, as shown in Figure 3-1.
X-Ref Target - Figure 3-1

Figure 3-1: Phase Truncation DDS (Simplified View of the DDS Core)

Q()
Sine/Cosine

Lookup Table
Table Depth = 2

Phase
Increment

clk clk

B (n)

BS

BS

cos((n))

sin((n))

T1

fout= fclk/2B (n)

B (n)

(n)

Q1

B (n)

(n)D1

A1

Phase
Accumulator

B

X14040

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=12

DDS Compiler v6.0 13
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The integrator (components D1 and A1) computes a phase slope that is mapped to a
sinusoid (possibly complex) by the lookup table T1. The quantizer Q1, which simply
truncates, accepts the high-precision phase angle and generates a lower precision
representation of the angle denoted as in Figure 3-1. This value is presented to the
address port of a lookup table that performs the mapping from phase-space to time.

The fidelity of a signal formed by recalling samples of a sinusoid from a lookup table is
affected by both the phase and amplitude quantization of the process. The depth and width
of the lookup table affect the phase angle resolution and the amplitude resolution of the
signal, respectively. See Spectral Purity Considerations for more details.

Direct digital synthesizers use an addressing scheme with an appropriate lookup table to
form samples of an arbitrary frequency sinusoid. If an analog output is required, the DDS
presents these samples to a digital-to-analog converter (DAC) and a low-pass filter to
obtain an analog waveform with the specific frequency structure. Of course, the samples are
also commonly used directly in the digital domain. The lookup table traditionally stores
uniformly spaced samples of a cosine and a sine wave. These samples represent a single
cycle of a prototype complex sinusoid of length and correspond to specific values
of the sinusoid argument as follows:

where n is the time series sample index.

Quarter wave symmetry in the basis waveform can be exploited to construct a DDS that
uses shortened tables. In this case, the two most significant bits of the quantized phase
angle are used to perform quadrant mapping. This implementation results in a more
resource efficient implementation because the memory requirements are minimized,
offering either fewer FPGA block RAMs or reduced distributed memory. Based on the core
customization parameters, the DDS core automatically employs quarter-wave or half-wave
symmetry when appropriate.

Note: For very shallow tables, FPGA logic resources are actually minimized by storing a complete
cycle. No design decisions are required in this context; the Xilinx tools always produce the smallest
core possible.

The rasterized mode of operation of the DDS does not truncate the accumulated phase.
Rasterized operation is intended for configurations where the desired frequency is a
rational fraction of the system clock (output frequency = system frequency * N/M, where
0 < N < M). Values of M from 9 to 16384 are supported. The SIN/COS LUT is configured
accordingly for values from 0 to M-1, which describe a full circle. Because there is no phase
truncation in the rasterized mode of operation, there is no need for dither or Taylor
correction because these mitigate the effects of phase truncation. In rasterized operation,
the phase noise is significantly reduced. Therefore, the output phase angle resolution and
amplitude resolution are determined by the LUT table output width alone. In rasterized
mode, quadrant symmetry is exploited where applicable to reduce memory use.

θ n()
Θ n()

N 2BΘ n()=

Θ n()

Θ n() n2π
N-----=

Θ n()

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=13

DDS Compiler v6.0 14
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Output Frequency
This section covers output frequency when using the core in standard mode or rasterized
mode.

Standard Mode of Operation

The output frequency, , of the DDS waveform is a function of the system clock
frequency, , the phase width, that is, number of bits () in the phase accumulator and
the phase increment value . The output frequency in Hertz is defined by:

For example, if the DDS parameters are:

• fclk = 120 MHz
• BΘ(n) = 10
• ∆Θ = 12 (decimal)

Then the output frequency is calculated as follows:

The phase increment value required to generate an output frequency Hz is:

If the DDS core is time-division multiplexed to do multiple channels, then the effective clock
frequency per channel is reduced. For C channels, the phase increment required is:

fout
fclk Bθ n()

Δθ

fout
fclkΔθ

2Bθ n()
-------------=

fout
fclkΔθ

2Bθ n()
-------------Hz=

120 106 12××

210-------------------------------=

1.406250 MHz=

Δθ fout

Δθ
fout2

Bθ n()

fclk
------------------=

Δθ
Cfout2

Bθ n()

fclk
----------------------=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=14

DDS Compiler v6.0 15
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Rasterized Mode of Operation

The output frequency fout of the DDS waveform for a single channel configuration is a
function of the system clock frequency fclk, the modulus M and the phase increment value
∆Θ. The output frequency in Hertz is defined by:

For example, if the DDS parameters are

• fclk = 120 MHz
• M = 1000
• ∆Θ = 12 (decimal)

Then the output frequency is calculated as follows:

fout= 120 x 106 x 12 / 1000

fout= 1.44 MHz

The phase increment value ∆Θ required to generate an output frequency fout Hz is:

If the DDS core is time-division multiplexed to do multiple channels, then the effective clock
frequency per channel is reduced. For C channels, the phase increment required is:

Frequency Resolution
This section covers frequency resolution when using the core in standard mode or
rasterized mode.

Standard Mode of Operation

The frequency resolution of the synthesizer is a function of the clock frequency and the
number of bits employed in the phase accumulator. The frequency resolution can be
determined using:

fout
fclkΔθ

M-------------=

Δθ
foutM
fclk

------------=

Δθ
CfoutM

fclk
---------------=

Δf
Bθ n()

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=15

DDS Compiler v6.0 16
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

For example, for the following DDS parameters:

• fclk = 120 MHz
• BΘ(n) = 32

the frequency resolution is:

In the time-division multichannel case, the frequency resolution is improved by the number
of channels, as follows:

Rasterized Mode of Operation

The frequency resolution ∆f of the synthesizer is a function of the clock frequency and the
modulus. The frequency resolution can be determined using:

For example, for the following DDS parameters:

• fclk = 120 MHz
• M = 1000

The frequency resolution is

= 120 x 106 / 1000

= 120 kHz

In the time-division multichannel case, the frequency resolution is improved by the number
of channels, as follows:

Δf
fclk

2Bθ n()
----------=

Δf
fclk

2Bθ n()
---------=

120 106×

232---------------------=

0.0279396 Hz=

Δf
fclk

2Bθ n()C
--------------=

Δf
fclk
M-------=

Δf
fclk
MC-------=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=16

DDS Compiler v6.0 17
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Phase Increment
For standard mode, phase increment values in the range 0 to 2N-1 describes the range
[0,360)° (where N is the number of bits in the phase accumulator). For rasterized mode,
phase increment values must be considered unsigned due to the internal implementation.
The phase increment values [0 to Modulus-1] describe the range [0,360].

The phase increment term defines the synthesizer output frequency. Consider a
standard DDS with the following parameterization:

To generate a sinusoid with frequency , the required phase increment is:

This value must be truncated to an integer giving the following actual frequency:

Consider a DDS in rasterized mode with the following parameterization:

• Fclk = 100 MHz
• M (modulus) = 1536

To generate a sinusoid with frequency fout = 19 MHz, the required phase increment is:

Δθ

fclk 100 MHz=

Bθ n() 18=

fout 19 MHz=

Δθ
fout2

Bθ n()

fclk
------------------=

19 106 218××

100 106×
------------------------------=

49807.36=

fout
Δθfclk

2Bθ n()
-------------=

49807 100× 106×

218---------------------------------------=

18.9998627MHz=

Δθ
foutM
fclk

------------=

Δθ 19 106 1536××

100 106×
----------------------------------=

Δθ 291.84=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=17

DDS Compiler v6.0 18
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The closest integer value to this is 292, giving the following actual frequency:

Spectral Purity Considerations
This section covers spectral purity considerations when using the core in standard mode or
rasterized mode.

Standard Mode of Operation

The fidelity of a signal formed by recalling samples of a sinusoid from a lookup table is
affected by both the phase and amplitude quantization of the process. The depth and width
of the lookup table affect the phase angle resolution and the amplitude resolution of the
signal, respectively. These resolution limits are equivalent to time base jitter and amplitude
quantization of the signal and add spectral modulation lines and a white broad-band noise
floor to the signal spectrum.

In conjunction with the system clock frequency, the phase width determines the frequency
resolution of the DDS. The accumulator must have a sufficient field width to span the
desired frequency resolution. For most practical applications, a large number of bits are
allocated to the phase accumulator to satisfy the system frequency resolution requirements.
By way of example, if the required resolution is 1 Hz and the clock frequency is 100 MHz,
the required width of the accumulator is:

where denotes the ceiling operator. Due to excessive memory requirements, the full
precision of the phase accumulator cannot be used to index the sine/cosine lookup table. A
quantized (or truncated) version of the phase angle is used for this purpose. The block
labeled Q1 in the phase truncation DDS, Figure 3-1, performs the phase angle quantization.
The lookup table can be located in block or distributed memory.

fout
fclkΔθ

M-------------=

fout
292 100 106××

1536----------------------------------=

fout 19.0104167MHz=

Bθ n() log2
fclk
Δf------- 

 =

log2
100 106×

1--------------------- 
 =

26.5754=

27 bits=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=18

DDS Compiler v6.0 19
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Quantizing the phase accumulator introduces time base jitter in the output waveform. This
jitter results in undesired phase modulation that is proportional to the quantization error, as
shown by the following:

Figure 3-2 shows the lookup table addressing error, complex output time-series, and the
spectral domain representation of the output waveform produced by the DDS structure
shown in Figure 3-1. The normalized frequency for this signal is 0.022 Hz, which
corresponds to phase accumulation steps of 7.92° per output sample. The angular
resolution of the 256-point lookup table is 360/256 or 1.40625° per address, which is
equivalent to 7.92/1.40625 or 5.632 addresses per output sample. Because the address
must be an integer, the fractional part is discarded and the resultant phase jitter is the cause
of the spectral artifacts. Figure 3-3 provides an exploded view of the spectral plot in
Figure 3-2 (c).
X-Ref Target - Figure 3-2

Figure 3-2: Phase Truncation DDS. fout = 0.022 Hz, Table Depth = 256 12-Bit Precision Samples.
(a) Phase Angle Addressing Error (b) Complex Output Time Series (c) Output Spectrum

Θ n() θ n() θδ+=

ejΘ n() ej θ n() θ n()δ+[] ejθ n()ej θ n()δ
= =

ejΘ n() ejθ n() 1 j θ n()δ+[]≈

ejθ n() j θ n()δ ejθ n()
+≈

0 20 40 60 80 100
0

0.5

1
(a)

0 20 40 60 80 100
-1

0

1
(b)

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

FREQUENCY

D
B

(c)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=19

DDS Compiler v6.0 20
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Two observations related to the phase jitter structure level can be made. First, observe that
the fractional part of the address count is a periodic (sawtooth) error sequence, which is
responsible for the harmonic rich (and aliased) low-level phase modulation evident in
Figure 3-3. Also, the peak distortion level due to incidental phase modulation is
approximately 48 dB below the desired signal level, which is consistent with 6 dB/bit of
address space. Put another way, if S dB of spur suppression is required in the output
waveform, as referenced to the 0 dB primary tone, the DDS lookup table must support at
least address bits. For example, if S = 70 dB, which means that the highest spur is
70 dB below the main signal, then the minimum number of address bits for the lookup table
is bits; that is, a 4096-deep table.

Figures 3-4 and 3-5 demonstrate the performance of a similar DDS to the one presented in
Figure 3-2, but in this example, 16-bit precision output samples have been used. Observe
that the highest spur is still at the – 48 dB level, and allocating four additional bits to the
output samples has not contributed to any further spur reduction. For a phase truncation
DDS, the only option to further reduce the spur levels is to increase the depth of the lookup
table.

X-Ref Target - Figure 3-3

Figure 3-3: Exploded View of Figure 3-2 (c)

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

FREQUENCY

D
B

Quadrature Output
Sample Precision = 12
T able Depth = 256
Frequency = 0.022
FFT Length = 2048
W indow = Blackman
16-Sep-2000 14:51:00

S 6⁄

70 6⁄ 12=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=20

DDS Compiler v6.0 21
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Rasterized Mode of Operation

In rasterized mode, the phase signal from the Phase Generator can be expressed exactly as
an integer due to its rational fraction relationship to the system clock and the fact that no
truncation of the phase vector occurs. The fidelity of the SINE/COSINE signals is therefore
due only to the accuracy and precision of the SINE/COSINE table entries. Unlike the
standard mode, there is no time base jitter. The effects of time base jitter described in
Standard Mode of Operation do not affect a rasterized configuration.

Because there is no truncation of the phase vector from the phase accumulator and all
possible values of phase have corresponding entries in the SINE/COSINE table, there is no
need to compensate for or mitigate the phase error because there is no phase error. Dither
and Taylor series correction are two techniques to reduce the effect of phase error. Because
they are not required, they are not offered in rasterized mode.

X-Ref Target - Figure 3-4

Figure 3-4: Phase Truncation DDS. fout = 0.022 Hz, Table Depth = 256 16-Bit Precision Samples.
(a) Phase Angle Addressing Error (b) Complex Output Time Series (c) Output Spectrum

X-Ref Target - Figure 3-5

Figure 3-5: Exploded View of Figure 3-4 (c)

0 20 40 60 80 100
0

0.5

1
(a)

0 20 40 60 80 100
-1

0

1
(b)

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

FREQUENCY

D
B

(c)

0 0.1 0.2 0 .3 0.4 0.5
-100

-80

-60

-40

-20

0

F RE QUENCY

D
B

Quadrature Output
Sample Precision = 16
Table Depth = 256
Frequency = 0.022
FFT Length = 2048
Window = Blackman
16-Sep-2000 14:51:42

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=21

DDS Compiler v6.0 22
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

The expected Spurious Free Dynamic Range of a rasterized design is 6 dB per bit of the
output data field.

Phase Dithered DDS
IMPORTANT: Phase Dithering is only an option in standard mode of operation.

In the phase truncation DDS architecture shown in Figure 3-1, the quantizer Q1 introduces
a phase error in the phase slope by discarding the least significant part of the
high-precision phase accumulator. The phase error due to the discarded fractional part of
the address count is a periodic series which results in an undesired spectral line structure.
Figure 3-6 provides an example of this process for a DDS with a table depth N = 1024 and
table sample precision of 16 bits. Figure 3-6 (a) is the phase error generated by taking the
difference between the quantizer input and output signals, Figure 3-6 (b) is the output time
series and Figure 3-6 (c) is the signal output spectrum. Observe in Figure 3-6 (a) the
periodic sawtooth structure of the phase error signal. The line spectrum associated with this
correlated error sequence is impressed on the final output waveform and results in spectral
lines in the synthesizer output spectrum. These spurious components can be clearly seen in
Figure 3-6 (c).

This structure can be suppressed by breaking up the regularity of the address error with an
additive randomizing signal. This randomizing sequence, called dither, is a noise sequence,
with variance approximately equal to the least significant integer bit of the phase
accumulator. The dither sequence is added to the high-precision accumulator output prior
to quantization by Q1.

The dithered DDS supplies, approximately, an additional 12 dB of spurious free dynamic
range (SFDR) in comparison to a phase truncation design. This is achieved by spreading the
spectral energy of the phase error signal. The additional logic resources required to
implement the dither sequence generator are not significant.

X-Ref Target - Figure 3-6

Figure 3-6: DDS Plots Showing (a) Phase Error Time Series (b) Complex Output Time Series
(c) Output Spectrum. 1024 Deep Lookup Table, 16-Bit Samples, Output Frequency 0.333 Hz

0 20 40 60 80 100
0

0.5

1
(a)

0 20 40 60 80 100
-1

0

1
(b)

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

FREQUENCY

D
B

(c)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=22

DDS Compiler v6.0 23
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

To provide S dB of spur suppression using a phase truncation DDS, as referenced to the 0 dB
primary tone, the internal lookup table must support at least address bits. To achieve
this same performance using the dithered architecture requires two fewer address bits,
minimizing the number of block RAMs (or logic slices for a distributed memory
implementation) used in the FPGA implementation. In summary, for a dithered DDS
implementation, the number of address bits needed to support dB spur suppression is
equal to .

Figures 3-7 and 3-8 provide the results for several dithered DDS simulations. Figure 3-7
shows eight simulations for a complex dithered DDS employing a table depth N = 4096 and
16-bit precision samples. For each plot the output frequency is different and is annotated
on the plot. A phase truncation design would typically generate output spurs 72 dB below
the output frequency, independent of the actual value of the output frequency. Indicated on
each of the plots by the parameter A is the peak spur level achieved for the simulation. The
eight spurs are –88.12, –88.22, –86.09, –88.80, –87.21, –87.55, –87.83, –87.12 dB below the
output frequency. The worst case value of –86.09 is 14.09 dB better than a similarly
configured phase truncation DDS.

The eight plots are spectral domain representations for eight different output frequencies.
Each plot is annotated with the peak spur.

To achieve this same SFDR by extending the table length of a phase truncation design
would require increasing the table depth by more than a factor of four.

Figure 3-8 provides one more dithered DDS simulation where the output frequency is swept
over a band of frequencies. The spectrum for each discrete tone in the sweep band is
overlaid to construct the final plot. The sweep start frequency, end frequency, number of
tones in the sweep, and DDS configuration are annotated on the plot.

X-Ref Target - Figure 3-7

Figure 3-7: Dithered DDS Simulations. The DDS configuration is N = 4096, Bs = 16

S 6⁄

S
S 6⁄ 2–

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.47506

A = -88.1194dB
f
A

 = 0.20728Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.11557

A = -88.217dB
f
A

 = 0.45374Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.30342

A = -86.092dB
f
A

 = 0.11707Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.24299

A = -88.8048dB
f
A

 = 0.0026855Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.44565

A = -87.2061dB
f
A

 = 0.06543Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.38105

A = -87.5455dB
f
A

 = 0.1554Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.22823

A = -87.8365dB
f
A

 = 0.034058Hz

0 0.1 0.2 0.3 0.4

-100

-50

0

Frequency

d
B

f
0
 = 0.0092518

A = -87.1189dB
f
A

 = 0.11377Hz

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=23

DDS Compiler v6.0 24
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

In Figure 3-8, the synthesized signal is swept over a range of frequencies starting from
0.0311 to 0.0415 Hz. There are ten tones in the sweep separated in frequency by
0.00104 Hz. In this example, the phase truncation DDS would produce peak spurs at – 72 dB
with respect to the 0 dB primary signal. The dithered DDS provides approximately 12 dB
better performance with the peak spur – 84 dB below the output signal.

A further advantage of the dithered DDS is that the spectral line structure present in a
phase truncation design is removed and the out-of-band signal is significantly whitened.
This white broadband noise floor is more desirable than the line structured spectrum. In
digital communication receivers that use a DDS for generating mixing signals for
performing channelization functions, the spurs in a phase truncation DDS can act as
low-level mixing tones and cause undesirable spectral contamination of the desired
channel. For virtually all applications, the preferred implementation is the dithered DDS.

Taylor Series Corrected DDS
IMPORTANT: Taylor series correction is only an option in standard mode of operation.

The phase dithered DDS, as well as the phase truncation DDS, have a quantizer Q1 that
produces a lower precision by discarding the fractional component of the high
precision . The reason for this quantization step is to keep the size of the lookup
memory to a reasonable size. The trade-off is spectral purity. With the availability of DSP
slices in FPGAs, it is now practical to use the previously discarded fractional bits to calculate
corrections that can be added to the lookup table values to produce outputs with very high
SFDR.

Figure 3-9 through 3-12 show the simulation results of four different Taylor series corrected
DDS simulations. The Taylor series corrected architecture in this example uses a table depth
N = 4096 and 18-bit precision samples. However, the precision at the output of the
feed-forward error processor is 20 bits. For each plot, the output frequency is different and
annotated directly on the plot. A similarly configured phase truncation DDS would produce

X-Ref Target - Figure 3-8

Figure 3-8: Example Plot for Dithered DDS Simulation with Frequency Sweep

0 0.1 0.2 0.3 0.4 0.5
-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

start sweep = 0.0311
end sweep = 0.0415
num sweeps = 10
Δ f = 0.00104
LUT Depth = 4096
LUT Precision = 16
PACC Precision = 32
08-Apr-2001 11:45:12

Frequency

d
B

Θ n()
θ n()

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=24

DDS Compiler v6.0 25
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

spurs at – 72 dB and a phase dithered DDS at – 84 dB. The peak spurs for the four plots are
–118.25, –118.13, –118.10, and –118.17 dB below the output frequency.

Figure 3-13 shows a swept frequency Taylor series corrected DDS. The starting frequency
for this example is 0.0313 Hz, the final frequency is 0.0813, and there are 100 tones in the
sweep. Using this configuration, a phase truncation DDS would produce peak spurs at
approximately 72 dB below the output signal and a phase dithered DDS would produce
peak spurs at approximately 84 dB below the output signal. As shown in the plot, the Taylor
series corrected DDS produced spurs that are all the way down to 118 dB below the output
signal. This result is 34 dB better than the phase dithering DDS, 46 dB better than the phase
truncation DDS, and still only consumes a single 18Kb block RAM for the lookup storage.
Figure 3-14 shows another frequency sweep simulation with 35 tones over a broader
frequency range.

As shown in the plots, linear correction of the RAM values can extend the SFDR to 118 dB
using only a single block RAM and three multipliers. To achieve SFDR beyond 118 dB, it is
necessary to deepen the RAM or to use quadratic correction (an extra term of the Taylor
series). Because the RAM size would double for each additional 6 dB, the DDS Compiler
uses quadratic correction to achieve SFDR values of up to 150 dB. Introducing the extra
term of the Taylor series expansion of Sine or Cosine requires an additional multiplier per
sine and cosine output and an additional block RAM to both scale and square the phase
error.

Optimization of Memory Usage

The Taylor Series Correction implementation in the DDS Compiler core typically results in an
SFDR higher than that requested in order to guarantee SFDR. This results in extra block
RAMs for values of SFDR above 102 dB. However, in many cases, depending on the phase
increment values used, a specified SFDR target value of 102 dB provides higher SDFR, but
with one 18K block RAM.

X-Ref Target - Figure 3-9

Figure 3-9: Taylor Series Corrected DDS – Single-Tone Test, f0 = 0.0092518

-0.5 -0.25 0 0.25 0.5
-140

-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

-118 dB

Frequency

dB

f
0
 = 0.0092518

Peak Spur = -118.2488dB
LUT Depth = 4096
LUT Precision = 20
PACC Precision = 32
05-Mar-2002 17:00:38

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=25

DDS Compiler v6.0 26
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

X-Ref Target - Figure 3-10

Figure 3-10: Taylor Series Corrected DDS – Single-Tone Test, f0 = 0.22823
X-Ref Target - Figure 3-11

Figure 3-11: Taylor Series Corrected DDS – Single-Tone Test, f0 = 0.30342
X-Ref Target - Figure 3-12

Figure 3-12: Taylor Series Corrected DDS – Single-Tone Test, f0 = 47506

-0.5 -0.25 0 0.25 0.5
-140

-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

-118 dB

Frequency
dB

f
0
 = 0.22823

Peak Spur = -118.1295dB
LUT Depth = 4096
LUT Precision = 20
PACC Precision = 32
05-Mar-2002 17:05:12

-0.5 -0.25 0 0.25 0.5
-140

-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

-118 dB

Frequency

dB

f
0
 = 0.30342

Peak Spur = -118.0964dB
LUT Depth = 4096
LUT Precision = 20
PACC Precision = 32
05-Mar-2002 17:06:29

-0.5 -0.25 0 0.25 0.5
-140

-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

-118 dB

Frequency

dB

f
0
 = 0.47506

Peak Spur = -118.1732dB
LUT Depth = 4096
LUT Precision = 20
PACC Precision = 32
05-Mar-2002 17:08:30

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=26

DDS Compiler v6.0 27
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Multichannel
When configured for more than one channel, the DDS, or Phase Generator part, generates
outputs for each channel in a time-multiplexed fashion. As such, the output for a particular
channel occurs every N-cycles, where N is the number of channels selected when the core
was customized. The outputs for channel 0 are given first.

Design Examples
The DDS Compiler user interface accepts system-level parameters instead of low-level
parameters such as the width of the phase accumulator or width of the phase angle.
Because of this, all preceding requirements can be entered into the Vivado IDE directly

X-Ref Target - Figure 3-13

Figure 3-13: Taylor Series Corrected DDS – Frequency Sweep Simulation, 100 Tones
X-Ref Target - Figure 3-14

Figure 3-14: Taylor Series Corrected DDS – Frequency Sweep Simulation, 35 Tones

-0.5 -0.25 0 0.25 0.5
-140

-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

-118 dB

Frequency
dB

start sweep = 0.0313
end sweep = 0.0813
num sweeps = 100
Δ f = 0.0005
Peak Spur = -117.7752dB
LUT Depth = 4096
LUT Precision = 20
PACC Precision = 32
05-Mar-2002 16:30:45

-0.5 -0.25 0 0.25 0.5
-140

-120

-100

-80

-60

-40

-20

0

 -72 dB

 -84 dB

-112 dB

Frequency

dB

start sweep = 0.025
end sweep = 0.25
num sweeps = 35
Δ f = 0.0064286
Peak Spur = -112.3654dB
LUT Depth = 4096
LUT Precision = 18
PACC Precision = 32
06-Mar-2002 16:32:35

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=27

DDS Compiler v6.0 28
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

without having to calculate low-level core details. The user interface in the Vivado IDE also
provides feedback of the hardware parameters so the translation of system-level
parameters to low-level parameters can been seen. Alternatively, hardware parameters can
be entered directly.

Example 1
In standard mode, single-channel DDS with 1 MHz system clock, frequency resolution of
1 Hz, Phase Width is 20-bits. To synthesize an output of 23.4 kHz, an Output Frequency
value of 0.0234 MHz must be entered into the user interface, which then returns a value of
5FD8 in hexadecimal, which is 24536 in decimal.

This gives a synthesized frequency of 24536/220 *1 MHz = 23399.35 Hz.

If the application requires this to be modulated by one of 8 phase offsets, the phase offset
bus need only be 3-bits precision, but these must be the top 3 bits of the phase offset
input. Hence, the phase offset of 1/8 of a cycle would be entered as 0.125 in the user
interface. This returns a value of 20000(hex). This could be entered on the 3-bit bus as
001(binary).

Example 2 (DDS Requiring Negative Frequencies)
In standard mode, single-channel DDS with 100 MHz System Clock, frequency resolution of
1 Hz the Phase Width is 25-bits. Frequencies of -3 MHz, -1 MHz, 1 MHz and 3 MHz are
required. Fs is the frequency per channel which is System Clock/Number of Channels, that is,
25 MHz. The negative frequencies alias to every Fs Hz. The legal range to enter in the user
interface is 0 to Fs, so the entered frequencies for this example must be 22 MHz (Fs-3 MHz),
24 MHz (Fs-1 MHz), 1 MHz and 3 MHz respectively.

Clocking
The DDS has only one clock signal input, aclk. This is the system clock referred to in
equations. There are no special timing or placement constraints. Because the DDS has only
one clock, there are no clock domain crossing considerations.

Resets
The active-Low reset signal, aresetn, is registered within the DDS Compiler core to ensure
high performance. This signal has the requirement that it must be driven Low for a
minimum of two cycles to guarantee that there is no violation of the AXI4-Stream protocol

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=28

DDS Compiler v6.0 29
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

on the core outputs. The registering of reset appears as a delay in entering the reset state,
and the signal states after reset differ depending on whether TREADY signals are present.

The following diagram shows the core entering reset when there are no TREADY signals,
using a multichannel DDS as an example The subscript on the valid data outputs indicates
a channel number. The true behavioral model outputs X values for TDATA fields during
reset. All channel payloads are qualified with their respective TVALID outputs.

Figure 3-16 shows the core entering reset when TREADY is present, using a multichannel
DDS as an example. The subscript on the valid data outputs indicates a channel number. The
reset event forces the FIFOs within the core back into their initial state; no X value is
produced by the VHDL RTL-based behavioral model in this case. Again, all channel payloads
are qualified with their respective TVALID outputs.

X-Ref Target - Figure 3-15

Figure 3-15: Reset Behavior (no TREADY)

X-Ref Target - Figure 3-16

Figure 3-16: Reset Behavior (with TREADY)

aclk

aclken

aresetn

m_axis_data_tdata

m_axis_data_tvalid

D0 D1 D2 D3 D4 D5 D0 D1

2 cycles + core latency + new input data delay

aclk

aclken

aresetn

m_axis_data_tdata

m_axis_data_tvalid

m_axis_data_tready

D0 D1 D2 D3 D4 D5 D0 D1

2 cycles + core latency + new input data delay

Output FIFO returned to zero location

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=29

DDS Compiler v6.0 30
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Protocol Description
Other than the event signals, all interfaces to and from the DDS are AXI4-Stream interfaces.
The event signals are registered and asserted on detection of the event they describe.

AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances
interoperability of Xilinx® LogiCORE IP solutions. Other than general control signals such
as aclk, aclken and aresetn and event indication outputs, all inputs and outputs of the
DDS Compiler are conveyed on AXI4-Stream channels. A channel always consists of TVALID
and TDATA, plus several optional ports and fields. In the DDS Compiler, the optional ports
supported are TREADY, TLAST and TUSER. Together, TVALID and TREADY perform a
handshake to transfer a message, where the payload is TDATA, TUSER and TLAST. The DDS
Compiler operates on the operands contained in the TDATA field of the input channels and
outputs the result in the TDATA field of the output channels. The DDS Compiler provides
configuration options for the use of TUSER and TLAST.

Basic Handshake

Figure 3-17 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload fields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are
asserted in a cycle, a transfer occurs. The master and slave set TVALID and TREADY
respectively for the next transfer appropriately.

The DDS Compiler “datapath” channels (all except the CONFIG channel) can be configured
to have no TREADY.

This is equivalent to setting TREADY for each of these channels permanently asserted. This
inability to indicate backpressure simplifies the interface behavior and allows resource

X-Ref Target - Figure 3-17

Figure 3-17: Data Transfer in an AXI4-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=30

DDS Compiler v6.0 31
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

savings to be made. This mode is recommended when the system can be designed to
ensure that full throughput (one sample per cycle) can be assured.

The AXI4 handshake shown in Figure 3-17 forbids the output of data until the downstream
circuitry is ready. This allows for easy synchronization of circuits following power-up or reset
without complicated latency calculations.

For more information on AXI4-Stream interfaces see the Xilinx AXI Design Reference Guide
(UG761) [Ref 1] and the AMBA® AXI4-Stream Protocol Specification (Arm IHI 0051A) [Ref 2].

CONFIG Channel

The CONFIG channel (s_axis_config_t*) replaces the programmatic interface of DDS
Compiler v4.0. For the CONFIG channel, there is the concept of a vector. The vector in
question is a complete set of values (PINC and/or POFF) for all channels. The CONFIG
channel is non-blocking, which means that the other channels of the DDS Compiler do not
wait upon data from the CONFIG channel. To program the CONFIG channel N transfers must
occur, where N is the number of channels. Each transfer contain the PINC and/or POFF
values for each channel in sequence starting with channel 0. Only the last transfer, for
channel (index N-1) must have TLAST asserted. Failure to do so causes either
event_s_config_tlast_missing or event_s_config_tlast_unexpected
outputs to be asserted for a cycle. The packet is only deemed to be received when
complete. Only when it is completely received is it eligible to be used pending a
synchronization event. Synchronization events are either when the TDM channel counter
rolls over (vector framing) or when the input PHASE channel is configured to receive packet
TLASTs and one such TLAST is received (packet framing).

Figure 3-18 illustrates programming CONFIG data for a six-channel DDS. In the first
programming cycle, TLAST is incorrectly applied, and the event outputs trigger accordingly.
The second programming cycle shows correct application of TLAST.

When the core is configured for single-channel operation, TLAST is not required and the pin
is not present on the CONFIG channel.

X-Ref Target - Figure 3-18

Figure 3-18: CONFIG Channel Programming

aclk

aclken

aresetn

s_axis_config_tvalid

s_axis_config_tready

s_axis_config_tdata

s_axis_config_tlast

event_s_config_tlast_unexpected

event_s_config_tlast_missing

Ch0 Ch1 Ch2 Ch3 Ch4 Ch5 Ch0 Ch1 Ch2 Ch3 Ch4 Ch5

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=31

DDS Compiler v6.0 32
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

CONFIG Channel TDATA Structure

When the CONFIG channel is configured to supply both PINC and POFF values for each
TDM channel, each field is sign-extended to fit a byte boundary, then these byte-oriented
fields are concatenated with PINC in the least significant positions. For example, for a phase
width of 11 bits, PINC would occupy bits 10:0 and POFF would occupy 26:16. Thus
s_axis_config_tdata would be 31:0 overall.

Figure 3-19 shows the structure for the widths in the preceding example for the following
configurations:

• Both PINC and POFF are set to Programmable.
• PINC only is set to Programmable.
• POFF only is set to be Programmable

Input PHASE Channel

The input PHASE channel (s_axis_phase_t*) replaces the streaming interface (PINC_IN
and POFF_IN) or PHASE_IN ports of the DDS Compiler v4.0. The input PHASE channel is
intended for applications where the DDS Compiler is to perform a dynamic function such as
phase or frequency modulation, where there is an output sample for each input sample. The
fact that there is a one-to-one relationship between input and output means that back
pressure applied to the output (TREADY deasserted) results in the deassertion of TREADY
on the input PHASE channel (delayed according to internal buffer capacity). Likewise a
starvation of input data on the PHASE channel (deassertion of TVALID) propagates to
become a deassertion of TVALID on the output channels.

When in rasterized mode, values of PINC, POFF and PHASE_IN must be constrained
between 0 and Modulus-1 (inclusive). This corresponds to a full circle. So if negative values

X-Ref Target - Figure 3-19

Figure 3-19: CONFIG Channel TDATA Structure

Full DDS and Phase Accumulator Structure

Unused POFF Unused PINC

31 27 15 11

a)

26 16 10 0

Unused PINC

15 11

b)

10 0

Unused POFF

15 11

c)

10 0
X14036

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=32

DDS Compiler v6.0 33
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

are required, add the Modulus to map these into the required range. For instance with
modulus 360, if -90 is required, add 360 to get 270 which is in the required range. Event
signals exist to detect invalid values of PINC, POFF and PHASE_IN input at run time.

When the DDS Compiler is configured to have a Phase Accumulator and either Phase
Increment or Phase Offset is selected to be “Streaming” the input PHASE channel interface
exists. When the DDS Compiler is configured to be a SIN/COS LUT only, the PHASE_IN field
is input on the TDATA bus of the input PHASE channel. These two configurations are
mutually exclusive.

Input PHASE Channel TDATA Structure

As noted earlier, the two configurations in which the DDS Compiler can have an input
PHASE channel are mutually exclusive, so although there are four fields which can occur in
the TDATA, all four cannot occur together.

When the DDS Compiler is configured to be a SIN/COS LUT only, the PHASE_IN field is
mapped to s_axis_phase_tdata. The PHASE_IN field occupies a byte-oriented field in
the least significant portion of the bus. So the width of s_axis_phase_tdata is the
minimum multiple of 8 bits required to accommodate the PHASE_IN width. Because this is
an input, any additional bits required to achieve this byte orientation are ignored by the
core and are optimized away during synthesis or mapping.

Figure 3-20 shows the structure of s_axis_phase_tdata where Phase_Width = 11 for
the following configurations:

• Both PINC and POFF are set to Streaming.
• PINC only is set to Streaming.
• POFF only is set to Streaming.
• The DDS is configured to be a SIN/COS LUT only.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=33

DDS Compiler v6.0 34
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Input PHASE Channel TUSER Structure

The input PHASE channel can be configured to have no TUSER port, to have a user field or
to carry the TDM Channel index, or both a user field and TDM Channel index. There is no
byte orientation to these fields. The TDM channel index, if configured, has the minimum
width required to describe the number of TDM channels. The width of the user field is
determined by user selection from 1 to 256 bits. The two fields are concatenated with the
TDM channel ID field in the least significant place. If only one field exists, it occupies the
least significant bits of s_axis_phase_tuser.

Figure 3-21 shows the three possible combinations; both user field and chan_id field,
chan_id field only and user field only.

X-Ref Target - Figure 3-20

Figure 3-20: Input PHASE Channel TDATA Structure

Unused POFF Unused PINC

Unused PINC

Unused POFF

Unused PHASE_IN

Full DDS and Phase Accumulator Structure

SIN/COS Lookup Structure

31 27 15 11

15 11

15 11

15 11

26 16 10 0

0

0

0

10

10

10

a)

b)

c)

d)

X13214

Unused POFF Unused PINC

Unused PINC

31 27 15 11

15 11
26 16 10 0

010

e)

f)

Unused RESYNC

39 33

32

Unused RESYNC
23 17

16

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=34

DDS Compiler v6.0 35
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Input PHASE Channel TLAST Options

The input PHASE channel can be configured to have no TLAST, to have a vector framing
TLAST or to have a packet framing TLAST.

When Vector Framing is selected, TLAST is expected to indicate the last channel in a TDM
cycle of channels. If TLAST does not match the internal expectation of when TLAST should
arrive, one of two event signals is asserted for a clock cycle.

When Packet Framing is selected, the core does not have any expectation of the timing of
TLAST so the event signals are not present, but TLAST is conveyed to the output channels
with the same latency as the TDATA input.

Output DATA channel

The Output Data channel exists whenever the DDS Compiler is configured to have a SIN/
COS LUT. This channel replaces the SINE and COSINE outputs of DDS Compiler v4.0. These
former outputs now exist as fields of m_axis_data_tdata.

Output DATA Channel TDATA Structure

The sine and cosine output fields are sign extended to the next byte boundary then
concatenated, with cosine in the least significant portion, to create m_axis_data_tdata.
If only one of sine or cosine is selected, then it is sign extended and put into the least
significant portion of m_axis_data_tdata.

Figure 3-22 shows the internal structure of TDATA for the three configurations; quadrature
outputs, cosine only and sine only. An 11-bit output has been shown in the diagram for
example, sign extended to 16 bits. The <<< denotes sign extension.

X-Ref Target - Figure 3-21

Figure 3-21: Input PHASE Channel TUSER Structure

User Field CHAN_ID

0

CHAN_ID

0

User Field

0

X14038

UF+N-1 N

UF-1

N-1

N=ceil(log2(number of TDM channels))
UF = User Field Width

N-1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=35

DDS Compiler v6.0 36
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Output DATA Channel TUSER Structure

The output DATA channel can be configured to have no TUSER field, or for TUSER to hold a
user field, or a TDM channel index or both a user field and a TDM channel ID. When both
user field and TDM channel ID are selected the fields are concatenated with the TDM
channel ID in the least significant position. The TDM channel ID qualifies the fields in the
TDATA bus for that transfer as belonging to the TDM channel described. See Figure 3-21 for
the structure, as this is identical to the structure for the Output DATA channel TUSER port.

The user field is not used nor interpreted by the core. It is provided as a service to allow the
system designer to pass information through the core with latency identical to the main
datapath (input PHASE channel to output channels). For instance, the user field could
contain flags and other ancillary information irrelevant to the DDS, but relevant to some
core downstream from the DDS.

Output DATA Channel TLAST Options

The output DATA channel can be configured to have no TLAST, to have vector framing, to
have packet framing or to have a TLAST which is “Configuration triggered”.

When set to vector framing TLAST is asserted for the transfer which contains the TDATA of
the last TDM channel of a cycle of TDM channels (for example, channel 12 of 12).

When set to packet framing, the TLAST of the input PHASE channel is passed unaltered with
latency equal to the latency of the main datapath. This is intended to be a service to the
system designer, where TLAST might have a meaning which is irrelevant to the DDS, but
relevant to some core downstream.

When set to “Configuration Triggered” the TLAST is generated internally by the DDS rather
than conveyed from the input PHASE channel. It is asserted on the last channel of a TDM
cycle immediately before a configuration change is effected. In other words, if a

X-Ref Target - Figure 3-22

Figure 3-22: Output DATA Channel TDATA Structure

<<<<<< SINE <<<<<< COSINE

31 27 15 11

a)

26 16 10 0

<<<<<< COSINE

15 11

b)

10 0

<<<<<< SINE

15 11

c)

10 0
X14037

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=36

DDS Compiler v6.0 37
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

configuration change is provoked using the CONFIG channel, TLAST is asserted on the last
sample of the old configuration.

Output PHASE Channel

The output PHASE channel replaces the PHASE_OUT port of DDS Compiler v4.0. The
PHASE_OUT port now exists as a field of m_axis_phase_tdata.

Output PHASE Channel TDATA Structure - Conventional DDS

The PHASE_OUT field is sign extended to the next multiple of 8 bits and becomes
m_axis_phase_tdata. For example, if PHASE_OUT is 20 bits, m_axis_phase_tdata is
24 bits wide [23:0], occupied by a sign extended PHASE_OUT.

Figure 3-23 shows this for an example width of 11 bits sign extended to 16 bits.

Output PHASE Channel TDATA Structure - Rasterized DDS

The phase values in rasterized mode are positive integers in the range 0 to Modulus-1.
Therefore the PHASE_OUT field is padded with zeros up to the next multiple of 8 bits and
becomes m_axis_phase_tdata.

Output PHASE Channel TUSER Structure

The TUSER field has the same configuration options as the output DATA channel, but the
options are independent for the two output channels, so, for instance, one might be
configured to have a user field while the other has a TDM channel ID field. Figure 3-21 is
identical to the structure options for the output PHASE Channel TUSER port.

Output PHASE Channel TLAST Options

The output PHASE channel uses the same TLAST setting as the output DATA channel.

Event Interface

To allow users to synchronize correctly to the internal channel counter, and flag errors when
writing multichannel data to the CONFIG and/or PHASE channels, the DDS Compiler core
provides several event outputs to indicate when unexpected conditions have occurred.
Event outputs obey aclken and aresetn conditions, occur immediately and are asserted
for each cycle that a discrepancy is present.

X-Ref Target - Figure 3-23

Figure 3-23: Output PHASE Channel TDATA Structure

<<<<<< PHASE_OUT

15 11

10 0
X14039

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=37

DDS Compiler v6.0 38
PG141 January 21, 2021 www.xilinx.com

Chapter 3: Designing with the Core

If the event outputs are not required, they can be left unconnected and the associated logic
is optimized away by the Xilinx tools.

CONFIG Channel Event Outputs

For multichannel configuration, the CONFIG channel expects a single pulse on
s_axis_config_tlast to indicate the last sample in a sequence of channels (a “vector”).
If s_axis_config_tlast is asserted when the core does not expect it to be,
event_s_config_tlast_unexpected is asserted. If the s_axis_config_tlast
pulse is not asserted with the configuration data of the last channel,
event_s_config_tlast_missing is asserted.

PHASE Channel Event Outputs

When the PHASE channel is present with multiple channels, the PHASE channel expects a
single pulse on s_axis_phase_tlast to indicate the last sample in a sequence of
channels (a “vector2). If s_axis_phase_tlast is asserted when the core does not expect
it to be, event_s_phase_tlast_unexpected is asserted. If the s_axis_phase_tlast
pulse is not asserted with the data of the final channel, event_s_phase_tlast_missing
is asserted.

When the DDS is configured for rasterized mode, both PINC and POFF values (fixed,
programmable or streaming) are expected to be in the range 0 to Modulus-1. Values
outside this range are not supported and can lead to erroneous output. The signals
event_pinc_invalid and event_poff_invalid are asserted when a value outside
the supported range is detected.

The s_axis_phase_tuser configuration options allow you to input a Channel ID value to
facilitate synchronization with the internal channel counter. If this option is selected, the
event_s_phase_chanid_incorrect output is present on the core and is asserted for
every cycle where the input Channel ID on s_axis_phase_tuser does not match the
current channel of the core.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=38

DDS Compiler v6.0 39
PG141 January 21, 2021 www.xilinx.com

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 3]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 7]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 3] for
detailed information. IP integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or

right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4] and
the Vivado Design Suite User Guide: Getting Started ((UG910) [Ref 5].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=39

DDS Compiler v6.0 40
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Component Name: The name of the core component to be instantiated. The name must
begin with a letter and be composed of the following characters: a to z, A to Z, 0 to 9 and
“_”.

Configuration Tab
Configuration Options: The full DDS or optionally the Phase Generator part or SIN/COS
LUT part can be generated.

° Phase Generator and SIN/COS LUT: DDS is provided by combining Phase
Generator and SIN/COS LUT with an optional dither circuit.

° Phase Generator only: Only the phase generator is provided.

° SIN/COS LUT only: Only the SIN/COS LUT with optional Taylor series correction
circuit is provided.

System Requirements: The general context of the DDS is set by this group of parameters:

° System Clock: The frequency at which the DDS core is clocked. The value provided
influences architectural choices, and is used to calculate the value of phase
increment from output frequency (it is the relative value of output frequency to
system clock that specifies phase increment, and so doubling system clock while
maintaining output frequency results in a doubling of phase increment).

IMPORTANT: The specified clock rate might not be achievable by the final implementation, because
this depends on the FPGA family and how much is being packed into the device.

° Number of Channels: The DDS and phase generator can support up to 16
channels. The channels are time-multiplexed, which reduces the effective clock
frequency per channel.

° Mode of Operation: The DDS supports standard mode where the accumulated
phase can be truncated before being used to access the SIN/COS LUT, or rasterized
mode which can be used when the desired frequencies and system clock are related
by a rational fraction. See Theory of Operation in Chapter 3 for more details.

° Modulus (rasterized mode only): Describes the relationship between the system
clock frequency and the desired frequencies. See Theory of Operation in Chapter 3
for more details.

° Frequency per Channel (Fs): Because of time division multiplexing, the effective
system clock to each channel is the real system clock divided by the number of
channels.

Parameter Selection: DDS key parameters can be specified using System Parameters,
which are aimed at system architects (frequency domain parameters) or Hardware
Parameters, which are aimed at hardware engineers (time-domain parameters). The Phase
Generator and SIN/COS LUT are only specified in terms of Hardware parameters.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=40

DDS Compiler v6.0 41
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

System Parameters

° Spurious Free Dynamic Range (SFDR): The targeted purity of the tone produced
by the DDS. This sets the Output Width as well as internal bus widths and various
implementation decisions.

° Frequency Resolution: Specified in Hz, this specifies the minimum frequency
resolution and is used to determine the Phase Width, as employed by the phase
accumulator and its associated phase increment (PINC) and phase offset (POFF)
values. Small values give high frequency resolution and require larger accumulators.
Larger values reduce hardware resources. Depending upon the choice of Noise
Shaping, the Phase Width can be increased, and the frequency resolution higher
than that specified. For rasterized mode, the frequency resolution is fixed by the
system clock, the number of channels, and the modulus selected. See Theory of
Operation in Chapter 3 for more details.

Noise Shaping: This controls whether phase truncation, dithering, or Taylor series
correction is used. The options are:

° None: Phase truncation DDS is produced.

° Dithering: Phase dither is used to improve SFDR at the expense of increased noise
floor. See Phase Dithered DDS in Chapter 3.

° Taylor Series Corrected: Sine/cosine values are interpolated using the otherwise
discarded bits from phase truncation. See Taylor Series Corrected DDS in Chapter 3.

° Auto: Noise-shaping is automatically determined, based on System Parameters
such as SFDR. The selected noise shaping option is presented in the core summary
pages. Auto is only available when Parameter Selection is System Parameters.

The availability of particular noise shaping options depends upon the configuration
option selected and Parameter Selection method. System Parameter entry automatically
constrains whether a particular Noise Shaping option is possible. When Hardware
Parameter entry is selected, the options summarized in Table 4-1 are made available,
and the choice of the Noise Shaping option then constrains the hardware parameter to
ranges to those supported by the selected option.

Based upon the System Parameters entered and Noise Shaping selected, the minimum
Phase Width and Output Width are derived by the Vivado IDE in the following way. The

Table 4-1: Availability of Noise Shaping Options for Hardware Parameters
Setting DDS Part Phase Generator Part SIN/COS LUT Part

None Available Available Available
Dithering Available

Taylor Available Available
Auto Available

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=41

DDS Compiler v6.0 42
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Phase Width can be increased to enable a particular Noise Shaping option. For example,
Taylor Series Correction requires a minimum Phase Width of 12 bits.

Figure 4-1 shows the regions of SFDR and Phase Width over which each Noise Shaping
option operates. There are three overlapping regions for None, Phase Dithering and
Taylor Series Correction, and deeper levels of shading have been used to show where
regions overlap. The darkest region is where all three regions overlap and all three noise
shaping options are possible. The lower dashed line signifies that Taylor series
correction is only valid for SDFR > 66.0 dB (and not 66.0 dB). Phase Width can be
increased to maximize the number of noise shaping options for a particular SFDR target.

Table 4-2: Calculation of Output Width from SFDR and Noise Shaping
Noise Shaping Output Width

None and Dithering

Taylor

X-Ref Target - Figure 4-1

Figure 4-1: Noise Shaping Regions

Phase Width log2
DDS Clock Rate

Channels Frequency Resolution×
-- 
 =

Output Width SFDR
6-----------=

Output Width SFDR
6----------- 1+=

Phase Width

S
purious Free D

ynam
ic R

ange (dB
s)

Output Width
for None and

Dithering

Output Width
for Taylor

Series
Corrected

26

24

22

20

18

16

14

12

25

23

21

19

17

15

13

10

8

6

4

2

156

144

132

120

108

96

84

72

60

48

36

24

12

48464442403836343230282624222018161412108642

None Only
Second order

First order

DS558_11_081209

None and Dithering

Taylor Only
None
and

Taylor

None, Dithering and Taylor

Dithering and Taylor

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=42

DDS Compiler v6.0 43
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Hardware Parameters

° Phase Width: Sets the width of the PHASE_OUT field within m_axis_phase_tdata,
the phase field within s_axis_phase_tdata when the DDS is configured to be a
SIN/COS LUT only, the phase accumulator, associated phase increment and offset
registers and the phase field in s_axis_config_tdata. For rasterized mode, the
phase width is fixed as the number of bits required to describe the valid input range
[0, Modulus-1], that is log2 (Modulus-1) rounded up.

° Output Width: Only enabled when DDS or SIN/COS LUT part selected, as it is not
required by the Phase Generator part. Sets the width of SINE and COSINE fields
within m_axis_data_tdata. The SFDR that this provides is dependent on the
Noise Shaping option previously selected. The equations in Table 4-3 can be used
to estimate the SFDR that can be achieved:

Implementation Tab
Phase Increment Programmability: Selects the means by which the PINC value is set.

° Fixed: PINC is fixed at generation time and cannot be changed at run-time. Fixed
requires minimal resource.

° Programmable: PINC value can be changed at run-time using the CONFIG
channel. This is recommended when the DDS frequency is to change between
modes of operation.

° Streaming: PINC value is taken directly from the input PHASE channel. This is
recommended when the PINC value has to change often, or for example when
frequency modulation is required.

Resync: When selected, the s_axis_phase channel has a RESYNC field. This bit, when
asserted, mutes the accumulated phase for the channel in question. The value of the
accumulated phase for that cycle is the value of PINC accompanying the RESYNC assertion,
plus the POFF value.

Phase Offset Programmability: Selects the means by which the POFF value is set.

° None: No phase offset facility and the required hardware is not generated. This
saves FPGA resources.

° Fixed: POFF is fixed at generation time and cannot be changed at run-time.

Table 4-3: Calculation of SFDR for given Noise Shaping
Noise Shaping SFDR

None, Dither
Taylor

SFDR Output Width 6×=

SFDR Output Width 1–() 6×=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=43

DDS Compiler v6.0 44
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

° Programmable: POFF value can be changed using the CONFIG channel. This is
recommended when the DDS phase is to change between modes of operation.

° Streaming: POFF value can be changed using the input PHASE channel. This is
recommended when the POFF value has to change often, or for example when
phase modulation is required.

Output

° Output_Selection: The DDS may have a quadrature SINE and COSINE field in the
m_axis_data_tdata bus, or only one of these two fields. See Output DATA
Channel TDATA Structure in Chapter 3 for m_axis_data_tdata internal structure.

° Polarity: The SINE and COSINE fields of m_axis_data_tdata can be inverted.
This allows conversion of a DDS used as a transmitter mixer to a receiver mixer,
using conjugated outputs; hence both instantiations are identical except for the
values of the two selections here.
- Negative Sine: Checking this selection results in the SINE field being negated at

run-time.
- Negative Cosine: Checking this selection results in the COSINE field being

negated at run-time.

° Amplitude Mode: This selection allows for one of two amplitudes from the DDS.
- Full Range: Aimed at communications applications where the maximum

amplitude within the two’s complement representation is desired, but the value
of amplitude is less important due to the expectation of automatic gain control.
The target amplitude for full range mode is 1–2–(Output Width–2) for non-Taylor
modes, whereas for Taylor mode the amplitude varies between this value and 1.
Note that amplitude here is normalized to the output width with the binary
point in the first place. An 8-bit output would have a binary amplitude of
100000000 – 10 giving values between 01111110 and 11111110
corresponding to just less than 1 and just more than –1 respectively.

- Unit Circle: For applications where the value of the DDS output amplitude is
important, say for FFT twiddle factor generation. When Unit Circle, the DDS
output amplitude is half full range (that is, values range from 01000 .. (+0.5). to
110000 .. (-0.5)). As the amplitude is reduced over Full Range by a factor of 2,
the SDFR is reduced by 6 dB. Increase SFDR or Output Width to accommodate
this requirement.

Implementation Options

° Memory Type: This controls the implementation of the SIN/COS LUT. The Auto
setting selects Distributed ROM for small cases where the table can be contained
in a single layer of memory and selects Block ROM for larger cases. (That is,
Distributed ROM is selected when Phase Width ≤ 5-bits). This selection can be
overridden by selecting Distributed ROM or Block ROM explicitly.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=44

DDS Compiler v6.0 45
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

° Optimization Goal: In some cases, circuit clock speed can be increased at the
expense of extra pipelining registers. This selection controls whether the
implementation decisions target highest speed or lowest resource.

° DSP48 Use: This controls the implementation of the phase accumulator and
following addition stages (for phase offset and/or dither noise addition). When set
to Minimal, the phase accumulator and following stages are implemented in FPGA
logic. When Maximal, all is implemented using DSP slices. In the case of single
channel, the DSP slice can also provide the register to store programmable phase
increment and/or phase offset and thereby save further fabric resources. This is not
done if either Phase Increment or Phase Offset is Streaming and only when the
Optimization Goal is Area. When this optimization is performed, the initial value of
the PINC and/or POFF register must be zero. This is enforced by the Vivado IDE by
setting the initial value of PINC and/or POFF to zero and disabling entry.

Detailed Implementation Tab
AXI Channel Options: The action of certain AXI interface signals can be configured.

° DATA Has TLAST: Enabled when there is more than one DDS channel (as opposed
to AXI channel). Limited options are also available when only the PHASE channel is
present. Options are:
- Not Required: In this mode, no TLAST signals are present on the input PHASE

channel or the output channels. In multichannel configurations, TLAST on the
CONFIG channel is used to denote the last channel to be reconfigured, and is
always present, regardless of this setting.

- Vector Framing: A TLAST pulse on the input PHASE channel and output
channels denotes the last channel in a cycle of channels (for example, 12th of 12
channels). If the TLAST pulse is not applied at the correct time to match the
channel state of the core, an event is flagged on the
event_s_phase_tlast_missing or event_s_phase_tlast_unexpected
event outputs.

- Packet Framing: A TLAST pulse is conveyed from the input PHASE channel to
the output channels with the same latency as TDATA. TLAST in this configuration
may be used to trigger a reconfiguration. See Synchronization Mode on
page 47. This mode is intended as a service to ease system design for cases
where signals must accompany the datastream, but which have no application in
the DDS.

- Config Triggered: This option causes the core to generate an output TLAST on
the last TDM channel before a new configuration is applied to the core.
Subsequent output samples are generated using the new core configuration.
This mode is only available when the CONFIG channel is present.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=45

DDS Compiler v6.0 46
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

° Output TREADY: When selected, the output channels have a TREADY and hence
support the full AXI handshake protocol with inherent back pressure. If there is an
input PHASE channel, the presence of its TREADY is also determined by this control,
so that the datapath from input PHASE channel to output channels as a whole
supports back pressure or not.

° TUSER options: The core supports two distinct uses of the TUSER field; to denote
the time-division-multiplex channel index or as conduit to pass a user field
(auxiliary data associated with TDATA) from input PHASE channel to output
channels. These choices are independent for the input PHASE channel. However,
since the selection of a user field implies the desire to convey the TUSER field from
input to output, the selection of a user field on the input PHASE channel forces a
user field to be present in each of the output channel TUSER ports. Options for the
input PHASE channel are shown below. Options for the each output channel are
constrained by the input PHASE channel choice, but are otherwise independent.
- Not required: Neither of the above uses is required; the channel in question

does not have a TUSER field.
- Chan ID field: In this mode, the TUSER field identifies the

time-division-multiplexed channel for the transfer. For the input PHASE channel,
this gives the user a mechanism to synchronize to the internal DDS channel
state. If the applied Channel ID does not match the internal state of the core, an
event is flagged on the event_s_phase_chanid_incorrect output.

- User Field: In this mode, the core ignores the content of the TUSER field, but
passes it unaltered from input PHASE channel to the output channels.

- User and Chan ID field: In this mode the TUSER field has both a user field and
a channel ID field, with the channel ID field in the least significant bits. The
minimal number of bits required to describe the channel determines the width
of the channel ID field; for example, seven channels requires three bits.

- User field width: This field determines the width of the bit field which is
conveyed from input to output unaltered by the DDS. It does not include the
width of the Channel ID field, if it is present.

° Output Form: In general, the output of SINE and COSINE is in twos complement
form. However, when quadrant symmetry is used, the output form can be changed
to sign and magnitude. Selecting sign and magnitude removes the inverters
following the SIN/COS LUT. This cuts resource use relative to twos complement. It is
intended for use with a mixer stage where the sign information can be handled
separate to the magnitude by changing the sign of the components in a complex
multiplication. A mixer (complex multiplier with inputs a+jb and c+jd) can be
expressed as:

real = ac-bd

imaginary = ad + bc

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=46

DDS Compiler v6.0 47
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

In this case, a and b from the DDS are signed, twos complement. However, if a and b
are expressed as sign and magnitude, the sign from each of a and b can be used to
modify the sign of each of the terms in the mixer equation. For instance, if a alone is
negative, the mixer equation becomes:

real = -ac -bd

imaginary = -ad + bc

If the mixer stage is implemented using DSP slices, this sign manipulation can be
implemented by changing the DSP48 Slice opmode signal.

° Synchronization Mode: This selection deals with the timing of reconfiguration
when both CONFIG and PHASE channels are present. The configuration channel
takes configuration data asynchronously to the phase of the channel counter and
stores the reconfiguration data in a buffer. This selection determines when that new
configuration data takes effect on the datapath:
- On Vector: In this mode, the reconfiguration data is applied when the channel

counter rolls over to start a new cycle of time-division-multiplexed channels.
- On Packet: In this mode, available when TLAST is set to packet framing, a TLAST

on the input PHASE channel triggers the reconfiguration. This mode is targeted
at cases where each set of configuration data is to be associated with the
packets implied by the input TLAST indicator.

Latency Options: Select whether Latency should be configured automatically by the
Vivado IDE or manually:

° Auto: Causes the DDS to be pipelined for optimal performance (taking into account
the Optimization Goal).

° Configurable: Where optimal performance is beyond requirements, Latency can be
set to configurable and a smaller value of latency selected. This reduces the number
of pipeline stages and generally results in resource savings. A minimum value of
latency is imposed, where a cycle of latency arises from each of the following
sources:
- Streaming phase increment
- Block ROM within SIN/COS LUT (can be avoided by selecting Distributed ROM).
- Block ROM within second order Taylor series correction (used for SFDR above

120 dB).

Note that when TREADY is selected the AXI interfaces buffer data as a FIFO. This
buffering results in non-deterministic latency. However, this action can only
increase in latency. In this case, the minimum latency possible is 6 cycles plus
the minimum latency described above.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=47

DDS Compiler v6.0 48
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Optional Pins: Certain inputs and outputs can be disabled to save resources.

° Has Phase Out: When checked the core has the output PHASE channel.

° ACLKEN: When checked the core has an aclken (active-High clock enable) port.

° ARESETn: When checked the core has an aresetn (active-Low synchronous reset)
port.

Parameter Entry Pages: The following pages appear for entry of parameters when either
Phase Increment or Phase Offset are either Fixed or Programmable. If Programmable, the
initial value of the register is specified through the Parameter Entry Pages. If an DSP slice
register is used, as described under Implementation Options, the initial value of phase
increment and/or offset is assumed to be zero.

System Parameters:

° Output Frequencies: This page appears when Parameter Selection is set to
System Parameters and Phase Increment Programmability is Fixed or
Programmable. For each channel, an independent frequency (MHz) can be entered
into the table. The allowable range is displayed as 0 to Fs (where Fs is the frequency
per channel). Values from Fs/2 to Fs alias to -Fs/2 to 0 respectively, so can be used to
input negative frequencies.

° Phase Offset Angles: This page appears when Parameter Selection is set to
System Parameters and Phase Offset is set to Fixed or Programmable. This table
allows the phase offset to be specified for each channel as a fraction of a cycle. The
valid range is -1.0 to 1.0 for standard mode. For rasterized mode, the valid range is
0 to 1.0. For example enter 0.5 for 180° (that is, π radians). The range for standard
mode is greater than a single cycle, but is allowed, because negative values map to
equivalent positive values.

Hardware Parameters:

° Phase Angle Increment Values: This page appears when Parameter Selection is
set to Hardware Parameters and Phase Increment Programmability is Fixed or
Programmable. Values must be entered in binary. The range is 0 to the modulus
value minus 1. For standard mode, the modulus value is 2PhaseWidth. For rasterized
mode, the modulus is a value selected earlier in the Vivado IDE. The angle in radians
is the input number divided by the modulus and multiplied by 2π . Entries are
extended to Phase Width bits by zero padding to the left.

° Phase Offset Values: This page appears when Parameter Selection is set to
Hardware Parameters and Phase Offset is set to Fixed or Programmable. Values
must be entered in binary. The range for standard mode is 0 to the weight of the
accumulator, that is, 2Phase Width-1, which corresponds to a single cycle. For
rasterized mode, the valid range is 0 to 1.0 – 1/modulus. The angle in radians can be
obtained by converting the unsigned fractional number to decimal and multiplying
by 2π . Entries are extended to Phase Width bits by zero padding to the left.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=48

DDS Compiler v6.0 49
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Summary (2 pages): The final two tabs provide feedback fields.

° Summary (Page 1): This page presents the resolved values of the selected part. For
instance, these fields indicate the result of automatic memory type and latency
allocation. They also indicate the expected SFDR and frequency resolution for the
DDS when hardware parameters are used for input, or vice versa. There are also
resource estimates (DSP slices and 18 kbit block RAM primitives).

° Summary (Page 2): This is only presented when Phase Increment and/or Phase
Offset are fixed or programmable, and provides a summary of the hexadecimal
values used to obtain a particular frequency or phase offset. The actual value of
frequency and phase (the latter as a fraction of a cycle) is also given as a
floating-point number.

User Parameters
Table 4-4 shows the relationship between the Vivado IDE fields in the Vivado IDE (described
in Customizing and Generating the Core) and the User Parameters (which can be viewed in
the Tcl console).

Table 4-4: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter User Parameter Default Value

Configuration Options partspresent Phase_Generator_and_SIN_COS_LUT
System Clock (MHz) dds_clock_rate 100
Number of Channels channels 1
Mode of Operation mode_of_operation Standard
Modulus modulus 9
Parameter Selection parameter_entry System_Parameters
Spurious Free Dynamic Range spurious_free_dynamic_range 45
Frequency Resolution frequency_resolution 0.4
Noise Shaping noise_shaping Auto
Phase Width phase_width 16
Output Width output_width 12
Phase Increment Programmability phase_increment Fixed
Resync resync False
Phase Offset Programmability phase_offset None
Output Selection output_selection Sine_and_Cosine
Negative Sine negative_sine False
Negative Cosine negative_cosine False
Amplitude Mode amplitude_mode Full_range
Memory Type memory_type Auto

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=49

DDS Compiler v6.0 50
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4].

System Generator for DSP
The DDS Compiler core is in the Xilinx Blockset in the DSP section of the System Generator.
The block is called the DDS Compiler. See the System Generator for DSP Help page for the
DDS Compiler block for more information on parameters not mentioned here.

The System Generator for DSP GUI offers the same parameters as the Vivado Design System
GUI. However, there is a minor difference for the hardware parameters. In the Vivado design
tools GUI, the hardware parameters are hidden when System Parameter is selected. In the
System Generator for DSP GUI, the hardware parameters are disabled. Likewise, the system
parameters are disabled when Hardware Parameter is selected.

For more information on System Generator for DSP see the System Generator for DSP User
Guide (UG640) [Ref 6].

Optimization Goal optimization_goal Auto
DSP48 Use dsp48_use Minimal
Has Phase Out has_phase_out True
DATA has TLAST data_has_tlast Not_required
Output TREADY has_tready False
TUSER Options: Input s_phase_has_tuser Not_required
TUSER Options: User Field Width s_phase_tuser_width 1
TUSER Options: DATA Output m_data_has_tuser Not_required
TUSER Options: PHASE Output m_phase_has_tuser Not_required
Synchronization Mode s_config_sync_mode On_Vector
Output Form output_form Twos_complement
Latency Configuration latency_configuration Auto
Latency latency 1
ARESETn has_aresetn False
ACLKEN has_aclken false

Table 4-4: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=50

DDS Compiler v6.0 51
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=51

DDS Compiler v6.0 52
PG141 January 21, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 7].

IMPORTANT: For cores targeting 7 series or Zynq®-7000 devices, UNIFAST libraries are not supported.
Xilinx IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 4].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=52

DDS Compiler v6.0 53
PG141 January 21, 2021 www.xilinx.com

Chapter 5

C Model
The DDS Compiler core bit accurate C model is a self-contained, linkable, shared library that
models the functionality of this core with finite precision arithmetic. This model provides a
bit accurate representation of the various modes of the DDS Compiler core, and it is suitable
for inclusion in a larger framework for system-level simulation or core-specific verification.

The C model is an optional output of the Vivado® Design Suite (see the Vivado
documentation to set up the C model output).

Features
• Bit accurate with DDS Compiler core
• Available for 64-bit Linux platforms
• Available for 64-bit Windows platforms
• Supports all features of the DDS Compiler core with the exception of those affecting

timing or AXI4-Stream configuration
• Designed for integration into a larger system model
• Example C code showing how to use the C model functions

Overview
The model consists of a set of C functions that reside in a shared library. Example C code is
provided to demonstrate how these functions form the interface to the C model. Full details
of this interface are given in C Model Interface.

The model is bit accurate but not cycle-accurate; it performs exactly the same operations as
the core. However, it does not model the core latency, its interface signals or TUSER feature.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=53

DDS Compiler v6.0 54
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Unpacking and model contents
There are separate ZIP files containing all the files necessary for use. Each ZIP file contains:

• C model shared library
• C model header file
• Example code showing how to call the C model

Table 5-1 and Table 5-2 list the contents of each ZIP file.

Table 5-1: C Model ZIP File Contents: Linux
File Description

dds_compiler_v6_0_bitacc_cmodel.h Header file which defined the C model API
libIp_dds_compiler_v6_0_bitacc_cmodel.so Model shared object library
Run_bitacc_cmodel.c Example program for calling the C model.
dds_compiler_v6_0_bitacc_mex.cpp MATLAB MEX function source;
make_dds_compiler_v6_0_mex.m MATLAB MEX function compilation script;
run_dds_compiler_v6_0_mex.m MATLAB MEX function example script;
@dds_compiler_v6_0_bitacc MATLAB MEX function class directory

Table 5-2: C Model ZIP File Contents: Windows
File Description

dds_compiler_v6_0_bitacc_cmodel.h Header file which defined the C model API
libIp_dds_compiler_v6_0_bitacc_cmodel.dll Model dynamically linked library
libIp_dds_compiler_v6_0_bitacc_cmodel.lib Model LIB file for compiling
run_bitacc_cmodel.c Example program for calling the C model
dds_compiler_v6_0_bitacc_mex.cpp MATLAB MEX function source;
make_dds_compiler_v6_0_mex.m MATLAB MEX function compilation script;
run_dds_compiler_v6_0_mex.m MATLAB MEX function example script;
@dds_compiler_v6_0_bitacc MATLAB MEX function class directory

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=54

DDS Compiler v6.0 55
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Installation
Linux
• Unpack the contents of the ZIP file.
• Ensure that the directory where the

libIP_dds_compiler_v6_0_bitacc_cmodel.so resides is included in the path of
the environment variable LD_LIBRARY_PATH.

Windows
• Unpack the contents of the ZIP file.
• Ensure that the directory where the

libIP_dds_compiler_v6_0_bitacc_cmodel.dll resides is:

° Included in the path of the environment variable PATH, or

° In the directory in which the executable that calls the C model is run.

C Model Interface
An example file, run_bitacc_cmodel.c, is included. This demonstrates how to call the C
model. See this file for examples of using the interface described in this section.

The Application Programming Interface (API) of the C model is defined in the header file
dds_compiler_v6_0_bitacc_cmodel.h. The interface consists of data structures and
functions as described in the following sections.

Data Types
Table 5-3 shows the types defined for the DDS Compiler C model.

Table 5-3: C Model Data Types
Name Type Description

xip_dds_v6_0_data Double Used for Phase input/output and for SIN/COS output.

xip_uint Unsigned Int
Used for configuration parameter of integer or Boolean type.
For Boolean:
0=false
1=true

xip_dds_v6_0_config Struct Structure of configuration parameters.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=55

DDS Compiler v6.0 56
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

xip_dds_v6_0_data is of type double because this has sufficient precision to describe
even the largest input and output vectors (48 bits) without the complications of long which
can vary from platform to platform or compiler to compiler.

xip_array_real is a structure with the following members:

• data: A pointer to the array of data values.
• data_size: Of type size_t, which describes the total size of the data array.
• data_capacity: Also of type size_t, which describes how much of the array is currently

populated.
• dim: A pointer to a size_t array of values which indicate the size of each dimension.
• dim_size (size_t): Indicates the number of dimensions of the data array.
• dim_capacity: Indicates how much of the dimension array is currently populated.
• owner, unsigned int: This is provided as a handle for when the data structure is

intended to be passed from one core to another, but is not used by any of the DDS C
model functions.

xip_dds_v6_0_config_pkt Struct
Data structure of Phase Increment (PINC) and/or Phase Offset
(POFF) values input to core at run time. Equivalent to data on
the S_AXIS_CONFIG channel of the core.

xip_dds_v6_0_status Int Error code return from many C model functions. 0 indicated
success. Any other value indicates failure.

xip_status Int Same as xip_dds_v6_0_status, but used for functions which
are not core-specific.

xip_real Double

xip_array_real Struct Structure used to hold data for input to DDS (on
S_AXIS_PHASE channel) or output from DDS.

xip_dds_v6_0_config Struct

The configuration of the core itself. The members of this
structure are listed in the dds_compiler_v6_0_bitacc_cmodel
file. The names closely match the same names in XCO/XCI
files. The dds_compiler_v6_0_bitacc_cmodel file also contains
#defined values for all. All member variables beginning with
“res” are for internal use and need not be set.

xip_dds_v6_0 Struct Type defined which C (not C++) can use as a handle (pointer)
to a C++ object – the C model itself.

Table 5-3: C Model Data Types (Cont’d)

Name Type Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=56

DDS Compiler v6.0 57
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Functions
There are several accessible C model functions.

Information Functions

Table 5-4 lists the information functions.

Initialization Functions

The functions to create, configure and destroy the C model and associated data structures
are listed in Table 5-5.

Table 5-4: Information Functions
Name Return Arguments Description

xip_dds_get_version Const char* Void
Return the DDS Compiler C model
version as a null terminated string.
For v6.0, this is “6.0”.

xip_dds_v6_0_
get_default_config xip_dds_v6_0_status xip_dds_v6_0_config*

Populates the contents of structure
pointed to by the input argument
with the values of a default
configuration.

Table 5-5: Initialization Functions
Name Return Arguments Description

xip_dds_v6_0_create
Pointer to structure
holding configuration
of C model object

Pointer to structure
holding configuration

Creates new C model
object and returns
pointer to config
structure (which is
pointer to C model itself).

xip_dds_v6_0_destroy xip_dds_v6_0_status
Pointer to
xip_dds_v6_0 (C model
itself)

Deallocates memory
owned by C model and
destroys C model itself.

xip_dds_v6_0_get_config xip_dds_v6_0_status
Pointer to C model,
pointer to
configuration
structure

Copies the contents of
the configuration of the C
model indicated to the
designated configuration
structure.

xip_array_create Pointer to created data
structure None

Allocates memory for the
structure itself, not the
array members within it.

xip_array_reserve_data xip_status
Pointer to data
structure, maximum
number of elements in
data array

(Re)allocates enough
memory for the maximum
size. Error is returned if
structure data_capacity is
greater than space
allocated.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=57

DDS Compiler v6.0 58
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Execution Functions

The run time functions of the C model are described in Table 5-6.

xip_array_reserve_dim xip_status
Pointer to data
structure, maximum
number of dimensions

Allocates a small array
which is to contain the
size of each dimension of
the data array. For
example, 100 samples x 4
channels x 3 fields.

xip_array_destroy xip_status Pointer to data
structure

Frees up the memory
allocated for the data
array, the dimension
array, and the data
structure itself.

xip_dds_v6_0_alloc_
config_pkt xip_dds_v6_0_status

Pointer to
xip_dds_v6_0_
config_pkt, xip_uints
for number of PINC
values and number of
POFF values

Allocates memory for
arrays within config_pkg,
but not config_pkt itself.

xip_dds_v6_0_free_
config_pkt xip_dds_v6_0_status Pointer to xip_dds_

v6_0_config_pkt
Deallocates memory for
arrays within config pkt.

Table 5-6: Execution Functions
Name Return Arguments Description

xip_dds_v6_0_reset xip_dds_v6_0_status Pointer to C model
(xip_dds_v6_0)

Resets the internal state of
the core to power-on
state.

xip_dds_v6_0_config_do xip_dds_v6_0_status
Pointer to C model,
pointer to config_pkt to
input to C model

Writes config pkt to C
model internal storage.
This does not prompt
execution of the C model,
but the config data is
picked up on the next
xip_dds_v6_0_ data_do call

xip_dds_v6_0_data_do xip_dds_v6_0_status

Pointer to C model,
Pointer to input data
structure,
Pointer to output data
structure,
Number of samples,
number of channels,
number of fields input and
number of fields output

The function which
prompts execution of the
C model. The number of
samples, channels and
fields must match the size
of the array passed or an
error is returned.

Table 5-5: Initialization Functions (Cont’d)

Name Return Arguments Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=58

DDS Compiler v6.0 59
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Data Format
The DDS Compiler sine and cosine outputs are generated as unsigned integer values which
are cast to doubles on the interface. To restore the sign for printing to stdout or use outside
the C model, you must cast back to integer and scale accordingly. As both sine and cosine
can be a maximum of 26 bits wide, casting to an int is sufficient. To scale the data, Xilinx
recommends that the data is shifted up by the difference between the width of an int
(usually 32 bits) and the config.Output_Width C model parameter to set the sign bit
correctly, then scaled down by the same value, maintaining the sign.

For example, for a 12-bit output, the scaling value is (32 - 12) = 20, and the correctly-signed
sine output can be printed using the following code:

std::cout << "sine " << ((int)sine_output << 20) >> 20) << std::endl;

See the C model smoke test, run_bitacc_cmodel.c for a generalized example.

The phase output from the C model can be up to 48 bits wide, and can be either signed or
unsigned, depending on the configuration. See Output PHASE Channel for more details. In
the general case, for a signed phase output, cast the double to a 64-bit integer type (for
example, int64_t) and for an unsigned phase output, cast the double to an unsigned
64-bit integer type (for example, uint64_t).

Compiling
Compilation of user code requires access to the dds_compiler_v6_0_bitacc_cmodel.h
header file. The header file should be copied to a location where it is available to the
compiler. Depending on the location chosen, the include search path of the compiler might
need to be modified.

When compiling on Windows, the symbol NT must be defined, either by a compiler option,
or in user source code before the
dds_compiler_v6_0_bitacc_cmodel_v6_0_bitacc_cmodel.h header file is
included.

xip_array_real_set_data xip_status
Pointer to array structure,
the value to be written,
the sample, channel and
field to be written to

Used to populate the
input data structure.

xip_array_real_get_data xip_status

Pointer to the array
structure, pointer of real
type (returned value),
sample, channel and field
to be read

Used to read the output
(or input) data structure.

Table 5-6: Execution Functions (Cont’d)

Name Return Arguments Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=59

DDS Compiler v6.0 60
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

Linking
To use the C model, the user executable must be linked against the correct libraries for the
target platform.

Linux
The executable must be linked against the
libIp_dds_compiler_v6_0_bitacc_cmodel.so library.

Using GCC, linking is typically achieved by adding the following command line options:

-L. -Wl, -rpath,. -lIp_dds_compiler_v6_0_bitacc_cmodel

This assumes the object library is in the current directory. If this is not the case, the -L.
option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc -x c++ -I. -L. -lIp_dds_compiler_v6_0_bitacc_cmodel -Wl, -rpath,. -o
run_bitacc_cmodel run_bitacc_cmodel.c

Windows
The executable must be linked against the
libIp_dds_compiler_v6_0_bitacc_cmodel.dll dynamic link library.

Depending on the compiler, the libIp_dds_compiler_v6_0_bitacc_cmodel.lib
import library might also be required.

To link to an import library using Microsoft Visual Studio, add the library to the Additional
Dependencies entry under the Linker section of Project Properties.

Example
The run_bitacc_cmodel.c file contains example code to show basic operation of the C
model. For example, the file shows declaration for the model, configuration of the model,
allocation of required input and output data structures, execution of the model, resetting of
the core, deallocation of the data structures, and destruction of the model.

The example file does not verify the output data for correctness, but allows a debug mode
in which output data can be printed to a standard output channel (stdout).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=60

DDS Compiler v6.0 61
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

MATLAB Interface
A MEX function and MATLAB® software class is provided to simplify the integration with
MATLAB. The MEX function provides a low-level wrapper around the underlying C model,
while the class file provides a convenient interface to the MEX function.

Compiling
Source code for a MATLAB MEX function is provided. This can be compiled within MATLAB
by changing to the directory which contains the code and running the
make_dds_compiler_v6_0_bitacc_mex.m script.

Installation
To use the MEX function the compiled MEX function must be present on the MATLAB search
path. This can be achieved by either of the following:

1. Add the directory where the compiled MEX function is located to the MATLAB search
path (see the MATLAB addpath function) OR

2. Copy the files to a location already on the MATLAB search path.

As with all uses of the C model, the correct C model libraries also need to be present on the
platform library search path (that is, PATH or LD_LIBRARY_PATH).

MATLAB Class Interface
The @dds_compiler_v6_0_bitacc class handles the create/destroy semantics on the C
model. The class provides objects for each of the data and control structures defined for the
C model and described in Data Types. MATLAB arrays are used for the mapping of types as
in Table 5-7.

The class provides the following methods:

Constructor

[model] = dds_compiler_v6_0_bitacc
[model]=dds_compiler_v6_0_bitacc(config)
[model]=dds_compiler_v6_0_bitacc(field, value [, field,value]*)

* indicates an optional parameter

Table 5-7: C Model Type Mapping
C Model Type MATLAB Type

xip_real double

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=61

DDS Compiler v6.0 62
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The first version of the function call constructs a model object using the default
configuration. The second version constructs a model object from a structure that specified
the configuration parameter values to use. The third version is the same as the second, but
allows the configuration to be specified as a series of (parameter name, value) pairs rather
than a single structure. The names and valid values of configuration parameters are
identical to those described for the C model in Data Types.

The MATLAB configuration structure can contain an additional element, PersistentMemory.
When the element is set to TRUE the internal data memory state of the model is retained
following a call to the run function. Otherwise, the model is reset after the data is returned.
PersistentMemory is set to FALSE by default.

Get Version

[version] = get_version(model)

This method returns the version strinf of the C model library used.

Get Configuration

[config] = get_configuration(model)

This method returns the current parameters structure of a model object. If the model object
is empty the method returns the default configuration. If the model object has been
created, the method returns the configuration parameters that were used to create it.

Reset

[model] =reset(model)

This function resets the model.

Config_do

config_do(model, config_pkt)

This method applies new values of PINC and/or POFF to the model, depending on whether
Phase Increment and Phase Offset have been configured as programmable. This function
only applies if at least one of Phase Increment or Phase Offset have been configured as
programmable.

Run

[data_out]=run(model, data_samples)
[data_out]=run(model, data_samples, data_in)

Each of these methods causes the model to be run for the number of cycles specified by the
data_samples value.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=62

DDS Compiler v6.0 63
PG141 January 21, 2021 www.xilinx.com

Chapter 5: C Model

The first form applies if the model has been configured with neither Phase Increment nor
Phase Offset configured as Streaming.

The second form applies an array of values for PINC and/or POFF. Each element of data_in
should have a value for PINC (if Phase Increment has been configured as Streaming) and/or
POFF (if Phase Offset has been configured as Streaming). The number of elements in data_in
should match data_samples.

Data out is an array of output samples. Each element contains a phase, sin and cosine value
output depending on the configuration of the model. The number of output elements is the
data_samples value.

Destroy

destroy(model)

This method destroys all memory associated with the model.

Example
The run_dds_compiler_v6_0_bitacc_mex.m file contains a MATLAB script with
several examples of differently configured DDS models showing how to configure and run
each. Each example configuration and run produces a plot of the output values.

To run the sample script:

1. Compile the MEX function with the make_dds_compiler_v6_0_bitacc_mex.m
script (see Compiling).

2. Install the MEX function (see Installation).
3. Execute the run_dds_compiler_v6_0_bitacc_mex.m script.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=63

DDS Compiler v6.0 64
PG141 January 21, 2021 www.xilinx.com

Chapter 6

Test Bench
This chapter contains information about the demonstration test bench provided in the
Vivado® Design Suite.

Demonstration Test Bench
When the core is generated using the Vivado Design Suite, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file, demo_tb/
tb_<component_name>.vhd, located in the Vivado output directory. The source code is
comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated DDS Compiler core. Compile the
netlist and the demonstration test bench into the work library (see your simulator
documentation for more information on how to do this). Then simulate the demonstration
test bench. View the test bench signals in your simulator waveform viewer to see the
operations of the test bench.

Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiate the core
• Generate a clock signal
• Drive the core input signals to demonstrate core features
• Checks that the core output signals obey AXI protocol rules (data values are not

checked in order to keep the test bench simple)
• Provide signals showing the separate fields of AXI TDATA and TUSER signals

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=64

DDS Compiler v6.0 65
PG141 January 21, 2021 www.xilinx.com

Chapter 6: Test Bench

The operations performed by the demonstration test bench are appropriate for the
configuration of the generated core:

• If phase increment and offset are fixed:

° Run to produce sine / cosine / phase outputs
• If phase increment and/or offset are programmable, and neither is streaming:

° Program an initial configuration

° Run to produce sine / cosine / phase outputs

° Program a different configuration

° Run again to produce sine / cosine / phase outputs
• If one of phase increment or offset are streaming and the other is fixed:

° Stream in constant phase increment or offset to produce sine / cosine / phase
outputs

° If phase offset is streaming, stream in incrementing phase offset to produce higher
frequency sine / cosine / phase outputs

• If one of phase increment or offset are streaming, and the other is programmable:

° Program an initial configuration

° Stream in constant phase increment or offset to produce sine / cosine / phase
outputs

° If phase offset is streaming, stream in incrementing phase offset to produce higher
frequency sine / cosine / phase outputs

° Continue streaming in phase increment or phase offset, and simultaneously
program a different configuration

• If phase increment and offset are both streaming:

° Stream in constant phase increment and zero phase offset to produce sine / cosine
/ phase outputs

° Stream in zero phase increment and incrementing phase offset to produce sine /
cosine / phase outputs

• For SIN/COS LUT only:

° Stream in incrementing phase to produce sine / cosine outputs
• For all configurations:

° Demonstrate back pressure by deasserting TREADY of master channels (if TREADY is
present)

° Demonstrate use of clock enable (if present)

° Demonstrate use of reset (if present)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=65

DDS Compiler v6.0 66
PG141 January 21, 2021 www.xilinx.com

Chapter 6: Test Bench

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to drive the core inputs with different
data or to perform different operations.

All operations performed by the demonstration test bench to drive the core inputs are done
in the stimuli process. This process is comprehensively commented, to explain clearly
what is being done. New operations, potentially with different input data, can be added by
copying and modifying sections of this process.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=66

DDS Compiler v6.0 67
PG141 January 21, 2021 www.xilinx.com

Appendix A

 Upgrading
This appendix contains information about migrating a design from the ISE® Design Suite to
the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For
customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included. This appendix
describes migrating from older versions of the IP to the current IP release.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 8].

Upgrading in the Vivado Design Suite
Parameter Changes
There are no changes to parameters from v5.0 to v6.0. However, there are some new
parameters in v6.0 that default to values so that v6.0 is backwards compatible with v5.0.
Table A-1 lists the parameter changes from v4.0 to v6.0.

Table A-1: Parameter Changes
Version 4.0 Version 6.0 Notes

PartPresent PartPresent Unchanged
DDS_Clock_Rate DDS_Clock_Rate Unchanged
Channels Channels Unchanged

Mode_of_Operation New to v6.0
Modulus New to v6.0

Parameter _Entry Parameter _Entry Unchanged
Spurious_Free_Dynamic_Range Spurious_Free_Dynamic_Range Unchanged
Frequency_Resolution Frequency_Resolution Unchanged
Noise_Shaping Noise_Shaping Unchanged

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=67

DDS Compiler v6.0 68
PG141 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Phase_Width Phase_Width Unchanged
Output_Width Output_Width Unchanged
Phase_Increment Phase_Increment Unchanged

Resync New to v6.0
Phase_Offset Phase_Offset Unchanged
Output_Selection Output_Selection Unchanged
Negative_Sine Negative_Sine Unchanged
Negative_Cosine Negative_Cosine Unchanged
Amplitude_Mode Amplitude_Mode Unchanged
Memory_Type Memory_Type Unchanged
Optimization_Goal Optimization_Goal Unchanged
DSP48_Use DSP48_Use Unchanged
Latency_Configuration Latency_Configuration Unchanged
Latency Latency Unchanged
Has_Phase_Out Has_Phase_Out Unchanged

SCLR_pin Has_ARESETn
Name change only. Note that the
signal itself, aresetn is active-Low
and must be driven Low for at least
two cycles.

Clock_Enable Has_ACLKEN Name change only.

RFD Deprecated. Closest equivalent is
Has_TREADY.

RDY
Deprecated. Equivalent to
AXI4-Stream TVALID, which is not
optional.

Channel_Pin
Deprecated. The presence of a
channel indication field is now
specified by M_DATA_Has_TUSER
and M_PHASE_Has_TUSER.

Output_Frequency(1 to 16) Output_Frequency(1 to 16) Unchanged
PINC(1 to 16) PINC(1 to 16) Unchanged
Phase_Offset_Angles(1 to 16) Phase_Offset_Angles(1 to 16) Unchanged
POFF(1 to 16) POFF(1 to 16) Unchanged
POR_mode POR_mode Unchanged

DATA_Has_TLAST New to v5.0
S_PHASE_Has_TUSER New to v5.0
S_PHASE_TUSER_Width New to v5.0
Has_TREADY New to v5.0

Table A-1: Parameter Changes (Cont’d)

Version 4.0 Version 6.0 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=68

DDS Compiler v6.0 69
PG141 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Port Changes
Version 6.0 includes optional new ports or outputs that might not be relevant to those
present in v5.0. These new optional ports default to a state that are ignored by v5.0 designs.
Table A-2 details the changes to port naming, additional or deprecated ports and polarity
changes from v4.0 to v6.0.

M_DATA_Has_TUSER New to v5.0
M_PHASE_Has_TUSER New to v5.0
S_CONFIG_Sync_Mode New to v5.0
OUTPUT_FORM New to v6.0

Table A-2: Port Changes from Version 4.0 to Version 6.0
Version 4.0 Version 6.0 Notes
CLK aclk Rename only.
CE aclken Rename only.

SCLR aresetn
Rename, change of sense (now
active-Low), requirement to drive reset
Low for a minimum of 2 cycles.

ADDR

Deprecated Replaced by s_axis_config_t*
(CONFIG channel).

REG_SELECT
WE
DATA
PINC_IN

Deprecated Replaced by s_axis_phase_t*
(input PHASE channel).POFF_IN

PHASE_IN Deprecated Replaced by s_axis_phase_t*
(Input PHASE channel).

RDY Deprecated Nearest equivalent is m_axis_data_tvalid.
RFD Deprecated Nearest equivalent is s_axis_phase_tready.

CHANNEL Deprecated Channel ID can be carried as a subfield of
m_axis_phase_tuser or m_axis_data_tuser.

COSINE
Deprecated

Both these fields are now subfields of
m_axis_data_tdata. See Output DATA
Channel TDATA Structure in Chapter 3.SINE

PHASE_OUT(N-1:0)(1) m_axis_phase_tdata(byte(N)-1: 0)(1) PHASE_OUT is now the payload of
m_axis_phase_tdata.

Table A-1: Parameter Changes (Cont’d)

Version 4.0 Version 6.0 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=69

DDS Compiler v6.0 70
PG141 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

- s_axis_config_tvalid TVALID (AXI4-Stream channel handshake
signal) for each channel.- s_axis_phase_tvalid

- m_axis_phase_tvalid
- m_axis_data_tvalid
- s_axis_config_tready TREADY (AXI4-Stream channel handshake

signal) for each channel.- s_axis_phase_tready
- m_axis_phase_tready
- m_axis_data_tready
- s_axis_config_tlast TLAST (AXI4-Stream packet signal

indicating the last transfer of a data
structure) for each channel. See the TLAST
User section for each channel, in
AXI4-Stream Considerations

- s_axis_phase_tlast
- m_axis_phase_tlast
- m_axis_data_tlast
- s_axis_phase_tuser (E-1:0)(1) TUSER (AXI4-Stream ancillary field for

application-specific information) for each
channel. See the TUSER Packing section for
each channel, in AXI4-Stream
Considerations

- m_axis_phase_tuser (F-1:0)(1)

- m_axis_data_tuser (G-1:0)(1)

- event_s_phase_tlast_missing Asserted on the last transaction of an
incoming vector if s_axis_phase_tlast is not
seen asserted.

- event_s_phase_tlast_unexpected Asserted on every transaction where
s_axis_phase_tlast is unexpectedly seen
asserted.

- event_s_phase_chaind_incorrect Asserted on every transaction where the
s_axis_phase_tuser Channel ID field does
not match the value expected by the core.

- event_s_config_tlast_missing Asserted on the last transaction of an
incoming vector if s_axis_config_tlast is
not seen asserted.

- events_s_config_tlast_unexpected Asserted on every transaction where
s_axis_config_tlast is unexpectedly seen
asserted.

- event_pinc_invalid New to v6.0. Indicates an invalid value of
PINC when in rasterized mode.

- event_poff_invalid New to v6.0. Indicates an invalid value of
POFF when in rasterized mode.

- event_phase_in_invalid New to v6.0. Indicates an invalid value of
PHASE_IN when in rasterized mode.

Notes:
1. N, E, F and G are all arbitrary independent integers.

Table A-2: Port Changes from Version 4.0 to Version 6.0 (Cont’d)

Version 4.0 Version 6.0 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=70

DDS Compiler v6.0 71
PG141 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

Latency Changes
In version 6.0, latency and initial conditions have changed for some configurations to
ensure compliance with the equation for PHASE_OUT, Equation A-1.

The latency of DDS Compiler v6.0 is different compared to v4.0 and greater in general. The
update process cannot account for this and guarantee equivalent performance.

IMPORTANT: When in Blocking Mode (that is, TREADY handshaking is present), the latency of the core
is variable, so only the minimum possible latency can be determined. When in Non-Blocking Mode (no
TREADY), the latency of the core is as shown in the latency field of the Vivado IDE and is constant.

Behavioral Changes
SINE/COSINE lookup values remain bit accurate with respect to DDS Compiler v5.0 and v4.0.
However, versions of the DDS Compiler core prior to v6.0 had different latencies for the
programmable and streaming interfaces (the number of cycles between applying an input
and that input affecting the calculated phase), which resulted in a different output
sequence depending on the configuration.

This behavior has been standardized in DDS Compiler v6.0; however, this might not match
the behavior of previous versions. The generated phase is described by the following
equation:

Equation A-1

Instructions for Minimum Change Migration
The upgrade function alone produces a configuration of v6.0 equivalent to any
configuration of v5.0. To configure the DDS Compiler v6.0 to most closely mimic the
behavior of v4.0 the translation is as follows:

Parameters

Most parameters remain unchanged. Uncheck Output TREADY. All other new parameters
default as required for legacy operation.

° If the CHANNEL output was used, set DATA Output TUSER setting to
“Chan_ID_Field”

Ports

Rename ports as described in Table A-2.

PHASE_OUT n() PINC n() POFF(n)+

i 0=

n

=

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=71

DDS Compiler v6.0 72
PG141 January 21, 2021 www.xilinx.com

Appendix A: Upgrading

° WE, REG_SELECT, ADDR and DATA are replaced by the CONFIG channel, where WE is
equivalent to TVALID, ADDR has no equivalent, but is replaced internally by an
incrementing count with s_axis_config_tlast denoting the last transfer of the
TDM sequence, DATA(T-1:0) is replaced by s_axis_config_tdata (See CONFIG
Channel TDATA Structure in Chapter 3). REG_SELECT is no longer required, because
both PINC and POFF can be written in a single transfer.

° PINC_IN and POFF_IN are mapped to s_axis_phase_tdata as described in Input
PHASE Channel TDATA Structure in Chapter 3. Connect s_axis_phase_tvalid to
logical 1.

° SINE(P-1:0) and COSINE(P-1:0) are mapped to m_axis_data_tdata as described
in Output DATA Channel TDATA Structure in Chapter 3. RDY becomes
s_axis_data_tvalid.

° CHANNEL(N-1:0) becomes m_axis_data_tuser(N-1:0).

° PHASE_OUT(W-1:0) becomes m_axis_phase_tdata (W-1:0) as described in
Output PHASE Channel TDATA Structure - Conventional DDS in Chapter 3.

Miscellaneous Changes

The synchronous, active-Low reset pin aresetn must be driven Low for a minimum of two
clock cycles to correctly reset the core. The reset is registered within the core, causing some
delay between the assertion/deassertion of aresetn and the effect being seen on the
interface.

Performance

To achieve equivalent performance to v4.0 Latency should be set to the original latency
value plus 1. Alternatively, set Latency to be the same as Latency for v4.0, but there might
be drop in performance. Resource allocation for this configuration is greater than v4.0 in
flip-flop count by approximately the number of bits in any fields in
s_axis_phase_tdata.

Functionality Changes
Version 6.0 is bit accurate with v5.0 for any configuration of v5.0. Some configurations
might differ in initial output or latency compared to v5.0 to comply with Equation A-1.
When AXI4-Stream interface considerations have been handled according to AXI4-Stream
Considerations in Chapter 3, there are no other functionality changes between v4.0 and
v6.0.

Simulation

Starting with DDS Compiler v6.0 (2013.3 version), behavioral simulation models have been
replaced with IEEE P1735 Encrypted VHDL. The resulting model is bit and cycle accurate
with the final netlist. For more information on simulation, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 7].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=72

DDS Compiler v6.0 73
PG141 January 21, 2021 www.xilinx.com

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx® Support website
and debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the DDS Compiler core, the Xilinx
Support web page contains key resources such as product documentation, release notes,
answer records, information about known issues, and links for obtaining further product
support.

Documentation
This product guide is the main document associated with the DDS Compiler core. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use keywords such as:

• Product name
• Tool message(s)
• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=73

DDS Compiler v6.0 74
PG141 January 21, 2021 www.xilinx.com

Appendix B: Debugging

Master Answer Records for the DDS Compiler Core

AR: 54498

Sub-Harmonic Frequencies
The equations for SFDR rely on the assumption that rounding errors from the finite
precision of phase and amplitude are incoherent. This assumption is violated for values of
Phase Increment that are not mutually prime with the weight of the Phase Accumulator. The
anomalies, such as spurii, are more obvious for larger common factors between the Phase
Increment Value and the weight of the accumulator (2Phase_Width). This is because such
values might not access every location in the SIN/COS LUT, so the rounding errors are not
randomly spread. To avoid this, do not use values of Output Frequency that are simple
rational fractions of the frequency per channel, Fs, such as 3/8, 1/64.

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation.
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are many tools available to address DDS Compiler core design issues.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx® devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/answers/54498.htm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=74

DDS Compiler v6.0 75
PG141 January 21, 2021 www.xilinx.com

Appendix B: Debugging

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 9].

Reference Boards
Various Xilinx development boards support the DDS Compiler. These boards can be used to
prototype designs and establish that the core can communicate with the system.

• 7 series FPGA evaluation boards

° KC705

° KC724

AXI4-Stream Interface Debug
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

• Check that the ACLK inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed, as shown in Figure 3-15,

Figure 3-16, Figure 3-17, and Figure 3-18.
• Check core configuration.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=75

DDS Compiler v6.0 76
PG141 January 21, 2021 www.xilinx.com

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=76

DDS Compiler v6.0 77
PG141 January 21, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

References
These documents provide supplemental material useful with this product guide:

1. Vivado® Design Suite: AXI Reference Guide (UG1037)
2. AMBA® AXI4-Stream Protocol Specification (Arm IHI 0051A)
3. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
4. Vivado Design Suite User Guide: Designing with IP (UG896)
5. Vivado Design Suite User Guide: Getting Started (UG910)
6. System Generator for DSP User Guide (UG640)
7. Vivado Design Suite User Guide: Logic Simulation (UG900)
8. ISE® to Vivado Design Suite Migration Guide (UG911)
9. Vivado Design Suite User Guide: Programming and Debugging (UG908)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sysgen_user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=77

DDS Compiler v6.0 78
PG141 January 21, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Date Version Revision
01/21/2021 6.0 Added Versal support.
12/20/2017 6.0 Added Important note in the Latency section.
11/18/2015 6.0 Added support for UltraScale+ families.
06/24/2015 6.0 • Added MATLAB interface description to C Model chapter.
04/01/2015 6.0 • Data Format section in C Model chapter updated to clarify sine, cosine and

phase output format.
10/01/2014 6.0 • Minor corrections to Phase Increment section of Designing with the Core

to account for automatic gain control.
• Minor corrections to Output section of Implementation Tab description in

Design Flow Steps to account for Taylor mode.
• Added Data Format section to C Model.

04/02/2014 6.0 • Added link to resource utilization figures.
• Added User Parameter table (Table 4-4).

12/18/2013 6.0 Added support for UltraScale™ architecture.
10/02/2013 6.0 • Minor updates to IP Facts table and Migrating appendix.

• Corrections to Designing with the Core chapter.
• Document version number advanced to match the core version number.

03/20/2013 1.0 Initial Xilinx release. Replaces DS794, LogiCORE IP DDS Compiler Data Sheet.
• Updated for core v6.0.
• Added support for Zynq-7000 and Artix-7 devices.
• Removed support for ISE Design Suite.
• Removed support for Virtex-6 and Spartan-6 devices.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=78

DDS Compiler v6.0 79
PG141 January 21, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All
other trademarks are the property of their respective owners.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG141&Title=DDS%20Compiler%20v6.0&releaseVersion=6.0&docPage=79

	DDS Compiler v6.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Navigating Content by Design Process
	Applications
	Licensing and Ordering

	Ch. 2: Product Specification
	Phase Generator
	SIN/COS LUT
	Phase Generator and SIN/COS LUT (DDS)
	Performance
	Latency
	Throughput

	Resource Utilization
	Port Descriptions

	Ch. 3: Designing with the Core
	General Description
	Theory of Operation
	Output Frequency
	Standard Mode of Operation
	Rasterized Mode of Operation

	Frequency Resolution
	Standard Mode of Operation
	Rasterized Mode of Operation

	Phase Increment
	Spectral Purity Considerations
	Standard Mode of Operation
	Rasterized Mode of Operation

	Phase Dithered DDS
	Taylor Series Corrected DDS
	Optimization of Memory Usage

	Multichannel
	Design Examples
	Example 1
	Example 2 (DDS Requiring Negative Frequencies)

	Clocking
	Resets
	Protocol Description
	AXI4-Stream Considerations
	Basic Handshake
	CONFIG Channel
	Input PHASE Channel
	Output DATA channel
	Output PHASE Channel
	Event Interface

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Configuration Tab
	System Parameters
	Hardware Parameters

	Implementation Tab
	Implementation Options

	Detailed Implementation Tab
	User Parameters
	Output Generation

	System Generator for DSP
	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C Model
	Features
	Overview
	Unpacking and model contents

	Installation
	Linux
	Windows

	C Model Interface
	Data Types
	Functions
	Information Functions
	Initialization Functions
	Execution Functions

	Data Format
	Compiling
	Linking
	Linux
	Windows

	Example
	MATLAB Interface
	Compiling
	Installation
	MATLAB Class Interface
	Constructor
	Get Version
	Get Configuration
	Reset
	Config_do
	Run
	Destroy

	Example

	Ch. 6: Test Bench
	Demonstration Test Bench
	Using the Demonstration Test Bench
	Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Appx. A: Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes
	Latency Changes
	Behavioral Changes
	Instructions for Minimum Change Migration
	Parameters
	Ports
	Miscellaneous Changes
	Performance

	Functionality Changes
	Simulation

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Sub-Harmonic Frequencies
	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature
	Reference Boards

	AXI4-Stream Interface Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

