
Versal ACAP

Technical Reference Manual

AM011 (v1.2) June 29, 2021

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/29/2021 Version 1.2

General update. Added link to the security lounge where applicable.

Introduction

Embedded Processor Code Revised introductory paragraph.

Implementation Changed name from Device Implementation and moved
from Hardware Architecture section.

IP Versions Added additional product names.

Additional Versal ACAP Documents Added integrated hardware, PL memory and building
blocks, and I/O buffers documentation.

Hardware Architecture

Figure 4: PS Interconnect Diagram Updated PS-PL interface names. Moved GIC to another
switch. Added FPD Aux and APB switches and added CPM-
PS switch names.

System Memory Management Unit Removed TBU function information.

PMC Interconnect Organized functional units into groups.

Device I/O Connectivity Revised table.

Device-Level Diagram Added GTYP transceiver.

GTY and GTYP Pipe Transceivers Clarified the naming for the GTY and GTYP transceivers.
Reorganized, revised, and added notes.

Device Implementation chapter Moved to Introduction section.

CPM4 Design Added new section.

IP Versions Revised version information for USB 2.0 controller.

Platform Boot, Control, and Status

PDI Size Estimation Added Versal™ Premium devices.

Boot Header Added 0x38 and 0x58 to table. Revised 0x20, 0x128, and
0xF30 description.

Boot Modes Revised QSPI32 description.

Quad SPI Signals Revised QSPI_LPBK_CLK description.

BootROM Error Codes Revised introduction. Added 0x35D-0x363, 0x108, 0x109,
0x11C, 0x11D, 0x11E, and 0x33E error codes. Revised
description for 0x206, 0x207, 0x209, and 0x31E error codes.

Security Management Added link to UG1508 and to the design security lounge.

Secure Key Storage and Management Removed key selections column from the key sources table
and removed decode values. Added link to AM018 and to
the design security lounge.

Key Selection Added link to AM018 and to the design security lounge.

Physically Unclonable Function Added information on nominal VCC_PMC value.

Key Management Summary Updated key management summary table.

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=2

Section Revision Summary
User Access to Xilinx Hardware Cryptographic Accelerators Added Arm® v8 Cryptography Extensions in the APU

MPCore.

Address Maps and Programming Interfaces

Global Address Map Corrected destination names. Added NOC_AXI_PL_H and
NOC_AXI_PL_L.

PMC and PS Address Maps Reorganized and changed subsection names.

4 GB Address Maps Added Design Security Lounge section.

Destinations Listed by Address Updated table.

Destinations Listed by Name Updated table.

Programming Interface Types Added section.

APB, AXI Programming Interface Added Secure Register Modules.

NPI Programming Interface Revised list of Features, Errors and Interrupts, and Access
sections.

Signals, Interfaces, Pins, and Controls

Multiplexed I/O Signals and Pins Reorganized this chapter and changed some section names.
Revised introductory paragraph.

MIO-at-a-Glance PMC MIO pin 21 routing corrected for FPD_SWDT (goes to
RST_PEND). Added GEM to TSU clock name.

MIO Routing Considerations Changed name from I/O Pinout Considerations. Removed
output enable and pull up/pull down information.

MIO Pin Buffer Controls Added new section.

Input Buffer Control Registers Changed name from Input Controls. Revised introductory
paragraph and table.

Output Buffer Control Registers Changed name from Output Controls. Revised introductory
paragraph.

MIO Routing Control Registers Added new section.

MIO Pin Routing Added new section.

MIO Routing Diagram Added new section.

MIO Routing Control Registers Added new section.

MIO Routing Functionality Details Added new section.

MIO Pin Programming Changed name from Pin Programming Examples.

IOP SLCR Registers for PMC and LPD Removed chapter.

Engines

Power Modes and States Added Power Islands section.

CPU Local and Global Memory Map Changed name from CPU Local Memory Maps. Global map
for lock-step mode added to table.

Memory Map Diagram Removed global address map view from figure.

Tightly Coupled Memories Revised to specify that 256 KB TCM is available in lock-step
mode.

PS DMA Controller Changed name from LPD DMA. Reorganized chapter and
changed some section names.

Block Diagram Clarified eight independent channels, moved common
buffer outside of sets of channels, revised to show registers
are the individual terms, and added legend.

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=3

Section Revision Summary
Comparison to Previous Generation Xilinx Devices Revised first paragraph to include information on 4 KB

common buffer and FCI. Added note specifying that the LPD
DMA is a PS DMA controller that is also known as the ADMA.

FPD Block Diagram Updated PS-PL channel representations, moved TBU6 to PL,
and updated interface names to/from PL.

Memory Coherency Added new section.

PL Flow-Control Interface General updates and added note.

Interrupts Added new section.

Embedded Processor, Configuration, and Security Units

Platform Processing Unit Reorganized this chapter and changed some section names.
Specified that the PPU implements the MicroBlaze™
architecture and is a host on the PMC main switch.

Authenticated JTAG Revised description, and added link to UG1508 and design
security lounge.

Processor Global Registers Revised descriptions for GLOBAL_GEN_STORAGE and
PERS_GLOB_GEN_STORAGE registers.

Processor Local Registers Added new section.

PSM Register Reference Added new section.

Configuration Frame Unit Added information about decompression done in the CFU
and compression default PDI setting.

Interconnect

General updates. Renamed chapters and reorganized content throughout.

Interconnect Switches Changed name from Interconnect Hardware. Reorganized
and revised content throughout this chapter.

Transaction Attributes Changed name from AXI Transaction Attributes.
Reorganized and revised content throughout this chapter.

Transaction Routes Added new chapter.

AXI Interface Added new section.

PS to PL Interfaces Added note.

Register Reference Added new section.

Shared Virtual Memory Changed name from Memory Virtualization.

Features Added new section.

Cache Coherent Interconnect Reorganized and revised content throughout this chapter.

Timers, Counters, and RTC

System-Level Registers Added new section.

I/O Peripheral Controllers

System Signals Reorganized and revised.

Flash Memory Controllers

System-Level Registers Revised OSPI_IP_AXI_Sel description.

Clocks Revised clock description.

Clocks Revised clock description.

Clock Tap Control Settings Added second footnote to table.

SD/eMMC Controllers Changed ADMA2 to ADMA throughout.

SLCR Registers Revised table.

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=4

Section Revision Summary
Clocks, Resets, and Power

Clocks Added clock register modules information.

Clock Frequency Considerations Added new section.

Base Time Period Clarified REF_CLK and PMC_IRO_CLK frequencies.

Resets Reorganized, extensively revised, and added new content
throughout this chapter.

Test and Debug

General updates. Reorganized throughout and renamed some sections.

Overview Added new section.

JTAG Register Reference Revised SYSTEM_RESET JTAG register description.

TAP Instructions Alphabetized instruction names in table.

System Architecture Changed name from High-Speed Debug Port. Revised
figure: swapped TAP and DAP, added TDI and TDO, clarified
destinations, clarified 1-bit connection to GTY, and minor
name improvements.

Debug Host Interfaces Added new section.

Debug Packet Controller Revised and added two subsections.

Additional Resources and Legal Notices

References Updated list of Xilinx® references and added Cache
Coherent Interconnect references.

Arm Documents Added additional Arm documents.

11/30/2020 Version 1.1

General updates. Revised nomenclature for CPM to adhere to the PCIe®

trademark. Changed Encrypt Only (EO) terminology to
Symmetric Hardware Root of Trust (S-HWRoT), and
Hardware Root of Trust (HWRoT) to Asymmetric Hardware
Root of Trust (A-HWRoT). Changed the name of the secure
debug feature to authenticated JTAG.

Introduction

General updates. Renamed chapters and reorganized content throughout.

Figure 1: System Processors Block Diagram Added system block diagram.

Links to Platform Management Resources Changed name from PMC Hardware Perspective and
removed I/O peripherals as boot devices.

Implementation Changed name from Versal Device Variations, added
Processing System Support Hardware, Integrated Hardware
Options, and Comparison to Previous Generation Xilinx
Devices.

Hardware Architecture

Device Components Reorganized sections.

Standard Hardware Added section.

Example Physical Layout Updated to clarify the layout as an example.

Full-power Domain Removed APU Interconnect section.

Block Diagram Corrected and clarified MIO pin connections.

Comparison to Previous Generation Xilinx Devices Changed secure debug to authenticated JTAG.

Device I/O Connectivity Added debug paths to this chapter.

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=5

Section Revision Summary
Figure 11: I/O Connectivity Diagram Revised XPIPE area and enhanced the PSIO and EMIO

representation.

PSIO Banks Added section.

GTY and GTYP Pipe Transceivers Added section.

Figure 4: PS Interconnect Diagram Revised the CPM block and removed performance monitor.

Figure 4: PS Interconnect Diagram, Figure 6: LPD Block
Diagram, and Figure 9: PMC Interconnect Block Diagram

Removed performance monitor.

XPIO Banks Revised for clarity and renamed from DDR XPIO Transceiver
Banks.

Platform Boot, Control, and Status

Secure Boot Flow Changed secure debug to authenticated JTAG.

Boot Image Revised chapter name, added information for the
programmable device image, and clarified the figure.

PDI Size Estimation Added new section.

Boot Modes Updated QSPI entry in primary boot modes table, added the
visual boot pin usage guide table, and added eMMC1 (raw)
information to the boot mode search limit table.

Quad SPI Signals Added details for BootROM MIO setup.

SD Signals Revised the descriptions of WP, DETECT, and bus power.
Added details for BootROM MIO setup.

SD2.0 Interface Specified WP, DETECT, and BUSPWR signals are optional.
Added external voltage level translator information and
added note to figure.

SD3.0 Interface Specified WP, DETECT, and BUSPWR signals are optional.
Added external voltage level translator information and
added note to figure.

eMMC1 Boot Mode Added information on the raw partition support for boot.

Table 28: BootROM Error Codes Revised description for 0x301, 0x302, 0x31D, 0x320,
0x517, 0x518, 0x51A, and 0x51B error codes.

I/O Configuration Detection Added new section.

SelectMAP Boot Mode Added SelectMAP wait time and recommendation for JTAG
during early phases and debug.

eMMC1 Signals Added details for BootROM MIO setup.

SelectMAP Signals Added details for BootROM MIO setup.

Octal SPI Signals Added details for BootROM MIO setup.

BootROM Error Codes Revised error codes and added new error codes.

Address Maps and Programming Interfaces

PMC and PS Address Maps Added new section and updated address maps.

4 GB Address Maps Renamed from Detailed Address Map and reorganized
section.

IOP SLCR Registers for PMC and LPD Added new chapter.

NPI Programming Interface Clarified introductory paragraph.

Signals, Interfaces, and Pins

Power and PMC Dedicated Pins Combined Power Pins chapter with PMC Dedicated Pins
chapter.

PMC Dedicated Pins Removed DXP/DXN pins from the table.

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=6

Section Revision Summary
Power Pins Reorganized power pins table.

Engines

Operating Modes Renamed from Operating States and clarified information.

Configuration Registers Renamed from Hardware Configuration and revised
descriptions.

Power Modes and States Renamed from Power Modes.

CPU Local and Global Memory Map Clarified lock-step cache entries.

Memory Map Diagram Clarified 0xF900_0000 address information.

FPD Block Diagram Renamed from Block Diagram.

APU MPCore Functional Units Renamed from Functional Units.

Embedded Processor, Configuration, and Security Units

Section VII: Embedded Processor, Configuration, and
Security Units

Renamed from Platform Processor, Configuration, and
Security Units, as well as reorganized chapter content.

PMC Global Register Set Completed register descriptions.

Clock Monitor Added this chapter.

Interconnect

Overview Extensive additions and revisions throughout this chapter.

List of Interconnect Diagrams Added new section.

LPD Interconnect Port Diagram Added new section.

Interconnect Switches Added new chapter.

Table 80: Interconnect Switch Functionality Removed performance module probe.

Figure 68: PS Memory Address Translation Significant updates, including added new pathways, as well
as added and removed masters.

Transaction Routing Added Transaction Routing Options Through CCI table.

Striping NoC Interfaces Added new section.

Instances Removed base address information.

Address Map Added new section.

Interrupts and Errors

PMC Error Status 1 and PMC Error Status 2 Added SSI technology to table.

Error Containment Added new chapter.

Timers, Counters, and RTC

Table 124: TTC Register Overview Added address offset and access type, as well as clarified
content.

I/O Peripheral Controllers

Control and Status Revised register names.

Message Space Data Revised register names.

Modes and States Revised modes and options.

Programming Model Added two functional anomalies.

Comparison to Previous Generation Xilinx Devices Clarified device comparison.

Interrupts Added new chapter.

Flash Memory Controller

Start-up Sequences Clarified idle status bit section.

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=7

Section Revision Summary
Voltage Level Shifter Interface Added note and added bus power to figure.

Figure 113: External Voltage Level Shifter Wiring Revised figure to add bus power.

SD Command Response Registers Added new section.

Clocks, Resets, and Power

Resets Extensive additions and updates throughout this chapter.

Table 248: PMC System Reference Clock Registers Added footnote.

Test and Debug

Figure 124: Debug Interface Block Changed HSDP Link Layer Options to DPC Link Layer
Options. Added HSDP to CPM PCIe® and Aurora (Hard IP).

JTAG and Boundary-Scan Added information on JTAG interface protections.

JTAG Register Reference Added to the JTAG_CONFIG register description.

TAP Instructions Changed SEC_DBG to AUTH_JTAG and updated description.
Updated STATUS to JTAG_STATUS.

CoreSight Debug Added more information for bandwidth calculations and
reorganized content.

Arm DAP Controller Added link to Arm® Debug Interface Architecture
Specification.

Debug Host Interfaces Removed reserved from the PCIe connector. Added HSDP to
Aurora and PCIe connections and added debug host to PCIe
connection. Added DPC link layer options table.

Debug Packet Controller Clarified HSDP defined protocol and added non-HSDP link
layer information.

CoreSight Register Reference Added new section.

07/16/2020 Version 1.0

Initial release. N/A

Revision History

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=8

Table of Contents
Revision History...2

Section I: Introduction...23

Chapter 1: Introduction to Versal ACAP..24

Chapter 2: Navigating Content by Design Process............................... 26

Chapter 3: Versal Device.. 28
System Block Diagram...30
System Software...30
RPU and APU Multiprocessor Cores.. 31
System Performance..32
Platform Management Controller..34
Software Programming Interfaces.. 36
Implementation..36

Chapter 4: Technical Reference Manual Outline....................................40
Additional Versal ACAP Documents... 41

Section II: Hardware Architecture.. 43

Chapter 5: Device Components..44
Device-Level Interconnect Diagram...45
Standard Hardware..47
Integrated Hardware Options.. 49
Integrated Peripheral Options... 50
Example Physical Layout... 53

Chapter 6: Processing System Architecture... 55
PS Interconnect Diagram.. 55
Full-power Domain...57
Low-power Domain..60

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=9

Chapter 7: Platform Management Controller... 64
Block Diagram.. 67
Functionality... 68
I/O Signals...70
PMC Interconnect...71
Comparison to Previous Generation Xilinx Devices...74

Chapter 8: PS and PMC I/O Peripherals...76

Chapter 9: Programmable Logic..78
Block Diagram.. 79
Adaptable Engines in PL..81

Chapter 10: Device I/O Connectivity... 83
Device-Level Diagram.. 84
PSIO Banks..85
GTY and GTYP Pipe Transceivers..86
PL HDIO Banks..87
XPIO Banks..88

Section III: Platform Boot, Control, and Status...90

Chapter 11: Overview.. 91

Chapter 12: Non-Secure Boot Flow.. 93

Chapter 13: Secure Boot Flow... 97
Asymmetric Hardware Root of Trust Secure Boot... 99
Symmetric Hardware Root of Trust Secure Boot... 102

Chapter 14: Boot Image..105
PDI Size Estimation.. 106
Boot Header..109

Chapter 15: Boot Modes... 111
JTAG Boot Mode..114
Quad SPI Boot Mode... 115
SD Boot Modes... 120
eMMC1 Boot Mode.. 124

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=10

Octal SPI Boot Mode.. 126
SelectMAP Boot Mode... 129

Chapter 16: BootROM Error Codes... 136

Chapter 17: Platform Management...146
Functional Safety Management... 146
Dynamic Function eXchange ... 149
Power Management.. 149
Security Management... 152
Soft Error Mitigation.. 159

Section IV: Address Maps and Programming Interfaces......................160

Chapter 18: Address Maps...161
Global Address Map...161
PMC and PS Address Maps... 162

Chapter 19: Programming Interfaces...185
Programming Interface Types..185
APB, AXI Programming Interface...186
NPI Programming Interface... 188
CFI Programming Interface.. 188

Section V: Signals, Interfaces, Pins, and Controls.................................... 190

Chapter 20: Power and PMC Dedicated Pins...191
Power Pins...191
PMC Dedicated Pins...192

Chapter 21: Multiplexed I/O Signals and Pins....................................... 194
MIO-at-a-Glance... 194
MIO Routing Considerations.. 199
MIO-EMIO Interface Routing Options... 199
MIO Pin Buffer Controls.. 201
MIO Pin Routing... 203
MIO Pin Programming.. 206
PCIe Reset on MIO... 207

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=11

Chapter 22: Boundary Interface Signals... 208
PS-PL Boundary.. 208
PMC-PL Boundary.. 209

Section VI: Engines...210

Chapter 23: Overview.. 211
Scalar Engines...211
Intelligent Engines... 212
Adaptable Engines... 213
DMA Units... 213

Chapter 24: Real-time Processing Unit.. 214
Features...214
Cortex-R5F Processor Implementation... 215
System Perspective.. 215
Operating Modes... 216
Power Modes and States...218
Address Maps... 219
Processor Memory Datapaths..222
Tightly Coupled Memories..223
Memory Error Detection and Correction.. 223
RPU Memory Protection Unit..224
Interrupts.. 224
GIC Interrupt Controller.. 226
System Errors Generated by RPU...229
Test and Debug.. 229
Register Reference...230

Chapter 25: Application Processing Unit.. 232
Features...233
System Perspective.. 234
Memory Space..236
Execution Pipelines.. 237
APU Address Model... 238
Virtualization...239
Server Architecture.. 239
Processor Counters..240

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=12

Interrupts.. 243
GIC Interrupt Controller.. 245
Test and Debug.. 245
Register Reference...245

Chapter 26: PS DMA Controller...247
Features...247
System Perspective.. 249
Channel Block Diagram...252
Modes and States...252
Simple Mode Programming..253
Descriptor Mode Programming... 255
Done Interrupt Accounting...265
Over Fetch... 265
Transaction Control... 268
PL Flow-Control Interface..269
Interrupts.. 274
Transaction Security.. 276
Channel Pause..277
Programming Model for Changing DMA Channel States... 277
Register Reference...279
I/O Flow Control Signals..280

Section VII: Embedded Processor, Configuration, and Security
Units...281

Chapter 27: Overview.. 282

Chapter 28: Platform Processing Unit..284
Features...284
Programming Model... 284
Interrupts.. 285
Service Requests to PLM... 285
Authenticated JTAG.. 287
Tamper Event Monitoring and Response System..287
PMC Processor Register Reference..287

Chapter 29: Processing System Manager... 292
Features...292

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=13

System Perspective.. 292
Interrupts.. 292
Reset.. 293
PSM Register Reference.. 294

Chapter 30: PL Configuration.. 299
Configuration Frame Unit... 299
Configuration Frame Interface...301

Chapter 31: Slave Boot Interface.. 302

Chapter 32: Streaming Interconnect Module.. 303
Secure Stream Switch.. 303
PMC DMAs...303
AES-GCM..304
SHA3-384... 305

Chapter 33: RSA/ECDSA...306

Chapter 34: True Random Number Generator...................................... 307

Chapter 35: Physically Unclonable Function.. 308

Chapter 36: Battery-Backed RAM..309

Section VIII: Interconnect..311

Chapter 37: Overview.. 312
Features...313
System Perspective.. 316

Chapter 38: Interconnect Switches..318
Switch Architecture.. 319
Switch Ingress Ports.. 321
Switch Egress Ports..323
Switch Diagrams...326
Interconnect Channels and Ports.. 334
Interconnect Register Set Overview.. 339

Chapter 39: Transaction Attributes... 340

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=14

Address..340
Data..341
System Management ID..341
TrustZone Security... 345
AxCACHE..348
Quality of Service... 349
Safety Features... 350
Poisoned Transaction.. 351

Chapter 40: Transaction Routes...352
Routing and Coherency Controls... 352
CPM Transaction Route Use Cases.. 353
Transaction Route Restrictions...356

Chapter 41: PL Interconnect Interfaces.. 359
PL to PS Interfaces... 359
PS to PL Interfaces... 360
Register Reference...361

Chapter 42: Shared Virtual Memory.. 362
System Perspective.. 363
APU Virtualization.. 364
Interrupt Virtualization..367

Chapter 43: System Memory Management Unit..................................368
Features...368
TBU Instances...368
Address Translation Examples... 369
Memory Protection Functionality...370

Chapter 44: Cache Coherent Interconnect.. 371
Features...373
Cache Coherency..374
Snoop Filter...375
AXI Outgoing Ports.. 375
Transaction Attribute Management.. 377
CCI Register Reference..377

Chapter 45: Memory Protection.. 379

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=15

Functional Units..379
Use Case Examples.. 380
TrustZone Security... 380

Chapter 46: Xilinx Memory Protection Unit..381
Features...382
System Perspective.. 383
Memory Regions.. 383
Access Checking Operations...384
Error Handling.. 385
Transaction Signals.. 386
Configuration..387

Chapter 47: Xilinx Peripheral Protection Unit....................................... 388
Features...388
System Perspective.. 389
Access Checking Operation.. 390
Aperture Permissions.. 390
Permission Checking... 393
Error Handling.. 394
Configuration..395
Master ID Validation.. 395

Section IX: Interrupts and Errors...396

Chapter 48: System Interrupts... 397
System Interrupt Controllers..397
IRQ System Interrupts...398
Register Reference...401

Chapter 49: Inter-Processor Interrupts...403
Features...403
System Perspective.. 404
Agent Communications...405
Interrupt Architecture... 406
Message Passing Architecture... 408
Register Reference and Address Map... 409
Programming Examples..413

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=16

Chapter 50: System Errors...415
System Error Accumulators.. 417
Functional Safety Errors.. 418
Security Errors.. 419
Programming Model... 419
Error Accumulator Registers...420

Chapter 51: Error Containment..426

Section X: Timers, Counters, and RTC... 427

Chapter 52: Summary of Counters and Timers..................................... 428

Chapter 53: Real-Time Clock.. 429
Features...430
Counter Module... 431
Calibration...431
RTC Accuracy...432
Interfaces and Signals... 433
Registers..433

Chapter 54: System Counter.. 435

Chapter 55: Triple-Timer Counters...437
Features...437
Block Diagram ... 438
Overflow Detection Functional Model...440
Interval Timing Functional Model.. 441
Event Timer Functional Model..441
Register Reference...442
TTC I/O Signals... 443

Chapter 56: System Watchdog Timers... 444
Features...445
System Perspective.. 446
Modes and States ..448
Programming Sequences..450
Register Reference...453

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=17

SWDT I/O Signals .. 455

Section XI: Memory... 456

Chapter 57: Overview.. 457

Chapter 58: On-Chip Memory..459
Features...459
System Perspective.. 460
States... 460
Address Map... 461
Memory Address Protection... 461
ECC Protection.. 462
ECC Operations...462

Chapter 59: XRAM Memory...464
Features...464
System Perspective.. 465
Address Map... 466
Memory Address Protection... 466
ECC Protection.. 467

Chapter 60: External Memories... 468

Chapter 61: Embedded Memories...469

Chapter 62: Small Storage Elements... 470

Section XII: I/O Peripheral Controllers.. 471

Chapter 63: CAN FD Controller... 472
Features...472
System Perspective.. 474
Modes and States...477
Configuration Sequence..484
Message Transmission.. 485
Message Reception..488
Register Reference...491
I/O Signal Reference..494

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=18

Chapter 64: Gigabit Ethernet MAC... 495
Features...496
System Perspective.. 498
Modes and States...505
Memory Packet Descriptors..506
DMA AXI Master... 507
Transmit Dataflow..509
MAC Transmitter.. 513
Receive Dataflow.. 516
MAC Receiver.. 521
Precision Timestamp Unit... 528
MAC Pause Frames.. 530
Checksum Hardware... 533
Register Reference...535
I/O Signal Reference..541

Chapter 65: GPIO Controller.. 544
Features...544
System Perspective.. 546
Channel Block Diagram...549
Input Programming Model... 550
Interrupt Programming Model.. 551
Output Programming Model.. 552
Registers..552
GPIO I/O Signals...555

Chapter 66: I2C Controller...557
Features...558
System Perspective.. 559
Programming Model... 560
Programming Sequences..566
Software Routines.. 568
Register Reference...579
I2C I/O Interface...581

Chapter 67: SPI Controller...583
Features...583
System Perspective.. 584

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=19

Modes and States...586
Clocking... 588
Functional Diagram... 589
Data Transfer.. 590
Register Reference...592
I/O Interface... 593

Chapter 68: UART SBSA Controller..594
Features...594
System Perspective.. 595
Modes and States...597
UART Functionality... 598
IrDA Functionality...605
Interrupts.. 607
Registers..609
UART I/O Signals.. 611

Chapter 69: USB 2.0 Controller..612
Features ..612
System Perspective.. 613
Host Mode Data Structures.. 618
Register Reference...620
USB I/O Signals...627

Section XIII: Flash Memory Controllers... 628

Chapter 70: Octal SPI Controller..629
Features...630
System Perspective.. 630
Access Modes... 634
DMA Programming Model.. 637
Interrupts.. 640
Register Reference...641
OSPI I/O Interface..644

Chapter 71: Quad SPI Controller..646
Features...647
System Perspective.. 647
Modes and States...652

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=20

I/O Functionality...654
Command Words... 657
Programming... 658
PIO Mode Programming Model... 660
DMA Programming Model.. 661
Polling Programming Model.. 661
Register Reference...662
QSPI I/O Interface..663

Chapter 72: SD/eMMC Controllers..667
Features...668
System Perspective.. 669
Modes and States...673
Main Functionality..674
I/O Functionality...676
Clock Functionality... 678
I/O Clocks.. 683
SD Commands.. 686
PIO Data Port Programming Model.. 689
SDMA Programming Model.. 689
ADMA Programming Model..690
Software Routines.. 690
Register Reference...690
I/O Signals...694

Section XIV: Clocks, Resets, and Power..697

Chapter 73: Clocks... 698
Clock Distribution Diagram...699
Clock Frequency Considerations.. 701
PMC Source Clocks...703
PLL Clock Generators...704
Reference Clock Frequency Dividers... 705
Registers..706

Chapter 74: Clock Monitor.. 711
Base Time Period... 711
Calculate Threshold Counts.. 712
Monitored Clocks... 713

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=21

Interrupts.. 713
Register Reference...714

Chapter 75: Resets... 715
Comparison to Previous Generation Xilinx Devices...716
System Perspective.. 717
Resets Overview... 721
POR_B Reset..724
System Integrity Monitoring...726
Reset Reference for Individual Blocks... 727
Persistent Registers... 731

Chapter 76: Power..736
Power Diagram...737
Power Domains.. 739
Power Domain State Requirements...739
Power Islands... 739

Section XV: Test and Debug.. 741

Chapter 77: Overview.. 742

Chapter 78: Integrated Debug..743
JTAG and Boundary-Scan...744
Arm DAP Controller..753
Debug Packet Controller... 754

Chapter 79: Device Identification... 758

Chapter 80: CoreSight Debug.. 760
Trace Port Interface Unit...760
CoreSight Register Reference...761

Appendix A: Additional Resources and Legal Notices........................... 762
Xilinx Resources...762
Documentation Navigator and Design Hubs.. 762
References..762
Arm Documents.. 764
Please Read: Important Legal Notices... 765

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=22

Section I

Introduction
This section includes these chapters:

• Introduction to Versal ACAP

• Navigating Content by Design Process

• Versal Device

• Technical Reference Manual Outline

Section I: Introduction

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=23

Chapter 1

Introduction to Versal ACAP
Versal™ adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex®-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Edge series focuses on AI performance per watt for real-time systems in automated
drive, predictive factory and healthcare systems, multi-mission payloads in aerospace & defense,
and a breadth of other applications. More than just AI, the Versal AI Edge series accelerates the
whole application from sensor to AI to real-time control, all with the highest levels of safety and
security to meet critical standards such as ISO26262 and IEC 61508.

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.

Section I: Introduction
Chapter 1: Introduction to Versal ACAP

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=24

The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Section I: Introduction
Chapter 1: Introduction to Versal ACAP

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 25Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=25

Chapter 2

Navigating Content by Design
Process

Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine.

The technical reference manual (TRM) describes the overall hardware architecture of the
Versal™ ACAP and provides details on the blocks in the platform management controller
(PMC) and in the processing system (PS).

• High-level chip description: Section II: Hardware Architecture

• PS architecture: Processing System Architecture

• PMC architecture: Platform Management Controller

• AMBA® Interconnect: Section VIII: Interconnect

• I/O connectivity architecture (buffers and transceivers): Device I/O Connectivity

• Clock, reset, and power architectures and controls: Section XIV: Clocks, Resets, and Power

There are several device families with different options. The device-specific options are listed
in the Versal Architecture and Product Data Sheet: Overview (DS950).

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs.

Embedded software can run on one or both of the Arm® Cortex® scalar engines in the PS:

• Real-time Processing Unit (dual-core Cortex-R5F)

• Application Processing Unit (dual-core Cortex-A72)

Section I: Introduction
Chapter 2: Navigating Content by Design Process

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 26Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=26

The PMC and PS functional units require device drivers as part of the embedded software
stack. Several TRM reference sections primarily focus on content for device driver
development. Major peripherals are listed in the following sections:

• Section VII: Embedded Processor, Configuration, and Security Units

• Section XII: I/O Peripheral Controllers

• Section XIII: Flash Memory Controllers

Additional TRM sections and chapters describe the interconnect, timers, counters, clocks,
resets, and power.

The system software boot up and operating system environments are described in the Versal
ACAP System Software Developers Guide (UG1304).

• Board System Design: Designing a PCB through schematics and board layout. Also involves
power, thermal, and signal integrity considerations.

The TRM includes some important information to help with board design planning and
development:

• Boot device interfaces: Boot Modes

• Pin planning for I/O peripherals: Multiplexed I/O Signals and Pins

• Power controls: Power Diagram

• JTAG interface: JTAG and Boundary-Scan

For package and pin information, see the Versal ACAP Packaging and Pinouts Architecture
Manual (AM013).

The electrical specifications are provided in the Versal Prime Series Data Sheet: DC and AC
Switching Characteristics (DS956) and the Versal AI Core Series Data Sheet: DC and AC Switching
Characteristics (DS957).

Section I: Introduction
Chapter 2: Navigating Content by Design Process

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds956-versal-prime.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=27

Chapter 3

Versal Device
The Versal ACAP includes several processors, each with different computation capabilities to
meet application needs. All devices include the processing system (PS) and the platform
management controller (PMC). All devices also include the network on chip (NoC) interconnect to
enable all processors to reach the DDR memory controllers, and other resources within the
device. All Versal devices include programmable logic (PL). The size of the PL and the
composition of a programmable region varies. Each device has one or more DDR memory
controllers. There are also several types of I/O banks to connect to external devices. The size of
the NoC and the PL, and the number of memory controllers varies by device.

This document, the Versal ACAP Technical Reference Manual (AM011) describes the overall
hardware architecture of the Versal ACAP and the technical details of both the processing system
(PS) and the platform management controller (PMC). The control and status registers for the PS
and PMC are described in the Versal ACAP Register Reference (AM012). There are approximately
135 different register module types included in the register reference. Most functional units
include one register module. Some functional units have multiple register modules (e.g., PPU,
interconnect). Some register modules are associated with multiple functional units which
includes the system-level control registers (SLCR). All PS and PMC register modules are accessed
by software using 32-bit read and write transactions to APB programming interfaces.

Processing System

The processing system includes two Arm-based multiprocessors:

• Arm Cortex-A72 dual-core processor with the system memory management unit (SMMU) and
the cache coherent interconnect (CCI) unit with snoop filter.

• Arm Cortex-R5F dual-core processor for applications requiring safety and deterministic
execution times.

The PS also includes:

• DMA unit, clocks, timers, access protection units, and local memories.

• Error detection, system and clock monitoring, and security features.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=28

Platform Management Controller

The Versal ACAP also includes the PMC. The PMC is responsible for boot, configuration, partial-
reconfiguration, and life cycle management tasks, such as security. The PMC includes the deeply
embedded ROM code unit (RCU) for device boot and platform processing unit (PPU) that
executes the platform loader and management (PLM) firmware code. The PLM also manages the
processing system manager (PSM) firmware downloads.

NoC and Main Memory

The NoC interconnect is pervasive across the device and includes one or more DDR memory
controllers.

PL Hardware Acceleration-and Microprocessors

The PL includes adaptable components to create all types of functionality. The functions include
custom data manipulation and transport protocol, non-vector-based computational units, and
interfacing to the PS, integrated hardware, and integrated peripherals. The Programmable Logic
chapter introduces the PL and has links to additional documentation.

AI Engine

The AI Engine is available in select devices in the Versal™ AI Core series. The AI Engine is
typically used for compute-intensive functions in vector implementations. See the Integrated
Hardware Options AI Engine section for more information about the AI Engine and links to its
documentation.

Coherent Module with PCIe

The coherent module with PCIe® (CPM) is available in select devices in the Versal Prime and
Premium series. The CPM in the Prime series includes the CCIX coherency protocol and is
referred to as CPM4. The Premium series includes the CXL coherency protocol and is referred to
as CPM5. The CPM with its L2 cache connects functionality in the PL with external devices. See
the Integrated Hardware Options or the Coherency for PCIe Module section for more
information about the CPM and links to its documentation.

Integrated Hardware and Peripheral Options

The are a variety of hardware and peripheral options attached to the PL:

• Integrated Hardware Options include accelerator RAM (XRAM), AI Engine, and CPM.

• Integrated Peripheral Options include high-speed Ethernet MACs, Interlaken, and high-speed
crypto engine.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=29

System Block Diagram
The processors and related system functionality are shown in the following figure.

Figure 1: System Processors Block Diagram

NoC Interconnect

ROM Code Unit (RCU):
 * Runs BootROM code to load boot image
 * Provides system monitoring functions
 * Deeply embedded 32-bit MicroBlaze

Platform Management Controller (PMC)
PMC Processing Unit (PPU):
 * Runs platform loader and manager (PLM)
 * 32-bit MicroBlaze

PSM Firmware:
 * Runs firmware downloaded by PLM
 * 32-bit MicroBlaze

PS Manager (PSM)

DDR Memory
Controller(s)

PL

System Memory Management (SMMU)
 * Seven translation buffer units (TBU)
 * Shared memory support

Cache Coherent Interconnect (CCI)
 * ACE, ACE_Lite ingress ports
 * Four NoC egress Ports
 * Ports to LPD and CPM

Application Processing Unit (APU):
 * Dual Cortex-A72 processor cores
 * 1 MB L2-cache

FPD Interconnect

NoC Interconnect

Processing System (PS)

L2 Cache

PL
SPD
FPD/LPD
PMC
PL or LPD

Power Domains

Building Blocks
* Digital Signal Processors (DSP)
* Logic Blocks, RAM, and I/O pins

Peripherals
 * Ethernet MACs, Interlaken
 * High-speed Cryptography

Instantiated Blocks
 * MicroBlaze, interconnect
 * Pipeline Slices
 * Functional Units

Integrated Hardware

System Cache

Real-time Processing Unit (RPU):
 * Dual Cortex-R5F processor cores
 * TCMs and on-chip memories

LPD Interconnect

CPM

XRAM

OCM

X24789-050421

System Software
Key software components include the following.

• System software running in:

○ Arm Cortex™-A72 and Cortex-R5F processors.

○ Platform processing unit (PPU) MicroBlaze triple-redundant processor.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=30

○ MicroBlaze processors instantiated in the PL.

• PMC and PS peripherals, and optional PL peripherals.

• Bare-metal software stack with standard C libraries: libc and libm, based on the open source
Newlib library.

• Middleware libraries that provide networking, file system, and encryption support.

• Application examples include test applications.

• Linux-based tools and operating system software including:

○ PetaLinux to quickly build an embedded OS.

○ U-Boot and Yocto-based tools.

• PLM firmware generated by the design tools to program the PL using the configuration frame
unit (CFU).

• PLM firmware to configure the device and provide power management.

• Xilinx system debugger (XSDB) in coordination with Arm CoreSight™.

• Debug packet controller and HSDP Aurora I/O

The complete system software environment is described in the Versal ACAP System Software
Developers Guide (UG1304).

RPU and APU Multiprocessor Cores
The processing system (PS) two multi-processing cores include:

• Application Processing Unit

• Real-time Processing Unit

Application Processing Unit
The application processing unit (APU) is based on an Arm Cortex-A72 dual-core processor with
the system memory management unit (SMMU), cache coherent interconnect (CCI) unit, interface
channels to the rest of the system, and system peripherals. The SMMU and CCI work together to
provide a shared memory environment with the PS, PMC, and PL processors that can be tied to
the APU 1 MB L2 cache.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 31Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=31

The APU can be used for control-plane applications, operating systems, communications
interfaces, and lower level or complex computations. The TRM describes the architecture and the
programming model for the controllers and other functional units. Linux and bare-metal software
stacks execute in the APU and RPU in a homogeneous or a heterogeneous environment. The
APU software environment is described in the Versal ACAP System Software Developers Guide
(UG1304).

The APU is located in the PS full-power domain (FPD).

Real-time Processing Unit
The real-time processing unit (RPU) is based on an Arm Cortex-R5F dual-core processor with L1
caches and tightly coupled memories (TCM) dedicated to the RPU cores. The RPU can be
configured into a dual-processor mode for greatest performance or into a lock-step mode for
greatest safety.

The RPU can provide deterministic execution times for real-time applications. The TRM
describes the architecture and the programming model for the controllers and other functional
units. Linux and bare-metal software stacks execute in the APU and RPU in a homogeneous or a
heterogeneous environment. The RPU software environment is described in the Versal ACAP
System Software Developers Guide (UG1304).

The RPU is located in the PS low-power domain (LPD).

System Performance
There are inherent performance features in the system and several performance related
configuration options. The TRM describes the inherent performance features and the
functionality that can be used to obtain an optimal configuration.

• Inherent NoC interconnect design features with configurable, multichannel structures

• Multiple interconnect traffic types to control quality of service (QoS)

○ Isochronous for video and other time-sensitive transactions

○ Low latency for communications and other applications

○ Best effort, bulk traffic for large data sets without critical timing needs

• Intelligent DDR memory controller scheduler

• Hardware acceleration in PL instantiated functions

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 32Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=32

Performance Tuning

Performance tuning builds on the inherent features. This includes properly routing NoC traffic,
optimizing the use of the DDR memory controller, and using the QoS traffic types. Performance
tuning is not covered in the TRM.

Interconnect Features
The interconnect has dedicated 128-bit AXI channel connections between the subsystems.
These include low-latency datapaths and high-throughput datapaths with buffering. There are
also noteworthy datapaths.

The interconnect optimizes the performance of the RPU and APU. The interconnect port
connections are shown in PS Interconnect Diagram and listed in this section.

Low-latency Datapaths

• APU to NoC: CCI connections to the NoC

• RPU to NoC: AXI egress port on OCM switch

• RPU to OCM: AXI egress port on OCM switch

• RPU to its TCMs: two cycle access with deterministic execution

High-throughput Datapaths

Popular high-throughput datapaths:

• APU to NoC with four CCI egress ports

• RPU to NoC with main switch egress port

• LPD DMA to FPD main switch

Noteworthy Datapaths

• APU to CCI to FPD main switch to OCM switch to OCM and XRAM (optional)

Transaction Quality of Service
Each transaction includes a quality of service (QoS) traffic attribute.

• Low-latency

• Isochronous

• Bulk transfer

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=33

The QoS attribute is recognized by the AMBA® switches and DDR memory controller. System
performance can be obtained by setting the QoS attributes appropriately. Each master can
generate one or more QoS values. The traffic types are detailed in Quality of Service.

Platform Management Controller
The PMC operations are divided into four phases beginning with hardware resets that start or
restart the RCU. After reset, the RCU executes the BootROM to configure the system to access
the boot device and process the boot header. The RCU reads the PLM from the boot device and
writes it into the PPU memory. It can also load firmware into the processing system manager
(PSM) memory. When the RCU finishes with the device boot, the PLM takes control of the
system for further configuration and, optionally, loads system software for the RPU, APU, and
other processors.

During normal run time, the PLM works with other parts of the PMC and the PSM to monitor
and respond to system activities and events. The PMC is in all devices and is required in all
operating modes. The PMC is located in its own power domain.

The Versal ACAP Technical Reference Manual (AM011), together with the Versal ACAP Register
Reference (AM012) describe the details of what can be configured, controlled, and monitored in
the PMC.

Embedded Processor Code
There are three embedded MicroBlaze processors.

• ROM code unit (RCU) executes the BootROM code from read-only memory (ROM)

• PPU processor executes the PLM firmware from RAM

• PSM processor executes the PSM firmware from RAM

The functionality of the BootROM code is described in Section III: Platform Boot, Control, and
Status. The functionality of the PLM and PSM firmware is described in the Versal ACAP System
Software Developers Guide (UG1304).

RCU Boot ROM Code

The deeply embedded RCU is the first processor to start up after a power-on reset (POR). The
RCU executes its BootROM code to initialize the system and validate the boot device. The RCU
processes the boot header provided by the boot device. The RCU downloads the platform loader
and manager (PLM) firmware into the PPU RAM and releases the reset on the PPU processor.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=34

PLM Firmware Code

The PLM firmware runs on the MicroBlaze-based platform processing unit (PPU). The PLM
firmware is generated by the Vivado® tools and configures the system for device boot. The PLM
firmware includes code to support a single download or a series of downloads. After system
boot, the PLM goes on to manage system resources.

The PLM reads the programmable device image (PDI) from the boot source and configures the
system components for real-time and application program booting. The PLM configuration
normally includes NoC initialization, DDR memory controller initialization, programmable logic
configuration, and loading real-time and application software in the processing system (PS). The
operations and responsibilities of the PLM are defined by the SoC application. When the PS
takes control of the SoC, the PLM monitors system activity and responses to system requests
from the real-time and application processing units, RPU and APU.

PSM Firmware Code

The embedded processing system manager (PSM) processor executes firmware downloaded by
the PLM to control the power management features for the PS. The TRM provides programming
models for the power control features in the PMC and PS. This includes power islands, memory
chip enables, isolation, and APU sleep/wake events. The PSM is physically located in the low-
power domain (LPD), and not the PMC power domain.

Links to Platform Management Resources
The TRM includes several PMC-related content areas:

• Section II, Hardware Architecture

○ Basic PMC hardware functionality and architecture are described in the Platform
Management Controller chapter.

• Section III, Platform Boot, Control, and Status

○ The progression of activity from reset to device boot to platform management is described
in the dedicated Section III: Platform Boot, Control, and Status section.

• Section VII, Embedded Processor, Configuration, and Security Units

○ The detailed descriptions of the PMC-centric functional units are located in the Section VII:
Embedded Processor, Configuration, and Security Units section.

• Section XIII Flash Memory Controllers

○ All flash memory controllers can optionally be used as a primary boot interface. The general
functionality of the flash memory controllers is described in the Section XIII: Flash Memory
Controllers TRM section. The boot devices and flows are described in the Boot Modes
chapter.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=35

• System-level Functionality Sections

○ The Section XV: Test and Debug TRM section describes the details of the JTAG and
CoreSight debug hardware.

○ The clock and reset controllers are described in the Section XIV: Clocks, Resets, and Power
TRM section. Also included in this section is the power architecture of the Versal ACAP.

Software Programming Interfaces
Software has access to two memory-mapped programming interface types.

APB Programming Interface

The APB programming interfaces are memory-mapped for single, 32-bit read/write access. The
interface is described in the APB, AXI Programming Interface section. The blocks with an APB
programming interface include:

• PMC and PS register modules; distributed interconnect

• CPM register modules; single host bus controller in PMC

NPI Programming Interface

• The NPI programming interfaces are memory-mapped for single or burst 32-bit read/write
access. The interface is described in the NPI Programming Interface section. The blocks with
an NPI programming interface include non-PMC and non-PS functional units:

○ NoC, NPI register control modules

○ DDR memory controller register modules

○ NoC port interfaces to integrated hardware control

○ Register modules for integrated peripheral control

These programming interfaces are mapped in the 4 GB memory space. There is a single NPI host
bus controller at one memory address. The APB interfaces are distributed throughout the PMC
and PS on different interconnects at different memory addresses.

Implementation
This section describes the standard and optional features in the Versal™ ACAP. This section also
lists the IP versions for each block and provides a summary of the comparisons to previous
generation Xilinx® device tables.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=36

The TRM describes the functionality of production silicon.

All Devices

All devices include the processing system (PS) and the platform management controller (PMC)
subsystem. All devices also include the network on chip (NoC) interconnect, programmable logic
(PL), and one or more DDR memory controllers. There are also several types of I/O banks to
connect to external devices. The size of the NoC and PL, and the number of memory controllers
varies by device. For more details, see the Standard Hardware section.

• PS with shared memory and APU L2-cache coherency

• PMC for device boot, system monitoring, and system services

• System-wide NoC interconnect attached to multiple DDR memory controllers

• DDR memory controllers with XPIO banks

• PL with its adaptive building blocks

• Integrated hardware: CPM and AI Engine

• Integrated peripherals: Ethernet MACs, high-speed cryptography, Interlaken

• Programming interfaces: APB, NPI, and CFI

• PL HDIO interface buffer (various counts)

• GTY and GTYP transceivers for CPM4 and CPM5 implementations, respectively

Optional Functionality

The following components are not in every Versal ACAP series. A device series that includes
optional functionality might not have the functionality in all series members. For more details,
see the Integrated Hardware Options and Integrated Peripheral Options sections.

• AI Engine arrays

• PL integrated hardware (e.g., multirate Ethernet MAC)

• CPM integrated hardware with PCIe®, DMA, and cache coherency interconnect

• 4 MB accelerator RAM (XRAM)

• GTM transceivers (with various counts)

Note: The TRM explains functionality with the assumption that every block is present in the system. The
device variations are defined in the Versal Architecture and Product Data Sheet: Overview (DS950).

IP Versions
The following table lists the IP versions used in the Versal™ ACAP.

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 37Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=37

Table 1: Versal ACAP IP Versions

Functional Unit Location Vendor Version
Application Processing Unit (APU)

Processor, Cortex®-A72, v8-Architecture with NEON
and VFPv4 floating point (A74-MP, MP054) FPD Arm® r0p3-00rel0

Cryptography extension (A72-Crypto, MP055) FPD Arm r0p2-00rel0

GIC interrupt controller (GIC-500) FPD Arm r1p1-00rel0

Real-time Processing Unit (RPU)

Processor cores, Cortex-R5F LPD Arm AT570-r1p3-00rel0

GIC interrupt controller (PL-390) LPD Arm r0p0-00rel2

LPD DMA

Descriptor-driven DMA LPD Xilinx® 1.0

Platform Processors, Configuration, and Security Units

AES PMC Athena ro-2017-12-12

RSA/ECDSA PMC IP Cores 5X-409603203 r2.0_12_20_2016

True random number generator, TRNG PMC IP Cores MP32 core r1.5

Interconnect

System memory management unit (SMMU-500) FPD Arm TCU is r2p4
TBU is r2p1

Cache Coherent Interconnect (CCI-500) FPD Arm PL422-r1p0-00rel0

AXI interconnect switches (NIC-400) PMC, LPD, FPD Arm r0p2

Timers and Counters

System counter LPD Arm 1.0

Triple timer counter (TTC) LPD Cadence T-CS-PE-0005-100

System watchdog timer (SWDT) LPD, FPD Xilinx 0.8

I/O Peripherals

CAN FD controller LPD Xilinx v2.0

GEM Ethernet MAC controller, GXL and RGMII LPD Cadence r1p12

I2C controller PMC, LPD Cadence dcw0701_R114_f0100_final

SPI controller LPD Cadence r112

UART SBSA controller LPD Arm r1p5-00rel1

USB 2.0 controller LPD Synopsys USB3 3.30a core configured
for USB 2.0

Flash Memory Controllers

OSPI flash memory controller PMC Cadence DNV3100_R003_F004

QSPI flash memory controller PMC Misc Same as MPSoC with DMA
addition

SD/eMMC controller PMC Arasan 1p48_140929

Test and Debug

CoreSight™ debug (CS_SoC-400, TM100) ~ Arm r3p2-00rel1

CoreSight embedded logic analyzer (ELA-500,
TM300) FPD, CPM Arm r2p2-00rel0

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=38

Table 1: Versal ACAP IP Versions (cont'd)

Functional Unit Location Vendor Version
CoreSight logic analyzer kit LAK-500 A/I FPD Arm r1p0-00rel0

CoreSight Stream (STM-500, TM963) FPD Arm r0p1-00rel1

Aurora LPD Xilinx 1.0

Comparison to Previous Generation Xilinx Devices
The migration of functionality from a previous generation Xilinx® device is captured on a per
block basis. There are several "Comparison to Previous Generation Xilinx Devices" topics
throughout the TRM, which are summarized below.

Note: For additional device comparison information, see Versal ACAP Design Guide (UG1273).

• Platform Management Controller (PMC)

• Real-time Processing Unit (RPU), Application Processing Unit (APU)

• LPD DMA

• Platform Processing Unit (PPU)

• Interconnect

• System Management IDs

• Inter-processor Interrupts (IPI)

• System Watchdog Timer

• On-chip Memory, Accelerator RAM (XRAM)

• CAN FD

• Gigabit Ethernet MAC (GEM)

• General-purpose I/O (GPIO)

• I2C, SPI

• UART SBSA

• USB 2.0

• Octal SPI, Quad SPI

• SD/eMMC

• Resets

Section I: Introduction
Chapter 3: Versal Device

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1273-versal-acap-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=39

Chapter 4

Technical Reference Manual Outline
The TRM is divided into sections that provide Versal ACAP hardware architecture information on
the PS and the PMC. The TRM also provides references to companion documentation that
complement the TRM and provide detailed information outside of the PS and the PMC. The key
TRM sections are described in this section.

Device and Document Overview

Section I: Introduction provides an introduction to the Versal ACAP.

The TRM technical content begins with Section II: Hardware Architecture. This is a hardware-
centric section that covers the entire Versal ACAP. This section includes links to other parts of
the TRM and to companion documents that include extensive technical information about the
Versal ACAP.

Platform Boot, Control and Status Functionality

The reset response, boot flow, and run-time services are provided by the PMC. The start-up
activities of the PMC are described in Section III: Platform Boot, Control, and Status. The
chapters in this section describe how the Versal device comes up after a reset and how to
manage the platform during normal device operation.

Global Address Maps and Signals

The TRM includes two reference sections for address maps, control register summaries, and
tables that list the Versal ACAP's signals, interfaces, and pins. These sections include device-wide
content.

• Section IV: Address Maps and Programming Interfaces

• Section V: Signals, Interfaces, Pins, and Controls

PMC and PS Functional Units

The remainder of the TRM includes multiple technical reference sections that illustrate the
detailed architectures and describe the functional models of each block in the PMC and PS.

• Section VI: Engines

• Section VII: Embedded Processor, Configuration, and Security Units

Section I: Introduction
Chapter 4: Technical Reference Manual Outline

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=40

• Section VIII: Interconnect

• Section IX: Interrupts and Errors

• Section X: Timers, Counters, and RTC

• Section XI: Memory

• Section XII: I/O Peripheral Controllers

• Section XIII: Flash Memory Controllers

Clocks, Resets, Power, Test, and Debug

The clocks, resets, power, test, and debug are described:

• Section XIV: Clocks, Resets, and Power

• Section XV: Test and Debug

Additional Versal ACAP Documents
The Versal ACAP Technical Reference Manual (AM011) is complemented by the Versal ACAP
Register Reference (AM012), which is an HTML-based document that summarizes the register sets
and provides detailed explanations for each register and bit field for the PMC and PS functional
units.

There are several device families with different options for size and functionality. The device-
level options are listed in the Versal Architecture and Product Data Sheet: Overview (DS950).

The Versal ACAP System Software Developers Guide (UG1304) describes the software boot
sequences after the PMC has prepared the system for the boot and has fetched the boot image
from the boot device.

For pin and package information, see the Versal ACAP Packaging and Pinouts Architecture Manual
(AM013).

The electrical specifications are provided in the Versal Prime Series Data Sheet: DC and AC
Switching Characteristics (DS956) and the Versal AI Core Series Data Sheet: DC and AC Switching
Characteristics (DS957) documents.

Integrated Hardware

The integrated hardware documents include:

• Versal ACAP System Monitor Architecture Manual (AM006)

• Versal ACAP AI Engine Architecture Manual (AM009)

Section I: Introduction
Chapter 4: Technical Reference Manual Outline

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds956-versal-prime.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=41

• Versal ACAP CPM CCIX Architecture Manual (AM016)

PL Memory and Building Blocks

The hardware documents for the memory and building blocks in the PL include:

• Versal ACAP Clocking Resources Architecture Manual (AM003)

• Versal ACAP DSP Engine Architecture Manual (AM004)

• Versal ACAP Configurable Logic Block Architecture Manual (AM005)

• Versal ACAP Memory Resources Architecture Manual (AM007)

I/O Buffers

The hardware documents for the device I/O buffers include:

• Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002)

• Versal ACAP SelectIO Resources Architecture Manual (AM010)

Section I: Introduction
Chapter 4: Technical Reference Manual Outline

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=42

Section II

Hardware Architecture
This section includes these chapters:

• Device Components

• Processing System Architecture

• Platform Management Controller

• PS and PMC I/O Peripherals

• Programmable Logic

• Device I/O Connectivity

Section II: Hardware Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=43

Chapter 5

Device Components
The Versal™ ACAP architecture is a complex device with a rich set of integrated hardware
components and many user programmable design options for many system-level solutions. It
incorporates programmable logic (PL) and a processing system (PS) that need to be brought up
and configured through a coherent flow. The PL and PS sections of the device each have many
components that can selectively be used as needed and, if included, they are configured and
initialized to accommodate different functional and power requirements demanded by the
platform solution.

Additionally, the system is monitored during its run time to detect errors and provide the
necessary means to address the errors as a part of the security, reliability, and safety
requirements. The configuration, bring-up, and general platform management tasks include reset,
clocking, power management, and system monitoring. This is achieved by the platform
management controller (PMC) that exists on every device. The PMC also provides a unified
interface for the cohesive debug and trace capture on the entire device including the PS, PL, and
other components that interact with them.

Processing System (RPU and APU)

The PS includes two Arm® Cortex®-R5F RPU processors and two Arm® Cortex®-A72 APU
processors. These provide programmers with real-time and application operating environments.

The RPU is in the low-power domain (LPD) and the APU is in the full-power domain (FPD).

Device Components

The component options in the Versal™ ACAP are detailed in Versal Architecture and Product Data
Sheet: Overview (DS950). A high-level summary is include in the TRM in the Implementation
section.

Platform Management Controller

The system starts up and is controlled by the PMC. The ROM code unit (RCU) boots the
hardware and loads the initial platform loader and manager (PLM) firmware into the PPU
processor. The PMC is in its own power domain. The boot sequences and platform control
functions are described in Section III: Platform Boot, Control, and Status.

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 44Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=44

The integrated hardware is configured with programmable device image (PDI) files. The PDIs are
composed of configuration data object (CDO) files and other elements that are processed by the
PLM. This includes configuring the PS, NoC, DDR memory controller, and others. These files are
described in the Versal ACAP System Software Developers Guide (UG1304).

Device-Level Interconnect Diagram
A processor-centric diagram is shown in the System Block Diagram section. A hardware
architecture and interconnect diagram is shown in the following figure.

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 45Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=45

Figure 2: System-level Interconnect Architecture

APU
Application Processing Unit

Arm Cortex-A72
with System MMU and Cache Coherent

Interconnect

RPU
Real-time Processing Unit

Arm Cortex-R5F
HDIO

100G MR
Ethernet

to FPD SMMU & CCI

to FPD SMMU & CCI

x16, GTY, GTYP

PCIe Lanes
HSDP Aurora

GTs

XPIO

DDR Memory
Controller

PS

AI Engine

NPI

LVCMOS

ACE
ACE_LITE
ACP
AXI4

AXI4

AXI4

AXI4

CFICFRAMEs

Stream

CHI

Transceivers

NoC

CPM
PCIe with DMA and Cache

Coherency Interconnect

Options: CPM4, CPM5

DSP Engine

CLB

UltraRAM
Block RAM

Clocking

PL

PL

600G DR
Ethernet

600G
Interlaken

400G
Cypto

PMC
Platform Management

Controller
RCU BootROM Code

and PPU PLM
Firmware

Dedicated

OCM

CPM L2 cache

MIO pins

MIO pins

Control, Interface, and
Processing System

Configured by CIPS Wizard

TCMs

PPU RAM

PMC RAM

Programming interfaces (SoC)

Programming interfaces (PL)
PL
SPD
FPD
LPD
PMC
PL or LPD

Power Domains

Device Option

XRAM
Device Option

APU L2 cacheFPD

LPD

Device Options

PL PCIe

PSM
Firmware

128-bit
Stream
I/O

Interconnect
Source

X24257-062921

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=46

Standard Hardware
The hardware described in the following sections are included in all Versal devices. The size and
configuration of the network on chip (NoC) and the number of DDR memory controllers that are
on-chip can vary from one device to another.

DDR Memory
The integrated DDR memory controller (DDRMC) supports both the DDR4 and LPDDR4
memory interfaces. It can be configured with a 32-bit or 64-bit DRAM data interface with or
without ECC. Some devices include multiple DDR memory controllers. The DDRMC has four
NoC interface ports to handle multiple streams of traffic and supports quality of service (QoS)
classes to ensure appropriate prioritization of the memory requests inside the controller.

Each DDRMC also includes a Xilinx memory protection unit (XMPU) to only allow authorized
accesses by specific transactions with proper security and read/write attributes.

For more information on the integrated DDRMC, see the Versal ACAP Programmable Network on
Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313).

Network on Chip
The network on chip (NoC) interconnect spans the entire device to enable most any master to
potentially reach most any slave. The global address maps are based on the NoC interconnect.

The configurable NoC is an AXI4-based network to route high-bandwidth, real-time, and/or low-
latency connections. The NoC extends in both horizontal and vertical directions to the edges of
the device. The multichannel structures provide several options for routing and isolating traffic.
The NoC is a full blocking crossbar between memory controllers, programmable logic, processing
system, AI Engines, and platform management controller.

NoC connections include:

• DDR memory controller ports

• PL to PL connections

• Memory mapped access to the AI Engine

• Connecting between PS and PL

In devices built using stacked silicon interconnect (SSI) technology, the vertical NoC columns
connect between adjacent super logic regions (SLRs), which allows device configuration data to
travel between SLRs.

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=47

The NoC functionality is described in the Versal ACAP Programmable Network on Chip and
Integrated Memory Controller LogiCORE IP Product Guide (PG313).

Embedded Memories
There are many RAM memory arrays embedded in the Versal device. Most are protected by
parity or ECC to support safety applications.

The 256 KB on-chip memory (OCM) is accessible from the LPD OCM interconnect switch.

The PMC includes the 384 KB PPU and 128 KB PMC memories. The RPU includes 256 KB of
tightly coupled memory (TCM) in six banks and are configured in two groups for high-
performance dual processor mode, and grouped together for high-safety, lock-step mode. All of
these memories are ECC protected.

The PL includes block RAM and UltraRAM memory cores scattered throughout the array, which
include ECC bits on 64 byte data segments.

The last group of RAMs are scattered in various blocks for buffers, FIFOs, and caches. The RAM
arrays include:

• 256 KB OCM

• 384 KB PPU RAM

• 128 KB PMC RAM

• 4 KB block RAM in PL

• 32 KB UltraRAM in PL

• Miscellaneous buffers, FIFOs, queues, and caches

The embedded memories are summarized with additional documentation references in the
Section XI: Memory section of the TRM.

Test and Debug
Test and debug are divided into two sections:

• Integrated Debug

• CoreSight Debug

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=48

Integrated Debug

The integrated debug resides in the PMC and includes the test access port (TAP) controller, the
Arm® debug access port (DAP) controller, and the debug packet controller (DPC). The PMC TAP
controller supports PL configuration, ChipScope™ debug, and JTAG boundary-scan operations.
The Arm DAP controller supports the Arm CoreSight™ debug and trace. The DPC is part of the
high-speed debug port (HSDP) and allows access to all debug resources including Arm CoreSight
debug and trace and ChipScope™.

CoreSight Debug

The CoreSight debug environment includes intrusive and non-intrusive interfaces into the
processing system (PS) and programmable logic (PL). The debug features provide heterogeneous
software debug between the RPU, APU, and PL. CoreSight attaches to the debug hooks in the
RPU and APU plus an interface to the PL for additional processors in a chip-wide heterogeneous
system.

Integrated Hardware Options
The Versal™ ACAP includes integrated hardware options. These are components located in the
LPD and PL power domains and include connections to the PL fabric.

Note: The options for each device are detailed in the Versal Architecture and Product Data Sheet: Overview
(DS950).

The integrated hardware options are shown in the following table.

Table 2: Integrated Hardware Options

Integrated Hardware Acronym Power
Domain

AI Engine AIE PL

4 MB Accelerator RAM: XRAM Memory XRAM LPD

Coherency for PCIe Module with CCIX Cache Coherency CPM4 PL

Coherency for PCIe® with CXL Cache Coherency CPM5 LPD

AI Engine
The AI Engine includes both engine and array interface tiles. AI Engine tile contain a high-
performance vector based single instruction multiple data (SIMD) processor with integrated
memory and interconnect ports for streaming, configuration, and debug. The array interface tile
connects the AI Engine to the NoC and the PL.

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=49

The AI Engine is integrated into the Versal ACAP AI Core Series. For an introduction, see Xilinx AI
Engine and Their Applications (WP506). The AI Engine hardware descriptions are in the Versal
ACAP AI Engine Architecture Manual (AM009).

Accelerator RAM
The 4 MB accelerator RAM (XRAM), when present in the device, is located in the low-power
domain (LPD) of the PS. The XRAM includes 1 port from the OCM switch in the LPD. The XRAM
also includes 3 ports from the PL. Each port includes a Xilinx memory protection unit (XMPU).

• 4 MB XRAM

Coherency for PCIe Module
The coherent for PCIe module (CPM) enables PL-instantiated processors to share memory with
an external system processor attached via PL I/O pins.

The Versal devices define two versions of the coherent blocks for CPM. The implementation
depends on the device series.

• Prime Series CPM4 with the Cache Coherent Interconnect for Accelerators (CCIX)

• Premium Series CPM5 with the compute express link (CXL)

Note: Not all devices within a series includes a CPM.

For more information about the CPMs, see the Versal Architecture and Product Data Sheet:
Overview (DS950).

CPM4

The Cache Coherent Interconnect for Accelerators (CCIX) block is coupled with two PCIe®

blocks, a DMA unit, and an L2 cache to create the CPM4. The CPM4 includes a 1 MB CPM L2-
cache.

For more information on the CPM4, see the Versal ACAP CPM CCIX Architecture Manual (AM016).

Integrated Peripheral Options
The Versal™ ACAP includes integrated peripheral options. These components are located in the
PL power domain and attach to the system via PL fabric.

Note: The existence of a peripheral and the number of instances in a device are detailed in the Versal
Architecture and Product Data Sheet: Overview (DS950).

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=50

The integrated peripheral options are shown in the following table.

Table 3: Integrated Peripheral Options

Integrated
Peripheral Acronym Power

Domain
Device Series

AI Core Prime Premium
100G Multirate Ethernet
MAC MRMAC PL 1 to 4 1 to 6 2 to 8

600G Channelized
Multirate Ethernet DCMAC PL ~ ~ 1 to 8

600G Interlaken with
FEC ILKN PL ~ ~ 0 to 3

400G High-Speed
Crypto Engine HSC PL ~ ~ 1 to 5

GTM transceivers GTM PL ~ 0 to 40 10 to 70

100G Multirate Ethernet MAC
The multirate Ethernet MAC (MRMAC) provides high-performance, low latency Ethernet ports
supporting a wide range of customization and statistics gathering. Supported configurations are
1 x 100GE, 2 x 50GE, 1 x 40GE, 4 x 25GE, and 4 x 10GE.

The MRMAC supports the following FECs defined and required by IEEE standards:

• Clause 91 RS(528, 514) KR4 FEC, for 25/50/100GE NRZ support

• Clause 91 RS(544, 514) KP4 FEC for 50/100GE PAM4 support

• Clause 74 FEC, for 10/25/40/50GE low-latency support

The MRMAC has a rich set of bypass modes to enable access to FEC-only mode (for custom
protocols) and FEC+PCS (for protocol testers).

The MRMAC also supports a new high-precision timestamping feature to enable sub-
nanosecond accuracy on IEEE Std 1588 timestamps. This provides hardware support for new
IEEE Std 1588-based time-sensitive networks (TSN), as well as the next generation Ethernet-
based wireless fronthaul protocol (eCPRI).

The MRMAC controller is described in the Versal Devices Integrated 100G Multirate Ethernet MAC
(MRMAC) LogiCORE IP Product Guide (PG314).

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 51Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mrmac;v=latest;d=pg314-versal-mrmac.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=51

600G Channelized Multirate Ethernet
The 600G channelized multirate Ethernet subsystem (DCMAC) provides up to 600G of Ethernet
bandwidth that can be configured for various rates including 1x400GE, 3x200GE, and 6x100GE.
The DCMAC handles all protocol-related functions of an Ethernet MAC, PCS, and FEC, including
handshaking, synchronizing, and error checking. It also provides a segmented AXI4-Stream
interface for packet data and an AXI4-Lite interface for statistics and management.

The DCMAC can be configured to include forward error correction (FEC) capability, supporting
Clause 91 RS(528, 514) KR4 FEC, Clause 91 RS(544, 514) KP4 FEC, Clause 119 RS(544, 514)
KP4 FEC, and Clause 134 RS(544, 514) FEC.

The DCMAC flexible interface (FLEXIF) supports several operating modes including OTN, FlexE,
and PCS modes.

600G Interlaken with FEC
The integrated 600G Interlaken (ILKN) core with FEC supports channelized interfaces operating
up to 600 Gb/s with built-in flow control. Each 600G Interlaken core can be configured as
follows:

• 24 lanes (maximum) with 12.5G and 28.21G transceivers

• 12 lanes (maximum) with 56.42G transceivers

The flexible AXI4-Stream user interface is configurable in width from 2048b to 512b. Pairs of
lanes share 100G RS(544, 514) FEC and can support FEC-only mode.

400G High-Speed Crypto Engine
The 400G high-speed cryptography (HSC) engine implements an AES-GCM-256/128 engine that
provides up to 400 Gb/s of bulk encryption capability on up to 40 channels that can be
connected to the DCMAC. Each HSC engine supports both MACSec and IPSec at up to 400 Gb/s
configurable as 1x400G, 2x200G, or 4x100G channels with up to 128 source addresses (SA) per
100G.

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=52

Example Physical Layout
In the physical layout, the NoC interconnect and the PL dominate the device. The NoC structure
forms a grid in the PL with gigabit I/O transceivers placed along the edges of the perimeter. The
entire PMC and PS subsystems are located together in a corner of the device. The DDR memory
controllers are located along the edge of the device with the XPIO banks. The AI Engine array,
when present, is grouped together along an edge of the device with access to the NoC and the
PL.

The Versal™ ACAP has a large number of devices with many scalable PL layouts and I/O
structures.

IMPORTANT! The following figure is an example representation. Some layouts are similar while others can
be significantly different. The figure does not reflect a specific device. The number of I/O cells and NoC
structures varies by device. This is an illustrative chip layout only.

Note: Not all features are included on a given device. For a complete list of features on a per-device basis,
see the Versal Architecture and Product Data Sheet: Overview (DS950).

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=53

Figure 3: Example Physical Layout Representation

PMC

XPIO
DDR Memory Controller DDR Memory Controller

GT

GT

GT

GT

GT

GT

GT

GT

GT

GT

GT

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

AIE

GTY

GTY

GTY

GTY

XP
IP

E

PL

PL N
oC PL PL

BPD

N
oC

XRAM CPM4

FPDLPD

PS

NoC

NoC

PMC
PL
LPD
FPD
SPD

Power Domains

CPM5
Series

Options

X21771-111920

Section II: Hardware Architecture
Chapter 5: Device Components

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=54

Chapter 6

Processing System Architecture
The Versal ACAP Technical Reference Manual (AM011) provides the details for the PMC and the
PS. These are included in the control, interfaces, and processing system (CIPS) IP, which is
configured by the CIPS wizard in the Vivado® tools.

The AI Engine and the adaptable components in the programmable logic (PL) greatly expand the
capabilities and performance of the Versal device. A high-level description of the entire device is
provided in the Versal Device chapter.

The PS provides both real-time and application multicore processors as a major computational
and control center. All transactions started in the PMC and PS can be routed to the NoC
interconnect for access to the DDR memory controllers and other parts of the device.

The PS includes two multi-core processors:

• APU: Arm-based Cortex®-A72 processor cores in the PS FPD, Application Processing Unit

• RPU: Arm-based Cortex-R5F processor cores in the PS LPD, Real-time Processing Unit

PS Interconnect Diagram
The following figure shows the system interconnect details for the PS LPD and FPD. The PMC
and optional CPM are also included. Additional block diagrams include:

• LPD Block Diagram

• FPD Block Diagram

• For CPM, see Versal ACAP CPM CCIX Architecture Manual (AM016)

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=55

Figure 4: PS Interconnect Diagram

Snoop

FPD_AXI_PL

NoC

FPD
Peripherals

APU GIC
SMMU

DBG

TBU
3

APU
MPCore

ACPPL_ACP_FPD

PL_ACE_FPD

L2 cache

DDR Memory
Controller

RPU
MPCore

TCMs

PL_AXI_LPD

LPD_AXI_PL

RPU Registers

IOP Source
Switch

to FPD

OCM

from LPD

PL_ACELITE_FPD

AXI4-S for
TBU updates

SMMU TCU

GIC
Interrupt

GIC
Interrupt

MSI

CFI – PL Config

NPI
Interfaces

AXI

TBU
2

NSU 2

TBU
1

NSU 3

TBU
0

FPD PCIe
switch

DPC

AXI4

OCM

Switch

LPD

Main
Switch

FPD
Main
Switch

TBU
6

PL_ADDR_FPD

PL

XRAM

CPM4
CPM5

PMC
FPD CCI

2 43 5

ACE 5

ACE-Lite 3

DVM

ACE-Lite 2

ACE-Lite 0ACE 4

AXI 0

AXI 1

AXI4

AXI4

CFU

Device option

PPU
w/RAM

RCU

Pins

LPD_DMA

PSM

GEM

USB 2.0

CPM Registers
NoC

Peripherals

Flash

FPD_ADDR_PL

AXI4

AXI4
SMMU TBU 0

and
CCI port

Boot

Peripherals

Snoop

cache

Pins

Pins

128-bit

64-bit

32-bit

Data Bus Types

AXI4-Stream

PMC
PL
LPD
FPD
SPD

Power Domains XPPU

XMPU

I/O Interface

Protection Units

TBU

SMMU Translation
Buffer Units

GT I/O Interface

IOP
Switch

PMC RAM SBI

Main
Switch

Security

Services

Debug

Look-up

64-bit control

128-bit data

DDR Memory
Controller

TBU
5

NSU 0

PL_AXI_FPD

CoreSight
ETR

AXI4

NSU 1

TBU
4

APU
GIC

PL

CPM_PS
switch

PS_CPM
switch

PL
Fabric

CHI

AXI4-S

GTYI/O

XP
ip

e

Device option

MSI
switch

Dual PCIe controllers
with DMA and Cache Coherent
Interconnect for PL, PS, and NoC

LPD
Egress
Switch

L2 cache

Tr
an

sa
ct

io
n

Re
qu

es
ts

NMU 1 NMU 0

ACE-Lite 1

Address
Translation
(PLAT)

FPD Aux
Switch

FPD APB
Switch

APB

AXI

X21693-051321

NoC

NoC

IOP
Switch

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=56

Full-power Domain
The full-power domain (FPD) includes the Cortex-A72 application processor MPCore (APU) with
an L2 cache attached to a Cache Coherent Interconnect (CCI). The transactions from system
masters outside of the APU can be routed to the system memory management unit (SMMU) to
allow them access to APU shared memory and the APU L2-cache.

Block Diagram
The FPD interconnect is shown in the following figure.

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=57

Figure 5: FPD Interconnect Block Diagram

Snoop Control Unit (SCU)

L2 Cache Memory

CCI

APU0
APU1

APU MPCore

ACE 5

PL_ACP_FPD

PL_ACELITE_FPD

FPD_AXI_PL

PMC

OCM

ACE 4

CoreSight
Trace
TS

System Peripheral
Interrupts

Private Peripheral
Interrupts

LPD
Main Switch

CPM-PS
Switches

FPD
Main

Switch

PL_ACE_FPD

GIC Interrupt
Controller

Software Generated
Interrupts

Interrupt Control

Cortex-A72

FPU, NEON, Crypto
48 KB

L1 iCache
32 KB

L1 dCache
Debug,
Timers

TBU
0

TBU
3

TBU
2

XRAM

TBU
5

ACE-lite 3

ACE-lite 0

AXI 1 2 3 4 5

AXI 0

ACE-lite 1 ACE-lite 2

NMU0 NMU1 NSU1NSU2
NoC

NSU3 0 1 2 3
PL_AXI_FPD

Snoop
Snoop

NMU

128-bit
Bus Size

PMC
PL
LPD
FPD
SPD

Power Domains

Transaction
Request

GIC (MSI)

CoreSight
NSU0

FPD Programming Interfaces
for the Register Modules

DPC

SMMU TCU Co
nf

in
ed

 P
at

h

TBU
0-6

SMMU
Translation

Buffers

TBU
4

TBU
1

APU
GIC

PL

PL

PL Address
Translation
(PLAT)

TBU 6

PL

PL

PL

PL

AXI

PL

X21694-061221

APU Processor Features
The APU is a dual-core processor that is based on the Arm® superscalar, out-of-order execution
Arm Cortex-A72 core.

The 64-bit Cortex-A72 cores are based on Arm-v8A architecture that supports hardware
virtualization. Each A72 core includes:

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=58

• 48 KB of L1 instruction cache with parity protection

• 32 KB of L1 data cache with ECC protection

• NEON SIMD pipeline

• Floating point unit (FPU): single and double precision

• Embedded trace microcell (ETM) to support real-time debug and trace. The ETM
communicates with the Arm CoreSight™ debug system.

The APU is located in the FPD. The APU is clocked independently from the FPD blocks and can
be reset independently or with the FPD power domain.

APU Interrupt Controller
To manage system interrupts, the APU includes the GIC interrupt controller, which is based on
the Arm GIC-500 generic interrupt controller and is compatible with the Arm GIC v3
architecture.

System Memory Management Unit
The system memory management unit (SMMU) supports memory virtualization for processors
and other transaction hosts. The main functions of the SMMU include:

• Address translation

• Transaction security state control

• Memory protection using page table look-ups

These functions are performed with a combination of the seven translation buffer units (TBU 0
to 6). Four of these are in the path of incoming AXI interfaces outside of the FPD to the CCI. The
translation and protection tables that are cached in the TBU are updated by the SMMU
translation control unit (TCU).

Cache Coherent Interconnect
The Cache Coherent Interconnect (CCI) includes ACE ports to provide full APU L2-cache
coherency to a PL master. The two ACE ports can snoop the caches of the two attached
processors.

Other system masters connect to the ACE-Lite slave ports on the CCI to optionally provide I/O
coherency of their transactions with the APU L2 cache (including the RPU but excluding the LPD
DMA unit).

See Cache Coherent Interconnect chapter for more information.

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=59

Low-power Domain
The PS low-power domain (LPD) includes the Cortex-R5F MPCore processors with their tightly
coupled memories (TCM), OCM memory, I/O peripherals (IOP), and the PSM controller for PS
power control. The RPU also has a direct interconnect to the accelerator RAM (XRAM, if present)
that can be partitioned and shared with logic in the PL.

Block Diagram
The LPD includes the RPU MPCore, OCM, PSM controller, and the I/O peripherals. The following
figure shows a block diagram of the LPD.

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=60

Figure 6: LPD Block Diagram

RPU MPCore

CoreSight
Trace

Time Stamp

OCM Memory
64 KB

All RAMs
are ECC
protected

Cortex-R5F
32 KB

L1 iCache

32 KB
L1 dCache32 KB, TCM-B1

32 KB, TCM-B0

64 KB, TCM-A

All RAMs are
ECC protected

Cortex-R5F

Interrupt Control

IOP
AXI

Switch

FPD Main
Switch

LPD_AXI_FPD

PL_AXI_LPD

PSM

Power Island,
Reset, and Clock
Control

Service
Requests

DDR Memory

To FPD SMMU:

GIC
Interrupt

Controller

LPD_AXI_PL

USB
2.0

RPU0

RPU1
32 KB

L1 iCache

32 KB
L1 dCache32 KB, TCM-B1

32 KB, TCM-B0

64 KB, TCM-A

(Dual Processor Mode Shown)

Switch

Private Peripheral
Interrupts

System Peripheral
Interrupts

LPD MIO,
EMIO PMC MIO

XRAM
Memory

PL Fabric

FPD Main
Switch

SW

OCM Switch
LPD

Main Switch

NoC

IOP
APB

Switch

PMC

Programing
Interfaces

USB, GEM

IPI
LPD_DMA
OCM, XRAM
Clocks/Resets
SLCRs

PMC/LPD MIO
EMIO

CANx
LPD_I2Cx
SPIx, TTCx
UARTx
LPD_SWDT

I/O
Peripherals

LPD
DMA

RPU0, RPU1
PSM
LPD

All RAMs are
ECC

protected

128-bit
64-bit

32-bit

Bus Types

PMC
PL
LPD
FPD
SPD

Power Domains

XPPU

XMPU

I/O Interface

Protection Units

Tr
an

sa
ct

io
n

Re
qu

es
ts

64 KB
64 KB
64 KB

Ethernet
10/100/1000

(GEM)

ULPI

RGMII,
MII/GMII

Programing
Interfaces

128-bit Data 64-bit Control

Device
Option

PL Fabric

X21696-051121

Note: For details on the interconnect channels and ports, see the figures in the LPD and OCM Interconnect
and LPD IOP Interconnect sections.

RPU Processor
The real-time processing unit (RPU) is a dual-core processor. The RPU is based on the Arm
Cortex-R5F MPCore processor with its out-of-order execution CPU that is coupled with a single/
double precision floating point unit (FPU). The processor also includes an interrupt controller to
receive system interrupts.

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=61

The RPU can be used for applications requiring functional safety and provides deterministic code
execution times while accessing its tightly coupled memories (TCM). The RPU can be configured
in a dual CPU performance mode, or in a safety lock-step mode.

The RPU MPCore features include:

• Two 32-bit Cortex-R5F cores based on Arm v7-R architecture with FPU

• TCM memory with single cycle read access and ECC protection

• Generic interrupt controller (GIC) based on the Arm GIC-390

• Interfaces to:

○ OCM interconnect switch

○ Accelerator RAM (when present)

○ I/O peripherals

○ AXI interfaces connected directly to the PL and APU

Each Cortex-R5F core includes:

• 32 KB L1 instruction cache with ECC

• 32 KB L1 data cache with ECC

• FPU: single and double precision

• Embedded trace microcell (ETM) to support real-time debug and trace; ETM communicates
with the Arm CoreSight™ debug system

Each RPU processor can be individually configured for inter-processor interrupts (IPI). The RPU
processors have a common power island. The TCM are divided into four banks, each with its own
power island.

The RPU is documented in Real-time Processing Unit.

Tightly Coupled Memory

The tightly coupled memory (TCM) provides a deterministic, low-latency memory space for the
RPU. There are multiple memory banks. The TCM banks are protected by ECC.

The distribution of TCM memory depends on the processor mode:

• Dual-processor, performance mode: each processor has 128 KB of TCM memory

• Lock-step, safety mode: TCMs are combined for a total of 256 KB of memory

The TCMs are described in Tightly Coupled Memories.

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=62

OCM Switch
The OCM switch is optimized to service RPU and APU requests directed to the OCM and
accelerator RAM (XRAM) memories.

Register Programming Interfaces
The programming interfaces include AXI and APB programming interfaces. These are described
in the Programming Interfaces chapter.

Section II: Hardware Architecture
Chapter 6: Processing System Architecture

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=63

Chapter 7

Platform Management Controller
The Versal™ ACAP includes a centralized platform management controller (PMC) that is included
in all devices. The PMC has a power domain that is independent from both the PL and the PS. An
overview of the PMC blocks, I/O, and interconnect are described in this chapter.

For details on boot, configuration, and PMC services, see Section III: Platform Boot, Control, and
Status. For details on PMC units, see Section VII: Embedded Processor, Configuration, and
Security Units.

Primary Functions

The PMC primary functions include:

• Hardware reset control circuits and sequencers

• Initialization of the device after a power-on reset (POR) and system reset (SRST)

• Boot and configuration from a supported boot device

• Configure the adaptable engines using the configuration frame interface (CFI)

• Performs security core functions that supports encryption and decryption, authentication, and
key management

• Provides test and debug infrastructure to support boundary-scan and Arm® CoreSight™ trace
and debug

• Monitors system activity and responds to security and functional safety events

• Releases the PS from reset and provides system power and error management services

Features Supporting System Start-up to Life Cycle Management

The PMC features that support system start-up to life cycle management include:

• Controllers and monitors

○ ROM code unit (RCU) triple modular redundant MicroBlaze™ processor and dedicated RCU
BootROM for initial device boot and tamper monitoring

○ Platform processing unit (PPU) triple modular redundant MicroBlaze processor and
dedicated 384 KB PPU RAM for boot loader and platform management software.

○ System monitor (SYSMON) with temperature and power supply monitoring

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=64

• I/O features

○ One bank of PMC dedicated I/O pins for mode, ref_clk, JTAG, RTC, reset, and status

○ Two banks of PMC MIO for flash controllers, I2C, GPIO, and SelectMAP

○ Peripheral controllers in the PMC:

- Quad SPI controller

- Octal SPI controller

- Two SD/eMMC controllers

- I2C controller

- GPIO controller

• Memory and register features

○ 128 KB PMC RAM, used by software for PLM data processing

○ Global registers capture general-purpose, power, and error conditions

○ Two PMC DMAs transfer data within the system for configuration and processing

• Clock and time keeping features

○ Clock and reset PMC controllers handles initial steps on reset

○ Two PMC phase-locked loops (PLLs), the PMC PLL (PPLL) and NoC PLL (NPLL), generate
the clock for flash interfaces and controllers. The NPLL also generates the clock for the
NoC.

○ PMC delay-locked loop (DLL) for SD controller

○ Internal ring oscillator clock (PMC_IRO_CLK) provides the clock to the PMC

○ Real-time clock (RTC) time keeping

• Test and debug features

○ Debug packet controller (DPC) processes data packets for the high-speed debug port
(HSDP) solution

○ Single TAP controller supports boundary-scan and Xilinx JTAG operations for configuration

○ Single DAP controller supports Arm CoreSight™ trace and debug

• Security features and accelerators

○ Xilinx memory protection unit (PMC_XMPU) for slave boot interface and PMC RAM

○ Xilinx peripheral protection units (PMC_XPPU) for I/O peripheral register modules, I/O
peripheral memory space, and CFU

○ Xilinx peripheral protection units (PMC_NPI_XPPU) for NPI programming interface

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=65

○ Physical unclonable function (PUF) generates two device unique signatures per die. One
signature is used for the key encryption key (KEK) and one signature is used as an
identification value.

○ Battery-backed RAM (BBRAM) supports security key storage

○ eFUSE non-volatile memory supports security key storage

○ DNA unique identifier provides product traceability

○ Xilinx hardware cryptographic accelerators

- True random number generator (TRNG) generates cryptographically strong random
numbers

- RSA and elliptic curve digital signature algorithm (ECDSA) public-key cryptography
enables authentication

- AES-GCM for symmetric key cryptography enables encryption and decryption

- SHA3-384 secure hash is used with the asymmetric algorithms to authenticate the
programming device image

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=66

Block Diagram
The PMC functional block diagram identifies the PMC blocks and underlying units associated
with each primary function.

Figure 7: PMC Functional Block Diagram

LPD Switch

PMC Dedicated I/O Pins

POR_B
REF_CLK
MODE [3:0]
DONE
PUDC_B
ERROR_OUT
RTC_PADI
RTC_PADO
JTAG (TCK, TDI, TDO, TMS)

AXI

Crystal

PSM
 PS Platform

Control

AXI

Battery

Platform Processing Unit

Executes PLM for boot image processing,
system configuration, management and

monitoring services

Integrated Debug

Boundary-scan, HSDP, ChipScope, Arm
CoreSight Trace and debug solutions

Resets and Clocks

Initialization and reset configuration
control, PMC internal clock

Global Registers
General purpose, power control, and error

management registers

Real-Time Clock
Battery-backed time keeping,

alarm and interrupt

Device and Data Security

Encryption/decryption, eFUSE, TRNG,
authentication, battery-backed RAM

Configuration

CFU for PL configuration, ports
to CFI, NPI, and NoC buses.

NPI host to register modules for
PLLs, GTs, and integrated peripherals

Platform Management Controller

PMC RAM
128 KB RAM data storage for PLM

PPU RAM PPU
MicroBlaze

CFU

NPI Host

Arm DAP TAP DPC

PMC DMAs

Se
cu

re
 S

tr
ea

m

Sw
itc

h

RSA and
ECDSA

TRNG

Slave Boot
Interface

BBRAM

AES-GCMeFUSE

SHA3-384

Clock
Controller

PLLs

Reset
Controller

PMC_IRO_CLK

PMC
PL
LPD
FPD
SPD

Power Domains

DDR Memory
Controllers

CFI

NPI

PL
Configuration

NPI
Programming

Interfaces

ROM Code Unit

Executes BootROM for device
initialization, boot header processing, and

PUF

RCU ROM

PUF
RCU

MicroBlaze

LPD
IOP

FPD w/APU

PMC GPIO
PMC_I2C

SelectMAP

SD_eMMC1

SD_eMMC0

Octal SPI
Quad SPI

PM
C

IO
P

Sw
itc

h

Bank 0

Bank 1

PMC
MIO
Pins

EMIO

PMC I/O Peripherals

LPD
System Monitor

Internal voltage, temperature,
and external channel activitySysMon_I2C

LPD I/O Perpherals

X23879-031721

NoC Interconnect

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=67

Functionality
The PMC consists of control units and functional groups classified as blocks. The RCU and the
PPU provide the central control and manage the PMC blocks.

ROM Code Unit (RCU)

The RCU includes a MicroBlaze™ triple modular redundant system that exclusively executes the
BootROM. The RCU is the first processing unit out of reset during boot and performs the device
initialization, boot interface validation, and the loading of the platform loader and manager (PLM)
into the PPU RAM. The RCU releases the PPU from reset and is responsible for PUF
management.

Platform Processing Unit (PPU)

The PPU includes a MicroBlaze triple modular redundant system that executes the platform
loader and manager (PLM) software loaded into the PPU RAM by the RCU during hardware boot.
The PLM is responsible for device boot and configuration and post-boot services. See Platform
Processing Unit for more information.

Interconnect

The interconnect includes the main switch, the IOP switch, and other interconnects for the NPI
and CFI programming interfaces. The RCU and PPU are masters on the main switch. The
architecture allows PMC masters to access peripherals in the LPD. It can allow processors in
other power domains to access PMC peripherals.

PMC RAM

The PMC RAM is a 128 KB RAM that is used by the PLM. This is in addition to the 384 KB PPU
RAM in the PPU.

I/O Peripherals

The PMC I/O peripheral (IOP) block is a collection of peripheral controllers for initial boot and
board control. The PMC IOP controllers on the PMC power domain include SD/eMMC, quad SPI,
octal SPI, I2C, and two GPIOs. See the Section XII: I/O Peripheral Controllers and the Section
XIII: Flash Memory Controllers for more information.

Integrated Debug

The PMC integrated debug block includes the TAP controller, Arm DAP controller, and debug
packet controller (DPC). This block supports basic device JTAG operations, ChipScope debug
solution, Arm® CoreSight™ trace and debug, and the high-speed debug solution. See Section XV:
Test and Debug for more information.

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=68

Run-time Service Request Registers

There are several sets of run-time service request registers. These are written to by system
software to interrupt the platform loader and manager (PLM) running in the PPU processor. See
Service Requests to PLM for more information.

System Error Accumulator

The system error accumulator enables system errors to generate an event. Events include
asserting the ERROR_OUT pin, issuing a system or a POR, or asserting an interrupt to the PLM
on PPU or the PSM firmware. See System Error Accumulators for more information.

System Interrupts

The PMC is a general interrupt controller (GIC) proxy for system interrupts. The PMC and PSM
global register module includes interrupt status and mask registers for the 150+ system
interrupts. See System Interrupts for more information.

Inter-processor Interrupts

The PMC PPU can use the inter-processor interrupt (IPI) mechanism to send and receive
interrupts from other processors. Each interrupt can include a short, 32 byte message. See Inter-
Processor Interrupts for more information.

Resets and Clocks

The reset and clock functionality includes power-on reset and PLL-based clock sources. The PMC
manages the clock hierarchy. At start-up, the reset controller ensures that the PMC (VCC_PMC,
VCCAUX_PMC, VCCO_503) voltage rails are within their minimum operating range. The PMC
clock controller provides programming registers for the PMC and NoC PLLs (PPLL, NPLL) and the
clock generators for the reference clocks routed to the blocks. The PMC low-level reset
functionality is described in Resets. Clocking is described in Clocks.

Real-Time Clock

The RTC maintains an accurate time base for system and application software when the device is
Off. The RTC has an alarm setting and can generate periodic interrupts to the PMC and other
processors within the device. The real-time clock (RTC) operates on the PMC auxiliary power
domain when the device is On, or operates on the battery power domain when the device is off.
The alarm feature can be used for user-level system services. See Real-Time Clock for more
information.

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=69

System Monitor

The System Monitor (SYSMON) resides in the PMC and monitors operating conditions on the
device. The SYSMON can access internal sensors for monitoring internal power supplies and
temperature. MIO or high-density I/O (HDIO) pins can be used by the SYSMON for measuring
voltage levels external to the device. The results captured by the SYSMON are stored in a
register map that is accessible through platform management controller resources. See the Versal
ACAP System Monitor Architecture Manual (AM006) for more information.

Device and Data Security

The PMC device and data security block supports secure boot and security management. This
block includes the Xilinx hardware cryptographic accelerators, secure stream switch (SSS), the
PMC DMAs, BBRAM controller, eFUSE controller, and the slave boot interface (SBI). Operations
are described in Security Management. Functionality is described in Section VII: Embedded
Processor, Configuration, and Security Units.

Configuration

The configuration block consists of the configuration frame unit (CFU) and the configuration
frame interface (CFI) port. In addition to the PL configuration CFU interface, the integrated
hardware is configured with AXI4 ports to the NoC and NPI.

The CFU is a bridge between the PMC main switch and the CFI, and handles the transfer of
configuration data to the programmable logic configuration RAM (CRAM).

I/O Signals
The PMC top-level I/O connections facilitate system management. Each Versal™ ACAP has 67
pins associated with the PMC power domain. To support core device functions and status, 15 of
these pins are dedicated I/O.

The remaining 52 pins are PMC multiplexed I/O (MIO) that support the flash peripherals used to
boot the device and I/O peripherals used to provide board control functions. The PMC MIO pins
are split across bank 0 (Bank_500) and bank 1 (Bank_501). Each MIO bank contains 26 I/Os.

The PMC SDIO flash controllers and I/O peripherals can use the PL HDIO instead of the PMC
MIO. When the PMC peripherals use the PL HDIO they are called extended MIO (EMIO). EMIO
require the PMC, LPD, and PL power domains to be powered because the PMC EMIO signals
route through the LPD.

For more information on the PMC I/O, see Section V: Signals, Interfaces, Pins, and Controls.

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 70Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=70

Figure 8: PMC I/O

Platform Management
Controller

PMC
MIO[51:0]

REF_CLK

MODE[3:0]

DONEPOR_B

ERROR_OUT

EMIO

TDOTCK

TMS

TDI

RTC_PADORTC_PADI

PUDC_B

X21500-102020

PMC Interconnect
The PMC interconnect includes two large AXI switches with several memory protection units.
The PMC also includes an AXI4-Stream switch with channels the SBI, DMA, AES, and SHA3. The
DPC and JTAG integrated debug include several different interfaces and special-use channels.

AXI Switches

The PMC interconnect includes the following switches:

• PMC main switch, including the Aux and APB switches

• PMC IOP switch

Memory Protection Units

The PMC interconnect provides access to protection units for the following:

• Xilinx memory protection unit (XMPU) for the PMC_RAM

• NPI host controller access protection unit (XPPU_NPI) dedicated to the NPI host bus
controller

• XPPU controller used for the PMC peripheral interfaces

For more information, see Xilinx Memory Protection Unit and Xilinx Peripheral Protection Unit.

Secure Stream Switch

Secure stream switch (SSS) is based on the AXI4-Stream protocol.

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=71

• Links security accelerators, slave boot interface (SBI), and PMC DMAs

DPC Channels

• SBI enables the JTAG or SelectMAP interface

• AXI 128-bit interface link to the PS and the NoC, with conversion of the NoC protocol
handled outside of the PMC

• AXI 32-bit controller port that links to the NPI host controller for the NPI programming
interfaces

Configuration Frame Interface

Configuration frame interface (CFI) is a dedicated high-bandwidth 128-bit bus to the PL.

• Configuration

• Readback

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=72

Block Diagram

The PMC interconnect is shown in the following figure.

Figure 9: PMC Interconnect Block Diagram

PPU

RCU
ROM code

CFU

Peripherals and
Register Modules

APB
Switch

Clocks, Resets
SysMon
CoreSight
Global Registers
PPU RAM ctrl
PMC RAM ctrl

APB
Programming
Interface

NoC
DDR Memory Controller
AI Engine
Others in PL and SPD

NPI
Programming
Interface

JTAG, SBI, CFU

PMC DMA0, 1
SHA3-384
AES-GCM

TRNG

eFUSE

BBRAM

RSA/ECDSA

to LPD

to NoC

PPU RAM

NPI
Controller

RTC
SD_eMMC0
SD_eMMC1

Octal SPI

Quad SPI

Flash Memory
Controllers

PMC GPIO

PMC I2C

JTAG

DPC

PMC RAM
(For PLM Use)

from LPD

PMC MIO
Muliplexer

SelectMAP Interface

PMC

Main

Switch

from NoC

Aux
Switch

Register Modules

Streaming

Integrated Debug

IOP
Switch

DAP

TAP

CoreSight

SBI

PMC Dedicated
I/O Pins

Aurora

I/O Peripheral
Controllers

SLCR
SLCR_SECURE

AES-GCM

SHA3-384

PMC DMA0

PMC DMA1Se
cu

re
 S

tr
ea

m
 S

w
itc

h

CFI

Register Modules

Bank 0

Bank 1

PMC MIO
Pins

EMIO

LPD EMIO

LPD

PL

PL

128-bit

64-bit

32-bit

Bus Types

AXI4-Stream

PMC
PL
LPD
SPD
BPD

Power Domains

XPPU XMPU I/O Interface

Protection Units

Tr
an

sa
ct

io
n

Re
qu

es
t

Programming
Interface

IRQ System
Interrupts

PL
Configuration

LPD I/O
Peripherals

AXI

AXI

AXI

PLM
Firmware

X22535-111820

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=73

Comparison to Previous Generation Xilinx
Devices

The Versal ACAP new PMC centralized integration provides support for basic boot and
configuration, Dynamic Function eXchange (DFX), power management, and reliability and safety
functions from a single controller. The PMC bus architecture enables significantly faster
configuration and readback performance when compared with previous architectures. The
following table summarizes the boot mode differences between architectures.

Table 4: Boot Mode Comparison

Mode Virtex UltraScale+ or
Kintex UltraScale+ FPGA

Zynq UltraScale+ MPSoC
or Zynq UltraScale+ RFSoC Versal ACAP

JTAG Yes Yes Yes

OSPI – – Yes

QSPI32 Yes Yes Yes

QSPI24 Yes Yes Yes

SelectMAP Yes – Yes1

eMMC1 (4.51) – Yes Yes

SD1 (3.0) – Yes Yes

SD1 (2.0) – Yes Yes

SD0 (3.0) – – Yes

SD0 (2.0) – Yes –

PJTAG_0 – – –

PJTAG_1 – Yes –

Serial Yes – –

BPI Yes – Note 2

NAND – Yes Note 2

USB (2.0) – Yes –

Notes:
1. SelectMAP mode provides hardware flow control using a BUSY signal.
2. Octal SPI and eMMC1 modes supersede the BPI and NAND modes used in previous architectures. Octal SPI and

eMMC1 modes provide similar performance while reducing pin count.

Additional key differences from previous generations are listed:

• PMC has its own dedicated power domain. Unlike the Zynq UltraScale+ MPSoCPS CSU and
PMU, the Versal PMC RCU and PPU are decoupled from the PS or PL power domains.

• Configuration frame interface (CFI) bus is dedicated to accessing the configuration frames and
provides configuration and readback performance improvements. In conjunction with the
network on chip (NoC), it replaces the internal configuration access ports (ICAP, PCAP, and
MCAP) used in previous generations.

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=74

• NoC programming interface (NPI) provides register access for remote peripherals such as
gigabit transceivers and DDR memory.

• Octal SPI boot mode supports compatible octal SPI flash memory with DDR mode providing a
high-speed and low pin-count solution.

• SelectMAP boot mode loads configuration data and requires hardware flow control using a
BUSY signal.

• Single TAP located in the platform management controller.

• Single DNA identification accessible via JTAG or in the AXI register set. Versal ACAP does not
have a PL DNA or a corresponding PL DNA_PORT primitive.

• Internal configuration clock provides higher performance than prior generation.

• Debug packet controller (DPC) supports the high-speed debug port (HSDP) for processing
packets from interfaces including HSDP Aurora and PCIe controllers.

• Integrated system monitor in the platform management controller.

• Enhanced encryption and decryption for increased resistance to differential power attacks
(DPA).

• Two PUF outputs that are exclusively managed by the RCU, a unique readable device ID, and a
unique device key encryption key (KEK) for encrypt/decrypt.

• Enhanced authenticated JTAG (RSA/ECDSA) access via JTAG.

• True random number generator (TRNG), additional AES user keys, and ECDSA authentication
added for security applications.

• Connections from the gigabit transceivers, through the CPM and through LPD into the PMC
configuration.

• The legacy quad SPI (LQSPI) controller mode is not supported in the Versal ACAP.

• Execute-in-place (XIP) is not supported by Versal device boot modes.

• JTAG accessible internal private scan registers (with USER1-4 commands) are accessed with
the PS9 primitive through the control, interface, and processing system (CIPS) IP. The Versal
ACAP does not have a BSCANE2 primitive.

• The Xilinx soft error mitigation (XilSEM) library is a pre-configured and pre-verified solution to
detect and optionally correct soft errors in the configuration memory of Versal ACAPs.

Section II: Hardware Architecture
Chapter 7: Platform Management Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=75

Chapter 8

PS and PMC I/O Peripherals
The I/O peripheral controllers (IOP) are accessible via the local advanced peripheral bus (APB)
interconnect switches or the local AMBA high-performance bus (AHB) interconnect switch. In
most cases, their I/O signals are routed through the PS-LPD and PMC multiplexed I/O (MIO), or,
by default, to the extended MIO (EMIO) to the PL. For more information, see MIO-EMIO
Interface Routing Options. Some peripherals can serve as a primary boot device. See Boot Modes
for more information.

Low-Speed Peripherals

The low-speed peripheral controllers include:

• SPI Controller (two in LPD)

• I2C Controller (two LPD_I2Cx, one PMC_I2C, and one special purpose SYSMON_I2C)

• PMC GPIO Controller

○ Two banks to PMC MIO (52 channels, total)

○ Two banks to PL EMIO interface (64 channels, total)

• LPD GPIO Controller

○ One bank to the LPD MIO (26 channels)

○ One bank to PL EMIO interface (32 channels)

• UART SBSA Controller (two in LPD)

• CAN FD Controller (two in LPD)

For more information, see Section XII: I/O Peripheral Controllers.

High-Speed Peripherals

The high-speed peripheral controllers are located in the LPD and include:

• Gigabit Ethernet MAC (two)

○ RGMII via the PMC MIO or LPD MIO

○ MII/GMII via the PL EMIO

• USB 2.0 Controller (one controller; can be device, host, or DRD)

Section II: Hardware Architecture
Chapter 8: PS and PMC I/O Peripherals

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=76

○ ULPI is routed via the PMC MIO (not LPD MIO or EMIO)

For more information, see Section XII: I/O Peripheral Controllers.

Flash Memory Controllers

The flash memory controllers are located in the PMC and include:

• Quad SPI Controller

• Octal SPI Controller

• SD/eMMC Controllers (two in PMC)

Flash memory controllers can serve as primary boot devices. The options are listed in Boot
Modes.

Section II: Hardware Architecture
Chapter 8: PS and PMC I/O Peripherals

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=77

Chapter 9

Programmable Logic
The programmable logic (PL) is a scalable structure that provides the ability to create many
possible functions. The PL logic regions include DSP engines, configurable logic blocks, and two
types of RAM arrays. These are configured together to create almost any type of hardware
functionality including accelerators, processors, functional pipeline units, and peripherals. The PL
includes connections for the integrated hardware and peripherals, ports to the NoC interconnect,
access to CMOS and gigabit high-speed I/O, and interface channels to the PS.

The PL complements the functionality of the PS, AI Engine, and other integrated hardware to
improve application performance. The PL instantiates system functionality and provides
connectivity between the system and integrated hardware and peripherals.

The PMC and PS have many signal connections and bus interfaces to the PL. These are
summarized in the Boundary Interface Signals chapter.

PL Configuration

The connections and configuration of the PL elements are captured in the Vivado® design suite
and the Vitis™ unified software platform tool chain using a programmable device image (PDI).
The PDI contains PL configuration frames (CFRAME), which are sent by the PLM to the
configuration frame unit (CFU) for processing. The CFU interfaces to the PL via the configuration
frame interface (CFI). The PL can be configured during the boot process and can be re-configured
during normal system operation. The PL configuration can be read-back for debug and functional
safety applications. The CFU is described in Configuration Frame Unit and the CFI is described in
Configuration Frame Interface.

Building Blocks

The PL includes building blocks and provides several types of connections to many parts of the
device including several subsystems and I/O. The PL has AXI interfaces to the PS, CPM, AI
Engine, and the integrated controllers. The PL also has port interface signals and parameter
configuration inputs to the PS, PMC, and other parts of the system.

The PL building blocks include the DSP Engine, configurable logic block (CLB), Block RAM, and
UltraRAM integrated components. These components are surrounded by clocking structures and
wiring pathways. The PL makes connection between PS, CPM, PMC, NoC, AI Engine, GTs, XPIO
banks, high-density I/O (HDIO) buffers, and components instantiated within the PL.

The PL building blocks include:

Section II: Hardware Architecture
Chapter 9: Programmable Logic

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=78

• DSP Engine (intelligent)

• CLB (adaptable)

• Block RAM and UltraRAM (adaptable)

Additional Features

The PL also contains clocking structures and PLL-enabled clocks for the PL fabric and I/O. The PL
also includes connections to the Arm CoreSight™ debug hardware for data monitoring and
collection.

Tool Support

The Vivado tools provide a large library of complex functional components (microprocessors,
peripherals, filters, etc.) that can be instantiated and connected to create a design. Additionally, a
hardware description language can be used to describe specific functions in the design. The
Vivado tools then translate the design into the building blocks of the PL. The PL can be partially
or fully programmed during the boot start-up and as a service operation when the system is
operating.

Block Diagram
The PL building blocks and clock structures provide the foundation for instantiating functionality.
The PL is provided with port interface signals attached to nearly every part of the device.

The high-level PL perspective of the system is shown in the following figure.

Section II: Hardware Architecture
Chapter 9: Programmable Logic

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=79

Figure 10: PL System Perspective

128-bit

64-bit

32-bit

Bus Types

AXI4-Stream
PMC
PL
LPD
FPD
SPD

Power Domains

I/O Interface

Tr
an

sa
ct

io
n

Re
qu

es
ts

Application
Processing Unit
Arm Cortex-A72

Real-time
Processing Unit
Arm Cortex-R5F

Platform
Management

Controller

HDIO

ACE, ACP,
AXI-Lite
AXI

GTs

XPIO

CIPS

100G Enet

RPU APUPMC

DDR
Memory

Controller

CF
I

DDR
Memory

Controller

AI Engine

NoC Interconnect

PCIe Controllers
with DMA and

Coherency

CH
I

St
re

am
CPM

16x GTY

XPIPE

x16

LVCMOS

NPI

600G Enet 600G ILKN 400G Crypto

AXIAXI

GTM
GTY

XPIO

PL Config

PL
The PL includes multiple

 NoC channels

Block RAM

EMIO and other Port Signals

Routing

PCIe Interfaces

Clocking

UltraRAM

DSP Engines CLB

PL PL

X22476-112120

In addition to the PL interconnect interfaces shown in the figure, the PL port interface signals
include the system interrupts, errors, events, and other signals from all parts of the device.

Section II: Hardware Architecture
Chapter 9: Programmable Logic

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=80

Adaptable Engines in PL
The PL Adaptable Engines are building blocks to instantiate functional units in the PL and they
include:

• Digital signal processing engine (DSP)

• Configurable logic blocks (CLB): logic and LUT

• Block RAM: 4 KB data with ECC (36 Kb)

• UltraRAM: 32 KB data with ECC (288 Kb)

Digital Signal Processing Engine
Versal devices have many dedicated low-power DSPs combining high speed with small size while
retaining system design flexibility. The DSP resources enhance the speed and efficiency of many
applications beyond digital signal processing such as wide dynamic bus shifters, memory address
generators, wide bus multiplexers, and memory-mapped I/O registers. The DSP engine is defined
using the Xilinx DSP58 primitive.

For more information, see Versal ACAP DSP Engine Architecture Manual (AM004).

Configurable Logic Block
The configurable logic block (CLB) includes logic and look-up tables (LUTs) that can be configured
into many different combinations and connected to other components in the PL to create special
purpose functions, processing units, and other entities.

Every CLB contains 32 LUTs and 64 flip-flops. The LUTs can be configured as either one 6-input
LUT with one output, or as two 5-input LUTs with separate outputs but common inputs. Each
LUT output can optionally be registered in a flip-flop.

In addition to the LUTs and flip-flops, the CLB contains arithmetic carry logic and multiplexers to
create wider logic functions. Within each CLB, 16 LUTs can be configured as 64-bit RAM, 32-bit
shift registers (SRL32), or two SRL16s.

Within every CLB are dedicated interconnect paths for connecting LUTs without having to exit
and re-enter a CLB, drastically reducing the use of global routing resources. In addition, new CLB
features such as cascade multiplexers allow flexible carry logic structures to be created.

For more information, see the Versal ACAP Configurable Logic Block Architecture Manual (AM005).

Section II: Hardware Architecture
Chapter 9: Programmable Logic

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 81Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=81

Block RAM
The dual-port block RAMs have 4 KB of data storage capacity that is protected by error
correction coding (ECC) for a total of 36 Kb per block RAM. The RAM can be configured as either
one 36 Kb RAM, or two completely independent 18 Kb RAMs. The RAMs can be configured to
operate in simple dual port mode (one read-only port and one write-only port) or true dual port
mode (both ports have read and write interfaces). The block RAM can also be configure for single
port mode. Each port has its own clock and address interface. The ports can be configured
independently as 4K×9, 2K×18, 1K×36, or 512×72. The 512×72 mode requires simple dual port
mode.

The block RAM is described in the Versal ACAP Memory Resources Architecture Manual (AM007).

UltraRAM
The dual-port block RAMs have 32 KB of data storage capacity that is protected by error
correction coding (ECC) for a total of 288 Kb per block RAM. Each port can be configured
independently as 32K×9, 16K×18, 8K×36, or 4K×72.

• Cascade-able for building larger memories: dedicated column routing wires to connect
adjacent units

• ECC on both ports with single bit error detection and correction, and double bit error
detection

• Sleep power saving features

The UltraRAM is described in the Versal ACAP Memory Resources Architecture Manual (AM007).

Section II: Hardware Architecture
Chapter 9: Programmable Logic

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 82Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=82

Chapter 10

Device I/O Connectivity
The Versal™ ACAP includes many different types of I/O pins. Each pin has a dedicated I/O buffer
with characteristics that are often programmable. The functionality of a pin can be dedicated to a
specific function or have a flexible assignment.

The I/O functionality and buffers for the PMC, PS, and other subsystems are summarized in the
following table. More information can be found in the TRM and online. The voltage banks for the
PMC and PS banks are listed in the Power Pins table. The voltage banks for the PL are listed in
the Versal ACAP Packaging and Pinouts Architecture Manual (AM013).

Table 5: PMC, PS, and Other I/O Buffer Pin Banks

Bank Name Pin
Count Buffer Type Description

PMC DIO Bank 15 Digital Dedicated I/O with POR_B, REF_CLK, JTAG, and boot mode.
Dedicated analog I/O pins: VREF, Analog-In.
See PMC Dedicated Pins.PMC DIO_A Bank 4 Analog

PMC MIO Bank 0
PMC MIO Bank 1 52 Digital Multiplexed I/O for boot devices and peripherals in the

PMC and LPD IOPs. See Multiplexed I/O Signals and Pins
and Output Buffer Control Registers.

LPD MIO Bank 26 Digital

PL XPIO 54 per
bank XP IOB

Normally used by DDRMC, available to PL fabric.
The XP IOL and IOB resources are described in the Versal
ACAP SelectIO Resources Architecture Manual (AM010).

PL HDIO Varies Digital
Multiple banks of HDIO buffers connect PL to device pins.
The HDIO IOL and IOB resources are described in the
Versal
ACAP SelectIO Resources Architecture Manual (AM010).

GTYP1 16 Transceiver
CPipe GTYP transceivers connect CPM5 PCIe lanes and
Aurora debug to I/O pins. PL fabric GTYP transceivers
connect the PL to I/O pins.

GTY1 Varies Transceiver
XPipe GTY transceivers connect CPM4 PCIe lanes, Aurora
debug, and PL fabric to I/O pins. PL fabric GTY transceivers
connect the PL to I/O pins.

GTM Varies Transceiver Listed in the Versal AI Core Series Data Sheet: DC and AC
Switching Characteristics (DS957).

Notes:
1. The GTY and GTYP transceivers functionality and specifications are defined in the Versal ACAP GTY and GTYP

Transceivers Architecture Manual (AM002).

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 83Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=83

Related Information

Signals, Interfaces, Pins, and Controls

Device-Level Diagram
The device-level I/O connectivity is shown in the following figure.

Figure 11: I/O Connectivity Diagram

CPM4: GTY
CPM5: GTYP

100G Ethernet MRMAC
600G Ethernet channel
600G Interlaken
400G HSCE

PCIe 1

Pipe

LPD

DDR Memory
Controller

PMC MIO Bank 0

FPD

PMC

Dedicated Signals

IOP

up to x16

BLI

PS
IO

SBI

Trace

HSDP
Aurora

PL

x1

Flash

SYSMON
500

503

501

502

PMC DIO_A

PMC DIO Bank

A

PMC MIO Bank 1

LPD MIO Bank

G
TY

 o
r G

TY
P

G
TM

XP
IO

MIO

PL I/O

DRAM
or PL

4x Quad
Banks16

4x PSIO
Banks

Integrated Peripherals

analog

PS
IO

PS
IO

15

6

26

26

26
MIO
Mux

PS
IO

H
DI

O

PMC
PL
LPD
SPD

Power Domains

up to x8

PCIe 0

DPC

JTAG
DAP

CLB

UltraRAM

DSP Engine

Block RAM

Building
Blocks

PL

Clocks

DPC DMA
PCIe

interface

IOP/Flash

EMIO

MIO
Mux

CPM CCIX

X22413-062821

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=84

PSIO Banks
The PSIO banks provide I/O connectivity for the PMC and LPD. Each bank includes LVCMOS
buffers with several programmable features. There are four PSIO banks. Three banks are for the
multiplexed I/O (MIO) and one bank is for the PMC dedicated pins.

There are also four dedicated analog signals (DIO_A) associated with the system monitor
(SYSMON).

• Bank 500:

○ PMC MIO bank 0 with 26 pins

○ PMC dedicated analog pins Versal ACAP System Monitor Architecture Manual (AM006)

• Bank 501: PMC MIO bank 1 with 26 pins

• Bank 502: LPD MIO bank with 26 pins

• Bank 503: PMC dedicated digital with 15 pins

The PMC and LPD MIO pins are described in the Multiplexed I/O Signals and Pins chapter. The
dedicated pins are described in the PMC Dedicated Pins chapter.

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 85Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=85

GTY and GTYP Pipe Transceivers
Sixteen high-speed pipe transceivers are grouped into four quad banks. The transceiver pins can
connect to several interfaces.

• PCIe® controller 0 in the CPM

• PCIe controller 1 in the CPM

• High-speed debug port (HSDP), single channel

• PL fabric interface (available for GTY pipe transceivers only)

Connections to the transceivers are illustrated in the Debug Host Interfaces section of the
Integrated Debug chapter.

The use cases for the GTY pipe transceivers are enumerated in the CPM4 Design section. For the
GTYP transceiver use cases in a CPM5 design, contact a Xilinx® Sales representative.

CPM Documentation

The details of the CPM implementation are available in these documents:

• Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

• Versal ACAP CPM DMA and Bridge Mode for PCI Express Product Guide (PG347).

Table Notes

The GTY transceiver use case table shows how each interface channel can be routed to the
transceivers. The following notes are relevant to the table.

Note: All four channels within a transceiver quad must be assigned to the same interface or be left unused.

Note: A quad can be configured for a PCIe interface with 1, 2, or 4 channels. If the interface does not
require all four channels, there are unused channels within that quad. Quads can be combined to form x8
and x16 PCIe interfaces.

Note: The HSDP interface is always one lane wide and is available on Quad 0 or Quad 2 (channel 0). When
the HSDP interface is assigned to a quad, the other three channels in the quad are unavailable.

Note: In the following table, the transceiver channels marked with a dash (-) are unavailable.

CPM4 Design
The XPipe GTY transceiver use cases for CPM4 are shown in the following table.

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 86Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg347-cpm-dma-bridge.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=86

Table 6: CPM4 GTY Transceiver Quad Use Cases

Use
Case

Transceiver Quad (Package Bank) Channels
Quad 0 (Bank 103) Quad 1 (Bank 104) Quad 2 (Bank 105) Quad 3 (Bank 106)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1 PCIe_0 (x16)

2 PCIe_0 (x8) PCIe_1 (x8)

3 PCIe_0 (x8) PCIe_1 (x1, x2, x4) PL

4 PCIe_0 (x8) HSDP - - - PL

5 PCIe_0 (x8) PL PL

6 PCIe_0 (x1, x2, x4) PL PL PL

7 PCIe_0 (x1, x2, x4) - - - - HSDP - - - PL

8 HSDP - - - - - - - PCIe_1 (x1, x2, x4) PL

9 HSDP - - - - - - - PCIe_1 (x8)

10 HSDP - - - PL PL PL

11 PL PL PL PL

PL HDIO Banks
The PL HDIO buffer has the following features:

• Output control: drive strength and slew rate

• Settings on a per-bank basis

○ I/O voltage swing:

- LVCMOS: 3.3V, 2.5V, and 1.8V

- HSTL: 1.8V

- SSTL: 1.8V

• Inputs independently programmed

○ Weak pull-up, weak pull-down, or weak keeper

○ Hysteresis

• HD IOL logic resources support low-speed interfaces with SDR and DDR logic

• IODELAY feature with cascadable output delay

• Coarse data alignment

• On-die termination

• Common internal VREF on per bank

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=87

• Receive a differential signal at low-speed

• Transmit a pseudo differential signal

• External termination for LVDS and LVPECL inputs

The HD IOL and HD IOB resources in the HDIO banks are described in the Versal ACAP SelectIO
Resources Architecture Manual (AM010).

Operating Modes

• LVCMOS, HSTL, SSTL single-ended signals

• Transmit single-ended signals with pseudo-differential mode

• Receive single-ended and differential signals; differential receiver for low-speed clock inputs

System View

The HDIO is arranged in banks of 22 buffers each to connect the PL to the device pins. The PL
includes multiple banks of HDIO buffers. The number of HDIO banks varies depending on the
device and package size. Examples include the following:

• Bank 306: PL with 22 pins

• Bank 406: PL with 22 pins

Programming Model

The I/O characteristics of the HDIO buffers are controlled by the parameters that are configured
by the Vivado® design suite wizard.

XPIO Banks
The I/Os in the XPIO supports both high-performance and low-speed interfaces that can be used
by a DDR memory controller or by PL logic. Each XPIO can use the XPHY to align, serialize, and
deserialize a data stream. Each XPIO bank has nine nibbles of six cells each for a total of 54 pins.

The XPIO input and output buffers support a wide range of single-ended and differential I/O
standards along with resources to support a high level of signal quality. Each XPIO has I/O
interconnect logic (IOL) resources to support low-speed SDR and DDR interfaces and coarse data
alignment resources.

The XPIO provides:

• 1.0V, 1.2V, 1.35V, and 1.5V bank voltage standards

• XPHY logic resources to align and serialize/deserialize high-speed data streams

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 88Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=88

• IOL resources to provide simplified lower-speed SDR and DDR logic support

• Internally generated VREF support shared across nibble boundaries

• Calibrated output drive support

• Calibrated internal termination

• Internal differential termination and bias offset

• Transmitter pre-emphasis and receiver equalization

• Native MIPI D-PHY interfacing

• Serialization/deserialization ratios of 1:8, 1:4, and 1:2

The XP IOL and XP IOB resources in the XPIO banks are described in the Versal ACAP SelectIO
Resources Architecture Manual (AM010).

Section II: Hardware Architecture
Chapter 10: Device I/O Connectivity

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 89Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=89

Section III

Platform Boot, Control, and Status
This section includes these chapters:

• Overview

• Non-Secure Boot Flow

• Secure Boot Flow

• Boot Image

• Boot Modes

• BootROM Error Codes

• Platform Management

Section III: Platform Boot, Control, and Status

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=90

Chapter 11

Overview
The platform management controller (PMC) supports platform management during boot,
configuration, and run-time. The boot flows, boot modes, and example platform management
services are described in this section.

For an introduction to the PMC architecture, see Platform Management Controller. For
information on the PMC units, see Section VII: Embedded Processor, Configuration, and Security
Units.

System Start-up Phases

The Versal™ ACAP has four key system start-up phases from boot through life-cycle
management.

Figure 12: System Startup Phases

Phase 1: Pre-boot

Power-up and Reset
(PMC hardware)

Phase 2: Boot Setup

Initialization and
Boot Header Processing

(RCU)

Phase 3: Load Platform

Boot Image Processing
 and Configuration

(PPU)

Platform Management
and Monitoring Services

(PPU)

Phase 4: Post-boot

X21570-051519

Non-Secure Boot Flow

In the non-secure boot flow chapter, the system start-up phases required to boot a
programmable device image into the Versal ACAP are discussed. The PMC primary functional
control units and their responsibilities are described.

Secure Boot Flow

The secure boot flow enables programmable device images to use decryption and authentication
to protect and secure user designs and the IP stored in Versal ACAPs. The Asymmeric Hardware
Root of Trust (A-HWRoT) and Symmeric Hardware Root of Trust (S-HWRoT) secure boot methods
are described.

Section III: Platform Boot, Control, and Status
Chapter 11: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=91

Boot Modes

For design flexibility, the Versal ACAP supports multiple boot-mode options. This chapter
discusses selection criteria trade-offs between the boot modes and provides details about each
boot mode interface.

Boot Image - Programmable Device Image

The programmable device image format for the Versal ACAP is highlighted in this chapter and the
boot header read by the PMC RCU is provided.

Platform Management

The Versal ACAP supports several run-time services including the following, which are
introduced in this chapter.

• Functional safety management: assists with managing random faults. ECC protected RAMs,
RCU and PPU controller triple modular redundancy, XPPU, and XMPU are a few of the
features provided.

• Dynamic Function eXchange (DFX): enables a board host connection to be maintained while
multiple application functions are loaded and reloaded into the device. The Versal architecture
supports using a shell and workload setup for dynamic reconfiguration. The shell (hardened
infrastructure with required PMC and interfaces to host) remains static, but different
workloads (user designs) can be plugged into the shell to support multiple applications.

• Power management: applications that must limit or optimize power consumption use power
modes such as sleep to meet requirements. The power modes and some options for power
management are discussed.

• Security management

○ Secure key storage and management: options for key storage and key management.

○ Tamper monitoring and response: features that can be used in developing mitigation
techniques to resist tamper attacks.

○ User access to Xilinx hardware cryptographic accelerators: Versal ACAP has multiple
cryptographic functions that can be accessed post-boot.

• Soft error mitigation: soft error mitigation techniques and feature support in Versal ACAPs.

Section III: Platform Boot, Control, and Status
Chapter 11: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=92

Chapter 12

Non-Secure Boot Flow
For system start-up, a Versal™ device must successfully initialize, boot, and configure from a
supported boot source. Both non-secure and secure boot flows are supported. This chapter
details the non-secure boot flow. For secure boot flow details, see the Secure Boot Flow chapter.
The following figure illustrates the non-secure boot flow high-level phases.

Figure 13: High-Level Non-Secure Boot Flow

BootROM Tamper Monitoring and Response

Release
PMC
Reset

Time

Platform Loader and Manager PPU RAM

PMC RAM

Power Valid/
POR_B Release

PMC Hardware
(Phase 1: Pre-boot)

PMC RCU
(Phase 2: Boot Setup)

PMC PPU
(Phase 3: Load Platform
 and
Phase 4: Post-boot)

LPD
CDO

RCU ROMBootROM
Load PLM,
PMC CDO

NPI
CDO

FPD
CDO

PMC
CDO

X23109-101520

The three platform management controller (PMC) functional blocks that control the non-secure
boot process are:

• PMC hardware dedicated state machines

• PMC ROM code unit (RCU)

• PMC platform processing unit (PPU)

The following figure shows the PMC functional blocks primary responsibilities and their memory
source at each phase in the non-secure boot flow. The figure provides one example in which the
major partition components (except for Linux) are loaded by the platform loader and manager.
Linux is loaded by U-Boot.

Section III: Platform Boot, Control, and Status
Chapter 12: Non-Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=93

Figure 14: Example Standard Boot Flow Processing Engines and Memory Sources

Linux
APU

RPU

AI Engine

TCM

AI Engine
PMEM

PMC
PL
LPD
FPD
SPD
BPD

Power Domains Memory Source

Internal Memory
External DDR

PL CRAM

PSM SoftwarePSM PSM RAM

ATF

AI Engine
Software

DDR

OCM

NoC, DDR, NPI Elements Configured
NPI

RegistersNPI

Note: All arrows indicate a loading and hand-off sequence
except for U-Boot, which is handed off by the ATF.

BootROM Tamper Monitoring and Response

Release
PMC
Reset

Time

Platform Loader and Manager PPU RAM

PMC RAM

Power Valid/
POR_B Release

PMC Hardware
(Phase 1: Pre-boot)

PMC RCU
(Phase 2: Boot Setup)

PMC PPU
(Phase 3: Load
Platform and
Phase 4: Post-boot)

LPD
CDO

NPI
CDO

FPD
CDO

RCU ROM
BootROM
Load PLM,
PMC CDO

PMC
CDO

U-Boot

X23595-110820

RPU Software

PL CFI

Section III: Platform Boot, Control, and Status
Chapter 12: Non-Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=94

There are many different application partition requirements, and the Versal device provides the
flexibility to address them. For example, some application protocols might require the RPU
partition to be loaded first, or the software to be loaded from U-Boot, while other applications
might not require the RPU or AI Engine partitions at all. Each phase in the example non-secure
boot flow figure is described below.

Phase 1 (Pre-boot)

In phase 1, the non-secure and secure boot flows execute the same sequence of steps. The PMC
hardware must detect that the power is valid (VCCAUX_PMC, VCC_PMC, and VCCO_503) and
that the external POR_B pin is released to initiate a boot sequence. Dependent on the boot
mode selected and application other power supplies will be required.

After power is applied to the device, the dedicated PMC hardware state machines perform a
series of mandatory tasks to prepare the system for the PMC RCU release. The tasks include
capturing the value of the boot mode pins into a PMC register for the RCU to read. The test
interfaces (e.g., JTAG) initialize to a known secure state. This is followed by scan clear, where the
registers in the PMC are zeroized and readback to confirm scan clear was successful. Next, the
dedicated hardware hashes the PMC immutable BootROM using the SHA-3/384 engine and
compares the calculated cryptographic hash against a golden copy stored in the device. If the
hashes match, the integrity of the RCU ROM is validated and the PMC is released from reset If
the hash comparison fails an error is flagged. The default action is to log and continue until the
PLM can determine what action to take.

Phase 2 (Boot Setup)

In phase 2, the PMC RCU non-secure and secure boot flow steps begin to diverge. See Secure
Boot Flow for details on the additional security checks available. In the default non-secure boot
flow, the PMC RCU performs basic integrity checks. The RCU initializes PMC blocks such as the
System Monitor and the PMC PLLs. Checks for voltage and the PLL lock are performed.

After the initial security and integrity checks pass, the RCU reads the boot mode register value to
determine the boot mode configuration required. If a slave boot mode is detected, the RCU
enables the SelectMAP or JTAG interface path and then hands the control to the user to load the
programmable device image.

When a master boot mode is detected, the RCU initializes the corresponding boot interface and
searches for a valid boot header within a programmable device image (PDI). To validate a boot
header, the RCU looks for the image identification string XLNX (0x584c4e58). When a valid
image identification string is found in the boot header, the checksum for the boot header is
checked. If the checksum is valid, the rest of the programmable device image boot header and
platform loader and manager (PLM) are loaded into the PPU RAM.

Section III: Platform Boot, Control, and Status
Chapter 12: Non-Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=95

If a valid boot header is not found, the image search is initiated for master boot modes. The
search works differently depending on the type of master boot mode selected. For OSPI and
QSPI boot modes, the programmable device images can be located every 32 KB in the boot
memory device, which allows for more than one image to be stored in the flash memory device.
If an image header is invalid, the BootROM increments the MultiBoot register
(PMC_GLOBAL.PMC_MULTI_BOOT) read address offset by 32 KB and tries again. For SD and
eMMC boot modes, the 8191 FAT files can be searched for the identification string.

The RCU checks and validates the image signature, and then copies the platform loader and
manager into the PPU RAM. The RCU releases the PPU from reset to begin phase 3 (load
platform) and the RCU enters a sleep state, wake on interrupt for service routines throughout
Phase 3 and Phase 4.

Phase 3 (Load Platform)

In phase 3, the PMC PPU executes the PLM from the PPU RAM. The PLM reads the
programmable device image from the boot source and the PLM configures the components of
the system including the NoC initialization, DDR memory initialization, programmable logic, and
processing system, and then completes the device boot.

If a boot header is valid, but the PLM determines the programmable device image is corrupt, the
PLM can recover by writing the location of another boot header into the MultiBoot register
(PMC_GLOBAL.PMC_MULTI_BOOT), and issuing an internal system reset (not an external
POR_B reset). After the system reset, the boot header is fetched from the address location equal
to the value of the MultiBoot register (PMC_GLOBAL.PMC_MULTI_BOOT) multiplied by 32 KB.
When the fallback boot header is invalid, the RCU continues normally with its boot image search
function if the boot device supports image search.

Phase 4 (Post-boot)

After the non-secure boot flow is complete, the PLM is active and numerous services can be run
in this phase. Services include power management, partial reconfiguration, system error
management, safety monitoring, security monitoring, and soft-error mitigation.

For more information on the Versal ACAP boot process see the Versal ACAP System Software
Developers Guide (UG1304).

Section III: Platform Boot, Control, and Status
Chapter 12: Non-Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=96

Chapter 13

Secure Boot Flow
This chapter describes the Versal™ ACAP secure boot features. The Versal device supports two
secure boot modes: Asymmetric Hardware Root of Trust (A-HWRoT) and Symmetric Hardware
Root of Trust (S-HWRoT). The A-HWRoT achieves authenticity of the boot image using
asymmetric authentication algorithms (RSA or ECC). The S-HWRoT achieves authenticity of the
boot image using symmetric means via the GCM mode of AES-256 by encrypting all portions of
the boot and configuration files (excluding the boot header). In this mode, confidentiality,
integrity, and authentication are provided simultaneously. For additional details, see the Versal
ACAP Security Manual (UG1508). This manual requires an active NDA to download from the
Design Security Lounge.

Note: Because authentication in S-HWRoT mode is only provided by the encryption process, the boot
header is not authenticated and cannot be relied upon for security critical information. As such, security
critical information contained in the boot header is ignored in lieu of information stored in eFUSEs. See
Symmetric Hardware Root of Trust Secure Boot for more details.

Note: The Versal device allows for two methods to protect its secret symmetric keys from differential
power analysis (DPA): protocol and built-in leakage reduction. Each method can be used individually or
together to create enhanced protection.

The functional blocks in a secure boot process are:

• Dedicated hardware state machines in the PMC

• PMC ROM code unit (RCU)

• PMC Platform processing unit (PPU)

The high-level boot flow summary is shown in the following figure.

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 97Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=97

Figure 15: High-Level Secure Boot Flow Summary

BootROM Tamper Monitoring and Response

Release
PMC
Reset

Time

Platform Loader and Manager
(Authenticated by BootROM) PPU RAM

PMC RAM

Power Valid/
POR_B Release

PMC Hardware
(Phase 1: Pre-boot)

PMC RCU
(Phase 2: Boot Setup)

PMC PPU
(Phase 3: Load Platform
 and
Phase 4: Post-boot)

PMC
CDO

LPD
CDO

NPI
CDO

FPD
CDO

RCU ROMBootROM
Load PLM,
PMC CDO

Secure State
established by

the device

X23593-101520

After the power is applied to the device, the dedicated hardware state machines perform a series
of mandatory tasks. First, all test interfaces (e.g., JTAG) initialize to a known secure state. Second,
all registers in the PMC are zeroized (reset + verification of reset state). Before execution of the
PMC BootROM, the dedicated hardware hashes the immutable BootROM code using the
SHA-3/384 engine and compares the calculated cryptographic hash against a golden copy stored
in the device. If the hashes match, the integrity of the BootROM is validated, and the PMC RCU
is released from reset. If the hash comparison fails an error is flagged. The default action is to log
and continue until the PLM can determine what action to take. However, eFUSEs can be
programmed to halt the secure boot process immediately and go into a secure lockdown state
when an error occurs.

Once released, the PMC RCU becomes the center of the secure boot process. It is responsible for
all mandatory and optional security operations, as well as the secure loading of the PLM. A list of
all security checks at this stage are listed in the following table. Optional checks are enabled by
programming eFUSEs.

Table 7: Security Checks

Security Operation Description Optional?

Zeroize PMC RAM The PMC RAM has zeros written to it and read back to confirm
the write was successful No

User-defined environmental
monitoring

Temperature and voltage are monitored to ensure operation
within user-defined limits Yes

Authenticated JTAG JTAG can be enabled through a valid cryptographically strong
authentication method Yes

Known answer tests Known answer tests are performed on the cryptographic
engines used for loading the PLM prior to them being used Yes

NoC configuration (SSI technology
only) Configuration of the NoC on SSI technology devices No

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=98

The RCU also enforces the secure boot modes (A-HWRoT or S-HWRoT), if enabled, and is
responsible for governing that transition of security state by prohibiting the transition from
secure to non-secure or non-secure to secure without a full power-on reset (POR).

After all checks pass, the RCU securely loads the PLM (authenticated and, if desired, encrypted).
Once loaded, the PLM can check the error messages from inside the device to determine what
security actions, if any, are necessary.

Asymmetric Hardware Root of Trust Secure
Boot

The Versal device A-HWRoT boot mode is built upon the use of RSA-4096 or ECDSA P-384
asymmetric authentication algorithms using SHA-3/384, and allows the use of both primary and
secondary public keys for signature verification (PPK and SPK, respectively). The following table
lists the characteristics of each public key type.

Table 8: Public Key Types

Public Key Number Location Revocable

Primary (PPK) 3 External memory with
hash in eFUSEs Yes

Secondary (SPK) 256 Boot image Yes

The Versal device allows for the use of three PPKs, each of which is revocable. To reduce the
number of fuses required, the full public key is stored in external memory (e.g., flash) while 256
bits of a SHA-3/384 hash of each key is securely stored inside the device using eFUSEs. During
the secure boot process, the RCU first validates the integrity of the full public key stored
externally by hashing it (SHA-3/384) and taking 256 bits of that hash and comparing against the
value stored in eFUSEs.

There are also 256 SPKs available, each of which are also revocable. The SPK is delivered inside
the authenticated boot image, and is consequently protected by the PPK, which is the primary
purpose of the PPK. The SPK is intended to authenticate everything else.

Configuration Update
Configuration update is a critical capability to enable such features such as an over-the-air (OTA)
update. The Versal device supports the ability to update the configuration in-system. The
following figure shows a high-level flow diagram of a configuration update performed by the
RCU.

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=99

Figure 16: Configuration Update

Configver1 Operational

Configver2 is
downloaded by

Configver1

Configver1 updates
multi-boot register
and initiates reset

Device reboots with
Configver2

Boot successful?Configver2 operational
RCU updates multi-
boot register and

initiates reset

Golden image can be
loaded

Yes No

X23138-121619

In this notional system, it is assumed that revision of the design (Configrev1) and a golden image
are both stored in external memory. Some applications choose to use a golden image as a backup
(or fallback). It is typically not full-featured but provides basic diagnostic and communication
capabilities in the event of a failed boot of the primary image. This notional system is built upon
to demonstrate key revocation.

The initial design, Configrev1, is notified when an update is desired. Configrev1 then downloads
Configrev2, writes to the multiboot register, and initiates a reset. Upon successful completion,
Configrev2 is booted and becomes operational. In the event of a failed boot, the RCU
automatically increments the multiboot register and initiates a reset. As the golden image is
stored at a higher address in external memory, it is ultimately loaded and communication can be
re-established (assuming this in an OTA case).

Configuration Update with Key Revocation
Now that a baseline configuration update use case has been described, it is necessary to look at
that use case when booting using the A-HWRoT mode. Key revocation is an integral part of any
public key system. When keys are changed (as is a good key management practice), or if a private
key has been compromised, the ability to revoke keys is needed to provide rollback protections.
This section describes the process of revoking both PPKs and SPKs, as well as the use of
revocation as a tamper penalty.

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=100

PPK Revocation

There are three PPKs in the Versal device. Each PPK has a set of revocation bits implemented
with eFUSEs. Programming these fuses invalidates (revokes) that PPK permanently preventing its
use. The following figure demonstrates the OTA use case with the revocation of a PPK (PPK0 in
this instance).

Figure 17: Configuration Update with PPK Revocation

DesignPPK0
Operational

Remote Update:
Download designPPK1

DesignPPK0 update
multi-boot register

DesignPPK0 initiate
SW reset

Device boots with
designPPK1

Boot successful?DesignPPK1 is
operational Yes

DesignPPK1 updates
golden image

(if needed)

DesignPPK1 revokes
PPK0

RCU updates multi-
boot register and

initiates reset

GoldenDesignPPK0
operational

No

X23137-061220

In the notional system, it is assumed that a revision of the design (DesignPPK0) and a golden
image (GoldenDesignPPK0) are both stored in external memory and both are signed by PSK0
(authenticated by PPK0).

Note: The subtext of the design/image name represents the public version of the key used to sign the
image.

Again, this is a representative system used to describe the process of updating a system when it
is necessary to revoke a PPK. It is not a requirement.

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=101

The initial design, DesignPPK0, is notified when an update is desired. In many cases, the design
itself is responsible for supporting the remote update. DesignPPK0 increments the multiboot
register and then initiates a reset. DesignPPK1 is then booted, and if successful, begins operation.
DesignPPK1 should then update, if necessary, the golden image and then program the eFUSEs to
revoke PPK0. In the event of a failed boot, the RCU increments the multiboot register and
initiates a reset. As the golden image is stored at a higher address in external memory, it is
ultimately loaded, and communication can be re-established (again, assuming this is an OTA
case).

SPK Revocation

The revocation of an SPK follows a very similar process as described in PPK Revocation.
However, the difference is that the SPK and its corresponding revocation ID are part of the boot
image (authenticated using the PPK). The revocation of an SPK is done by modifying the 256-bit
SPK revocation ID field in the eFUSEs (representing 256 possible revocations). This revocation ID
acts as a pointer to a revocation list. If the device boots with an old SPK and ID, the RCU or PLM
flags this as invalid and prevents the device from booting with that image/partition.

Revocation as a Tamper Penalty

Key revocation not only allows for good key management practices (periodic key changes) but
also can serve as a tamper penalty. This dual role can be a very valuable addition to a secure
system. In the event of a tamper event, the system can revoke the PPK or SPK currently being
used and initiate a reset. This revocation invalidates the current boot image and prevents the
system from booting, which halts operation and protects the system from additional threats. The
system would then have to be taken back to the depot and flashed with an image signed by a
different (valid) key. This method represents a temporary penalty. However, some systems might
desire a more drastic response. In this case, the system that detects the tamper event can revoke
all PPKs. This revocation essentially “bricks” the part as there is no longer a valid key with which
to boot (all have been revoked). This is a permanent penalty and is typically used only in the most
secure systems as there is no method to recover the use of the device.

Symmetric Hardware Root of Trust Secure
Boot

The Versal device S-HWRoT secure boot mode is enabled through the programming of eFUSEs.
Similar to the A-HWRoT mode, this mode provides confidentiality, integrity, and authentication
of the device configuration files. However, unlike the A-HWRoT mode, the S-HWRoT mode
provides integrity and authentication using the counter mode of symmetric AES (AES-GCM).

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=102

In this boot mode, all configuration images are encrypted (excluding the boot header). Given this
exclusion, the boot header is subject to modification. Consequently, all security critical
information contained in the boot header is ignored but replicated in eFUSEs. Modification of the
boot header itself, while possible, achieves nothing as the eFUSEs are used for security critical
decisions, not the boot header itself.

RECOMMENDED: Xilinx strongly recommends the purchase of devices with built-in side channel leakage
reduction functionality enabled. Protocol DPA countermeasures (authentication prior to decryption)
cannot be used in the S-HWRoT boot mode due to the lack of asymmetric authentication. However, the
built-in side channel leakage reduction capabilities can provide DPA resistance.

The following figure shows a high-level view of the S-HWRoT boot flow.

Figure 18: Symmetric Hardware Root of Trust Boot Flow

Start

Decrypt PLM and
CDO

Decryption
successful?

Release control to
the user

New image
found? LockdownRun AES KAT

(if enabled)

Decrypt black key
using PUF

KAT pass?
Increment multi-

boot register;
search for new

image

Yes

No

No

No

X23139-121619

The RCU detects that the S-HWRoT secure boot mode is enabled and then automatically
decrypts the PLM and CDO. To maximize security, the key used by the RCU at this point is
limited to the black key. This key is stored encrypted by the PUF key encryption key (KEK). No
other key source is allowed for the PLM and CDO. The IVs used at this point are programmed by
the user into internal eFUSEs. As this is located inside the device, they are protected from
modification.

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=103

Once the PLM and CDO have been decrypted and authenticated (via the AES GCM tag) and
stored in internal memory, the RCU releases the reset to the specified processing unit. At this
stage, control is handed over to the user application and it is responsible for maintaining the
established security. All remaining partitions can use the following key sources on a partition-by-
partition basis:

• Black eFUSE key

• User AES keys (volatile or non-volatile)

The IVs used for the remaining partitions are securely delivered within the configuration image.
The process to load these partitions is user-configurable.

Configuration Update
As it is with the A-HWRoT mode, configuration update is critical for enabling features such as
over-the-air (OTA) update. The configuration update flow for S-HWRoT boot mode is no different
than that of the A-HWRoT mode described in Figure 16: Configuration Update. However, this
flow does have an additional setup step if it is necessary to update the PLM or CDO. This step
involves programming additional eFUSEs in the IV space. This step prevents a system from
reusing the same AES key/IV pair for different data. Such reuse is a violation of the AES standard.
All remaining partitions requiring an update are done so by creating new configuration images
encrypted using a different key/IV pair and loaded via the PLM no differently than was previously
done.

Configuration Update with Partition Revocation
Key revocation, as described in the A-HWRoT secure boot mode, is not available in the S-HWRoT
secure boot mode. However, it is still important to support the revocation of individual partitions
if an update is required and for protection against a rollback attack. In S-HWRoT secure boot
mode, rollback protection is achieved via the use of the revocation ID (stored in eFUSEs)
associated with each partition. While key revocation itself is not supported, it is possible to
render that key inoperable by revoking the ID of the partition encrypted with that key and
replacing it with a partition encrypted with a new key/IV pair and a new (valid) revocation ID.

Section III: Platform Boot, Control, and Status
Chapter 13: Secure Boot Flow

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=104

Chapter 14

Boot Image
The platform management controller (PMC) uses a proprietary programmable device image (PDI)
file format to boot and configure the Versal™ ACAP. The Vivado®/Vitis™ development system
generates the PDI. For more information on creating the PDI and composition, see the Bootgen
User Guide (UG1283). For information on using PDI in a boot flow, see the Versal ACAP System
Software Developers Guide (UG1304).

This chapter provides an overview of the PDI file format, including understanding how the range
of possible PDI sizes for Versal ACAPs is essential for system architecture planning to ensure
there is enough storage capacity for PDIs. The desired storage capacity guides the selection of
the most appropriate Versal ACAP boot modes. For boot modes used with a non-volatile memory
device, the desired storage capacity also guides the selection process of this additional
component. The Vivado/Vitis development system is capable of erasing, programming, and
verifying non-volatile memory devices. See the Vivado Design Suite User Guide: Programming and
Debugging (UG908) for details.

Programmable Device Image

The PDI created by the Vivado/Vitis development system is used to initialize a Versal ACAP. The
PDI can include these common elements:

• Boot header (includes image identification, platform loader and manager (PLM) partition size
and offset, and other attributes)

• PLM executable and linkable format (ELF) (includes PPU execution code)

• Platform management controller (PMC) configuration data object (CDO) (includes topology,
PMC initialization information, and LPD commands for block configuration)

• Meta header (describes organization of subsequent images and partitions)

• One or more images, each with one or more partitions containing:

○ Low-power domain (LPD) CDO

○ Full-power domain (FPD) CD

○ Processing system manager (PSM) ELF

○ Programmable logic (PL) configuration frame interface (CFI) information

○ Network on chip (NoC) programming interface (NPI) information

Section III: Platform Boot, Control, and Status
Chapter 14: Boot Image

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 105Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=105

○ AI Engine programming (AIE) information

○ User code/data (U-Boot, OS image, application, file system)

The high-level organization of the PDI Versal ACAP elements for initial boot are illustrated in
the following figure.

Figure 19: Boot Image Block Diagram

Boot Header

PMC CDO

Meta Headers

Partition 1 _ _ _Partition 2 Partition i

Partition 1 _ _ _Partition 2 Partition j

PLM

Image Header Table

Image Header 1 _ _ _Image Header 2 Image Header n

Partition Header 1 _ _ _Partition Header 2 Partition Header i

Partition 1 _ _ _Partition 2 Partition k

Partition Header 1 _ _ _Partition Header 2 Partition Header j
Image 1

Image 2

Image n

Image 1

Image 2

Image n

..

Partition
Header 1 _ _ _Partition

Header 2
Partition Header

k

X22829-101520

PDI Size Estimation
The Versal architecture comprises a rich set of adaptable resources. The amount of information
required in a PDI to initialize the resources in each Versal ACAP depends on the part number.
Because a PDI can also contain user code and data, Xilinx® recommends system architects make
an informed estimate of PDI size based on information provided by Xilinx, together with system-
specific insights known by the architect. The following table lists the small contributor elements
to the PDI size generated by the Vivado/Vitis™ development system and maximum sizes are
provided for estimation purposes.

Table 9: Estimated Maximum Size for PDI Small Contributors to PDI Size

PDI Contributor Maximum Size Maximum Size (Mbits)
Boot header1 3,968 Bytes <<1

PLM ELF1 384 KBytes 3

PMC CDO1 96 KBytes <1

Meta header1 16 KBytes <1

Section III: Platform Boot, Control, and Status
Chapter 14: Boot Image

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=106

Table 9: Estimated Maximum Size for PDI Small Contributors to PDI Size (cont'd)

PDI Contributor Maximum Size Maximum Size (Mbits)
LPD CDO1,2 20 KBytes <1

FPD CDO1,2 20 KBytes <1

PSM ELF1,2 256 KBytes 2

Notes:
1. Size information is based on non-secure, uncompressed images.
2. LPD CDO, FPD CDO, and PSM ELF element inclusion are dependent on the design.

Additional contributor elements to PDI size are generated by the Vivado/Vitis development
system, and when present, are significantly large with sizes depending on the Versal ACAP part
number.

• Programmable logic (PL) configuration frame interface (CFI) information

• Network on chip (NoC) programming interface (NPI) information

• AI Engine programming (AIE) information

The following table provides size estimation guidance for the larger contributor elements to the
PDI.

Table 10: Estimated Maximum Size for PDI Large Contributors to PDI Size

Series Device CFI Maximum
Size (Mbits)

NPI Maximum
Size (Mbits)

AIE Maximum
Size (Mbits) Total (Mbits)

Versal Prime

VM1102 166 3 - 169

VM1302 363 10 - 373

VM1402 484 10 - 494

VM1502 334 12 - 346

VM1802 715 15 - 730

VM2302 570 15 - 585

VM2502 868 16 - 884

VM2902 805 28 - 833

Versal AI Core

VC1352 269 4 25 298

VC1502 334 12 50 396

VC1702 466 7 100 573

VC1802 715 15 95 825

VC1902 715 15 126 856

Notes:
1. Size information is based on non-secure, uncompressed images.

Section III: Platform Boot, Control, and Status
Chapter 14: Boot Image

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=107

User Code/Data (U-Boot, OS Image, Application, File System)

The remaining image contributors to the PDI size are highly dependent on the system design and
cannot be known or provided by Xilinx.

Storing multiple PDI, or multiple images in a PDI, to meet system requirements can multiply the
desired storage capacity. Adding boot flow options such as security, compression, or partial
reconfiguration can change PDI size.

Note: For PDI that includes PL configuration information, reducing the use of block RAM or UltraRAM
initialization (e.g., code/data storage or other ROM-like uses) can decrease the CFI contribution provided in
the table estimates in this section.

Due to the many factors that can influence the desired storage capacity, Xilinx recommends
system architects model their complete needs using “maximum values” based on information
provided in this chapter, coupled with system insight and PDIs generated by the Vivado®/Vitis
development system reflecting actual boot flow options and including user code/data.

The desired storage capacity guides the selection of the most appropriate Versal ACAP boot
modes. For those boot modes used with a non-volatile memory device, the desired storage
capacity also guides the selection process of this additional component.

Boot modes supporting NAND flash technology (i.e., eMMC or SD) provide options for the
highest capacity storage, while boot modes supporting NOR flash technology (i.e., QSPI or OSPI)
provide options for mid-to-low capacity storage (typically 2 Gbit or lower, with 4 Gbit possible
using dual stacked/parallel arrangements). For NOR flash technology, the following table
provides guidance on minimum flash component size for storing a single non-secure and
uncompressed PDI for a primary boot of a Versal ACAP. The effect of user code/data storage,
security, compression, partial reconfiguration, or multiple PDI images is a supplemental
consideration.

Table 11: Minimum Flash Component Size for Primary Boot with One Uncompressed
PDI

Series Device Minimum Boot Flash Capacity
(Mbits)

Versal Prime

VM1102 256

VM1302 512

VM1402 512

VM1502 512

VM1802 1024

VM2302 1024

VM2502 1024

VM2902 512

Section III: Platform Boot, Control, and Status
Chapter 14: Boot Image

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=108

Table 11: Minimum Flash Component Size for Primary Boot with One Uncompressed
PDI (cont'd)

Series Device Minimum Boot Flash Capacity
(Mbits)

Versal AI Core

VC1352 512

VC1502 1024

VC1702 1024

VC1802 1024

VC1902 1024

Boot Header
The boot header in the PDI is read by the ROM code unit (RCU) to determine key information
such as the platform loader and manager (PLM) location and size, the boot mode bus width, and
security encryption key details. The boot header format information is listed in the following
table. For additional information on the PDI format, boot header, boot header attributes, meta
header, or partition headers see Bootgen User Guide (UG1283).

Table 12: Boot Header Format

Offset (Hex) Size (Bytes) Description Details

0x00 16 SelectMAP bus width

Used to determine if the SelectMAP bus width is x8, x16,
or x32.
See SelectMAP Pattern and Bit Order for the unique
entries.

0x10 4 QSPI bus width

QSPI bus width description.
This is required to identify the QSPI flash in single/dual
stacked or dual parallel mode. 0xAA995566 in the little
endian format.

0x14 4 Image identification
Boot image identification string.
Contains 4 bytes X, N, L, X in byte order, which is
0x584c4e58 in the little endian format.

0x18 4 Encryption key source

This field is used to identify the AES key source:
0x00000000 - Unencrypted
0xA5C3C5A3 - eFUSE red key
0xA5C3C5A5 - eFUSE black key
0x3A5C3C5A - BBRAM red key
0x3A5C3C59 - BBRAM black key
0xA35C7C53 - Boot header black key

0x1C 4 PLM source offset PLM source start address in PDI.

0x20 4 PMC data load address
PMC CDO address to load. The PMC CDO data load
address must be 0xF200_0000 for proper PLM
operation.

0x24 4 PMC data length PMC CDO length.

Section III: Platform Boot, Control, and Status
Chapter 14: Boot Image

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 109Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=109

Table 12: Boot Header Format (cont'd)

Offset (Hex) Size (Bytes) Description Details

0x28 4 Total PMC data length PMC CDO length including authentication and
encryption overhead.

0x2C 4 PLM length PLM original image size.

0x30 4 Total PLM length PLM image size including the authentication and
encryption overhead.

0x34 4 Boot header attributes Boot header attributes.

0x38 32 Black key 256-bit key, only valid when encryption status is set to
black key in boot header.

0x58 12 Black IV Initialization vector used when decrypting the black key.
0x64 12 Secure header IV Secure header initialization vector.

0x70 4 PUF shutter value Length of time the PUF samples before it closes the
shutter.

0x74 12 Secure header IV for
PMC data The IV used to decrypt secure header of PMC data.

0x80 68 Reserved Populate with zeroes.
0xC4 4 Meta header offset Offset to the start of the meta header.

0xC8-0x124 88 Reserved

0x128 2048 Register init
Stores register write pairs for system register
initialization. See Bootgen User Guide (UG1283) for more
detail.

0x928 1544 PUF helper data PUF helper data.

0xF30 4 Checksum Header checksum. The boot header checksum covers
offset range 0x10 to 0xF30.

0xF34 76 SHA3 padding SHA3 standard padding.

Section III: Platform Boot, Control, and Status
Chapter 14: Boot Image

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 110Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=110

Chapter 15

Boot Modes
The Versal™ ACAP boot modes are designed for maximum flexibility. This chapter provides a
primary boot mode summary, selection considerations, and interface details. The primary boot
modes in the PMC are:

• JTAG Boot Mode

• Quad SPI Boot Mode

• SD Boot Modes

• eMMC1 Boot Mode

• Octal SPI Boot Mode

• SelectMAP Boot Mode

Each boot mode uses a set of I/O pins and has a voltage requirement that can affect post-boot
peripheral use of shared MIO on a bank. The best overall boot mode solution for an application
considers the overall system requirements, performance, cost, and complexity.

The boot modes are categorized into master or slave boot modes. The master boot modes
automatically load the programmable device image from a memory source (SD, eMMC, quad SPI,
or octal SPI). The master boot modes provide a basic solution with easy setup. In master boot
modes, the POR_B pin release to the first fetch from a boot device is estimated at ~620 μs. This
time guides how quickly the flash must be ready to respond to the BootROM. The slave boot
modes require an external processor or controller to load the programmable device image with a
command set (JTAG or SelectMAP). An advantage of using a slave boot mode is that the device
image can reside almost anywhere in the host system or over a network connection. The slave
boot modes are multipurpose interfaces that can also be used for system debug and readback.

RECOMMENDED: Regardless of the boot mode selected, if the secure boot flow is not used, then JTAG
connectivity on the board is recommended for the application. JTAG connectivity is a valuable debugging
and bring-up interface.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=111

For systems that require a low-cost solution, QSPI boot modes are ideal with a variety of second-
source vendors. For applications that require faster boot times due to power-on latency
constraints, the boot modes with wide bus widths are inherently faster. For the master boot
modes, the QSPI dual-parallel 8-bit or OSPI 8-bit is an optimal choice for a faster boot time. For
slave-boot modes, the SelectMAP 32-bit mode provides the fastest option. For applications with
large storage capacity requirements, the SD and eMMC1 boot modes support larger boot
memory devices.

The Versal ACAP MIO-at-a-glance table should be reviewed to ensure that the requirements for
boot and post-boot peripherals are satisfied. This chapter focuses on the primary boot mode
options, however, the Versal ACAP is capable of starting with a primary boot mode and then
switching to a secondary boot option (i.e., QSPI primary boot, followed by eMMC0 as a
secondary boot option to provide larger density and flexibility). See the Versal ACAP System
Software Developers Guide (UG1304) for more information on secondary boot options. The
following table lists the available primary boot modes. Boot modes that are secure boot capable
support both Asymmetric and Symmetric Hardware Root of Trust modes.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 112Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=112

Table 13: Primary Boot Modes

Mode MODE[3:0]
Pins PMC I/O Pins

Secure
Boot

Capable
Data Bus

Width Direction Description

eMMC1
(4.51) 0110 MIO[12:3,0] Yes 1-bit, 4-bit, 8-bit Master

eMMC interface
supports eMMC 4.51
at 1.8V

JTAG 0000 Dedicated I/O No 1-bit Slave Dedicated JTAG
interface

OSPI 1000 MIO[12:0] Yes 8-bit Master
Octal SPI interface
supports single and
dual-stacked flash
devices

QSPI24 0001 MIO[12:0] Yes

1-bit, 2-bit, 4-bit
(single or dual-

stacked)
8-bit (dual-

parallel)

Master
Quad SPI interface
supports the 24-bit (3-
byte) flash addresses1

QSPI32 0010 MIO[12:0] Yes

1-bit, 2-bit, 4-bit
(single or dual-

stacked)
8-bit (dual-

parallel)

Master

Quad SPI interface
supports the 32-bit (4-
byte) flash addresses.
32-bit flash addressing
is required to address
flash devices that are
greater than 128 Mb.1

SD0 (3.0) 0011 MIO[49:37] Yes 4-bit Master
SD interface supports
SD 3.0 with a required
SD 3.0 compliant
external level shifter

SD1 (2.0) 0101 MIO[51:50,33:28, 26] Yes 4-bit Master SD interface supports
SD 2.0

SD1 (3.0) 1110 MIO[51:50, 36:26] Yes 4-bit Master
SD interface supports
SD 3.0 with a required
SD 3.0 compliant
external level shifter

SelectMAP 1010 MIO[51:28, 25:14] Yes 8-bit, 16-bit, 32-
bit Slave

SelectMAP
bidirectional parallel
data bus interface

Notes:
1. For Quad SPI single flash or dual-stacked flash setups, only a subset of the MIO interface pins listed are required and

the MIO interface pins can be used for other peripherals. See the boot interface diagrams for more information.

Visual Boot Pin Usage Guide

The following table illustrates the MIO pins needed for each boot mode.

Table 14: Visual Boot Pin Usage

MIO Pin 0 1:2 3:11 12 13 14:25 26 27 28:33 34 35 36 37:49 50:51
Pin

Count 1 2 9 1 1 12 1 1 6 1 1 1 13 2

eMMC1 X X X

Octal SPI X X X X

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=113

Table 14: Visual Boot Pin Usage (cont'd)

MIO Pin 0 1:2 3:11 12 13 14:25 26 27 28:33 34 35 36 37:49 50:51
Pin

Count 1 2 9 1 1 12 1 1 6 1 1 1 13 2

Quad SPI X X X X

SD0 (3.0) X

SD1 (2.0) X X X

SD1 (3.0) X X X X X X X

SMAP

8 bit X

16-bit X X X X

32-bit X X X X X X X

Boot Mode Search Limits

The BootROM has a search limit to locate the device image boot header for every boot mode.
The following table lists the boot image search limits for each mode.

Table 15: Boot Mode Search Limit

Boot Mode Search Offset Limit
OSPI (single, dual-stacked) 8 Gb

QSPI24 (dual-parallel) 256 Mb

QSPI24 (single, dual-stacked) 128 Mb

QSPI32 (dual-parallel) 8 Gb

QSPI32 (single, dual-stacked) 4 Gb

SD0 (3.0), SD1 (2.0), SD1 (3.0), or eMMC1 8191 FAT files (default)

eMMC1 (raw) eMMC device size

Note: When using OSPI or QSPI dual-stacked mode, the BootROM can only access the lower QSPI or OSPI
addressable flash memory space for boot. After boot, the PLM can access the upper QSPI or OSPI for
additional image storage.

JTAG Boot Mode
The JTAG interface is a multipurpose interface used for both boot and debug functions (PMC
TAP JTAG operations, Arm® DAP debug, and interfaces to the debug packet controller for
ChipScope™ solution debug). Due to this flexibility, the JTAG boot mode is popular for initial
design bring-up and is a recommended interface for all applications. The JTAG boot mode uses
only dedicated I/O so the BootROM leaves the MIOs in their default state and they can be used
for peripheral system requirements. See Section XV: Test and Debug for information on JTAG
instructions and JTAG chain.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=114

Table 16: JTAG Boot Mode Interface

Pin Name Pin Type Direction Description
TDI Dedicated Input Test data input

TDO Dedicated Output Test data output

TMS Dedicated Input Test mode select

TCK Dedicated Input Test clock

Quad SPI Boot Mode
The Versal ACAP supports a 24-bit addressing mode (QSPI24) boot mode or a 32-bit addressing
(QSPI32) boot mode option. The QSPI32 boot mode option addresses flash sizes greater than
128 Mb. The QSPI boot mode supports multiple data bus widths and setups. In the QSPI boot
modes, the BootROM runs at a QSPI device clock frequency between 11 MHz and 24.5 MHz
dependent on the REF_CLK setting. For additional information on the quad SPI controller, see
Quad SPI Controller.

The QSPI boot mode setups supported are listed in the following table.

Table 17: Quad SPI Boot Mode Setups

Quad SPI Setup Flash Device
Count Chip Select Count Data Width Max

Single (1-bit, 2-bit, 4-bit) 1 1 4

Dual-stacked1 (1-bit, 2-bit, 4-bit) 2 2 4

Dual-parallel (8-bit) 2 2 8

Notes:
1. When using QSPI dual-stacked mode, the BootROM can only access the lower QSPI addressable flash memory space

for boot. After boot, the PLM can access the upper QSPI for additional image storage.

The boot mode image search limits are listed in Table 15: Boot Mode Search Limit.

QSPI devices support different commands. The RCU supports a common subset of commands
for boot as listed in the following table.

Table 18: Quad SPI Commands Supported by the RCU

Boot Mode Data Width Read Mode Command Code Dummy Cycles
QSPI24 1 Normal read (3-Byte) 03h -

QSPI24 2 Dual Output fast read (3-Byte) 3Bh 8

QSPI24 4 Quad Output fast read (3-Byte) 6Bh 8

QSPI32 1 Normal read (4-Byte) 13h -

QSPI32 2 Dual Output fast read (4-Byte) 3Ch 8

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=115

Table 18: Quad SPI Commands Supported by the RCU (cont'd)

Boot Mode Data Width Read Mode Command Code Dummy Cycles
QSPI32 4 Quad Output fast read (4-Byte) 6Ch 8

I/O Configuration Detection
The BootROM can detect the intended I/O width of the QSPI interface using the width
detection parameter value (0xAA995566) and the image identification parameter value
(0x584C4E58) in an 8-bit parallel configuration.

4-bit I/O Detection

During the QSPI boot process, the BootROM configures the controller with 4-bit I/O. This
configuration includes a single device and the dual 4-bit stacked case. The BootROM reads the
first (and, possibly, the only) QSPI device in x1 mode. It reads the width detection parameter in
the BootROM header. If the width detection parameter is equal to 0xAA995566, the BootROM
assumes it found a valid header that is requesting a 4-bit I/O configuration. It might be one
device or it might be a dual 4-bit stacked configuration. In the latter case, the second device is
always ignored by the BootROM, but it might be accessed by user code. After reading the width
detection parameter in x1 mode, the BootROM attempts to read the parameter in x4 mode. If x4
mode fails, it tries x2 mode. After this, the BootROM uses the widest supported I/O bus width to
access the QSPI device.

8-bit I/O Detection

The BootROM also looks for the dual device, 8-bit parallel configuration. In this case, the
BootROM only reads the even bits of the BootROM header because it is only accessing the first
device and the header is split across both devices. The BootROM forms a 32-bit word that
includes the even bits of the width detection (0x20) and image identification (0x24) parameter
values. When the BootROM detects this condition, it assumes the system uses the 8-bit parallel
configuration and programs the controller for the x8 operating mode. This mode is used for the
rest of the boot process.

Quad SPI Signals
In QSPI24/QSPI32 boot modes, MIO[6:0] for single device/dual-stacked device setups, or
MIO[12:0] for dual-parallel device setups are configured by the BootROM to use:

• Default drive strength (8 mA)

• Default slew rate (slow)

• Default weak pull-ups (enabled)

• Enables the Schmitt trigger input

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=116

• Disables the 3-state override

The remaining MIOs are not set by the BootROM and remain at their default state. If a secure
lockdown occurs during boot, the BootROM sets the TRISTATE_OVERRIDE register to
FFFF_FFFFh, which forces all I/Os into a tristate mode.

The following table lists the bidirectional PMC multiplexed I/Os (MIOs) and their functions used
in the Quad SPI boot mode setup.

Table 19: Quad SPI Boot Mode Signals

PMC MIO Pin Signal Name Description
0 QSPI0_CLK QSPI0 clock output

4 QSPI0_IO[0]
I/O pin used as MOSI in 1-bit mode
I/O pin used as the lower QSPI0_IO[0] in 2-bit or 4-bit single or dual-stacked setups,
and in 8-bit dual-parallel setups

1 QSPI0_IO[1]
I/O pin used as MISO in 1-bit mode
I/O pin used as the lower QSPI0_IO[1] in 2-bit or 4-bit single or dual-stacked setups,
and in 8-bit dual-parallel setups

2 QSPI0_IO[2] I/O pin used as the lower QSPI0_IO[2] in 4-bit single or dual-stacked setups, and in 8-
bit dual-parallel setups

3 QSPI0_IO[3] I/O pin used as the lower QSPI0_IO[3] in 4-bit single or dual-stacked setups, and in 8-
bit dual-parallel setups

5 QSPI0_CS_b Active-Low chip select output that enables QSPI0 (lower) flash device

12 QSPI1_CLK QSPI1 clock output

8 QSPI1_IO[0]
I/O pin used as MOSI in 1-bit mode
I/O pin used as the upper QSPI1_IO[0] in 2-bit or 4-bit dual-stacked setups, and in 8-
bit dual-parallel setups

9 QSPI1_IO[1]
I/O pin used as MISO in 1-bit mode
I/O pin used as the upper QSPI1_IO[1] in 2-bit or 4-bit dual-stacked setups, and in 8-
bit dual-parallel setup

10 QSPI1_IO[2] I/O pin used as the upper QSPI1_IO[2] in 4-bit dual-stacked setups, and in 8-bit dual-
parallel setups

11 QSPI1_IO[3] I/O pin used as the upper QSPI1_IO[3] in 4-bit dual-stacked setups, and in 8-bit dual-
parallel setups

7 QSPI1_CS_b Active-Low chip select output enables QSPI1 (upper) flash device

6 QSPI_LPBK_CLK

I/O pin used for loopback clock
The loopback clock is an internal clock signal that is routed through the output buffer
to this pin and returned back through the pin's input buffer to the quad SPI
controller for I/O delay compensation.
When the quad SPI device clock frequency is >37.5 MHz, the loopback clock must be
enabled in the CIPS IP core and the MIO[6] must be left unconnected on the board.
When the quad SPI device clock frequency ≤37.5 MHz, the loopback clock should be
disabled in the CIPS IP core so MIO[6] is not used by the quad SPI controller. If the
interface is not run at >37.5 MHz, the MIO[6] can be used as another peripheral I/O.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 117Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___tristate_override.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=117

Single Device Interface
The QSPI single-device mode is a common setup because it is low cost and has a lower pin count
boot and configuration option. The QSPI single-device mode supports 1-bit, 2-bit, and 4-bit bus
widths. This mode also supports 24-bit addressing and 32-bit addressing modes.

An example QSPI interface setup for a 4-bit bus width and 32-bit addressing mode is shown in
the following figure.

Figure 20: Quad SPI Single Device Interface

Versal Device

Quad SPI Device

0010

PMC MIO Bank 0

PMC Dedicated I/O Bank

MODE[3:0]

QSPI0_CS_b

QSPI0_CLK
QSPI0_IO[3:0]

CLK
IO[3:0]
CS_b

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B
DONE Status
ERROR_OUT Status

QSPI_LPBK_CLK

Note: For QSPI0_CLK >37.5 MHz, QSPI_LPBK_CLK must be enabled in the design and left unconnected on the board.

NC (*see note)

X22624-052821

The following figure shows an example QSPI read waveform with the relative sequence of
events.

Figure 21: QSPI Example Read Waveform

Dual-Stacked Interface
Two QSPI devices share the same bus in QSPI dual-stacked mode to double the maximum
addressable flash memory storage for the application. This mode also reduces the boot interface
I/O pin count because the bus is shared and only one additional interface pin is needed for the
flash select. In this mode, only the lower QSPI addressable flash memory space can be used for
boot and the throughput remains the same as it is in the QSPI single-device mode.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=118

An example of the dual-stacked QSPI setup is with the 32-bit addressing mode is shown in the
following figure.

Figure 22: Dual-Stacked Quad SPI Interface Example

Versal Device

Quad SPI0 Device
(Lower)

0010

PMC MIO Bank 0

PMC Dedicated I/O Bank

MODE[3:0]

QSPI0_CS_b

QSPI0_CLK
QSPI0_IO[3:0]

CLK
IO[3:0]
CS_b

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

Quad SPI1 Device
(Upper)

QSPI1_CS_b

CLK
IO[3:0]
CS_b

Note: For QSPI0_CLK >37.5 MHz, QSPI_LPBK_CLK must be enabled in the design and unconnected on the board.

QSPI_LPBK_CLK NC (*see note)

X22635-052821

Dual-Parallel Interface
The QSPI dual-parallel mode increases performance by combining two QSPI devices with 4-bit
data widths to create an 8-bit data bus width. The QSPI dual-parallel mode only supports each
QSPI device in a 4-bit data bus width. The QSPI dual-parallel mode does not support QSPI
devices in 1-bit or 2-bit data bus widths.

An example of the dual-parallel QSPI setup with the 32-bit addressing mode is shown in the
following figure.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=119

Figure 23: Dual-Parallel Quad SPI Interface Example

Note: For QSPI0_CLK >37.5 MHz, QSPI_LPBK_CLK must be enabled in the design and unconnected on the board.

NC (*see note)

X22635-052821

Versal Device

Quad SPI0 Device
(Lower)

0010

PMC MIO Bank 0

PMC Dedicated I/O Bank

MODE[3:0]

QSPI0_CS_b

QSPI0_CLK
QSPI0_IO[3:0]

CLK
IO[3:0]
CS_b

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

Quad SPI1 Device
(Upper)

QSPI1_CS_b
QSPI_LPBK_CLK

QSPI1_CLK
QSPI1_IO[3:0]

CLK
IO[3:0]
CS_b

SD Boot Modes
There are two SD/eMMC controllers on the Versal ACAP. The SD/eMMC controllers can be used
for SD or eMMC and are mutually exclusive. When the controller is selected to support SD, the
eMMC mode cannot be used.

The SD/eMMC controllers support three SD boot modes with different MIO pin usage. The SD1
(2.0) boot mode supports the SD2.0 specification. The SD1 (3.0) and SD0 (3.0) boot modes
support the SD3.0 specification with an external SD3.0 compliant voltage-level shifter. In the SD
boot modes, the RCU BootROM runs at an SD device clock frequency between 8.7 MHz and
19.3 MHz dependent on the REF_CLK setting. FAT 16/32 file systems are supported for reading
the boot images.

The image search limit for SD boot mode is listed in Table 15: Boot Mode Search Limit.

For additional information on the SD/eMMC controller, see SD/eMMC Controllers.

SD Signals
In SD boot modes, MIO[26, 29, 30:33] for SD1 (2.0), MIO[26:27, 29:36] for SD1 (3.0), or
MIO[38, 40:48] for SD0 (3.0) are configured by the BootROM to use:

• Default drive strength (8 mA)

• Default slew rate (slow)

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=120

• Default weak pull-ups (enabled)

• Enables the Schmitt trigger

• Disables the master 3-state

The remaining MIOs are not set by the BootROM and remain at their default state. If a secure
lockdown occurs during boot, the BootROM sets the TRISTATE_OVERRIDE to 0xFFFFFFFF to
3-state all I/Os. See Versal ACAP Register Reference (AM012) for details.

The following table lists the bidirectional PMC multiplexed I/Os (MIOs) and their functions used
in the SD boot mode setup.

Table 20: SD1 (2.0) Boot Mode Signals

PMC MIO Pin Signal Name Description
26 SD1_CLK SD1 clock output.

29 SD1_CMD SD1 command.

30 SD1_DATA[0] Data pin used in SD1 boot mode.

31 SD1_DATA[1] Data pin used in SD1 boot mode.

32 SD1_DATA[2] Data pin used in SD1 boot mode.

33 SD1_DATA[3] Data pin used in SD1 boot mode.

28 SD1_DETECT
Provides a card detect input that reflects the state of the mechanical switch on the SD
card. The card detect signal is not required for primary boot. Not supported by
BootROM.

50 SD1_WP Write protect input signal. The write protect signal is not required for primary boot.
Not supported by BootROM.

51 SD1_BUSPWR Bus power output that can be used to gate or reset the SD card power on the board.
The bus power signal is not required for primary boot. Not supported by BootROM.

Table 21: SD1 (3.0) Boot Mode Signals

PMC MIO Pin Signal Name Description
26 SD1_CLK SD1 clock output.

29 SD1_CMD SD1 command.

30 SD1_DATA[0] Data pin used in SD1 boot mode.

31 SD1_DATA[1] Data pin used in SD1 boot mode.

32 SD1_DATA[2] Data pin used in SD1 boot mode.

33 SD1_DATA[3] Data pin used in SD1 boot mode.

34 SD1_SEL
Select signal output is automatically asserted when SD3.0 mode is selected. Select
signal enables an external voltage translator to switch from 3.3V to 1.8V to operate
the SD card at the highest performance supported.

35 SD1_DIR_CMD DIR CMD output determines if the command is an input or output.

36 SD1_ DIR0 DIR0 output determines if Data[0] is an input or output.

27 SD1_DIR1 DIR1 output determines if Data[3:1] direction is an input or output.

28 SD1_DETECT
Provides a card detect input that reflects the state of the mechanical switch on the SD
card. The card detect signal is not required for primary boot. Not supported by
BootROM.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 121Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___tristate_override.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=121

Table 21: SD1 (3.0) Boot Mode Signals (cont'd)

PMC MIO Pin Signal Name Description

50 SD1_WP Write protect input signal. The write protect signal is not required for primary boot.
Not supported by BootROM.

51 SD1_BUSPWR
Bus power output that can be used to gate or reset the SD card power on the board.
Not required for primary boot. BootROM configures the bus power signal in SD1 (3.0)
boot mode.

Table 22: SD0 (3.0) Boot Mode Signals

PMC MIO Pin Signal Name Description
38 SD0_CLK SD0 clock output.

40 SD0_CMD Command signal.

41 SD0_DATA[0] Data pin used in SD0 boot mode.

42 SD0_DATA[1] Data pin used in SD0 boot mode.

43 SD0_DATA[2] Data pin used in SD0 boot mode.

44 SD0_DATA[3] Data pin used in SD0 boot mode.

45 SD0_SEL
Select signal is automatically asserted when SD3.0 mode is selected. Select signal
enables an external voltage translator to switch from 3.3V to 1.8V to operate the SD
card at the highest performance supported.

46 SD0_DIR_CMD DIR_CMD output, determines if the command is an input or output.

47 SD0_DIR0 DIR0 output determines if Data[0] is an input or output.

48 SD0_DIR1 DIR1 output determines if Data[3:1] direction is an input or output.

39 SD0_DETECT
Provides a card detect input that reflects the state of the mechanical switch on the SD
card. The card detect signal is not required for primary boot. Not supported by
BootROM.

37 SD0_WP Write protect input signal. The write protect signal is not required for primary boot.
Not supported by BootROM.

49 SD0_BUSPWR
Bus power output that can be used to gate or reset the SD card power on the board.
Not required for primary boot. BootROM configures the bus power signal in SD0 (3.0)
boot mode.

SD2.0 Interface
The SD 2.0 interface figure shows the SD1 (2.0) boot mode interface from a single SD flash
device and expects the PMC_MIO Bank1 to be at 3.3V.

The PMC_MIO Bank 1 voltage is used by all 26 MIO included in that bank. If the PMC_MIO
Bank1 is shared by other peripherals that require 1.8V or 2.5V to be used, an external voltage
level translator is required to interface to the SD card in SD1(2.0) boot mode.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=122

Figure 24: SD 2.0 Interface

Versal Device

SD (2.0) Device

0101

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

SD1_CLK

SD1_DATA[3:0]

CLK
CMD
DATA[3:0]

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

SD1_CMD

Note: When PMC MIO Bank 1 is 1.8V or 2.5V, an
external voltage translator is required.

X22631-102920

The SD1_DETECT, SD1_WP, and SD1_BUSPWR are optional interface signals not required for
primary boot.

SD3.0 Interface
The following figure shows the SD1 (3.0) boot mode interface from a single SD flash device using
a voltage level translator.

The PMC_MIO Bank1 is expected to be at 1.8V for SD 3.0 boot modes. In SD 3.0 boot modes, an
external voltage level translator is needed to enable the controller to initially interface at 3.3V
with the SD card and then 1.8V for high-speed transfers.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=123

Figure 25: SD1 (3.0) Interface Example

Versal Device
1110

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

CLK
CMD

DATA[3:0]

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

Voltage
Level

Translator

SD (3.0)
Device

CLK
CMD
DATA[3:0]

DETECT
WP

Board Bus Power

SD1_CLK
SD1_CMD

SD1_DATA[3:0]
SD1_SEL

SD1_DIR0
SD1_DIR1

SD1_BUSPWR

SD1_DETECT
SD1_WP

ERROR_OUT

Note: The SDx_DIR0 and SDx_DIR1 direction signals might
not be required for all devices. Verify with device vendor.

X22632-102020

This figure shows the requirement of a voltage level translator. The SD1_DETECT, SD1_WP, and
SD1_BUSPWR are optional interface signals that are not required for primary boot. If the
SD1_DETECT and SD1_WP signals are used, connecting them to the voltage level translator as
shown in the figure can provide ESD protection and pull-ups.

The SD0 (3.0) controller interface setup is the same except the boot mode setting is
MODE[3:0]=0011 and the SD0 named signals are used instead of SD1.

eMMC1 Boot Mode
There are two SD/eMMC controllers on the Versal ACAP. The SD/eMMC controllers can be used
for SD or eMMC and are mutually exclusive. When the controller is selected to support eMMC
the SD mode cannot be used. Only one of the SD/eMMC controllers supports the eMMC boot
mode, the SD1/eMMC1 controller.

The SD1/eMMC1 controller supports the 4.51 eMMC specification. FAT 16/32 file systems and
select raw partition combinations are supported for reading the boot images from eMMC for
primary boot. Raw partitions, not formatted and without a file system, are supported for primary
boot mode, the boot partition 1, boot partition 2, or the user area of the eMMC. Using eMMC
FAT 16/32 file system for primary boot mode and eMMC as secondary boot mode is not
supported. The image search limit for eMMC1 boot mode is listed in Table 15: Boot Mode Search
Limit. See the Versal ACAP System Software Developers Guide (UG1304) for additional details on
supported raw boot options.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 124Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=124

In the eMMC1 boot mode, the RCU BootROM runs at an eMMC1 device clock frequency
between 8.7 MHz and 19.3 MHz dependent on the REF_CLK setting. The eMMC1 boot mode
supports 1.8V and 1-bit, 4-bit, and 8-bit data interfaces. The BootROM uses auto-width
detection to determine the data bus width for initial boot. The auto-bus width detection starts by
checking the 8-bit data bus width, followed by 4-bit data bus width, and then 1-bit data bus
width.

Note: When connecting to the eMMC1 controller using a 1-bit data bus width, note the detection order
because the remainder of the 8-bit data bus MIO data pins toggle during the initial bus-width detection.

For additional information on the SD/eMMC controller, see SD/eMMC Controllers.

eMMC1 Signals
In eMMC1 boot mode, the MIO[0, 3:12] are configured by the BootROM to use:

• Default drive strength (8 mA)

• Default slew rate (slow)

• Default weak pull-ups (enabled)

• Enables the Schmitt trigger

• Disables the 3-state override

The remaining MIOs are not set by the BootROM and remain at their default state. If a secure
lockdown occurs during boot, the BootROM sets the TRISTATE_OVERRIDE to FFFF_FFFFh to
3-state all I/Os.

The following table lists the bidirectional PMC multiplexed I/Os (MIOs) and their functions used
in the eMMC1 boot mode setup.

Table 23: eMMC1 Boot Mode Signals

PMC MIO Pin Signal Name Description
0 EMMC1_CLK eMMC1 clock output

3 EMMC1_CMD eMMC1 command

4 EMMC1_DATA[0] Data pin used in eMMC1 boot mode (1-bit, 4-bit, 8-bit)

5 EMMC1_DATA[1] Data pin used in eMMC1 boot mode (4-bit, 8-bit)

6 EMMC1_DATA[2] Data pin used in eMMC1 boot mode (4-bit, 8-bit)

7 EMMC1_DATA[3] Data pin used in eMMC1 boot mode (4-bit, 8-bit)

8 EMMC1_DATA[4] Data pin used in eMMC1 boot mode (8-bit)

9 EMMC1_DATA[5] Data pin used in eMMC1 boot mode (8-bit)

10 EMMC1_DATA[6] Data pin used in eMMC1 boot mode (8-bit)

11 EMMC1_DATA[7] Data pin used in eMMC1 boot mode (8-bit)

12 EMMC1_RST Reset output that resets the eMMC flash

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 125Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___tristate_override.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=125

eMMC1 Interface
The following figure shows an example setup for eMMC1 boot mode from a single flash device.

Figure 26: eMMC1 Interface Example

Versal Device

eMMC Device

0110

PMC MIO Bank 0

PMC Dedicated I/O Bank

MODE[3:0]

EMMC1_RST

EMMC1_CLK

EMMC1_DATA[7:0]

CLK
CMD
DAT[7:0]
RESET

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

EMMC1_CMD

X22630-102020

Octal SPI Boot Mode
The octal SPI (OSPI) boot mode has an SPI compatible serial bus interface with extended octal
commands. The OSPI boot mode supports an 8-bit data bus width and single transfer rate (STR)
during the RCU BootROM execution. The BootROM runs at an OSPI device clock frequency
between 11 MHz and 24.5 MHz dependent on the REF_CLK setting. After the BootROM
execution, the PLM can support the double data rate (DDR) with strobe for higher performance.
The OSPI boot mode can be configured to a OSPI single or dual-stacked setup. For additional
information on the OSPI controller, see Octal SPI Controller.

Note: When using OSPI dual-stacked mode, the BootROM can only access the lower OSPI0 addressable
flash memory space for boot. After boot, the PLM can access the upper OSPI1 for additional image
storage.

The following table lists the STR OSPI commands supported by the RCU BootROM.

Table 24: OSPI Commands Supported by RCU for Boot

Boot Mode Data Width Read Command Command Code Dummy Cycles
OSPI 1 Read 03h -

OSPI 1 4-byte read 13h -

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=126

Table 24: OSPI Commands Supported by RCU for Boot (cont'd)

Boot Mode Data Width Read Command Command Code Dummy Cycles
OSPI 8 4-byte octal output fast read 7Ch 8

In OSPI boot mode, the device initiates the boot sequence with the default 4-byte address octal
output fast read command code 7Ch and the BootROM searches for a valid boot header. If a
valid boot header is not found, the Versal ACAP attempts to load the image using the 4-byte
alternate addressing read command code 13h. If a valid boot header is still not detected, the
basic read command 03h is tried. If the boot attempt is unsuccessful after the third command,
the BootROM increments the MultiBoot register (PMC_GLOBAL.PMC_MULTI_BOOT) read
address offset by 32 KB and tries the OSPI command sequence again to locate a valid boot
header. If the OSPI boot mode search limit is reached without a successful boot, the RCU goes
into lockdown and the ERROR_OUT pin is set.

The image search limit for each boot mode is listed in Table 15: Boot Mode Search Limit.

Octal SPI Signals
In OSPI boot mode, MIO[0:5, 7:12] are configured by the BootROM to use:

• Default drive strength (8 mA)

• Default slew rate (slow)

• Default weak pull-ups (enabled)

• Enables the Schmitt trigger

• Disables the 3-state override

The remaining MIOs are not set by the BootROM and remain at their default state. If a secure
lockdown occurs during boot, the BootROM sets the TRISTATE_OVERRIDE to FFFF_FFFFh to
3-state all I/Os.

The following table lists the bidirectional PMC multiplexed I/Os (MIOs) and their functions used
in the OSPI boot mode setup.

Table 25: Octal SPI Boot Mode Signals

PMC_MIO Pin Signal Name Description

0 OSPI_CLK OSPI clock output for OSPI0 in single setup, or OSPI clock output for OSPI0 and OSPI1
in dual-stacked setup.

1 OSPI_IO[0] Data pin used for OSPI single or dual-stacked boot mode setup

2 OSPI_IO[1] Data pin used for OSPI single or dual-stacked boot mode setup

3 OSPI_IO[2] Data pin used for OSPI single or dual-stacked boot mode setup

4 OSPI_IO[3] Data pin used for OSPI single or dual-stacked boot mode setup

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 127Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___tristate_override.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=127

Table 25: Octal SPI Boot Mode Signals (cont'd)

PMC_MIO Pin Signal Name Description
5 OSPI_IO[4] Data pin used for OSPI single or dual-stacked boot mode setup

7 OSPI_IO[5] Data pin used for OSPI single or dual-stacked boot mode setup

8 OSPI_IO[6] Data pin used for OSPI single or dual-stacked boot mode setup

9 OSPI_IO[7] Data pin used for OSPI single or dual-stacked boot mode setup

10 OSPI0_CS_b Active-Low select output enables OSPI0 (lower) flash device

11 OSPI1_CS_b Active-Low select output enables OSPI1 (upper) flash device, used in dual-stacked
setup

6 OSPI_DS
Data strobe input, supports the DDR option in octal SPI boot mode. The octal SPI
compatible flash must support SDR at power on. During the RCU boot phase initial
checks SDR is required, then the PPU can switch the flash to DDR mode for faster
boot time.

12 OSPI_RST_b

Active-Low reset output to reset the OSPI flash.
The OSPI_RST_b signal must be connected to the OSPI flash. The PMC_GPIO channel
is assigned to the OSPI flash reset pin MIO[12]. When the PMC RCU detects the octal
SPI boot mode, it asserts and then deasserts the MIO[12] pin to reset the flash to a
default state during boot.

Single Device Interface
The following figure shows an example OSPI setup for boot from a single flash device.

Figure 27: Single Octal SPI Interface Example

Versal Device

Octal SPI
Device

1000

PMC MIO Bank 0

PMC Dedicated I/O Bank

MODE[3:0]

OSPI0_CS_b

OSPI_CLK

OSPI_DS

OSPI_IO[7:0]

OSPI_RST_b

CLK
IO[7:0]
CS_b
DS
RST_b

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

X22541-102020

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=128

Dual-Stacked Interface
In OSPI boot mode, the dual-stacked configuration uses two OSPI flash devices to double the
maximum addressable flash memory storage for the application. The OSPI dual-stacked
configuration requires one additional chip select pin compared to the OSPI single configuration.
In this mode, only the lower OSPI addressable flash memory space can be used for boot and the
throughput remains the same as it is in the OSPI single-device mode.

An example of the dual-stacked OSPI setup with the 32-bit addressing mode is shown in the
following figure.

Figure 28: Dual-Stacked Octal SPI Interface Example

Versal Device

Octal SPI0 Device
(Lower)

1000

PMC MIO Bank 0

PMC Dedicated I/O Bank

MODE[3:0]

OSPI0_CS_b

OSPI_CLK

OSPI_DS

OSPI_IO[7:0]

OSPI_RST_b

CLK
IO[7:0]
CS_b
DS
RST_b

ERROR_OUT
DONE

REF_CLK
POR_B

REF_CLK
POR_B

DONE Status
ERROR_OUT Status

Octal SPI1 Device
(Upper)

CLK
IO[7:0]
CS_b
DS
RST_b

OSPI1_CS_b

X22719-102020

SelectMAP Boot Mode
The SelectMAP boot mode supports a 8-bit, 16-bit, or 32-bit bidirectional data bus interface.
This mode can boot and configure a single Versal ACAP or multiple Versal ACAPs. In this mode,
an external processor or controller drives the SelectMAP data, clock, and control signals (read/
write and chip select). The external processor also needs to monitor the BUSY signal for
SelectMAP boot initiation and flow control.

When the SelectMap boot mode is detected during system start-up, the path to receive data
from the SelectMAP interface is configured. The PMC controllers and blocks used to enable the
path for SelectMAP are highlighted in Platform Management Controller.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=129

The RCU is responsible for enabling the path for the SelectMAP boot interface. The RCU
configures the slave boot interface, the secure stream switch (SSS), and dedicates the PMC
DMA1 to the slave boot interface (SBI). The PMC MIO SelectMAP 32-bit pins are enabled and
are placed into input mode. After the RCU configures the SBI control register the BUSY signal is
deasserted. After power-up, when BUSY is deasserted, this indicates that the Versal ACAP is
ready to receive data from the SelectMAP interface host.

Because the BUSY signal can be asserted at any stage during boot and configuration, this signal
must be monitored to ensure the interface is ready to accept data. When the BUSY signal is
asserted it indicates the chip select must be deasserted to stop the data loading within 24 clock
(SMAP_CLK) cycles or the SBI FIFO (8 KB) buffer used for SelectMAP data processing overflows.

For SelectMAP, the I/O configuration default is a weak pull-up. When connecting to SelectMAP
data bus width 8-bit, 16-bit, or 32-bit only the selected bus width data signals are used for boot
and configuration.

In the SelectMAP slave boot mode, the BootROM waits an extended period, ~30 minutes, to
receive valid data before it times out. It is recommended to have the JTAG boot mode pin setting
on the board to avoid the extended wait time in early design phases and for debug. When a PDI
generated with the SelectMAP boot mode setting is used in the JTAG boot mode, and intended
to be programmed outside of the Vivado Hardware Manager, the PDI boot header SelectMAP
bus width (first 16 bytes) needs to be skipped.

SelectMAP Pattern and Bit Order
The Versal ACAP programmable device image (PDI) boot header is read by the RCU BootROM to
determine the SelectMAP bus width. The first 16 bytes in the PDI boot header determine the
SelectMAP bus width.

The SelectMAP bus detection PDI pattern options include:

8-bit bus width 00 00 00 DD 11 22 33 44 55 66 77 88 99 AA BB CC
16-bit bus width 00 00 DD 00 22 11 44 33 66 55 88 77 AA 99 CC BB
32-bit bus width DD 00 00 00 44 33 22 11 88 77 66 55 CC BB AA 99

SelectMAP Bit Order

The SelectMAP interface is typically driven by a user application residing on a microprocessor,
microcontroller, or another FPGA or SoC. For these applications, it is important to understand
how the data ordering in the programmable device image corresponds to the data ordering
expected by the Versal ACAP interface. In SelectMAP 8-bit mode, the programmable device
image data is loaded at one byte per clock with the bits of each byte presented to the SelectMAP
pins. The following table shows how to load the SelectMAP PDI data bits onto the SelectMAP
data pins.

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=130

Table 26: SelectMAP Bit Order

SelectMAP
Signal
Names

(SMAP_IO[
#])

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit PDI
data order

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

16-bit PDI
data order

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8-bit PDI
data order

7 6 5 4 3 2 1 0

SelectMAP Sequence
The SelectMAP interface allows an external processor to load the boot and configuration data.
The functional waveform in this section shows an example of the SelectMAP interface data,
clock, and control signals operation to load data into the Versal ACAPs. The waveform shows an
example BUSY response. The BUSY response time can vary but must be within 24 SMAP_CLK
cycles. BUSY is clocked by the SMAP_CLK and does not transition back to low if the SMAP_CLK
is stopped.

Figure 29: SelectMAP Data Loading

X22568-102020

POR_B

SMAP_RDWR_b

SMAP_CLK

SMAP_BUSY

SMAP_CS_b

SMAP_IO[31:0]

SelectMAP Signals
In SelectMAP boot mode, MIO[14:25, 28:51] are configured by the BootROM to use:

• Default drive strength (8 mA)

• Default slew rate (slow)

• Default weak pull-ups (enabled)

• Enables the Schmitt trigger

• Disables the 3-state override

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=131

The remaining MIOs are not set by the BootROM and remain at their default state. If a secure
lockdown occurs during boot, the BootROM sets the TRISTATE_OVERRIDE to FFFF_FFFFh to
3-state all I/Os.

The following table lists the bidirectional PMC multiplexed I/Os (MIOs) and their functions used
in the SelectMAP boot mode setup.

Table 27: SelectMAP Boot Mode Signals

PMC_MIO Pin Signal Name Description
18 SMAP_CLK SelectMAP clock output

14 SMAP_IO[0] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

15 SMAP_IO[1] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

16 SMAP_IO[2] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

17 SMAP_IO[3] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

22 SMAP_IO[4] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

23 SMAP_IO[5] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

24 SMAP_IO[6] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

25 SMAP_IO[7] Data pin used in SelectMAP boot mode (8-bit, 16-bit, 32-bit)

28 SMAP_IO[8] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

29 SMAP_IO[9] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

30 SMAP_IO[10] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

31 SMAP_IO[11] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

32 SMAP_IO[12] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

33 SMAP_IO[13] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

34 SMAP_IO[14] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

35 SMAP_IO[15] Data pin used in SelectMAP boot mode (16-bit, 32-bit)

36 SMAP_IO[16] Data pin used in SelectMAP boot mode (32-bit)

37 SMAP_IO[17] Data pin used in SelectMAP boot mode (32-bit)

38 SMAP_IO[18] Data pin used in SelectMAP boot mode (32-bit)

39 SMAP_IO[19] Data pin used in SelectMAP boot mode (32-bit)

40 SMAP_IO[20] Data pin used in SelectMAP boot mode (32-bit)

41 SMAP_IO[21] Data pin used in SelectMAP boot mode (32-bit)

42 SMAP_IO[22] Data pin used in SelectMAP boot mode (32-bit)

43 SMAP_IO[23] Data pin used in SelectMAP boot mode (32-bit)

44 SMAP_IO[24] Data pin used in SelectMAP boot mode (32-bit)

45 SMAP_IO[25] Data pin used in SelectMAP boot mode (32-bit)

46 SMAP_IO[26] Data pin used in SelectMAP boot mode (32-bit)

47 SMAP_IO[27] Data pin used in SelectMAP boot mode (32-bit)

48 SMAP_IO[28] Data pin used in SelectMAP boot mode (32-bit)

49 SMAP_IO[29] Data pin used in SelectMAP boot mode (32-bit)

50 SMAP_IO[30] Data pin used in SelectMAP boot mode (32-bit)

51 SMAP_IO[31] Data pin used in SelectMAP boot mode (32-bit)

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 132Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___tristate_override.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=132

Table 27: SelectMAP Boot Mode Signals (cont'd)

PMC_MIO Pin Signal Name Description

19 SMAP_CS_b
Chip select input enables the SelectMAP bus
When CS_b is Low, the SelectMAP interface is enabled
When CS_b is High, the SelectMAP interface is disabled

20 SMAP_RDWR_b

Read/Write input that controls whether the data pins are inputs or outputs
When RDWR_b is High, data is output or read onto the SelectMAP data bus
When RDWR_b is Low, an external controller can write data or boot and configure the
device through the SelectMAP data bus interface

21 SMAP_BUSY Busy output is High when there are 24 clock cycles left before the slave boot interface
(SBI) FIFO data buffer overflows

Single Device Interface
The SelectMAP mode single device option uses an external processor or controller to provide the
clock, read/write enable, chip select, and data, as well as monitors the busy signal for flow
control to boot and configure a Versal ACAP. As shown in the following figure, this high-
bandwidth interface spans multiple banks. The PMC MIO bank0 and bank1 must be powered at
the same voltage. Performance, bank voltage, and MIO usage should be evaluated when
selecting the boot mode.

Figure 30: SelectMAP Single Device Interface Example

Versal Device Microprocessor/Controller

1010Boot and
Configuration

Memory Source

PMC MIO Bank 0

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

POR_B
REF_CLK

DONE

SMAP_CLK

SMAP_RDWR_b

SMAP_BUSY

SMAP_IO[31:8]

SMAP_CS_b

SMAP_IO[7:0]

POR_B
DONE

ERROR_OUT

SMAP_RDWR_b
SMAP_CS_b
SMAP_CLK

SMAP_BUSY
SMAP_IO[7:0]

SMAP_IO[31:8]

ERROR_OUT

REF_CLK

X22428-102020

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=133

Multiple Device Interface
The SelectMAP mode multiple device option uses an external processor or controller to provide
the clock, read/write enable, data, chip selects, and busy signals for each Versal ACAP device.
The separate chip select and busy signals allow for flow control to boot and configure multiple
Versal ACAPs with different images. As shown in the following figure, this high-bandwidth
multiple device interface spans multiple banks. The PMC MIO bank0 and bank1 on both Versal
ACAPs must be powered at the same voltage. Performance, bank voltage, and MIO usage should
be evaluated when selecting the boot mode.

Figure 31: SelectMAP Multiple Device Interface Example

Versal ACAP (0) Microprocessor/Controller

1010Boot and
Configuration

Memory Source

PMC MIO Bank 0

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

POR_B
REF_CLK

DONE

SMAP_CS_b

SMAP_CLK

SMAP_BUSY

SMAP_IO[31:8]

SMAP_RDWR_b

SMAP_IO[7:0]

Versal ACAP (1)

1010

PMC MIO Bank 0

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

POR_B
REF_CLK

ERROR_OUT
DONE

SMAP_CS_b

SMAP_CLK

SMAP_BUSY

SMAP_IO[31:8]

SMAP_RDWR_b

SMAP_IO[7:0]

POR_B
DONE

SMAP0_ERROR_OUT

SMAP_CLK
SMAP_RDWR_b

SMAP0_CS_b
SMAP0_BUSY
SMAP_IO[7:0]

SMAP_IO[31:8]

SMAP1_ERROR_OUT

SMAP1_BUSY

ERROR_OUT

SMAP1_CS_b

REF_CLK

X22623-102020

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=134

Ganged Device Interface
In SelectMAP ganged, an external processor or controller provides the clock, read/write enable,
chip select, and data, as well as monitors the busy signal for flow control to boot and configure
multiple Versal devices with the same image in parallel. As shown in the following figure, this
high-bandwidth multiple device interface spans multiple banks. The PMC MIO bank0 and bank1
on both Versal devices must be powered at the same voltage. Performance, bank voltage, and
MIO usage should be evaluated when selecting the boot mode.

Figure 32: SelectMAP Ganged Interface Example

Versal ACAP (0) Microprocessor/Controller

1010
Boot and

Configuration
Memory
Source

PMC MIO Bank 0

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

POR_B
REF_CLK

DONE

SMAP_CS_b

SMAP_CLK

SMAP_BUSY

SMAP_IO[31:8]

SMAP_RDWR_b

SMAP_IO[7:0]

Versal ACAP Device (1)

1010

PMC MIO Bank 0

PMC MIO Bank 1

PMC Dedicated I/O Bank

MODE[3:0]

POR_B
REF_CLK

ERROR_OUT
DONE

SMAP_CS_b

SMAP_CLK

SMAP_BUSY

SMAP_IO[31:8]

SMAP_RDWR_b

SMAP_IO[7:0]

POR_B
DONE

SMAP0_ERROR_OUT

SMAP_CLK
SMAP_RDWR_b

SMAP_CS_b
SMAP0_BUSY
SMAP_IO[7:0]

SMAP_IO[31:8]

SMAP1_ERROR_OUT

SMAP1_BUSY

ERROR_OUT

REF_CLK

X22430-102020

Section III: Platform Boot, Control, and Status
Chapter 15: Boot Modes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=135

Chapter 16

BootROM Error Codes
The RCU detects uncorrectable errors during the hardware boot phase and during system
monitoring. Each error is assigned a 12-bit BootROM error code as listed in the table in this
section. In some cases, multiple errors are grouped to the same error code.

The BootROM first error code [FEC] bit field is written to:

• JTAG error status register, ERROR_STATUS [147:136], and

• PMC_GLOBAL memory-mapped register, PMC_GLOBAL.PMC_BOOT_ERR [23:12]

The BootROM last error code [LEC] bit field is written to:

• JTAG error status register, ERROR_STATUS [135:124], and

• PMC_GLOBAL memory-mapped register, PMC_GLOBAL.PMC_BOOT_ERR [11:0]

Note: The [LEC] bit field is overwritten when there is more than one error detected after the first error. In
this case, the [LEC] is overwritten and will always show the error code that was last detected.

The JTAG error status register is shown in the ERROR_STATUS Register section.

Note: After the RCU executes the BootROM, it releases the PPU to execute the platform loader and
manager (PLM). The PPU PLM firmware also reports error codes. These PLM error codes are listed in the
Versal ACAP System Software Developers Guide (UG1304). The BootROM error codes and the PLM error
codes have similar numbering, but they are completely separate.

Table 28: BootROM Error Codes

Error Code Description Next Step
0x100 eFUSE timeout error See note 1.
0x101 eFUSE cache parity error See note 1.
0x104 PMC MBIST timeout error See note 1.
0x105 PMC MBIST error See note 1.

0x107 PMC PLL (PPLL) lock failed System might not be operating with the
REF_CLK.

0x108 NoC PLL (NPLL) lock failed
0x109 NoC scan clear failed
0x10B PMC BISR timeout error See note 1.
0x10C PMC BISR error See note 1.
0x10F Error occurred in BootROM See note 1.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 136Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=136

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step
0x110 Error occurred in RCU ROM See note 1.
0x111 Error occurred in BootROM See note 1.
0x114 PMC MBIST error See note 1.
0x115 PMC BISR error See note 1.

0x116 VCC_SOC is not available Check that the VCC_SOC rail voltage level is
within the data sheet specification.

0x117 Unable to remove PMC to SoC_NPI isolation See note 1.
0x118 Unable to remove PMC to SoC isolation See note 1.
0x11C Soft reset check, isolation is not removed between

PMC and NPI
0x11D Soft reset check, NoC power supply is not available
0x11E Soft reset check, isolation is not removed between

PMC and NoC

0x203 Secure boot not allowed in non-secure boot modes If PPK HASH is written, ensure JTAG boot
mode is not set.

0x204 Invalid boot mode read from BOOT_MODE_USER
register

Ensure the boot mode pins are set properly
for the requested boot mode.

0x205 Image search error See first error. The image search cannot be
done for slave boot modes.

0x206 Image/width in QSPI24 boot mode not detected
BootROM unable to initialize QSPI flash.
Check boot mode pins, interface connections,
and PDI options used.

0x207 Image/width in QSPI32 boot mode not detected
BootROM unable to initialize QSPI flash.
Check boot mode pins, interface connections,
and PDI options.

0x208 Invalid boot mode selected Ensure the boot mode pin settings are set to
a valid option.

0x209 eMMC FAT file system boot initialization error

BootROM unable to initialize eMMC flash.
Possible file system error. Check boot mode
pins, interface connections, and PDI options.
Ensure the eMMC is properly formatted and
partitioned.

0x20A OSPI initialization error
BootROM unable to initialize OSPI flash. Valid
image not found. Check boot mode pins,
interface connections, and PDI options.

0x20B SelectMAP initialization error
BootROM unable to initialize SelectMAP. Valid
image not found. Check boot mode pins,
interface connections, and PDI options

0x20C JTAG initialization failed
BootROM unable to initialize JTAG boot. Valid
image not found. Check boot mode pins,
interface connections, and PDI options.

0x20E PPU RAM initialization error, DMA timeout See note 1.
0x20F PMC RAM initialization error, DMA timeout See note 1.
0x211 PMC DMA0 or DMA1 error See note 1.

0x213 SD0(3.0) FAT file system boot initialization error BootROM unable to initialize SD flash.
Possible file system error.

0x214 SD1(2.0) FAT file system boot initialization error BootROM unable to initialize SD flash.
Possible file system error.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=137

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step

0x215 SD1(3.0) FAT file system boot initialization error BootROM unable to initialize SD flash.
Possible file system error.

0x21D OSPI is not indicating idle during read operation

0x21E Number of bytes to read are zero, which is not
valid

0x21F OSPI command execution error during read
operation

0x220 OSPI DMA read timeout error

0x221 SelectMAP boot mode mismatch
Check boot mode used for PDI creation.
BootROM is initializing to SelectMAP but
SelectMAP boot mode is not set in the
register.

0x222 JTAG boot mode mismatch
Check boot mode used for PDI creation.
BootROM is initializing to JTAG boot mode
but JTAG boot mode is not seen in the
register.

0x228 QSPI24 MultiBoot value is beyond the boot limit
Check that the MultiBoot value is within the
search limits listed in the Master Boot Mode
Search Limit table.

0x229 QSPI32 MultiBoot value is beyond the boot limit
Check that the MultiBoot value is within the
search limits listed in the Master Boot Mode
Search Limit table.

0x22A OSPI MultiBoot value is beyond the boot limit
Check that the MultiBoot value is within the
search limits listed in the Master Boot Mode
Search Limit table.

0x22B SD initialization error
BootROM unable to initialize SD boot. Valid
image not found. Check boot mode pins,
interface connections, and PDI options.

0x22C OSPI configuration error
BootROM unable to initialize OSPI boot. Valid
image not found. Check boot mode pins,
interface connections, and PDI options.

0x22D
OSPI time out occurred when reading the PDI
identification wordCheck flash connectivity and PDI
generation settings.

Check flash connectivity and PDI generation
settings.

0x22E OSPI PDI identification word not matched

0x22F OSPI time out occurred when reading the PDI
Check flash connectivity, including the reset
and ensure flash is not in a non-responsive
state.

0x230 OSPI time out occurred when reading the PDI
Check flash connectivity, including the reset
and ensure flash is not in a non-responsive
state.

0x231 OSPI configuration error
BootROM unable to initialize OSPI boot. Valid
image not found. Check boot mode pins,
interface connections, and PDI options.

0x232 OSPI timeout occurred when reading the PDI
identification word

Check flash connectivity and PDI generation
settings.

0x233 OSPI PDI identification word not matched Check flash connectivity and PDI generation
settings.

0x234 OSPI timeout occurred when reading the PDI
Check flash connectivity, including the reset
and ensure flash is not in a non-responsive
state.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=138

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step

0x235 OSPI timeout occurred when reading the PDI
Check flash connectivity, including the reset
and ensure flash is not in a non-responsive
state.

0x300 Boot header does not have a XLNX signature
Ensure the image identification contains
XLNX (0x584c4e58). Check PDI settings.
JTAG boot mode test.

0x301 JTAG boot mode cannot be used for asymmetrically
authenticated image

Check the PDI image boot mode to ensure a
valid secure boot mode is selected.

0x302 JTAG boot mode cannot be used for asymmetrically
authenticated image

Check the PDI image boot mode to ensure a
valid secure boot mode is selected.

0x303 eFUSE and boot header authentication enabled
Rebuild the image and select only eFUSE
authentication or boot header
authentication.

0x305 Boot image integrity check when authentication/
encryption enabled error

Rebuild the image and select either the
integrity check or authentication/encryption.

0x306 Key source provided in boot image is not valid Rebuild the image with a valid encryption key
source.

0x307 SD/eMMC read error
Check flash connectivity, including the reset
and ensure flash is not in a non-responsive
state.

0x308 eFUSE key not selected for S-HWRoT boot mode Rebuild the image and select the eFUSE key.

0x309 Boot header source offset is overlapping with boot
header

0x30A Data partition or total data partition length is
crossing the permissible limit of 112 KB

0x30B Data partition or total data partition length is
crossing the permissible limit of 384 KB

0x30C Boot header image identification does not match
in SD/eMMC boot mode

Ensure the PDI boot header image
identification contains XLNX (0x584c4e58).
Check PDI settings. JTAG boot mode test.

0x30D Image search not supported for slave boot modes
MultiBoot is only supported for QSPI, OSPI,
SD, and eMMC. Use a valid boot medium for
MultiBoot.

0x30E No image found in QSPI flash after searching the
supported address range

Ensure the PDI is programmed at the correct
address in the flash and is within the search
limits listed in the Master Boot Mode Search
Limit table.

0x30F No image found in OSPI flash after searching the
supported address range

Ensure the PDI is programmed at the correct
address in the flash and is within the search
limits listed in the Master Boot Mode Search
Limit table.

0x310 No image found in SD/eMMC flash after searching
the supported address range

Check flash connectivity and PDIEnsure the
PDI is programmed at the correct address in
the flash and is within the search limits listed
in the Master Boot Mode Search Limit table.

0x311 Device read failed during the certificate read See note 1.

0x312 Boot not allowed because all PPK revoked through
eFUSE ACAP is no longer bootable.

0x313 Boot not allowed because all SPK revoked through
eFUSE Versal ACAP is no longer bootable.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=139

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step
0x314 Invalid PPK Rebuild the image using a valid PPK value.1

0x315 Boot not allowed because chosen PPK is revoked
through eFUSE

Rebuild the image using a non-revoked/valid
PPK.1

0x316 Invalid SPK Rebuild the image using a valid SPK value.1

0x317 Boot not allowed because chosen SPK is revoked
through eFUSE

Rebuild the image using a non-revoked/valid
SPK.1

0x318 PPK hash does not match any of the eFUSE
locations Rebuild the image using a valid PPK value.1

0x319 PLM length error

0x31A Boot header authentication error Rebuild the image and verify a valid PPK
value is used.1

0x31D PUF helper from boot header is not allowed when
using S-HWRoT mode

Rebuild the image to use the PUF helper data
in eFUSEs.

0x31E

DPA counter measure enabled in boot header and
disabled through eFUSE mismatch or DPA counter
measure disabled in boot header and enabled
through eFUSE mismatch.

Rebuild the image with the appropriate DPA
counter measures attribute.

0x31F PMC firmware length is not 4-byte aligned

0x320
Key source changed from the previous to current
image and asymmetric authentication is not
enabled

0x321 Data partition length is not 4-byte aligned

0x322 Authentication status changed between previous
and current image. Boot not allowed

0x323 Source offset of PLM in image is not 4-byte aligned

0x324 Data partition load address in PMC RAM is not 16-
byte aligned

0x325 Total data partition length is not 4-byte aligned
0x326 Total PLM length is not 4-byte aligned

0x327 Voltage glitch detected Verify voltage sources to the part/board are
stable. Reboot the device and try again.

0x328 PPK hash in eFUSEs is all zeroes
Provision the device with a valid PPK or select
another PPK that has been already
provisioned.

0x329 Error occurred reading the authentication
certificate from flash See note 1.

0x32A Timeout occurred during SHA3 calculation for the
authentication header See note 1.

0x32B Timeout occurred during SHA3 calculation for SPK See note 1.
0x32C RSA signature verification failure See note 1.

0x32D Timeout occurred during SHA3 calculation using
DMA See note 1.

0x32E Hash of BH timeout error See note 1.

0x32F Timeout error occurred while calculating SHA3
using DMA See note 1.

0x330 Hash of PPK timeout error See note 1.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=140

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step

0x336 OSPI device not showing idle status after
completion of read operation

0x337 OSPI idle check error before triggering DMA
operation

0x338 OSPI idle check error after the DMA operation
0x339 Image header copy operation error See note 1.
0x33A RSA operation timeout error See note 1.
0x33B RSA operation status error See note 1.

0x33C RSA signature verification failure Rebuild the image and verify the correct RSA
key was used to build the image.

0x33D RSA signature verification failure Rebuild the image and verify the correct RSA
key was used to build to image.

0x33E ECDSA key is not valid Rebuild the image and verify the correct
ECDSA key was used to build to image.

0x33F ECDSA signature verification error Rebuild the image and verify the correct
ECDSA key was used to build to image.

0x340 QSPI DMA read operation timeout error
0x341 QSPI DMA read operation timeout error
0x342 QSPI DMA read operation timeout error
0x343 Data not received from host before timeout

0x344 SelectMAP abort sequence detected
Check the SelectMAP sequence topic. If the
SMAP_RDWR_B is transitioning when CS is
asserted, this error is set.

0x345 Boot header PLM length is greater than the total
PLM length

0x346 Total PLM length is less than the authentication
certificate size

0x347 Data partition load address is not within PMC RAM
limit

0x348 Requested data partition cannot fit in PMC RAM

0x349 Total data partition length is less than data
partition length

0x34A Total data partition or data partition length
mismatch

0x34B Source offset of PLM in flash is beyond search limit

0x34C
Total data partition length does not match data
partition length when authentication/encryption/
integrity is enabled

0x34D JTAG boot timeout error
Check the JTAG interface connections and
ensure the host is driving the interface, see
the JTAG Boot Mode topic.

0x34E DMA timeout error during SHA3 KAT operation See note 1.

0x34F Calculation timeout error during SHA3 KAT
operation See note 1.

0x350 KAT error during SHA3 operation See note 1.
0x351 Key validation failed during KAT operation See note 1.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=141

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step
0x352 KAT error during ECDSA operation See note 1.
0x353 KAT error during RSA operation See note 1.
0x354 HASH mismatch during RSA KAT operation See note 1.
0x35D RSA Authentication error Rebuild the image and verify the RSA key
0x35E RSA authentication error Rebuild the image and verify the RSA key
0x35F RSA authentication error Rebuild the image and verify the RSA key
0x360 ECDSA authentication error Rebuild the image and verify the ECDSA key
0x361 ECDSA authentication error Rebuild the image and verify the ECDSA key
0x362 ECDSA authentication error Rebuild the image and verify the ECDSA key
0x363 ECDSA authentication error Rebuild the image and verify the ECDSA key
0x400 Invalid address for register initialization
0x401 Device read error after register initialization

0x402 Boot header does not match original after register
initialization

0x403 Register initialization disabled through eFUSE
0x504 Boot image integrity error See note 1.
0x505 Block size to be decrypted is not 128-bit aligned

0x506 Timeout error occurred before AES engine key load
completed See note 1.

0x507 Timeout error occurred during AES operation
completed See note 1.

0x508 DMA done not asserted after pushing the IV to AES
engine with in timeout See note 1.

0x509 DMA done not asserted after pushing the data to
AES engine with in timeout See note 1.

0x50A DMA done not asserted after pushing the secure
header to AES engine with in timeout See note 1.

0x50B DMA done not asserted after pushing the GCM tag
to AES engine with in timeout See note 1.

0x50C DMA done not asserted after pushing the KEK to
AES engine with in timeout See note 1.

0x50D Decrypted length does not match total image
length specified in the boot header Rebuild the image and try booting again.1

0x50E Total decrypted length is greater than image size
specified in the boot header Rebuild the image and try booting again.1

0x50F GCM tag does not match for PLM decryption
operation Rebuild the image and try booting again.1

0x510 GCM tag does not match for data partition
decryption operation Rebuild the image and try booting again.1

0x511 Invalid key source Rebuild the image and verify a valid key
source is being used.

0x512 Invalid PUF command See note 1.
0x513 Voltage glitch detected Verify voltage to the device is stable.
0x514 Voltage glitch detected Verify voltage to the device is stable.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=142

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step

0x515 PLM copy error occurred during boot image
integrity check See note 1.

0x516 PLM copy error occurred during boot image
integrity check See note 1.

0x517 PLM copy error occurred because asymmetric
authentication is enabled See note 1.

0x518 PLM copy error occurred because S-HWRoT or non-
secure boot set See note 1.

0x519 Data partition copy error occurred during boot
image integrity check See note 1.

0x51A Data partition copy error occurred because
asymmetric authentication enabled See note 1.

0x51B Data partition copy error occurred because S-
HWRoT/non-secure boot set See note 1.

0x51C Timeout error occurred during SHA3 See note 1.
0x51D Timeout error occurred during SHA3 See note 1.
0x51E Timeout error occurred during SHA3 See note 1.
0x51F Timeout error occurred during SHA3 See note 1.
0x520 Timeout error occurred during SHA3 See note 1.
0x521 Timeout error occurred during SHA3 See note 1.
0x522 Timeout error occurred during SHA3 See note 1.
0x523 Timeout error occurred during SHA3 See note 1.
0x524 Timeout error occurred during SHA3 See note 1.
0x529 AES engine key or KUP key clearing error See note 1.
0x52A PUF key clear error See note 1.
0x52B Key load KAT error See note 1.
0x52C IV load KAT error See note 1.
0x52D Data load KAT error See note 1.
0x52E GCM tag load KAT error See note 1.
0x52F AES timeout KAT error See note 1.
0x530 KAT GCM tag does not match See note 1.
0x531 KAT decrypted data does not match original data See note 1.
0x532 Key load error for counter measure enabled KAT See note 1.

0x533 DMA timeout error for counter measure enabled
KAT See note 1.

0x534 AES timeout error for counter measure enabled
KAT See note 1.

0x53C KEK load to AES engine error See note 1.
0x53D KEK IV load error See note 1.
0x53E Red key load from decrypted KEK error See note 1.
0x53F AES DPA counter measure KAT failed See note 1.
0x540 AES DPA counter measure KAT failed See note 1.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=143

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step
0x541 AES DPA counter measure KAT failed See note 1.
0x542 AES DPA counter measure KAT failed See note 1.
0x543 AES DPA counter measure KAT failed See note 1.

0x544 S-HWRoT PLM firmware IV mismatch Rebuild the image using the correct IV value
programmed in eFUSEs.

0x545 S-HWRoT PMC CDO IV mismatch Rebuild the image using the correct IV value
programmed in eFUSEs.

0x600 Voltage glitch detected Verify the voltage to the device/part is within
specification.

0x700 Error occurred with PUF disable See note 1.
0x701 Error occurred with PUF regeneration disable See note 1.
0x707 Timeout occurred before PUF word ready asserted See note 1.
0x708 Timeout occurred before PUF key ready asserted See note 1.

0x709 Read word not asserted by PUF during
regeneration See note 1.

0x70A Timeout for PUF occurred before the key was ready See note 1.
0x70B Key not converged during regeneration See note 1.
0x70C PUF regeneration error See note 1.
0x70D PUF regeneration error See note 1.

0x70E Helper data in eFUSE is not valid so regeneration is
not possible See note 1.

0x710 Error occurred during PUF zeroization See note 1.
0x711 PUF interrupt command is invalid See note 1.
0x712 PUF interrupt NOOP command is not supported See note 1.
0x713 PUF overflow observed during registration See note 1.

0x722 DMA operation not completed before SHA3
calculation time See note 1.

0x723 Timeout error occurred before SHA3 operation
completed See note 1.

0x726 BBRAM zeroization failed during tamper
processing See note 1.

0x730 Tamper event detected Verify device is operating within tamper
limits and reboot device.

0x731 BBRAM zeroization failed during tamper
processing See note 1.

0x732 JTAG toggle tamper detected Verify that no JTAG connections are made to
the device and reboot the device.

0x734 Temperature tamper event detected Verify device is operating within temperature
tamper range and reboot device.

0x736 VCC_PSLP LPD voltage tamper event detected Verify the VCC_PSLP is operating within the
tamper limits and reboot device.

0x737 VCC_PSFP FPD voltage tamper event detected Verify the VCC_PSFP is operating within the
tamper limits and reboot device.

0x738 VCC_PMC voltage tamper event detected Verify the VCC_PMC is operating within the
tamper limits and reboot device.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=144

Table 28: BootROM Error Codes (cont'd)

Error Code Description Next Step

0x739 VCC_SOC SPD voltage tamper event detected Verify the VCC_SOC is operating within the
tamper limits and reboot device.

0x73A VCCINT PL voltage tamper event detected Verify the VCCINT is operating within the
tamper limits and reboot device.

0x73B VCCO_IO voltage tamper event detected Verify the VCCO_IO is operating within the
tamper limits and reboot device.

0x73D Glitch tamper event detected Verify voltages are within device operating
specifications and reboot the device.

0x747 PMC MBIST timeout error See note 1.
0x748 Error occurred during PMC MBIST See note 1.
0x749 Error occurred during PMC scan clear See note 1.

0x74A NoC scan clear error occurred during secure lock
down See note 1.

0x75A PL scan clear timeout error See note 1.
0x75B Error occurred during PL scan clear See note 1.

0x75C VCCINT not detected Check the VCCINT rail voltage is within the
data sheet specification.

0x75D Isolation error occurred between PMC and PL
0x75E Error occurred during PL house-cleaning

0x75F VCCINT not detected during PL house-cleaning Check the VCCINT rail voltage is within the
data sheet specification.

0x760 Isolation error between PMC and PL CFRAME
occurred during PL house-cleaning

0x763 Key zeroization error occurred during secure lock
down See note 1.

0x800 SYSMON error See note 1.

Notes:
1. Verify with a second Versal ACAP or board, if available, to eliminate board setup for these errors. If error persists,

contact Xilinx®.

Section III: Platform Boot, Control, and Status
Chapter 16: BootROM Error Codes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=145

Chapter 17

Platform Management
The PLM with its libraries support many run-time services. See the Versal ACAP System Software
Developers Guide (UG1304) for more information on the run-time services. This chapter
highlights the hardware features provided to support these example services:

• Functional safety management

• Dynamic Function eXchange (DFX)

• Power management

• Security management

• Soft error mitigation

Functional Safety Management
The functional safety of a system or part of a system refers to the correct operation of the
system in response to its input, which includes management of errors, hardware failure, and
changes to operating conditions. The two types of faults that can cause a system failure and
result in a violation of the functional safety goals are systematic faults and random faults.

Systematic faults arise from errors in the development or manufacturing processes. When
defects appear in hardware or software, they are systematic faults. Some of the causes of
systematic faults are a failure to verify intended functionality, manufacturing test escapes, or
operating a device outside of a specified range. The mitigation of systematic faults is achieved by
robust best practices and processes defined by safety standards.

Random faults are inherent due to silicon aging, environmental conditions, etc. Safety standards
focus on detecting and managing random faults.

This chapter provides an overview of the safety mechanisms implemented in the Versal™ ACAP.
The features are grouped into these categories:

• Single point fault detection

• Common cause failure detection

• Latent fault detection

• Isolation features

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 146Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=146

• Additional features

Single Point Fault Detection
The detection of single point faults is supported with these features:

• ECC protection for OCM, PPU RAM, PMC RAM, RPU L1 cache, and TCM memories

○ Address decode error detection

○ Separate RAMs for ECC syndrome and data

○ 4:1 or greater interleaving of memory cells protected by ECC

• Hash validation of RCU ROM contents at every boot

• Lockstep and redundancy covers Cortex-R5F processor

○ Lockstep with physical and temporal diversity

○ Redundant logic in critical control logic including the lockstep checkers

• PPU and RCU controllers are implemented with redundancy

○ MicroBlaze TMR (triple modular redundancy) cores with physical diversity

○ Triple redundant flip-flops for critical control bits such as security state

• XMPU and XPPU protect memory space

• Windowed watchdog timers in LPD and FPD

Common Cause Failure Detection
The detection of common cause faults is supported with these features:

• System monitoring

○ Voltage monitoring

○ Temperature monitoring

○ Clock frequency monitoring

• Error management

○ Error management is handled and implemented within the PPU

○ Errors can be signaled as interrupts and mirrored to the PL

• Monitoring of activation of common cause failures (CCF) by PPU

○ MBIST

○ SCAN

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=147

○ Reset, power control

• Hang protection

○ Cleanup of outstanding transactions under partial reset

• Aging errors

○ Large on-chip variation (OCV) margin to account for aging effects

Latent Fault Detection
The detection of latent faults is supported with these features:

• All check logic such as XMPU, lockstep, and ECC checkers are checked at boot by LBIST

• All LPD memories can be tested at full-processing speed during boot by MBIST

○ Most of these memories (excluding PPU and RCU RAMs) can be tested on demand during
execution

• The functionality and status of TCM, OCM, PPU RAM, RPU lockstep, PPU, XMPU, XPPU,
clocks, voltages, and temperatures can be tested and evaluated through the dedicated
software test library (STL)

Isolation Features
Power domain isolation is supported with these features:

• LPD supports isolation from the rest of the system

• Flexible reset management

○ Enables use of the controllers for redundant processing

○ Reset management is implemented in the PPU

○ Independent reset for LPD, FPD, PL, and PS only

• Independent power domains

○ PMC, LPD, FPD, and PL

• Built-in AXI timeout on PL master interfaces

Additional Features
The following features provide additional safety support:

• DDR interface supports ECC for 32-bit and 64-bit words

○ Double-error detection

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=148

○ Single-error correction

• ECC in APU L2-cache

• ECC in L1 data cache memory

• Parity in L1 instruction cache memory

• QOS management

○ QOS controls on masters

○ QOS management in PS AXI

○ QOS management in DDR memory controller

• Leverage of PL for implementation of safety features

○ Provides HFT channel capability

○ Provides error logging

○ PL can remain active if PS is reset due to an error

Dynamic Function eXchange
The Dynamic Function eXchange (DFX) is managed by PLM services running in the PMC. These
services control the events needed before, during, and after dynamic reconfiguration of the NPI
and CFI resources throughout the device. These events include controlling the isolation of the
target region, unloading (and loading) of software drivers (as appropriate for modified
applications), delivery of programming images from any secondary boot interface, and image
authentication and integrity checking before programming is done. All boot modes can be used
for partial device image delivery.

Power Management
The Versal ACAP includes two dedicated controllers, the platform management controller (PMC)
and the PSM controller.

The PMC facilitates the isolation of the power domains outside of the processing system (PS)
full-power domain (FPD). The PMC is used for power, error management, and the execution of
an optional software test library (STL) for functional safety applications.

The processing system manager (PSM) controller has the hardware interfaces to manage the
isolation for the PS FPD. The PSM controller serves as a PMC proxy to the PS power islands. The
PSM directly controls the power islands within the PS FPD.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=149

The primary power domains for power management are listed in the following table.

Table 29: Primary Power Domains

Power Domain Description
PMC power domain Includes the RCU, PPU, PMC flash controllers, PMC I2C controller, PMC GPIO controller and

is the core domain for device start-up

Low-power domain (LPD) Includes the RPU, PSM, two SPI controllers, two LPD I2C controllers, LPD GPIO controller,
UART controller, USB controller, PS gigabit Ethernet MAC, and CAN FD controller

Full-power domain (FPD) Includes the APU

Battery power domain (BPD) Includes the real-time clock core and the battery-backed RAM

System power domain (SPD) Includes the NoC, NPI, and the DDR controller, the XPIO rail is tied to this domain

PL power domain Includes the programmable logic, GT, AI Engine, CPM, and XPIPE

Power Modes
The modes for power management operation are outlined in this section. To comply with the
power domain requirements, there are separate power rails to supply the power for each domain.
The following PS power modes can be integrated with various power modes, including but not
limited to PL on, PL off, and PL clock gated.

Sleep Modes

To meet the requirements of a very low sleep-power state, the device provides sleep and deep
sleep modes. The PMC domain is always on. The PMC can be active during the sleep mode. The
low-power domain (LPD) can be on or off in some sleep modes. The RTC or GPIO wake sources
are supported for deep sleep. The USB and PS GEM blocks in the low-power domain support
wake on USB and wake on LAN for sleep. The following table lists sleep mode examples.

Table 30: Sleep Modes (No APU/RPU Processing)

Power Mode Description

Deep sleep
LPD is off
FPD is off
PMC is wake on RTC, GPIO, or USB

LPD_Off_FPD_Off_PMC_Active
LPD is off
FPD is off
PMC power domain is active and the PMC can be processing

Deep sleep - fast resume
LPD is on but the R5s are off
FPD is off
PMC is wake on RTC, GPIO, or USB

Sleep - GigE
LPD is on but the R5s are off
FPD is off
PMC is wake on GigE (PS GEM)

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=150

Low-Power Modes

In the low-power operation mode, the RPU is idle or in wait for an interrupt. With the LPD,
integrated blocks on the low-power rail can be powered up in the PS block (RPU, TCM, OCM,
and PSM). The PSM assists the PMC for events local to the PS. The LPD includes additional
peripherals for low-power operation. The following table lists low-power mode examples.

Table 31: Low-Power Modes (FPD Off, RPU Processing)

Power Mode Description

R5s_Idle_FPD_Off_DDR_Off
RPU cores are idle
FPD is off
DDR is off

R5s_Idle_FPD_Off_DDR_Self_Refresh
RPU cores are idle
FPD is off
DDR is in self-refresh mode to maintain memory

R5s_Idle_FPD_Off
RPU cores are idle
FPD is off
DDR is on

R5s_Active_FPD_Off
RPU cores are both active
FPD is off
DDR is on

Full-Power Modes

All domains are powered in the full-power mode. Power dissipation depends on the components
that are running and their frequencies. The following table lists full-power mode examples.

Table 32: Full-Power Modes (FPD On, APU/RPU Processing)

Power Mode Description

Linux boot idle RPU cores are idle
One APU core is off and one is idle

R5s_Idle_1_A72_250MHz RPU cores are idle
One APU core is off and one is running at 250 MHz

R5s_Idle_1_A72_Active RPU cores are idle
One APU core is off and one is active

R5s_Idle_A72s_Active RPU cores are idle
Both APU cores are active

Performance mode - R5s active, A72s active RPU cores are both active
Both APU cores are active

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=151

Security Management
The increasing ubiquity of Xilinx devices makes protecting the intellectual property (IP) within
them as important as protecting the data processed by the device. As security threats have
increased, the range of security threats or potential weaknesses that must be considered to
deploy secure products has grown as well. The Versal ACAP provides features to help secure
applications. These features include:

• Tamper monitoring and response

• Secure key storage and management

• User access to Xilinx hardware cryptographic accelerators

See Secure Boot Flow for details on system start-up secure boot flow.

For more information on security features, see Versal ACAP Security Manual (UG1508). This
manual requires an active NDA to download from the Design Security Lounge.

Tamper Monitoring and Response
Versal ACAPs provide a range of anti-tamper features to help secure applications and manage
potential security threats. The Versal ACAP hardware provides features that not only detect
security intrusions but also allow a response with selected penalties. This tamper resistance
protection needs to be effective during all four phases of the system start-up.

• Phase 1: Pre-boot (PMC hardware, power-up and reset)

• Phase 2: Boot setup (RCU, initialization and boot header processing)

• Phase 3: Load platform (PPU, boot image processing and configuration)

• Phase 4: Post-boot (PPU, platform management and monitoring services)

Sensitive data can include the software and configuration data that sets up the functionality of
the device logic, critical data, or parameters that might be included in the boot image (for
example, initial memory contents and initial state). It also includes external data that is
dynamically transported in and out of the device during the post-boot operation.

The primary function of the RCU post-boot is to monitor the system for tamper events. There are
different monitoring functions that can be configured, including:

• System Monitor (SYSMON) triggering limits for voltage and temperature alarms are user-
defined and configured. The tamper registers generate an over and under temperature alarm
when the SYSMON unit “threshold mode” is set to 1.

• RCU can act as a centralized tamper monitor.

• System extensible using MIO to trigger an external tamper event.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 152Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=152

• Detection of power supply glitches.

• Detection of activity on debug ports (such as JTAG).

Secure Key Storage and Management
The Versal ACAP AES-GCM cryptographic engine has access to a diverse set of key sources.
Non-volatile key sources include eFUSE, BBRAM, and PUF key encryption key (KEK). These keys
maintain their values even when the device is powered down. Volatile key sources include a boot
header (BH) key, eight user keys, and a key update (KUP) register key.

The device provides a variety of options for securing both boot images and user data. Boot image
keys can be stored in BBRAM, eFUSE, or in the boot image itself. These keys can be in plain text
(red) or encrypted with the PUF KEK (black).

Table 33: General Key Terms

Key Name Description
Device Symmetric key that is stored on the device (eFUSE, BBRAM, boot header)

PPK: Primary public key Public key for asymmetric authentication, used to authenticate the secondary
public key

SPK: Secondary public key Public key for asymmetric authentication, used to authenticate partitions

AES Symmetric key used for AES encrypt/decrypt

The following table provides the different key options used by the AES core. The AES key
selection values are included in the Versal ACAP Security Register Reference Manual (AM018). This
manual requires an active NDA to download from the Design Security Lounge.

Table 34: Key Sources

Key Name Source Size
(bits) Description

BBRAM BBRAM 256 The BBRAM key is used to store an AES key for boot. This key can be
protected by the PUF KEK.

BH Register 256 The BH (boot header) key is stored encrypted inside the programmable
device image (PDI) boot header and once decrypted it is stored inside the
BH key register.

EFUSE eFUSE 256 The eFUSE key is used for boot and is stored in the eFUSEs. It can be plain
text or encrypted with the PUF KEK.

EFUSE_USER (x2) eFUSE 256, 128 The two eFUSE user keys are key storage available for user run-time keys
and stored in eFUSE.

Key update
register (KUP)

Register 256,128 Key source used when key rolling is employed. The next user defined block
of data is stored in the KUP.

PUF KEK PUF 256 The PUF KEK is a key-encryption key that is generated by the PUF.

USER (x8) Register 256, 128 Write only registers available for holding user run-time keys.
Each register can be individually locked.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 153Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=153

Key Selection

The device key source selection is exclusively performed by the RCU ROM based on the
authenticated boot image header. The AES key management block selects the appropriate key
that needs to be input to the AES core.

The AES_KEY_SEL register determines which of the keys available is used for the encryption and
decryption operation. The AES_KEY_SIZE register determines if the key is 128 bits or 256 bits.
The AES_KEY_LOAD register loads the key value into the AES core.

In addition to the BBRAM and eFUSE key storage locations, the Versal ACAP also allows for the
device key to be stored externally in the boot flash. This key can be stored in its black form (i.e.,
encrypted with the PUF KEK).

The AES key selection register details are included in the Versal ACAP Security Register Reference
Manual (AM018). This manual requires an active NDA to download from the Design Security
Lounge.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 154Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=154

Figure 33: AES Key Selection

AES Key Management

Key Loader

AES
Registers

AES_KEY_SIZE

AES_KEY_SEL

BBRAM_KEY

EFUSE_KEY

PUF_KEY

EFUSE_USER_KEY<1:0>

BBRAM_RED_KEY

KUP_KEY

USER_KEY<7:0>

AES_KEY_LO
AD

AES-GCM

CONTROL

KEY

EFUSE_USER_RED_KEY<1:0>

BH_KEY

BH_RED_KEY

EFUSE_RED_KEY

Register Sources

Direct Sources

128b/256b

256b

X22616-070120

Battery-Backed RAM Key

The battery-backed RAM (BBRAM) is one of the available options for storing the device AES key.
The BBRAM is a static RAM array. When the device has power on the VCCAUX_PMC supply, the
BBRAM is powered by the VCCAUX_PMC supply. When the VCCAUX_PMC supply is switched
off, the device automatically switches the BBRAM power domain (BPD) using the VCC_BATT pin.
The key stored in BBRAM can be stored in plain text form (red) or encrypted form (black). The
BBRAM can also be cleared, which is valuable as a tamper response.

The BBRAM key memory space is 288 bits. The BBRAM contains 256 bits of the AES key and 32
bits for general purpose usage. The 256-bit AES key is available for the ROM based on its
selection. When the AES key in BBRAM is selected as the AES device key, the AES key
management block loads the key value into the AES.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=155

eFUSE Key

The eFUSE array contains a block of 256 eFUSEs that can provide a key to the AES-256
cryptographic engine. This block of eFUSEs has dedicated read and write disables controlled by
additional eFUSEs. The eFUSE key can be stored in plain text form (red) or encrypted form
(black).

Key Update Register

The key update register is used during boot to support the key rolling feature, where a different
AES key must be loaded multiple times. A 256-bit KUP key is stored in the eight AES key update
registers.

Boot Header Key

The boot header (BH) key is stored encrypted inside the programmable device image (PDI) boot
header and once decrypted, it is stored inside the BH key register.

Storing Keys in Encrypted Form (Black)

The black key storage solution uses a cryptographically strong key encryption key (KEK)
generated from a physical unclonable function (PUF) to encrypt the user key. The resulting black
key can then be stored either in eFUSEs or as part of the authenticated boot header resident in
external memory. The black key storage provides these advantages:

• The user key is the same for all devices. Consequently, the encrypted boot images are the
same for all devices that use the same user key.

• The PUF KEK is unique for each device. Consequently, the black key stored with the device is
unique for each device.

• The PUF KEK value is only known by the device. There is no readback path and, consequently,
cannot be read by the user.

Physically Unclonable Function

The Versal™ device contains a physically unclonable function (PUF). The PUF creates a signature
(or fingerprint) of each device that is unique to that device. The KEK can only be directly fed into
the AES-GCM engine and cannot be read out of the device.

The KEK is 256 bits in length with 256 bits of entropy and is used to encrypt the users red key
allowing its storage in black (encrypted) form. The black key can be stored in either eFUSEs,
BBRAM, or external storage.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=156

Enhanced from the previous generation, the Versal device PUF also outputs a user accessible
unique ID that is cryptographically isolated from the PUF KEK despite using the same entropy
source. While unique to each device, it is not considered a “secret” and does not have the same
access protections as the KEK.

The silicon manufacturing process includes inherent, random, and uncontrollable variations that
cause unique and different characteristics from device to device. The Xilinx devices operate
within these variations and device functionality is not affected. PUF includes tiny circuits that
exploit these chip-unique process variations to generate unique keys. The type of PUF used to
generate the KEK is also an important consideration. The Versal ACAP PUF uses an asymmetric
technology that is different from the device key storage technology (e.g., SRAM or eFUSE). This
asymmetric technology increases the security level above what can be achieved with a single
technology.

The PUF uses approximately 4 Kb of helper data to help the PUF recreate the original KEK value
over the guaranteed operating temperature and voltage range over the life of the part. The
helper data consists of a syndrome, aux, and chash value. The helper data can either be stored in
eFUSEs or in the boot image. The following table lists the PUF helper data.

Table 35: PUF Helper Data

Field Size (Bits) Description
Syndrome 4060 These bits aid the PUF in recovering the proper PUF signature given slight

variations in the ring oscillators over temperature, voltage, and time

Aux 24 This is a Hamming code that allows the PUF to perform some level of error
correction on the PUF signature

Chash 32 This is a hash of the PUF signature that allows the PUF to recognize if the
regenerated signature is correct

Access to the PUF is restricted by the RCU. The PUF can be controlled through the RCU
registers.

The PUF undergoes a registration process when a new KEK needs to be created. The registration
process initializes the PUF so that a KEK is created, and the following options are available.

• The registration software can then use the KEK to encrypt the user key and program the
eFUSEs.

• The encrypted user key can be output for inclusion into a boot image. The registration
software also programs the helper data into the eFUSEs.

• The helper data can be output for inclusion into a boot image.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=157

For secure boot, the helper data and the encrypted user key must be stored in the same location
(i.e., both in eFUSE or both in the boot image). When the device powers on, the RCU examines
the boot image header (the boot image header is authenticated when authentication is enabled).
The boot image header contains information on whether the PUF is used, where the encrypted
key is stored (eFUSE or boot image), and where the helper data is stored (eFUSE or boot image).
The RCU then initializes the PUF, loads the helper data, and regenerates the KEK. This process is
called regeneration. After the KEK is regenerated, the RCU can use it to decrypt the user key,
which is then used to decrypt the rest of the boot image.

The PUF is only supported when using a nominal VCC_PMC of 0.70V. See the Versal ACAP
Security Manual (UG1508) in the Security Lounge for detailed information on PUF usage.

Key Management Summary

The following table provides a key management summary for BBRAM, eFUSE, and boot image.

Table 36: Key Management Summary

Features BBRAM eFUSE Boot Image
Programming method

• Internal via XilNVM
software library

• Internal via XilNVM
software library

• Internal via XilPUF
software library

• Bootgen
• Bootgen + PUF

registration software

Program verification CRC32 only CRC32 only N/A

Key state during storage Red or black Red or black Black

In-use protections • Temporary storage in registers, not RAM
• Transferred in parallel not serial
• DPA countermeasures

User Access to Xilinx Hardware Cryptographic
Accelerators
The Versal ACAP flexibility allows for many ways to implement cryptographic functions. One
option is to take advantage of the Arm® v8 Cryptography Extensions in the APU MPCore and
custom cryptographic accelerators running in the programmable logic (PL). Additionally, the
hardened cryptographic accelerators are available for use post-boot.

• AES-GCM

• RSA/ECDSA

• SHA3-384

• True Random Number Generator

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 158Send Feedback

https://www.xilinx.com/member/design_security.html#docs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=158

Soft Error Mitigation
The Versal ACAP PMC hardware supports the ability to validate the integrity of the device
configuration and perform readback of configuration data (in the background) using the Xilinx
soft error mitigation library.

The Xilinx Soft Error Mitigation (XilSEM) library is a pre-configured, pre-verified solution to
detect and optionally correct soft errors in the configuration memory of Versal ACAPs. A soft
error is caused by ionizing radiation and is extremely uncommon in commercial terrestrial
operating environments. While a soft error does not damage the device, it carries a small
statistical possibility of transiently altering the device behavior.

The XilSEM library does not prevent soft errors; however, it provides a method to better manage
the possible system-level effect. Proper management of a soft error can increase reliability and
availability, and reduce system maintenance and downtime. In most applications, soft errors can
be ignored. In applications where a soft error cannot be ignored, see the OS and Libraries
Document Collection (UG643) for additional information about the XilSEM library prior to
configuring it for use through the CIPS IP core.

Section III: Platform Boot, Control, and Status
Chapter 17: Platform Management

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 159Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=159

Section IV

Address Maps and Programming
Interfaces

This section includes a hierarchy of address maps and tables that summarize the transaction
destinations, and includes these chapters:

• Address Maps

• Programming Interfaces

The memory mapped registers are described in the Versal ACAP Register Reference (AM012).

Section IV: Address Maps and Programming Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 160Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=160

Chapter 18

Address Maps
The global address map is based around the NoC interconnect and provides a high-level view.
The PMC and PS occupy the first 4 GBs of memory space. From a PS perspective, the address
maps include:

• Global Address Map

• PMC and PS Address Maps

Note: Not all devices have the locations listed in these maps. The address maps might vary by device series
and device within a series. For a comprehensive list of what options are available in each device, see the
Versal ACAP product data sheets.

Global Address Map
The global address map is based on the NoC and spans 0 to 16 Terabytes (TB) as shown in the
following table.

Table 37: Global Address Map (0 to 16 TB)

Destination
Address Range

Size (GB) Notes
Start End

DDR0_REGION0 0x0000_0000_0000 0x0000_7FFF_FFFF 2 DDR memory low address range,
channel 0 region 0

PMC, PS, and NPI 0x0000_8000_0000 0x0000_FFFF_FFFF 2 See Summary Map

PMC SSIT 0x0001_0000_0000 0x0001_1FFF_FFFF 512 MB PMC subsystem on device dies 0:3

- 0x0001_2000_0000 0x0001_FFFF_FFFF 3584 MB reserved

AI Engine 0x0002_0000_0000 0x0003_FFFF_FFFF 8 AI Engine memory space

FPD_AXI_PL 0x0004_0000_0000 0x0005_FFFF_FFFF 8 FPD to PL interface - high address
space 0 (aka PS_TO_PL_0,)

PCIe 0x0006_0000_0000 0x0007_FFFF_FFFF 8 PCIe region 1

DDR0_REGION1 0x0008_0000_0000 0x000F_FFFF_FFFF 32 DDR channel 0 region 1

- 0x0010_0000_0000 0x007F_FFFF_FFFF 448 reserved

PCIe 0x0080_0000_0000 0x00BF_FFFF_FFFF 256 PCIe region 2

DDR0_REGION2 0x00C0_0000_0000 0x00FF_FFFF_FFFF 256 DDR channel 0 region 2

DDR0_REGION3 0x0100_0000_0000 0x01B7_7FFF_FFFF 734 DDR channel 0 region 3

- 0x01B7_8000_0000 0x01FF_FFFF_FFFF 290 reserved

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=161

Table 37: Global Address Map (0 to 16 TB) (cont'd)

Destination
Address Range

Size (GB) Notes
Start End

AI Engine 0x0200_0000_0000 0x0200_3FFF_FFFF 1 AI Engine interface tiles

- 0x0200_4000_0000 0x0200_FFFF_FFFF 3 reserved

NOC_AXI_PL_L 0x0201_0000_0000 0x03FF_FFFF_FFFF 2044 NoC Ports to PL, low region

- 0x0400_0000_0000 0x04FF_FFFF_FFFF 1024 reserved

DDRMC{1:3} 0x0500_0000_0000 0x07FF_FFFF_FFFF 3072 DDR channels 1, 2, 3

NOC_AXI_PL_H 0x0800_0000_0000 0x0FFF_FFFF_FFFF 8192 NoC ports to PL, high region

PMC and PS Address Maps
The 2 gigabyte (GB) address space for the PMC and PS includes addresses for:

• PMC register modules and RAM memory

• LPD register modules and RAM memories

• FPD register modules

• CPM register modules

• Interfaces to the PL

Summary Map
The PMC/PS address map is summarized in the following table. After this table, are the 4 GB
Address Maps tables.

Table 38: PMC and PS Summary Address Map

Destination
Address Range Size

(MB) Description
Start End

System Address Space

LPD_AXI_PL interface 0x8000_0000 0x9FFF_FFFF 512 LPD to PL interface (aka LPD_AFI_FS,
M_AXI_HP_LPD)

- 0xA000_0000 0xA3FF_FFFF 64 reserved

FPD_AXI_PL interface
0xA400_0000 0xAFFF_FFFF 192 FPD to PL interface, low address 0 (aka

FPD_AFI_0, M_AXI_HPD_FPD)
0xB000_0000 0xBFFF_FFFF 256 FPD to PL interface, low address 1

OSPI flash memory 0xC000_0000 0xDFFF_FFFF 512 OSPI flash memory linear address space

CPM4_REGION0 0xE000_0000 0xEFFF_FFFF 256 CPM4 PCIe address region 0 (aka
PMCe_0)

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=162

Table 38: PMC and PS Summary Address Map (cont'd)

Destination
Address Range Size

(MB) Description
Start End

PMC Address Space

PMC_CONFIG 0xF000_0000 0xF03F_FFFF 4 Control and status registers and memory
for PMC

- 0xF040_0000 0xF07F_FFFF 4 reserved

CoreSight CSRs 0xF080_0000 0xF0FF_FFFF 8 See CoreSight Register Reference table

PMC CSRs 0xF100_0000 0xF12A_FFFF 2752 Control and status registers for IOP,
security, SYSMON, eFUSE, and RTC

CFU 0xF12B_0000 0xF12E_FFFF 4 Control and status registers and memory
for CFU, CFrames

- 0xF12F_0000 0xF5FF_FFFF 77 reserved

NPI 0xF600_0000 0xF7FF_FFFF 32 Control and status registers for NPI
programming interfaces

PS Address Space

STM memory space 0xF800_0000 0xF8FF_FFFF 16 Control and status registers for
CoreSight system trace macrocell (STM)

APU_GIC 0xF900_0000 0xF90F_FFFF 16
Control and status registers for APU
Arm® GIC-500 interrupt controller, see
GIC Registers map

- 0xF910_0000 0xFBFF_FFFF 4 reserved

CPM CSRs 0xFC00_0000 0xFCFF_FFFF 44 Control and status registers for CPM

FPD CSRs 0xFD00_0000 0xFDFF_FFFF 16 Control and status registers for FPD

LPD CSRs 0xFE00_0000 0xFE7F_FFFF 8 Control and status registers for LPD

XRAM memory 0xFE80_0000 0xFEBF_FFFF 4 Accelerator RAM (XRAM) memory

- 0xFEC0_0000 0xFEFF_FFFF 4 reserved

LPD IOP CSRs 0xFF00_0000 0xFF0D_FFFF 896 KB Control and status registers for LPD IOP
and flash

LPD peripherals 0xFF0E_0000 0xFFBF_FFFF 896 KB Control and status registers for DMA,
XRAM, XMPU, XPPU

PSM subsystem 0xFFC0_0000 0xFFCF_FFFF 1 Control and status registers and caches
for PSM

- 0xFFD0_0000 0xFFDF_FFFF 1 reserved

RPU memory 0xFFE0_0000 0xFFEF_FFFF 1 RPU caches and TCM memory, see RPU
Address Maps

- 0xFFF0_0000 0xFFFB_FFFF 768 KB reserved

OCM memory 0xFFFC_0000 0xFFFF_FFFF 256 KB On-chip memory (OCM) addressable
memory space

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=163

4 GB Address Maps
The summary tables include both memory space and the memory-mapped register programming interfaces within the lower 4 GBs of
address space. The two tables include the same content, but with different organizations:

• Destinations Listed by Address

• Destinations Listed by Name

Types of Address Spaces

The addressable memory spaces are labeled:

• mem is addressable memory space. These are listed in Section XI: Memory.

• - means the destination is a programming interface to an APB or AXI connected register module.

• local address spaces are defined for the Arm or MicroBlaze™ processors. In these address spaces, the processor does not have
direct access to the global resource that are at the same address as the local resource.

Device Options

The address map includes a column to indicate if the feature is present:

• Std means available in every device in the series.

• Opt means available in some devices within the series; see Versal Architecture and Product Data Sheet: Overview (DS950).

Design Security Lounge

The information for certain individual registers and full register sets are only available from the Design Security Lounge in the Versal
ACAP Security Register Reference Manual (AM018) register manual and the Versal ACAP Security Manual (UG1508). Access to the Design
Security Lounge requires an active NDA.

In the two address map tables below, there are five register sets with restricted access. These are identified as "controlled under NDA."
The PMC_CACHE registers are "mostly controlled under NDA." The PMC_EFUSE_CTRL register set is "partially controlled under NDA."

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 164Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/member/design_security.html
https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=164

Destinations Listed by Address

The memory and programming interface destinations are listed in their address order.

Table 39: Destinations Listed by Address

Destination Type
Address Range Size

(KB) Feature Description
Start End

DDR_MC_mem mem 0x0000_0000 0x7FFF_FFFF 2048 MB Std DRAM Memory Space, lower 2GB

LPD_AXI_PL_mem mem 0x8000_0000 0x9FFF_FFFF 512 MB Std PS-to-PL AXI Interface from LPD

FPD_AXI_PL_mem mem 0xA400_0000 0xAFFF_FFFF 192 MB Std PS-to-PL AXI Interface from FPD, lower

FPD_AXI_PL_mem mem 0xB000_0000 0xBFFF_FFFF 256 MB Std PS-to-PL AXI Interface from FPD, upper

PMC_OSPI_mem mem 0xC000_0000 0xDFFF_FFFF 512 MB Std Octal-SPI Linear Mode memory space

CPM4_PCIe0_mem mem 0xE000_0000 0xEFFF_FFFF 256 MB Opt PCIe Region 0 in CPM4

CPM4_XDMA_CSR - 0xE100_0000 0xE100_FFFF 64 Opt CPM4 DMA control registers (XDMA)

PMC_LOCAL - 0xF004_0000 0xF004_FFFF 64 Std PMC Local registers

PMC_PUF - 0xF005_0000 0xF005_FFFF 64 Std PUF control registers

PPU_RAM_INSTR_mem mem 0xF020_0000 0xF023_FFFF 256 Std PPU I-cache Addressable

PPU_RAM_DATA_mem mem 0xF024_0000 0xF025_FFFF 128 Std PPU D-cache Addressable

PPU_IOMODULE - 0xF028_0000 0xF028_0FFF 4 Std PPU I/O Module registers

PPU_ICACHE_CTRL - 0xF028_1000 0xF028_1FFF 4 Std PPU Instruction Cache ECC control

PPU_DCACHE_CTRL - 0xF028_2000 0xF028_2FFF 4 Std PPU Data Cache ECC control

PPU_TMR_MANAGER - 0xF028_3000 0xF028_3FFF 4 Std PPU Triple Redundancy Manager

PPU_TMR_INJECT - 0xF028_4000 0xF028_4FFF 4 Std PPU Triple Redundancy Error Injection

PPU_TMR_TRACE - 0xF030_0000 0xF030_0FFF 4 Std PPU Trace

PPU_MDM - 0xF031_0000 0xF031_7FFF 32 Std PPU Debug Module control

DBG_PMC_ROM - 0xF080_0000 0xF080_FFFF 64 Std CoreSight PMC ROM

DBG_PMC_GPR - 0xF081_0000 0xF081_FFFF 64 Std CoreSight PMC GPR 1P

DBG_PMC_CTI - 0xF08D_0000 0xF08D_FFFF 64 Std CoreSight PMC Map Trigger and Channel interfaces

DBG_LPD_ROM - 0xF090_0000 0xF090_FFFF 64 Std CoreSight LPD ROM

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=165

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

DBG_LPD_GPR - 0xF091_0000 0xF091_FFFF 64 Std CoreSight LPD GPR 3P

DBG_LPD_FUN - 0xF092_0000 0xF092_FFFF 64 Std CoreSight LPD Merge Five Trace Streams to ATB

DBG_TSG_RW - 0xF099_0000 0xF099_FFFF 64 Std CoreSight Master Time Stamp with Read/Write

DBG_LPD_CTI - 0xF09D_0000 0xF09D_FFFF 64 Std CoreSight LPD Map Trigger and Channel interfaces

DBG_RPU0_DBG - 0xF0A0_0000 0xF0A0_FFFF 64 Std CoreSight RPU0 Built-in Debug Logic

DBG_RPU0_CTI - 0xF0A1_0000 0xF0A1_FFFF 64 Std CoreSight RPU0 Map Trigger and Channel interfaces

DBG_RPU0_ETM - 0xF0A3_0000 0xF0A3_FFFF 64 Std CoreSight RPU 0 Generate Trace

DBG_RPU1_DBG - 0xF0A4_0000 0xF0A4_FFFF 64 Std CoreSight RPU1 Built-in Debug Logic

DBG_RPU1_CTI - 0xF0A5_0000 0xF0A5_FFFF 64 Std CoreSight RPU1 Map Trigger and Channel interfaces

DBG_RPU1_ETM - 0xF0A7_0000 0xF0A7_FFFF 64 Std CoreSight RPU1 Generate Trace

DBG_FPD_ROM - 0xF0B0_0000 0xF0B0_FFFF 64 Std CoreSight FPD ROM

DBG_FPD_GPR - 0xF0B1_0000 0xF0B1_FFFF 64 Std CoreSight FPD GPR 2P

DBG_FPD_FUN - 0xF0B2_0000 0xF0B2_FFFF 64 Std CoreSight LPD Merge Six Trace Streams to ATB

DBG_FPD_ETF - 0xF0B3_0000 0xF0B3_FFFF 64 Std CoreSight FPD Embedded 32K Trace FIFO

DBG_FPD_REPL - 0xF0B4_0000 0xF0B4_FFFF 64 Std CoreSight Replicates ATB Data Stream

DBG_FPD_ETR - 0xF0B5_0000 0xF0B5_FFFF 64 Std CoreSight FPD Enable Local Trace Buffer

DBG_TPIU - 0xF0B6_0000 0xF0B6_FFFF 64 Std CoreSight Test port interface unit

DBG_STM - 0xF0B7_0000 0xF0B7_FFFF 64 Std CoreSight System Trace Module

DBG_FPD_CTI1B - 0xF0BB_0000 0xF0BB_FFFF 64 Std CoreSight FPD 1B Map Trigger and Channel interfaces

DBG_FPD_CTI1C - 0xF0BC_0000 0xF0BC_FFFF 64 Std CoreSight FPD 1C Map Trigger and Channel interfaces

DBG_FPD_CTI1D - 0xF0BD_0000 0xF0BD_FFFF 64 Std CoreSight FPD 1D Map Trigger and Channel interfaces

DBG_APU_FUN - 0xF0C2_0000 0xF0C2_FFFF 64 Std CoreSight APU Merge Two Trace Streams to ATB

DBG_APU_ETF - 0xF0C3_0000 0xF0C3_FFFF 64 Std CoreSight APU Embedded 4K Trace FIFO

DBG_APU_ELA - 0xF0C6_0000 0xF0C6_FFFF 64 Std CoreSight APU Embedded 128 Logic Analyzer

DBG_APU_CTI - 0xF0CA_0000 0xF0CA_FFFF 64 Std CoreSight APU MPCore Map Trigger and Channel

DBG_APU0_DBG - 0xF0D0_0000 0xF0D0_FFFF 64 Std CoreSight APU0 Built-in Debug Logic

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=166

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

DBG_APU0_CTI - 0xF0D1_0000 0xF0D1_FFFF 64 Std CoreSight APU0 Map Trigger and Channel interfaces

DBG_APU0_PMU - 0xF0D2_0000 0xF0D2_FFFF 64 Std CoreSight APU0 Processor Performance Profile

DBG_APU0_ETM - 0xF0D3_0000 0xF0D3_FFFF 64 Std CoreSight APU0 Generate Trace

DBG_APU1_DBG - 0xF0D4_0000 0xF0D4_FFFF 64 Std CoreSight APU1 Built-in Debug Logic

DBG_APU1_CTI - 0xF0D5_0000 0xF0D5_FFFF 64 Std CoreSight APU1 Map Trigger and Channel interfaces

DBG_APU1_PMU - 0xF0D6_0000 0xF0D6_FFFF 64 Std CoreSight APU1 Processor Performance Profile

DBG_APU1_ETM - 0xF0D7_0000 0xF0D7_FFFF 64 Std CoreSight APU1 Generate Trace

DBG_CPM_ROM - 0xF0F0_0000 0xF0F0_FFFF 64 Std CoreSight CPM ROM

DBG_CPM_FUN - 0xF0F2_0000 0xF0F2_FFFF 64 Std CoreSight CPM Merge Two Trace Streams to ATB

DBG_CPM_ELA2A - 0xF0F4_0000 0xF0F4_FFFF 64 Std CoreSight CPM 2A Embedded 256 Logic Analyzer

DBG_CPM_ELA2B - 0xF0F5_0000 0xF0F5_FFFF 64 Std CoreSight CPM 2B Embedded 256 Logic Analyzer

DBG_CPM_ELA2C - 0xF0F6_0000 0xF0F6_FFFF 64 Std CoreSight CPM 2C Embedded 256 Logic Analyzer

DBG_CPM_ELA2D - 0xF0F7_0000 0xF0F7_FFFF 64 Std CoreSight CPM 2D Embedded 256 Logic Analyzer

DBG_CPM_CTI2A - 0xF0FA_0000 0xF0FA_FFFF 64 Std CoreSight CPM 2A Map Trigger and Channel interfaces

DBG_CPM_CTI2D - 0xF0FD_0000 0xF0FD_FFFF 64 Std CoreSight CPM 2D Map Trigger and Channel interfaces

PMC_I2C - 0xF100_0000 0xF100_FFFF 64 Std PMC I2C controller

OSPI - 0xF101_0000 0xF101_FFFF 64 Std Octal-SPI control

PMC_GPIO - 0xF102_0000 0xF102_FFFF 64 Std General Purpose I/O in PMC

QSPI - 0xF103_0000 0xF103_FFFF 64 Std Quad-SPI control

SD_eMMC0 - 0xF104_0000 0xF104_FFFF 64 Std SD/eMMC controller 0

SD_eMMC1 - 0xF105_0000 0xF105_FFFF 64 Std SD/eMMC controller 1

PMC_IOP_SLCR - 0xF106_0000 0xF106_FFFF 64 Std PMC IOP SLCR registers, non-secure

PMC_IOP_SLCR_SECURE - 0xF107_0000 0xF107_FFFF 64 Std PMC IOP SLCR registers, secure

PMC_RAM_CSR - 0xF110_0000 0xF110_FFFF 64 Std PMC On-chip Memory configuration

PMC_GLOBAL - 0xF111_0000 0xF115_FFFF 320 Std PMC Global registers

PMC_ANLG - 0xF116_0000 0xF119_FFFF 256 Std PMC analog control

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=167

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

PMC_JTAG_CSR - 0xF11A_0000 0xF11B_FFFF 128 Std PMC JTAG TAP control

PMC_DMA0_CSR - 0xF11C_0000 0xF11C_FFFF 64 Std PMC DMA 0 Control

PMC_DMA1_CSR - 0xF11D_0000 0xF11D_FFFF 64 Std PMC DMA 1 Control

PMC_AES - 0xF11E_0000 0xF11E_FFFF 64 Std AES Module (controlled under NDA)

PMC_BBRAM_CTRL - 0xF11F_0000 0xF11F_FFFF 64 Std Batter-backed RAM, BBRAM (controlled under NDA)

PMC_ECDSA_RSA - 0xF120_0000 0xF120_FFFF 64 Std ECDSA and RSA control (controlled under NDA)

PMC_SHA3 - 0xF121_0000 0xF121_FFFF 64 Std SHA3 Module (controlled under NDA)

PMC_SBI_CSR - 0xF122_0000 0xF122_FFFF 64 Std Boot Interface

PMC_TRNG - 0xF123_0000 0xF123_FFFF 64 Std True Random Number Generator (controlled under NDA)

PMC_EFUSE_CTRL - 0xF124_0000 0xF124_FFFF 64 Std EFuse Control Unit (partially controlled under NDA)

PMC_EFUSE_CACHE - 0xF125_0000 0xF125_FFFF 64 Std EFuse Cache (mostly controlled under NDA)

CRP - 0xF126_0000 0xF126_FFFF 64 Std PMC Clock and Reset control

PMC_SYSMON_CSR - 0xF127_0000 0xF129_FFFF 192 Std PMC System Monitor control

PMC_RTC - 0xF12A_0000 0xF12A_FFFF 64 Std RTC Registers

CFU_CSR - 0xF12B_0000 0xF12B_FFFF 64 Std CFU Registers (aka CFU_APB)

CFU_SFR_mem mem 0xF12C_1000 0xF12C_1FFF 4 Std Single Frame Address

CFU_FDRO_mem mem 0xF12C_2000 0xF12C_2FFF 4 Std Frame Data Register Output (read config data)

CFRAME00_REG - 0xF12D_0000 0xF12D_0FFF 4 Std CFrame 0 Regional Configuration Frame control

CFRAME00_FDRI_mem mem 0xF12D_1000 0xF12D_1FFF 4 Std CFrame 0 Regional Configuration Frame memory

CFRAME01_REG - 0xF12D_2000 0xF12D_2FFF 4 Std CFrame 1 Regional Configuration Frame control

CFRAME01_FDRI_mem mem 0xF12D_3000 0xF12D_3FFF 4 Std CFrame 1 Regional Configuration Frame memory

CFRAME02_REG - 0xF12D_4000 0xF12D_4FFF 4 Std CFrame 2 Regional Configuration Frame control

CFRAME02_FDRI_mem mem 0xF12D_5000 0xF12D_5FFF 4 Std CFrame 2 Regional Configuration Frame memory

CFRAME03_REG - 0xF12D_6000 0xF12D_6FFF 4 Std CFrame 3 Regional Configuration Frame control

CFRAME03_FDRI_mem mem 0xF12D_7000 0xF12D_7FFF 4 Std CFrame 3 Regional Configuration Frame memory

CFRAME04_REG - 0xF12D_8000 0xF12D_8FFF 4 Std CFrame 4 Regional Configuration Frame control

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=168

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

CFRAME04_FDRI_mem mem 0xF12D_9000 0xF12D_9FFF 4 Std CFrame 4 Regional Configuration Frame memory

CFRAME05_REG - 0xF12D_A000 0xF12D_AFFF 4 Std CFrame 5 Regional Configuration Frame control

CFRAME05_FDRI_mem mem 0xF12D_B000 0xF12D_BFFF 4 Std CFrame 5 Regional Configuration Frame memory

CFRAME06_REG - 0xF12D_C000 0xF12D_CFFF 4 Std CFrame 6 Regional Configuration Frame control

CFRAME06_FDRI_mem mem 0xF12D_D000 0xF12D_DFFF 4 Std CFrame 6 Regional Configuration Frame memory

CFRAME07_REG - 0xF12D_E000 0xF12D_EFFF 4 Std CFrame 7 Regional Configuration Frame control

CFRAME07_FDRI_mem mem 0xF12D_F000 0xF12D_FFFF 4 Std CFrame 7 Regional Configuration Frame memory

CFRAME08_REG - 0xF12E_0000 0xF12E_0FFF 4 Std CFrame 8 Regional Configuration Frame control

CFRAME08_FDRI_mem mem 0xF12E_1000 0xF12E_1FFF 4 Std CFrame 8 Regional Configuration Frame memory

CFRAME09_REG - 0xF12E_2000 0xF12E_2FFF 4 Std CFrame 9 Regional Configuration Frame control

CFRAME09_FDRI_mem mem 0xF12E_3000 0xF12E_3FFF 4 Std CFrame 9 Regional Configuration Frame memory

CFRAME10_REG - 0xF12E_4000 0xF12E_4FFF 4 Std CFrame 10 Regional Configuration Frame control

CFRAME10_FDRI_mem mem 0xF12E_5000 0xF12E_5FFF 4 Std CFrame 10 Regional Configuration Frame memory

CFRAME11_REG - 0xF12E_6000 0xF12E_6FFF 4 Std CFrame 11 Regional Configuration Frame control

CFRAME11_FDRI_mem mem 0xF12E_7000 0xF12E_7FFF 4 Std CFrame 11 Regional Configuration Frame memory

CFRAME12_REG - 0xF12E_8000 0xF12E_8FFF 4 Std CFrame 12 Regional Configuration Frame control

CFRAME12_FDRI_mem mem 0xF12E_9000 0xF12E_9FFF 4 Std CFrame 12 Regional Configuration Frame memory

CFRAME13_REG - 0xF12E_A000 0xF12E_AFFF 4 Std CFrame 13 Regional Configuration Frame control

CFRAME13_FDRI_mem mem 0xF12E_B000 0xF12E_BFFF 4 Std CFrame 13 Regional Configuration Frame memory

CFRAME14_REG - 0xF12E_C000 0xF12E_CFFF 4 Std CFrame 14 Regional Configuration Frame control

CFRAME14_FDRI_mem mem 0xF12E_D000 0xF12E_DFFF 4 Std CFrame 14 Regional Configuration Frame memory

CFRAME_BCAST_REG - 0xF12E_E000 0xF12E_EFFF 4 Std Broadcast Configuration Frame control

CFRAME_BCAST_FDRI_mem mem 0xF12E_F000 0xF12E_FFFF 4 Std Broadcast Configuration Frame memory

PMC_XMPU - 0xF12F_0000 0xF12F_FFFF 64 Std PMC Memory Protection Unit

PMC_XPPU_NPI - 0xF130_0000 0xF130_FFFF 64 Std NPI Host Memory Protection Unit

PMC_XPPU - 0xF131_0000 0xF131_FFFF 64 Std PMC Peripheral Protection Unit

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=169

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

PMC_INT_CSR - 0xF133_0000 0xF15A_FFFF 2.5 MB Std PMC reset and isolation interconnect ports

CFU_STREAM_mem mem 0xF1F8_0000 0xF1FB_FFFF 256 Std CFU Stream memory

PMC_RAM_mem mem 0xF200_0000 0xF201_FFFF 128 Std PMC RAM (128 KB)

PMC_SBI_STREAM_mem mem 0xF210_0000 0xF210_FFFF 64 Std SBI Stream memory

NPI_HOST_mem mem 0xF600_0000 0xF7FF_FFFF 32 MB Std NPI Host controller memory space

CoreSight_STM_mem mem 0xF800_0000 0xF8FF_FFFF 16 MB Std Debug System Trace Macrocell

RPU_GIC local 0xF900_0000 12 Std RPU GIC PL390; this register module is local to the APU

APU_GIC_DIST_MAIN local 0xF900_0000 0xF900_FFFF 64 Std APU GIC ; this register module is local to the APU

APU_GIC_DIST_MBSPI - 0xF901_0000 0xF901_FFFF 64 Std APU GIC SPI Interrupt Distributor

APU_GIC_ITS_CTL - 0xF902_0000 0xF902_FFFF 64 Std APU GIC ITS control

APU_GIC_ITS_TRANS - 0xF903_0000 0xF903_FFFF 64 Std APU GIC ITS service (GITS translator)

APU_GIC_CPUIF - 0xF904_0000 0xF904_FFFF 64 Std APU GIC CPU Interface

APU_GIC_VIFCTL - 0xF905_0000 0xF905_FFFF 64 Std APU GIC CPU Virtual Interface Control

APU_GIC_VCPUIF - 0xF906_0000 0xF906_FFFF 64 Std APU GIC CPU Virtual Interface

APU_GIC_REDIST_CTLLPI_0 - 0xF908_0000 0xF908_FFFF 64 Std APU 0 GIC Redistributor control and Physical LPI

APU_GIC_REDIST_SGISPI_0 - 0xF909_0000 0xF909_FFFF 64 Std APU 0 GIC Redistributor for SGI and PPI

APU_GIC_REDIST_CTLLPI_1 - 0xF90A_0000 0xF90A_FFFF 64 Std APU 1 GIC Redistributor control and Physical LPI

APU_GIC_REDIST_SGISPI_1 - 0xF90B_0000 0xF90B_FFFF 64 Std APU 1 GIC Redistributor for SGI and PPI

CPM4_CMN - 0xFC00_0000 0xFC9F_FFFF 10 MB Opt CPM4 CMN Registers

CPM4_CRX - 0xFCA0_0000 0xFCBF_FFFF 64 Opt CPM4 Clock and Reset Controllers

CPM4_SLCR - 0xFCA1_0000 0xFCA1_FFFF 64 Opt CPM4 System-level Control and Status

CPM4_SLCR_SECURE - 0xFCA2_0000 0xFCA2_FFFF 64 Opt CPM4 System-level Control and Status (secure)

CPM4_PCIE0_ATTR - 0xFCA5_0000 0xFCA5_FFFF 64 Opt CPM4 PCIe0 Attributes (program with design tools)

CPM4_PCIE1_ATTR - 0xFCA6_0000 0xFCA6_FFFF 64 Opt CPM4 PCIe1 Attributes (program with design tools)

CPM4_DMA_ATTR - 0xFCA7_0000 0xFCA7_FFFF 64 Opt CPM4 PCIe DMA Attributes (program with design tools)

CPM4_INT_CSR - 0xFCB4_0000 0xFCB0_FFFF 1.5 MB Opt CPM4 Interconnect Contrl and Status

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=170

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

CPM4_L2_CSR - 0xFCD0_0000 0xFCCF_FFFF 512 Opt CPM2 L2 Cache Control and Status

CPM4_ADDRREMAP - 0xFCF3_0000 0xFCF3_FFFF 64 Opt CPM4 Re-map Control

CPM4_DVSEC_0 - 0xFCFB_0000 0xFCFB_FFFF 64 Opt CPM4 DVSEC 0 Buffer

CPM4_DVSEC_1 - 0xFCFC_0000 0xFCFC_FFFF 64 Opt CPM4 DVSEC 1 Buffer

CPM4_PCIe_DMA - 0xFCFE_0000 0xFCFE_FFFF 64 Opt CPM DMA control and status

CPM4_CSR - 0xFCFF_0000 0xFCFF_FFFF 64 Opt CPM control and status

FPD_CCI_CORE - 0xFD00_0000 0xFD0F_FFFF 1 MB Std Cache Coherent Interconnect (CCI-500) in FPD

CRF - 0xFD1A_0000 0xFD2D_FFFF 1.25 MB Std FPD Clock and Reset controller

PL_AXI_FPD_CSR - 0xFD36_0000 0xFD36_FFFF 64 Std PL to PS AXI Interface control (aka S_AXI_HP, AFIFM0)

FPD_INT_CSR - 0xFD37_0000 0xFD37_FFFF 64 Std FPD Interconnect control, wrapper

PL_ACELITE_FPD_CSR - 0xFD38_0000 0xFD38_FFFF 64 Std PL to PS Coherent AXI control (aka S_AXI_HPC, AFIFM2)

FPD_XMPU - 0xFD39_0000 0xFD39_FFFF 64 Std FPD Memory Protection Unit

FPD_SWDT - 0xFD4D_0000 0xFD4D_FFFF 64 Std FPD System Watchdog Timer (aka SWDT1, WWDT1)

APU_DUAL_CSR - 0xFD5C_0000 0xFD5C_FFFF 64 Std APU control and status

FPD_CCI_CSR - 0xFD5E_0000 0xFD5E_FFFF 64 Std Cache Coherent Interconnect (aka CCI_REG)

FPD_SMMU_CSR - 0xFD5F_0000 0xFD5F_FFFF 64 Std System Memory Management Unit

FPD_SLCR - 0xFD61_0000 0xFD61_FFFF 64 Std FPD System-level Control

FPD_SLCR_SECURE - 0xFD69_0000 0xFD69_FFFF 64 Std FPD System-level Control (secure)

FPD_SMMU - 0xFD80_0000 0xFDFF_FFFF 8 MB Std SMMU core (non-secure space)

FPD_SMMU_SECURE - 0xFD80_0000 0xFDFF_FFFF 8 MB Std SMMU core (secure space)

USB2_XHCI - 0xFE20_0000 0xFE2F_FFFF 1 MB Std USB 2.0 XHCI registers

DPC_DMA_CSR - 0xFE5F_0000 0xFE5F_FFFF 64 Std Debug Port Controller DMA unit

LPD_INT_CSR - 0xFE60_0000 0xFE7F_FFFF 2 MB Std LPD Interconnect Timeout, Reset, and Isolation

XRAM_mem mem 0xFE80_0000 0xFEBF_FFFF 4 MB Opt On-chip Accelerator RAM, 4 MB

UART0 - 0xFF00_0000 0xFF00_FFFF 64 Std UART 0 controller

UART1 - 0xFF01_0000 0xFF01_FFFF 64 Std UART 1 controller

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=171

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

LPD_I2C0 - 0xFF02_0000 0xFF02_FFFF 64 Std Inter-integrated Circuit controller 0

LPD_I2C1 - 0xFF03_0000 0xFF03_FFFF 64 Std Inter-integrated Circuit controller 1

SPI0 - 0xFF04_0000 0xFF04_FFFF 64 Std Serial Peripheral Interface 0

SPI1 - 0xFF05_0000 0xFF05_FFFF 64 Std Serial Peripheral Interface 1

CANFD0 - 0xFF06_0000 0xFF06_FFFF 64 Std Controller Area Network 0

CANFD1 - 0xFF07_0000 0xFF07_FFFF 64 Std Controller Area Network 1

LPD_IOP_SLCR - 0xFF08_0000 0xFF09_FFFF 128 Std LPD IOP System-level Control

LPD_IOP_SLCR_SECURE - 0xFF0A_0000 0xFF0A_FFFF 64 Std LPD IOP System-level Control, secure

LPD_GPIO - 0xFF0B_0000 0xFF0B_FFFF 64 Std LPD General Purpose I/O

GEM0 - 0xFF0C_0000 0xFF0C_FFFF 64 Std Gigabit Ethernet MAC (GEM) controller 0

GEM1 - 0xFF0D_0000 0xFF0D_FFFF 64 Std Gigabit Ethernet MAC (GEM) controller 1

TTC0 - 0xFF0E_0000 0xFF0E_FFFF 64 Std Triple Timer Counter 0

TTC1 - 0xFF0F_0000 0xFF0F_FFFF 64 Std Triple Timer Counter 1

TTC2 - 0xFF10_0000 0xFF10_FFFF 64 Std Triple Timer Counter 2

TTC3 - 0xFF11_0000 0xFF11_FFFF 64 Std Triple Timer Counter 3

LPD_SWDT - 0xFF12_0000 0xFF12_FFFF 64 Std LPD System Watchdog Timer (aka SWDT0, WWDT0)

SCNTR - 0xFF13_0000 0xFF13_FFFF 64 Std System Counter, non-secure

SCNTR_SECURE - 0xFF14_0000 0xFF14_FFFF 64 Std System Counter, secure (scntrs)

IPI - 0xFF30_0000 0xFF3F_FFFF 1 MB Std Inter-processor Interrupts

LPD_SLCR - 0xFF41_0000 0xFF50_FFFF 1 MB Std LPD System-level control

LPD_SLCR_SECURE - 0xFF51_0000 0xFF54_FFFF 256 Std LPD System-level control, secure

CRL - 0xFF5E_0000 0xFF8D_FFFF 3 MB Std LPD Clock and Reset controller

XRAM_CTRL0 - 0xFF8E_0000 0xFF8E_FFFF 64 Opt XRAM Bank 0 control

XRAM_CTRL1 - 0xFF8F_0000 0xFF8F_FFFF 64 Opt XRAM Bank 1 control

XRAM_CTRL2 - 0xFF90_0000 0xFF90_FFFF 64 Opt XRAM Bank 2 control

XRAM_CTRL3 - 0xFF91_0000 0xFF91_FFFF 64 Opt XRAM Bank 3 control

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=172

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

XRAM_XMPU0 - 0xFF93_0000 0xFF93_3FFF 16 Opt XRAM Memory Protection Unit 0

XRAM_XMPU1 - 0xFF93_4000 0xFF93_7FFF 16 Opt XRAM Memory Protection Unit 1

XRAM_XMPU2 - 0xFF93_8000 0xFF93_BFFF 16 Opt XRAM Memory Protection Unit 2

XRAM_XMPU3 - 0xFF93_C000 0xFF93_FFFF 16 Opt XRAM Memory Protection Unit 3

XRAM_SLCR - 0xFF95_0000 0xFF95_FFFF 64 Opt XRAM System-level control

OCM_CSR - 0xFF96_0000 0xFF96_FFFF 64 Std On-chip Memory control

OCM_XMPU - 0xFF98_0000 0xFF98_FFFF 64 Std OCM Memory Protection control

LPD_XPPU - 0xFF99_0000 0xFF99_FFFF 64 Std LPD Peripheral Protection control

RPU_DUAL_CSR - 0xFF9A_0000 0xFF9A_FFFF 64 Std RPU control and status

PL_AXI_LPD_CSR - 0xFF9B_0000 0xFF9B_FFFF 64 Std PL to PS 128-bit AXI Channel (aka AFIFM4)

DPC_AURORA - 0xFF9C_0000 0xFF9C_FFFF 64 Std Aurora Debug Interface

USB2_CSR - 0xFF9D_0000 0xFF9D_FFFF 64 Std USB 2.0 control in LPD

LPD_DMA_CH0 - 0xFFA8_0000 0xFFA8_FFFF 64 Std General purpose DMA channel 0 (ADMA)

LPD_DMA_CH1 - 0xFFA9_0000 0xFFA9_FFFF 64 Std General purpose DMA channel 1

LPD_DMA_CH2 - 0xFFAA_0000 0xFFAA_FFFF 64 Std General purpose DMA channel 2

LPD_DMA_CH3 - 0xFFAB_0000 0xFFAB_FFFF 64 Std General purpose DMA channel 3

LPD_DMA_CH4 - 0xFFAC_0000 0xFFAC_FFFF 64 Std General purpose DMA channel 4

LPD_DMA_CH5 - 0xFFAD_0000 0xFFAD_FFFF 64 Std General purpose DMA channel 5

LPD_DMA_CH6 - 0xFFAE_0000 0xFFAE_FFFF 64 Std General purpose DMA channel 6

LPD_DMA_CH7 - 0xFFAF_0000 0xFFAF_FFFF 64 Std General purpose DMA channel 7

PSM_ICACHE_mem mem 0xFFC0_0000 0xFFC1_FFFF 128 Std PSM I-cache Addressable

PSM_DCACHE_mem mem 0xFFC2_0000 0xFFC3_FFFF 128 Std PSM D-cache Addressable

PSM_IOMODULE - 0xFFC8_0000 0xFFC8_7FFF 32 Std PSM I/O Module registers

PSM_LOCAL - 0xFFC8_8000 0xFFC8_FFFF 32 Std PSM Local registers

PSM_GLOBAL - 0xFFC9_0000 0xFFC9_EFFF 60 Std PSM Global registers

PSM_ICACHE_ECC - 0xFFCA_0000 0xFFCA_FFFF 64 Std PSM I-cache ECC control

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=173

Table 39: Destinations Listed by Address (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

PSM_DCACHE_ECC - 0xFFCB_0000 0xFFCB_FFFF 64 Std PSM D-cache ECC control

PSM_TMR_MANAGER - 0xFFCC_0000 0xFFCC_FFFF 64 Std PSM Triple Redundancy Manager

PSM_TMR_INJECT - 0xFFCD_0000 0xFFCD_FFFF 64 Std PSM Triple Redundancy Error Injection

PSM_TMR_TRACE - 0xFFCE_0000 0xFFCE_FFFF 64 Std PSM Trace Module control

PSM_MDM - 0xFFCF_0000 0xFFCF_FFFF 64 Std PSM Debug Module control

OCM_mem mem 0xFFFC_0000 0xFFFF_FFFF 256 Std On-chip Memory space

RPU0_TCMA_mem mem 0xFFE0_0000 0xFFE0_FFFF 64 Std RPU0 TCM A lock-step and dual modes

RPU0_TCMA_mem_lockstep mem 0xFFE1_0000 0xFFE1_FFFF 64 Std RPU0 TCM A lock-step mode

RPU0_TCMB_mem mem 0xFFE2_0000 0xFFE2_FFFF 64 Std RPU0 TCM B lock-step and dual modes

RPU0_TCMB_mem_lockstep mem 0xFFE3_0000 0xFFE3_FFFF 64 Std RPU0 TCM B lock-step mode

RPU0_iCACHE_mem mem 0xFFE4_0000 0xFFE4_7FFF 32 Std RPU0 instruction cache lock-step and dual modes

RPU0_dCACHE_mem mem 0xFFE5_0000 0xFFE5_7FFF 32 Std RPU0 data cache lock-step and dual modes

RPU1_TCMA_mem_dual mem 0xFFE9_0000 0xFFE9_FFFF 64 Std RPU1 TCM A dual mode

RPU1_TCMB_mem_dual mem 0xFFEB_0000 0xFFEB_FFFF 64 Std RPU1 TCM B dual mode

RPU1_iCACHE_mem_dual mem 0xFFEC_0000 0xFFED_7FFF 32 Std RPU1 instruction cache dual mode

RPU1_dCACHE_mem_dual mem 0xFFED_0000 0xFFED_7FFF 32 Std RPU1 data cache dual mode

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=174

Destinations Listed by Name

The memory and programming interface destinations are listed by the name of the destination.

Table 40: Destinations Listed by Name

Destination Type
Address Range Size

(KB) Feature Description
Start End

APU_DUAL_CSR - 0xFD5C_0000 0xFD5C_FFFF 64 Std APU control and status

APU_GIC_CPUIF - 0xF904_0000 0xF904_FFFF 64 Std APU GIC CPU Interface

APU_GIC_DIST_MAIN local 0xF900_0000 0xF900_FFFF 64 Std APU GIC ; this register module is local to the APU

APU_GIC_DIST_MBSPI - 0xF901_0000 0xF901_FFFF 64 Std APU GIC SPI Interrupt Distributor

APU_GIC_ITS_CTL - 0xF902_0000 0xF902_FFFF 64 Std APU GIC ITS control

APU_GIC_ITS_TRANS - 0xF903_0000 0xF903_FFFF 64 Std APU GIC ITS service (GITS translator)

APU_GIC_REDIST_CTLLPI_0 - 0xF908_0000 0xF908_FFFF 64 Std APU 0 GIC Redistributor control and Physical LPI

APU_GIC_REDIST_CTLLPI_1 - 0xF90A_0000 0xF90A_FFFF 64 Std APU 1 GIC Redistributor control and Physical LPI

APU_GIC_REDIST_SGISPI_0 - 0xF909_0000 0xF909_FFFF 64 Std APU 0 GIC Redistributor for SGI and PPI

APU_GIC_REDIST_SGISPI_1 - 0xF90B_0000 0xF90B_FFFF 64 Std APU 1 GIC Redistributor for SGI and PPI

APU_GIC_VCPUIF - 0xF906_0000 0xF906_FFFF 64 Std APU GIC CPU Virtual Interface

APU_GIC_VIFCTL - 0xF905_0000 0xF905_FFFF 64 Std APU GIC CPU Virtual Interface Control

CANFD0 - 0xFF06_0000 0xFF06_FFFF 64 Std Controller Area Network 0

CANFD1 - 0xFF07_0000 0xFF07_FFFF 64 Std Controller Area Network 1

CFRAME00_FDRI_mem mem 0xF12D_1000 0xF12D_1FFF 4 Std CFrame 0 Regional Configuration Frame memory

CFRAME00_REG - 0xF12D_0000 0xF12D_0FFF 4 Std CFrame 0 Regional Configuration Frame control

CFRAME01_FDRI_mem mem 0xF12D_3000 0xF12D_3FFF 4 Std CFrame 1 Regional Configuration Frame memory

CFRAME01_REG - 0xF12D_2000 0xF12D_2FFF 4 Std CFrame 1 Regional Configuration Frame control

CFRAME02_FDRI_mem mem 0xF12D_5000 0xF12D_5FFF 4 Std CFrame 2 Regional Configuration Frame memory

CFRAME02_REG - 0xF12D_4000 0xF12D_4FFF 4 Std CFrame 2 Regional Configuration Frame control

CFRAME03_FDRI_mem mem 0xF12D_7000 0xF12D_7FFF 4 Std CFrame 3 Regional Configuration Frame memory

CFRAME03_REG - 0xF12D_6000 0xF12D_6FFF 4 Std CFrame 3 Regional Configuration Frame control

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=175

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

CFRAME04_FDRI_mem mem 0xF12D_9000 0xF12D_9FFF 4 Std CFrame 4 Regional Configuration Frame memory

CFRAME04_REG - 0xF12D_8000 0xF12D_8FFF 4 Std CFrame 4 Regional Configuration Frame control

CFRAME05_FDRI_mem mem 0xF12D_B000 0xF12D_BFFF 4 Std CFrame 5 Regional Configuration Frame memory

CFRAME05_REG - 0xF12D_A000 0xF12D_AFFF 4 Std CFrame 5 Regional Configuration Frame control

CFRAME06_FDRI_mem mem 0xF12D_D000 0xF12D_DFFF 4 Std CFrame 6 Regional Configuration Frame memory

CFRAME06_REG - 0xF12D_C000 0xF12D_CFFF 4 Std CFrame 6 Regional Configuration Frame control

CFRAME07_FDRI_mem mem 0xF12D_F000 0xF12D_FFFF 4 Std CFrame 7 Regional Configuration Frame memory

CFRAME07_REG - 0xF12D_E000 0xF12D_EFFF 4 Std CFrame 7 Regional Configuration Frame control

CFRAME08_FDRI_mem mem 0xF12E_1000 0xF12E_1FFF 4 Std CFrame 8 Regional Configuration Frame memory

CFRAME08_REG - 0xF12E_0000 0xF12E_0FFF 4 Std CFrame 8 Regional Configuration Frame control

CFRAME09_FDRI_mem mem 0xF12E_3000 0xF12E_3FFF 4 Std CFrame 9 Regional Configuration Frame memory

CFRAME09_REG - 0xF12E_2000 0xF12E_2FFF 4 Std CFrame 9 Regional Configuration Frame control

CFRAME10_FDRI_mem mem 0xF12E_5000 0xF12E_5FFF 4 Std CFrame 10 Regional Configuration Frame memory

CFRAME10_REG - 0xF12E_4000 0xF12E_4FFF 4 Std CFrame 10 Regional Configuration Frame control

CFRAME11_FDRI_mem mem 0xF12E_7000 0xF12E_7FFF 4 Std CFrame 11 Regional Configuration Frame memory

CFRAME11_REG - 0xF12E_6000 0xF12E_6FFF 4 Std CFrame 11 Regional Configuration Frame control

CFRAME12_FDRI_mem mem 0xF12E_9000 0xF12E_9FFF 4 Std CFrame 12 Regional Configuration Frame memory

CFRAME12_REG - 0xF12E_8000 0xF12E_8FFF 4 Std CFrame 12 Regional Configuration Frame control

CFRAME13_FDRI_mem mem 0xF12E_B000 0xF12E_BFFF 4 Std CFrame 13 Regional Configuration Frame memory

CFRAME13_REG - 0xF12E_A000 0xF12E_AFFF 4 Std CFrame 13 Regional Configuration Frame control

CFRAME14_FDRI_mem mem 0xF12E_D000 0xF12E_DFFF 4 Std CFrame 14 Regional Configuration Frame memory

CFRAME14_REG - 0xF12E_C000 0xF12E_CFFF 4 Std CFrame 14 Regional Configuration Frame control

CFRAME_BCAST_FDRI_mem mem 0xF12E_F000 0xF12E_FFFF 4 Std Broadcast Configuration Frame memory

CFRAME_BCAST_REG - 0xF12E_E000 0xF12E_EFFF 4 Std Broadcast Configuration Frame control

CFU_CSR - 0xF12B_0000 0xF12B_FFFF 64 Std CFU Registers (aka CFU_APB)

CFU_FDRO_mem mem 0xF12C_2000 0xF12C_2FFF 4 Std Frame Data Register Output (read config data)

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=176

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

CFU_SFR_mem mem 0xF12C_1000 0xF12C_1FFF 4 Std Single Frame Address

CFU_STREAM_mem mem 0xF1F8_0000 0xF1FB_FFFF 256 Std CFU Stream memory

CPM4_ADDRREMAP - 0xFCF3_0000 0xFCF3_FFFF 64 Opt CPM4 Re-map Control

CPM4_CMN - 0xFC00_0000 0xFC9F_FFFF 10 MB Opt CPM4 CMN Registers

CPM4_CRX - 0xFCA0_0000 0xFCBF_FFFF 64 Opt CPM4 Clock and Reset Controllers

CPM4_CSR - 0xFCFF_0000 0xFCFF_FFFF 64 Opt CPM control and status

CPM4_DMA_ATTR - 0xFCA7_0000 0xFCA7_FFFF 64 Opt CPM4 PCIe DMA Attributes (program with design tools)

CPM4_DVSEC_0 - 0xFCFB_0000 0xFCFB_FFFF 64 Opt CPM4 DVSEC 0 Buffer

CPM4_DVSEC_1 - 0xFCFC_0000 0xFCFC_FFFF 64 Opt CPM4 DVSEC 1 Buffer

CPM4_INT_CSR - 0xFCB4_0000 0xFCB0_FFFF 1.5 MB Opt CPM4 Interconnect Contrl and Status

CPM4_L2_CSR - 0xFCD0_0000 0xFCCF_FFFF 512 Opt CPM2 L2 Cache Control and Status

CPM4_PCIE0_ATTR - 0xFCA5_0000 0xFCA5_FFFF 64 Opt CPM4 PCIe0 Attributes (program with design tools)

CPM4_PCIE1_ATTR - 0xFCA6_0000 0xFCA6_FFFF 64 Opt CPM4 PCIe1 Attributes (program with design tools)

CPM4_PCIe0_mem mem 0xE000_0000 0xEFFF_FFFF 256 MB Opt PCIe Region 0 in CPM4

CPM4_PCIe_DMA - 0xFCFE_0000 0xFCFE_FFFF 64 Opt CPM DMA control and status

CPM4_SLCR - 0xFCA1_0000 0xFCA1_FFFF 64 Opt CPM4 System-level Control and Status

CPM4_SLCR_SECURE - 0xFCA2_0000 0xFCA2_FFFF 64 Opt CPM4 System-level Control and Status (secure)

CPM4_XDMA_CSR - 0xE100_0000 0xE100_FFFF 64 Opt CPM4 DMA control registers (XDMA)

CRF - 0xFD1A_0000 0xFD2D_FFFF 1.25 MB Std FPD Clock and Reset controller

CRL - 0xFF5E_0000 0xFF8D_FFFF 3 MB Std LPD Clock and Reset controller

CRP - 0xF126_0000 0xF126_FFFF 64 Std PMC Clock and Reset control

CoreSight_STM_mem mem 0xF800_0000 0xF8FF_FFFF 16 MB Std Debug System Trace Macrocell

DBG_APU0_CTI - 0xF0D1_0000 0xF0D1_FFFF 64 Std CoreSight APU0 Map Trigger and Channel interfaces

DBG_APU0_DBG - 0xF0D0_0000 0xF0D0_FFFF 64 Std CoreSight APU0 Built-in Debug Logic

DBG_APU0_ETM - 0xF0D3_0000 0xF0D3_FFFF 64 Std CoreSight APU0 Generate Trace

DBG_APU0_PMU - 0xF0D2_0000 0xF0D2_FFFF 64 Std CoreSight APU0 Processor Performance Profile

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=177

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

DBG_APU1_CTI - 0xF0D5_0000 0xF0D5_FFFF 64 Std CoreSight APU1 Map Trigger and Channel interfaces

DBG_APU1_DBG - 0xF0D4_0000 0xF0D4_FFFF 64 Std CoreSight APU1 Built-in Debug Logic

DBG_APU1_ETM - 0xF0D7_0000 0xF0D7_FFFF 64 Std CoreSight APU1 Generate Trace

DBG_APU1_PMU - 0xF0D6_0000 0xF0D6_FFFF 64 Std CoreSight APU1 Processor Performance Profile

DBG_APU_CTI - 0xF0CA_0000 0xF0CA_FFFF 64 Std CoreSight APU MPCore Map Trigger and Channel

DBG_APU_ELA - 0xF0C6_0000 0xF0C6_FFFF 64 Std CoreSight APU Embedded 128 Logic Analyzer

DBG_APU_ETF - 0xF0C3_0000 0xF0C3_FFFF 64 Std CoreSight APU Embedded 4K Trace FIFO

DBG_APU_FUN - 0xF0C2_0000 0xF0C2_FFFF 64 Std CoreSight APU Merge Two Trace Streams to ATB

DBG_CPM_CTI2A - 0xF0FA_0000 0xF0FA_FFFF 64 Std CoreSight CPM 2A Map Trigger and Channel interfaces

DBG_CPM_CTI2D - 0xF0FD_0000 0xF0FD_FFFF 64 Std CoreSight CPM 2D Map Trigger and Channel interfaces

DBG_CPM_ELA2A - 0xF0F4_0000 0xF0F4_FFFF 64 Std CoreSight CPM 2A Embedded 256 Logic Analyzer

DBG_CPM_ELA2B - 0xF0F5_0000 0xF0F5_FFFF 64 Std CoreSight CPM 2B Embedded 256 Logic Analyzer

DBG_CPM_ELA2C - 0xF0F6_0000 0xF0F6_FFFF 64 Std CoreSight CPM 2C Embedded 256 Logic Analyzer

DBG_CPM_ELA2D - 0xF0F7_0000 0xF0F7_FFFF 64 Std CoreSight CPM 2D Embedded 256 Logic Analyzer

DBG_CPM_FUN - 0xF0F2_0000 0xF0F2_FFFF 64 Std CoreSight CPM Merge Two Trace Streams to ATB

DBG_CPM_ROM - 0xF0F0_0000 0xF0F0_FFFF 64 Std CoreSight CPM ROM

DBG_FPD_CTI1B - 0xF0BB_0000 0xF0BB_FFFF 64 Std CoreSight FPD 1B Map Trigger and Channel interfaces

DBG_FPD_CTI1C - 0xF0BC_0000 0xF0BC_FFFF 64 Std CoreSight FPD 1C Map Trigger and Channel interfaces

DBG_FPD_CTI1D - 0xF0BD_0000 0xF0BD_FFFF 64 Std CoreSight FPD 1D Map Trigger and Channel interfaces

DBG_FPD_ETF - 0xF0B3_0000 0xF0B3_FFFF 64 Std CoreSight FPD Embedded 32K Trace FIFO

DBG_FPD_ETR - 0xF0B5_0000 0xF0B5_FFFF 64 Std CoreSight FPD Enable Local Trace Buffer

DBG_FPD_FUN - 0xF0B2_0000 0xF0B2_FFFF 64 Std CoreSight LPD Merge Six Trace Streams to ATB

DBG_FPD_GPR - 0xF0B1_0000 0xF0B1_FFFF 64 Std CoreSight FPD GPR 2P

DBG_FPD_REPL - 0xF0B4_0000 0xF0B4_FFFF 64 Std CoreSight Replicates ATB Data Stream

DBG_FPD_ROM - 0xF0B0_0000 0xF0B0_FFFF 64 Std CoreSight FPD ROM

DBG_LPD_CTI - 0xF09D_0000 0xF09D_FFFF 64 Std CoreSight LPD Map Trigger and Channel interfaces

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=178

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

DBG_LPD_FUN - 0xF092_0000 0xF092_FFFF 64 Std CoreSight LPD Merge Five Trace Streams to ATB

DBG_LPD_GPR - 0xF091_0000 0xF091_FFFF 64 Std CoreSight LPD GPR 3P

DBG_LPD_ROM - 0xF090_0000 0xF090_FFFF 64 Std CoreSight LPD ROM

DBG_PMC_CTI - 0xF08D_0000 0xF08D_FFFF 64 Std CoreSight PMC Map Trigger and Channel interfaces

DBG_PMC_GPR - 0xF081_0000 0xF081_FFFF 64 Std CoreSight PMC GPR 1P

DBG_PMC_ROM - 0xF080_0000 0xF080_FFFF 64 Std CoreSight PMC ROM

DBG_RPU0_CTI - 0xF0A1_0000 0xF0A1_FFFF 64 Std CoreSight RPU0 Map Trigger and Channel interfaces

DBG_RPU0_DBG - 0xF0A0_0000 0xF0A0_FFFF 64 Std CoreSight RPU0 Built-in Debug Logic

DBG_RPU0_ETM - 0xF0A3_0000 0xF0A3_FFFF 64 Std CoreSight RPU 0 Generate Trace

DBG_RPU1_CTI - 0xF0A5_0000 0xF0A5_FFFF 64 Std CoreSight RPU1 Map Trigger and Channel interfaces

DBG_RPU1_DBG - 0xF0A4_0000 0xF0A4_FFFF 64 Std CoreSight RPU1 Built-in Debug Logic

DBG_RPU1_ETM - 0xF0A7_0000 0xF0A7_FFFF 64 Std CoreSight RPU1 Generate Trace

DBG_STM - 0xF0B7_0000 0xF0B7_FFFF 64 Std CoreSight System Trace Module

DBG_TPIU - 0xF0B6_0000 0xF0B6_FFFF 64 Std CoreSight Test port interface unit

DBG_TSG_RW - 0xF099_0000 0xF099_FFFF 64 Std CoreSight Master Time Stamp with Read/Write

DDR_MC_mem mem 0x0000_0000 0x7FFF_FFFF 2048 MB Std DRAM Memory Space, lower 2GB

DPC_AURORA - 0xFF9C_0000 0xFF9C_FFFF 64 Std Aurora Debug Interface

DPC_DMA_CSR - 0xFE5F_0000 0xFE5F_FFFF 64 Std Debug Port Controller DMA unit

FPD_AXI_PL_mem mem 0xA400_0000 0xAFFF_FFFF 192 MB Std PS-to-PL AXI Interface from FPD, lower

FPD_AXI_PL_mem mem 0xB000_0000 0xBFFF_FFFF 256 MB Std PS-to-PL AXI Interface from FPD, upper

FPD_CCI_CORE - 0xFD00_0000 0xFD0F_FFFF 1 MB Std Cache Coherent Interconnect (CCI-500) in FPD

FPD_CCI_CSR - 0xFD5E_0000 0xFD5E_FFFF 64 Std Cache Coherent Interconnect (aka CCI_REG)

FPD_INT_CSR - 0xFD37_0000 0xFD37_FFFF 64 Std FPD Interconnect control, wrapper

FPD_SLCR - 0xFD61_0000 0xFD61_FFFF 64 Std FPD System-level Control

FPD_SLCR_SECURE - 0xFD69_0000 0xFD69_FFFF 64 Std FPD System-level Control (secure)

FPD_SMMU - 0xFD80_0000 0xFDFF_FFFF 8 MB Std SMMU core (non-secure space)

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=179

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

FPD_SMMU_CSR - 0xFD5F_0000 0xFD5F_FFFF 64 Std System Memory Management Unit

FPD_SMMU_SECURE - 0xFD80_0000 0xFDFF_FFFF 8 MB Std SMMU core (secure space)

FPD_SWDT - 0xFD4D_0000 0xFD4D_FFFF 64 Std FPD System Watchdog Timer (aka SWDT1, WWDT1)

FPD_XMPU - 0xFD39_0000 0xFD39_FFFF 64 Std FPD Memory Protection Unit

GEM0 - 0xFF0C_0000 0xFF0C_FFFF 64 Std Gigabit Ethernet MAC (GEM) controller 0

GEM1 - 0xFF0D_0000 0xFF0D_FFFF 64 Std Gigabit Ethernet MAC (GEM) controller 1

IPI - 0xFF30_0000 0xFF3F_FFFF 1 MB Std Inter-processor Interrupts

LPD_AXI_PL_mem mem 0x8000_0000 0x9FFF_FFFF 512 MB Std PS-to-PL AXI Interface from LPD

LPD_DMA_CH0 - 0xFFA8_0000 0xFFA8_FFFF 64 Std General purpose DMA channel 0 (ADMA)

LPD_DMA_CH1 - 0xFFA9_0000 0xFFA9_FFFF 64 Std General purpose DMA channel 1

LPD_DMA_CH2 - 0xFFAA_0000 0xFFAA_FFFF 64 Std General purpose DMA channel 2

LPD_DMA_CH3 - 0xFFAB_0000 0xFFAB_FFFF 64 Std General purpose DMA channel 3

LPD_DMA_CH4 - 0xFFAC_0000 0xFFAC_FFFF 64 Std General purpose DMA channel 4

LPD_DMA_CH5 - 0xFFAD_0000 0xFFAD_FFFF 64 Std General purpose DMA channel 5

LPD_DMA_CH6 - 0xFFAE_0000 0xFFAE_FFFF 64 Std General purpose DMA channel 6

LPD_DMA_CH7 - 0xFFAF_0000 0xFFAF_FFFF 64 Std General purpose DMA channel 7

LPD_GPIO - 0xFF0B_0000 0xFF0B_FFFF 64 Std LPD General Purpose I/O

LPD_I2C0 - 0xFF02_0000 0xFF02_FFFF 64 Std Inter-integrated Circuit controller 0

LPD_I2C1 - 0xFF03_0000 0xFF03_FFFF 64 Std Inter-integrated Circuit controller 1

LPD_INT_CSR - 0xFE60_0000 0xFE7F_FFFF 2 MB Std LPD Interconnect Timeout, Reset, and Isolation

LPD_IOP_SLCR - 0xFF08_0000 0xFF09_FFFF 128 Std LPD IOP System-level Control

LPD_IOP_SLCR_SECURE - 0xFF0A_0000 0xFF0A_FFFF 64 Std LPD IOP System-level Control, secure

LPD_SLCR - 0xFF41_0000 0xFF50_FFFF 1 MB Std LPD System-level control

LPD_SLCR_SECURE - 0xFF51_0000 0xFF54_FFFF 256 Std LPD System-level control, secure

LPD_SWDT - 0xFF12_0000 0xFF12_FFFF 64 Std LPD System Watchdog Timer (aka SWDT0, WWDT0)

LPD_XPPU - 0xFF99_0000 0xFF99_FFFF 64 Std LPD Peripheral Protection control

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=180

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

NPI_HOST_mem mem 0xF600_0000 0xF7FF_FFFF 32 MB Std NPI Host controller memory space

OCM_CSR - 0xFF96_0000 0xFF96_FFFF 64 Std On-chip Memory control

OCM_XMPU - 0xFF98_0000 0xFF98_FFFF 64 Std OCM Memory Protection control

OCM_mem mem 0xFFFC_0000 0xFFFF_FFFF 256 Std On-chip Memory space

OSPI - 0xF101_0000 0xF101_FFFF 64 Std Octal-SPI control

PL_ACELITE_FPD_CSR - 0xFD38_0000 0xFD38_FFFF 64 Std PL to PS Coherent AXI control (aka S_AXI_HPC, AFIFM2)

PL_AXI_FPD_CSR - 0xFD36_0000 0xFD36_FFFF 64 Std PL to PS AXI Interface control (aka S_AXI_HP, AFIFM0)

PL_AXI_LPD_CSR - 0xFF9B_0000 0xFF9B_FFFF 64 Std PL to PS 128-bit AXI Channel (aka AFIFM4)

PMC_AES - 0xF11E_0000 0xF11E_FFFF 64 Std AES Module (controlled under NDA)

PMC_ANLG - 0xF116_0000 0xF119_FFFF 256 Std PMC analog control

PMC_BBRAM_CTRL - 0xF11F_0000 0xF11F_FFFF 64 Std Batter-backed RAM, BBRAM (controlled under NDA)

PMC_DMA0_CSR - 0xF11C_0000 0xF11C_FFFF 64 Std PMC DMA 0 Control

PMC_DMA1_CSR - 0xF11D_0000 0xF11D_FFFF 64 Std PMC DMA 1 Control

PMC_ECDSA_RSA - 0xF120_0000 0xF120_FFFF 64 Std ECDSA and RSA control (controlled under NDA)

PMC_EFUSE_CACHE - 0xF125_0000 0xF125_FFFF 64 Std EFuse Cache (mostly controlled under NDA)

PMC_EFUSE_CTRL - 0xF124_0000 0xF124_FFFF 64 Std EFuse Control Unit (partially controlled under NDA)

PMC_GLOBAL - 0xF111_0000 0xF115_FFFF 320 Std PMC Global registers

PMC_GPIO - 0xF102_0000 0xF102_FFFF 64 Std General Purpose I/O in PMC

PMC_I2C - 0xF100_0000 0xF100_FFFF 64 Std PMC I2C controller

PMC_INT_CSR - 0xF133_0000 0xF15A_FFFF 2.5 MB Std PMC reset and isolation interconnect ports

PMC_IOP_SLCR - 0xF106_0000 0xF106_FFFF 64 Std PMC IOP SLCR registers, non-secure

PMC_IOP_SLCR_SECURE - 0xF107_0000 0xF107_FFFF 64 Std PMC IOP SLCR registers, secure

PMC_JTAG_CSR - 0xF11A_0000 0xF11B_FFFF 128 Std PMC JTAG TAP control

PMC_LOCAL - 0xF004_0000 0xF004_FFFF 64 Std PMC Local registers

PMC_OSPI_mem mem 0xC000_0000 0xDFFF_FFFF 512 MB Std Octal-SPI Linear Mode memory space

PMC_PUF - 0xF005_0000 0xF005_FFFF 64 Std PUF control registers

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=181

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

PMC_RAM_CSR - 0xF110_0000 0xF110_FFFF 64 Std PMC On-chip Memory configuration

PMC_RAM_mem mem 0xF200_0000 0xF201_FFFF 128 Std PMC RAM (128 KB)

PMC_RTC - 0xF12A_0000 0xF12A_FFFF 64 Std RTC Registers

PMC_SBI_CSR - 0xF122_0000 0xF122_FFFF 64 Std Boot Interface

PMC_SBI_STREAM_mem mem 0xF210_0000 0xF210_FFFF 64 Std SBI Stream memory

PMC_SHA3 - 0xF121_0000 0xF121_FFFF 64 Std SHA3 Module (controlled under NDA)

PMC_SYSMON_CSR - 0xF127_0000 0xF129_FFFF 192 Std PMC System Monitor control

PMC_TRNG - 0xF123_0000 0xF123_FFFF 64 Std True Random Number Generator (controlled under NDA)

PMC_XMPU - 0xF12F_0000 0xF12F_FFFF 64 Std PMC Memory Protection Unit

PMC_XPPU - 0xF131_0000 0xF131_FFFF 64 Std PMC Peripheral Protection Unit

PMC_XPPU_NPI - 0xF130_0000 0xF130_FFFF 64 Std NPI Host Memory Protection Unit

PPU_DCACHE_CTRL - 0xF028_2000 0xF028_2FFF 4 Std PPU Data Cache ECC control

PPU_ICACHE_CTRL - 0xF028_1000 0xF028_1FFF 4 Std PPU Instruction Cache ECC control

PPU_IOMODULE - 0xF028_0000 0xF028_0FFF 4 Std PPU I/O Module registers

PPU_MDM - 0xF031_0000 0xF031_7FFF 32 Std PPU Debug Module control

PPU_RAM_DATA_mem mem 0xF024_0000 0xF025_FFFF 128 Std PPU D-cache Addressable

PPU_RAM_INSTR_mem mem 0xF020_0000 0xF023_FFFF 256 Std PPU I-cache Addressable

PPU_TMR_INJECT - 0xF028_4000 0xF028_4FFF 4 Std PPU Triple Redundancy Error Injection

PPU_TMR_MANAGER - 0xF028_3000 0xF028_3FFF 4 Std PPU Triple Redundancy Manager

PPU_TMR_TRACE - 0xF030_0000 0xF030_0FFF 4 Std PPU Trace

PSM_DCACHE_ECC - 0xFFCB_0000 0xFFCB_FFFF 64 Std PSM D-cache ECC control

PSM_DCACHE_mem mem 0xFFC2_0000 0xFFC3_FFFF 128 Std PSM D-cache Addressable

PSM_GLOBAL - 0xFFC9_0000 0xFFC9_EFFF 60 Std PSM Global registers

PSM_ICACHE_ECC - 0xFFCA_0000 0xFFCA_FFFF 64 Std PSM I-cache ECC control

PSM_ICACHE_mem mem 0xFFC0_0000 0xFFC1_FFFF 128 Std PSM I-cache Addressable

PSM_IOMODULE - 0xFFC8_0000 0xFFC8_7FFF 32 Std PSM I/O Module registers

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=182

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

PSM_LOCAL - 0xFFC8_8000 0xFFC8_FFFF 32 Std PSM Local registers

PSM_MDM - 0xFFCF_0000 0xFFCF_FFFF 64 Std PSM Debug Module control

PSM_TMR_INJECT - 0xFFCD_0000 0xFFCD_FFFF 64 Std PSM Triple Redundancy Error Injection

PSM_TMR_MANAGER - 0xFFCC_0000 0xFFCC_FFFF 64 Std PSM Triple Redundancy Manager

PSM_TMR_TRACE - 0xFFCE_0000 0xFFCE_FFFF 64 Std PSM Trace Module control

QSPI - 0xF103_0000 0xF103_FFFF 64 Std Quad-SPI control

RPU0_TCMA_mem mem 0xFFE0_0000 0xFFE0_FFFF 64 Std RPU0 TCM A lock-step and dual modes

RPU0_TCMA_mem_lockstep mem 0xFFE1_0000 0xFFE1_FFFF 64 Std RPU0 TCM A lock-step mode

RPU0_TCMB_mem mem 0xFFE2_0000 0xFFE2_FFFF 64 Std RPU0 TCM B lock-step and dual modes

RPU0_TCMB_mem_lockstep mem 0xFFE3_0000 0xFFE3_FFFF 64 Std RPU0 TCM B lock-step mode

RPU0_dCACHE_mem mem 0xFFE5_0000 0xFFE5_7FFF 32 Std RPU0 data cache lock-step and dual modes

RPU0_iCACHE_mem mem 0xFFE4_0000 0xFFE4_7FFF 32 Std RPU0 instruction cache lock-step and dual modes

RPU1_TCMA_mem_dual mem 0xFFE9_0000 0xFFE9_FFFF 64 Std RPU1 TCM A dual mode

RPU1_TCMB_mem_dual mem 0xFFEB_0000 0xFFEB_FFFF 64 Std RPU1 TCM B dual mode

RPU1_dCACHE_mem_dual mem 0xFFED_0000 0xFFED_7FFF 32 Std RPU1 data cache dual mode

RPU1_iCACHE_mem_dual mem 0xFFEC_0000 0xFFED_7FFF 32 Std RPU1 instruction cache dual mode

RPU_DUAL_CSR - 0xFF9A_0000 0xFF9A_FFFF 64 Std RPU control and status

RPU_GIC local 0xF900_0000 12 Std RPU GIC PL390; this register module is local to the APU

SCNTR - 0xFF13_0000 0xFF13_FFFF 64 Std System Counter, non-secure

SCNTR_SECURE - 0xFF14_0000 0xFF14_FFFF 64 Std System Counter, secure (scntrs)

SD_eMMC0 - 0xF104_0000 0xF104_FFFF 64 Std SD/eMMC controller 0

SD_eMMC1 - 0xF105_0000 0xF105_FFFF 64 Std SD/eMMC controller 1

SPI0 - 0xFF04_0000 0xFF04_FFFF 64 Std Serial Peripheral Interface 0

SPI1 - 0xFF05_0000 0xFF05_FFFF 64 Std Serial Peripheral Interface 1

TTC0 - 0xFF0E_0000 0xFF0E_FFFF 64 Std Triple Timer Counter 0

TTC1 - 0xFF0F_0000 0xFF0F_FFFF 64 Std Triple Timer Counter 1

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=183

Table 40: Destinations Listed by Name (cont'd)

Destination Type
Address Range Size

(KB) Feature Description
Start End

TTC2 - 0xFF10_0000 0xFF10_FFFF 64 Std Triple Timer Counter 2

TTC3 - 0xFF11_0000 0xFF11_FFFF 64 Std Triple Timer Counter 3

UART0 - 0xFF00_0000 0xFF00_FFFF 64 Std UART 0 controller

UART1 - 0xFF01_0000 0xFF01_FFFF 64 Std UART 1 controller

USB2_CSR - 0xFF9D_0000 0xFF9D_FFFF 64 Std USB 2.0 control in LPD

USB2_XHCI - 0xFE20_0000 0xFE2F_FFFF 1 MB Std USB 2.0 XHCI registers

XRAM_CTRL0 - 0xFF8E_0000 0xFF8E_FFFF 64 Opt XRAM Bank 0 control

XRAM_CTRL1 - 0xFF8F_0000 0xFF8F_FFFF 64 Opt XRAM Bank 1 control

XRAM_CTRL2 - 0xFF90_0000 0xFF90_FFFF 64 Opt XRAM Bank 2 control

XRAM_CTRL3 - 0xFF91_0000 0xFF91_FFFF 64 Opt XRAM Bank 3 control

XRAM_SLCR - 0xFF95_0000 0xFF95_FFFF 64 Opt XRAM System-level control

XRAM_XMPU0 - 0xFF93_0000 0xFF93_3FFF 16 Opt XRAM Memory Protection Unit 0

XRAM_XMPU1 - 0xFF93_4000 0xFF93_7FFF 16 Opt XRAM Memory Protection Unit 1

XRAM_XMPU2 - 0xFF93_8000 0xFF93_BFFF 16 Opt XRAM Memory Protection Unit 2

XRAM_XMPU3 - 0xFF93_C000 0xFF93_FFFF 16 Opt XRAM Memory Protection Unit 3

XRAM_mem mem 0xFE80_0000 0xFEBF_FFFF 4 MB Opt On-chip Accelerator RAM, 4 MB

Section IV: Address Maps and Programming Interfaces
Chapter 18: Address Maps

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=184

Chapter 19

Programming Interfaces
There are several types of programming interfaces:

• APB, AXI Programming Interface with single 32-bit read/write access

• NPI Programming Interface with burst 32-bit read/write access

• PL CFI Programming Interface in the configuration frame unit (CFU) with its 128-bit read/
write with single port and memory-mapped block access

Programming Interfaces for Memory-mapped Registers

The APB, AXI registers are used by the PMC, PS, and CPM subsystems. The NPI interface is used
for the NoC interconnect, DDR memory controller, and other peripherals attached to the NoC
interconnect. Many of the NPI registers are configured by the Vivado® tools and are not user
accessible.

The programming interfaces are protected by the Xilinx protection units:

• PMC APB programming interface (PMC_XPPU)

• NPI programming interface (PMC_XPPU_NPI)

• LPD APB, AXI programming interface (LPD_XPPU)

• FPD AXI programming interface (FPD_XMPU)

Configuration Frame Interface

The configuration frame interface (CFI) receives programming instructions from the configuration
frame unit (CFU) to program several integrated blocks and I/Os. The CFU receives programming
instructions from the PLM processing the .cfi files.

Programming Interface Types
There programming interface type used for each block are listed in the following table.

Section IV: Address Maps and Programming Interfaces
Chapter 19: Programming Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=185

Table 41: Programming Interface Types

Block Primary Programming
Interface Type

PL-based Interface
Option Notes

All PMC blocks APB -

All LPD and FPD blocks APB -

Interconnect CFI -

CLE CFI -

DSP CFI -

Block RAM, UltraRAM CFI -

MRMAC CFI APB

DRMAC CFI APB

Interlaken CFI APB

SDFEC - AXI4-Lite

HDIO CFI -

HDIO DPLLs CFI APB

Other DPLLs NPI -

CPM-PCIe CFI APB

NoC NPI - NoC channel configuration

GT NPI APB

DDRMC NPI - DDR memory controller

HBM NPI -

XPHY NPI APB

XPIO NPI -

XPLL NPI -

MMCM, BUFG NPI APB

Miscellaneous clocks NPI - BUFGS, PLL, PHY, GT, VNOC,
CORE

XPipe NPI -

DAC, ADC NPI APB

AI Engine code, data NoC -

AI Engine configuration NPI -

APB, AXI Programming Interface
The PMC, PS, and CPM subsystems include an interconnect switch to enable software to address
the APB4 programming interfaces to access control and status registers. The APB interface also
includes the programming interface error signal output, PSLVERR, to the APB interconnect, and a
system interrupt output, IRQ.

Section IV: Address Maps and Programming Interfaces
Chapter 19: Programming Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=186

The memory-mapped registers are accessed using 32-bit words as described in Programming
Interfaces.

The programming registers for the blocks in the PMC, PS, and CPM are accessed using 32-bit
R/W transactions to APB programming interface ports on each unit. The AXI interconnect of
each subsystem has an APB switch that connects to the APB programming interface of the
functional units. Interrupts are signaled directly to the system interrupt controllers in the FPD,
LPD, PMC, and to the PL fabric.

Address Maps

The APB, AXI interfaces are divided into several address maps for the FPD, LPD, and PMC.

Protection Units

The accessibility of the APB programming interfaces depends on the configuration of the XPPU
protection units that are protecting them. See Xilinx Peripheral Protection Unit (XPPU).

Secure Register Modules

Some register modules always require a secure transaction.

• PMC_IOP_SLCR_SECURE

• LPD_SLCR_SECURE

• LPD_IOP_SLCR_SECURE

• SCNTR_SECURE

• FPD_SLCR_SECURE

• FPD_SMMU_SECURE

• CPM4_SLCR_SECURE

Memory-mapped Register Access Types

The memory-mapped (MM) register can be read, write, or have another access type as shown in
the following table.

Table 42: Memory-mapped Register Access Types

Access Type Description
R Read-only

W Write-only

RW Read and write

WTC or W1C Write 1 to clear (readable unless noted)

Section IV: Address Maps and Programming Interfaces
Chapter 19: Programming Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=187

NPI Programming Interface
The NoC structure includes a register programming interface (NPI) to configure the NoC
components, AI Engine, DDR memory controller, and integrated hardware peripherals in the PL.
The NPI also transports interrupts from the subsystem unit back to the NPI controller where they
are signaled as system interrupts.

The host NPI controller is accessible on the PMC AXI main switch. Accesses to the NPI host and
the programming interfaces attached to it are accessed through the NPI_XPPU protection unit.
The NPI bus structure is in the SoC power domain, same as the NoC, but it functions completely
independently of the NoC interconnect. The NPI supports burst accesses to reduce register
programming time.

Features

The NPI features include:

• Read/write pathway to the programming control and status registers (PCSRs)

• Burst read/write transactions

• Ordered reads and writes

• Early write-response with interrupt error signaling is supported by the PLM firmware in the
PMC. The PLM performs writes using EWR at times when there are no other transactions
occurring.

Errors and Interrupts

If a subsystem unit detects an access decode error, or generates a system interrupt, it is signaled
back to the NPI host controller. The system interrupts (IRQs #178 to #189) are routed to several
destinations as listed in the System Interrupt Controllers section.

Access

The NPI controller is attached to the PMC main switch and located at base address 0F. Accesses
to the NPI host controller are monitored by the PMC_XPPU_NPI protection unit.

CFI Programming Interface
The PL adaptable engines, fabric, clocks, and integrated hardware is programmed using
configuration frames (CFRAME). The configuration frames are written to the configuration frame
unit (CFU). The CFU receives data files and generates configuration packets out on to the
configuration frame interface (CFI) to program the device.

Section IV: Address Maps and Programming Interfaces
Chapter 19: Programming Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=188

The PL building blocks are introduced in Programmable Logic with references to related
documents.

Section IV: Address Maps and Programming Interfaces
Chapter 19: Programming Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=189

Section V

Signals, Interfaces, Pins, and
Controls

This section includes these chapters:

• Power and PMC Dedicated Pins

• Multiplexed I/O Signals and Pins

• Boundary Interface Signals

Packaging and Pinouts Architecture Manual

A description of the device packages and device pinouts are described in the Versal ACAP
Packaging and Pinouts Architecture Manual (AM013).

Section V: Signals, Interfaces, Pins, and Controls

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 190Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=190

Chapter 20

Power and PMC Dedicated Pins
This chapter includes:

• PMC Dedicated Pins for system bring-up, control, and monitoring

• Power Pins for the device

Power Pins
The following table lists the Versal™ ACAP power supply pins.

The power domain inter-dependencies are explained in the Power chapter and include how these
power pins connect to the power domains as illustrated in the Power Diagram.

The power specifications are provide in the data sheets listed in the Versal ACAP electrical data
sheets.

Table 43: Power Pins

Pin Name Power Supply Description
Platform Management Controller

VCC_BATT Battery backed power domain

VCC_FUSE eFUSE programming

VCC_PMC PMC power domain

VCCAUX_PMC Auxiliary for the PMC

VCCAUX_SMON Analog for the ADC and other analog circuits in the system monitor

VCCO_500 PMC MIO bank 0 (bank 500) with dedicated analog signals DIO_A

VCCO_501 PMC MIO bank 1 (bank 501)

VCCO_503 PMC dedicated I/O (DIO) bank (bank 503)

Processing System

VCC_PSFP PS full-power domain (FPD)

VCC_PSLP PS low-power domain (LPD)

VCCO_502 LPD MIO bank PS (bank 502)

Programmable Logic

VCC_RAM Block RAM, UltraRAM, and PL clocking network

VCC_SOC NoC, NPI, and DDRMC SoC power domain (SPD)

Section V: Signals, Interfaces, Pins, and Controls
Chapter 20: Power and PMC Dedicated Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=191

Table 43: Power Pins (cont'd)

Pin Name Power Supply Description
VCCAUX Auxiliary circuits

VCCINT Internal logic (programmable logic, AI Engine, and CPM4)

I/O Connectivity

VCC_IO XPIO banks

VCCO_[bank number] PL HDIO buffer output drivers (per bank)

GTx_AVCC Analog transceiver internal circuits (GTY, GTYP, and GTM transceivers)

GTx_AVCCAUX Auxiliary analog transceivers

GTx_AVTT Analog transmit driver

GTx_AVTTRCAL Analog resistor calibration

PMC Dedicated Pins
There are two sets of PMC dedicated pins:

• 15 dedicated digital pins, DIO

• 4 dedicated analog pins, DIO_A

The DIO pins are on the bank_503 package bank. These pins provide functions such as boot
mode selection, external reference clock input, power-on reset input, JTAG interface, status
signals, error signals, and crystal oscillator pins for the real-time clock (RTC).

The DIO_A pins are on the bank_500 bank along with the digital PMC MIO bank 0 pins. The
analog pins are for the system monitor voltage reference and the anode/cathode connections to
the on-chip thermal diode. The analog reference pins use the VCCO and ground for ESD
protection only.

DIO Pins on Bank 503

The following table lists these dedicated digital I/O pins.

Table 44: PMC Dedicated Digital Pins, DIO

Pin Name Direction Description

DONE Output

The DONE pin is an output-only, open-drain signal with a weak internal pull-up. An
external pull-up is recommended. DONE is controlled by the DONE register. After
POR, the DONE signal is Low. When the PLM successfully completes the boot
sequence, the software sets the [DONE] bit High, which causes the output buffer
to float and be pulled High externally.

ERROR_OUT Output
The ERROR_OUT pin is an output-only, open-drain signal with a weak internal pull-
up. An external pull-up is recommended. When an error occurs in the device, the
ERROR_OUT signal is put in a High-Z state and pulled High. The specific errors that
cause this pin to assert can be determined and programmed by software.

Section V: Signals, Interfaces, Pins, and Controls
Chapter 20: Power and PMC Dedicated Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 192Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___done.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=192

Table 44: PMC Dedicated Digital Pins, DIO (cont'd)

Pin Name Direction Description

MODE[3:0] Input
The MODE[3:0] pins are used to select the boot mode for the device. The value of
these pins is captured on the rising edge of POR_B. See Boot Modes for available
boot mode details.

POR_B Input
The active-Low POR_B pin is the global power-on reset for the Versal ACAP. POR_B
must remain asserted Low until power is fully applied to at least the VCC_PMC,
VCCAUX_PMC, and VCCO_503. When the reset is released, the PMC begins the
initialization and boot process.

PUDC_B Input

The active-Low PUDC_B (pull-up during configuration) pin is used to select the
behavior of the programmable logic (PL) I/O during configuration. If the PUDC_B
pin is High, the PL I/O are put into 3-state mode. If the PUDC_B is Low, internal
pull-ups at each programmable logic I/O are enabled. The PUDC_B pin does not
affect the PS or PMC I/O during boot and configuration.

REF_CLK Input System reference clock pin. The system reference clock is required for all boot
modes.

RTC_PADI Input RTC crystal input pin.

RTC_PADO Output RTC crystal output pin.

TCK Input JTAG test clock pin.

TDI Input JTAG test data input pin.

TDO Output JTAG test data output pin.

TMS Input JTAG test mode select pin.

DIO_A on Bank 500

The analog pins are used by the system monitor.

Note: The DIO_A pins and the PMC MIO bank 0 pins share the same package voltage bank, VCCO_500.
However, the analog pins only use the VCCO_500 bank for ESD protection.

Table 45: Dedicated Analog Pins, DIO_A

Pin Name Power Connection Description
SYSMON_VREFN Ground voltage reference ADC reference voltage, negative (optional)

SYSMON_VREFP Positive voltage reference ADC reference voltage, positive

SYSMON_VN
Differential voltage

System monitor analog input, negative

SYSMON_VP System monitor analog input, positive

Section V: Signals, Interfaces, Pins, and Controls
Chapter 20: Power and PMC Dedicated Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=193

Chapter 21

Multiplexed I/O Signals and Pins
The multiplexed I/O (MIO) signals include connections from peripherals in the PMC and PS to
the MIO pins and the extended MIO (EMIO) signals to the PL fabric.

Program the MIO routing registers for each peripheral controller I/O interface that is required.
There are three MIO banks (total of 78 signals) that connect I/O peripherals in the PMC and LPD
to the device pins.

If an I/O interface is not routed via an MIO pin, then its interface signal is available on the PL
fabric on the EMIO interface. Some of these situations are described in MIO-EMIO Interface
Routing Options.

MIO-at-a-Glance
MIO Device Pins

There are 78 sets of signals to control the MIO pins.

• 52 signals in the PMC MIO (banks 500 and 501)

• 26 signals in the LPD MIO (bank 502)

Signal Route Control

The PMC MIO device pins include signals associated with functionality in the PMC and LPD
subsystem. The LPD MIO device pins only include signals associated with the LPD subsystem.

Many of the IOP controller and other signals are routed to the EMIO by default if they are not
specifically routed to MIO pins using the following registers.

• PMC MIO_PIN_0 register for PMC MIO pin 0 (PMC includes 52 MIO pins)

• LPD MIO_PIN_0 register for LPD MIO pin 0 (LPD includes 26 MIO pins)

The MIO interfaces for the LPD-based controllers are routed to either the LPD or PMC MIO
banks. The selection is done using the LPD_MIO_Sel register.

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 194Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=194

PL EMIO Signal Route

Some interfaces and signals also go to the PL, and for most interfaces, these are listed in MIO-
EMIO Interface Routing Options section.

MIO Pin Assignments By Banks

The MIO pin assignments are shown in the following tables with links to the chapter sections
that list the I/O interface signals.

Note: The pins that can connect to a primary boot device are shaded in the following tables. See Boot
Modes section for exact pin usages.

• Bank 500 includes eMMC1 boot interface

• Bank 501 includes SD0 and SD1 boot interfaces

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=195

Table 46: PMC MIO (Bank 500)

PMC MIO
Pins: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Controllers in PMC Power Domain

Quad SPI 0 1 2 3 4 5 6 7 8 9 10 11 12

Octal SPI 0 1 2 3 4 5 6 7 8 9 10 11 12

SD_eMMC_0 4 5 6 7 12 2 8 9 10 11 3 1 0

SD_eMMC_1 2 0 1 3 4 5 6 7 8 9 10 11 12

SelectMAP 0 1 2 3 32 33 34 35 4 5 6 7

Tamper Trig 0 0 0 0

PMC_I2C 0 1 0 1 0 1 0 1 0 1 0 1

PMC_GPIO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Controllers in Low Power Domain

LPD_GPIO

GEM0

GEM1

GEM MDIO

GEM TSU
Clock

CAN0 0 1 0 1 0 1 0 1 0 1 0 1

CAN1 1 0 1 0 1 0 1 0 1 0 1 0

LPD_I2C0 0 1 0 1 0 1 0 1 0 1 0 1

LPD_I2C1 0 1 0 1 0 1 0 1 0 1 0 1

SYSMON_I2C 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

PCIe resets 0 1

SPI0 5 4 3 2 1 0 5 4 3 2 1 0

SPI1 5 4 3 2 1 0 5 4 3 2 1 0

Trace Port 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TTC0 0 1 0 1 0 1

TTC1 0 1 0 1 0 1

TTC2 0 1 0 1 0 1

TTC3 0 1 0 1 0 1

UART0 0 1 2 3 0 1 2 3 0 1 2 3

UART1 1 0 3 2 1 0 3 2 1 0 3 2

USB 2.0 12 4 5 6 7 0 8 9 10 11 1 2 3

LPD SWDT 0 1 2 3 4 5 0 1 2 3 4 5

FPD SWDT 0 1 2 3 4 5 0 1 2 2 4 5

Note: PMC MIO pin 21 is correctly shown with route to the FPD_SWDT_RST_PEND output (index #2).

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=196

Table 47: PMC MIO (Bank 501)

PMC MIO
Pins: 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Controllers in PMC Power Domain

Quad SPI

Octal SPI

SD_eMMC_0 0 2 1 3 4 5 6 7 8 9 10 11 12

SD_eMMC_1 2 11 1 3 4 5 6 7 8 9 10 0 12

SelectMAP 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Tamper Trig 0 0 0 0

PMC_I2C 0 1 0 1 0 1 0 1 0 1 0 1 0 1

PMC_GPIO 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Controllers in Low Power Domain

LPD_GPIO

GEM0 0 1 2 3 4 5 6 7 8 9 10 11

GEM1 0 1 2 3 4 5 6 7 8 9 10 11

GEM MDIO 0 1

GEM TSU
Clock

 0 0

CAN0 0 1 0 1 0 1 0 1 0 1 0 1

CAN1 1 0 1 0 1 0 1 0 1 0 1 0

LPD_I2C0 0 1 0 1 0 1 0 1 0 1 0 1

LPD_I2C1 0 1 0 1 0 1 0 1 0 1 0 1

SYSMON_I2C 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

PCIe resets 0 1

SPI0 5 4 3 2 1 0 5 4 3 2 1 0

SPI1 5 4 3 2 1 0 5 4 3 2 1 0

Trace Port 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TTC0 0 1 0 1 0 1

TTC1 0 1 0 1 0 1

TTC2 0 1 0 1 0 1

TTC3 0 1 0 1 0 1

UART0 0 1 2 3 0 1 2 3 0 1 2 3

UART1 1 0 3 2 1 0 3 2 1 0 3 2

USB 2.0

LPD SWDT 0 1 2 3 4 5 0 1 2 3 4 5

FPD SWDT 0 1 2 3 4 5 0 1 2 3 4 5

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=197

Table 48: LPD MIO (Bank 502)

LPD MIO
Pins: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Controllers in PMC Power Domain

Quad SPI

Octal SPI

SD_eMMC_0

SD_eMMC_1

SelectMAP

Tamper Trig

PMC_I2C

PMC_GPIO

Controllers in Low Power Domain

LPD_GPIO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

GEM0 0 1 2 3 4 5 6 7 8 9 10 11

GEM1 0 1 2 3 4 5 6 7 8 9 10 11

GEM MDIO 0 1

GEM TSU
Clock

 0 0

CAN0 0 1 0 1 0 1 0 1 0 1 0 1

CAN1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

LPD_I2C0 0 1 0 1 0 1 0 1 0 1 0 1

LPD_I2C1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SYSMON_I2C 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

PCIe resets 0 1

SPI0 5 4 3 2 1 0 5 4 3 2 1 0

SPI1 5 4 3 2 1 0 5 4 3 2 1 0

Trace Port 1 2 3 4 0 5 6 7 8 9 10 11 12 13 14 15 16 17

TTC0 0 1 0 1 0 1

TTC1 0 1 0 1 0 1

TTC2 0 1 0 1 0 1

TTC3 0 1 0 1 0 1

UART0 0 1 2 3 0 1 2 3 0 1 2 3

UART1 1 0 3 2 1 0 3 2 1 0 3 2

USB 2.0

LPD SWDT 0 1 2 3 4 5 0 1 2 3 4 5

FPD SWDT 0 1 2 3 4 5 0 1 2 3 4 5

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=198

MIO Routing Considerations
Note: There are several important MIO pin assignment considerations. The MIO-at-a-Glance table and the
I/O pin assignment considerations are helpful for pin planning. Each I/O peripheral chapter includes
individual MIO signal tables for each controller/unit that uses the MIO pins. The MIO-at-a-Glance table
includes links to these individual MIO signal tables.

I/O Interface Group

I/O interfaces include bus protocol signals with timing specifications and signals without timing
requirements. The signals with timing requirements must be routed to the device pins as a group.
The MIO pin groupings are shown in the individual MIO tables in the I/O peripheral chapters.
The non-timing related signals can be split up and routed individually through an MIO or EMIO.

The pin groupings are shown in the columns of the individual MIO signal tables in various
chapters. Select one table column of pin assignments for the timing-sensitive signals, and do not
mix and match column entries.

For I/O signals without a timing specification (e.g., write protect, card detect, etc.), their own
individual pinout routing can be used.

Peripheral Interface Frequencies

The clocking frequency for an interface usually depends on the device speed grade and whether
the interface is routed through the MIO or EMIO. Nominal interface frequencies are usually
included in the associated chapter with some restrictions for EMIO routing shown in the MIO-
EMIO Interface Routing Options table. The I/O timing specifications are provided in the Versal
ACAP data sheets.

Boot Device Selection

The boot device options shaded in the MIO-at-a-Glance table and are listed in the Boot Modes
chapter.

MIO-EMIO Interface Routing Options
The I/O interfaces for the IOP controllers and other units are routed to the PMC and LPD MIO
multiplexers. Some signals can be routed to the EMIO interface to the PL. Some IOP interfaces
and signals are only available on the MIO (e.g., quad SPI). Other I/O signals are only available on
the EMIO interface (e.g., LPD DMA handshake control).

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=199

The routing is configured by the registers in the PMC_IOP_SLCR and LPD_IOP_SLCR register
sets. The interfaces and signals that are routed through the MIO-EMIO are listed in the following
table with their I/O interface routing options.

Table 49: MIO-EMIO Interface Routing Options

Interface or Signal Controller
Location

Access
Notes

PMC MIO LPD MIO EMIO

CAN_FD0
CAN_FD1 LPD Yes Yes Yes

GEM0
GEM1 LPD

Yes Yes - RGMII

- - Yes GMII/MII, TSU, and external FIFO

Yes Yes Yes MDIO

LPD DMA LPD - - Yes Flow control

PMC_GPIO PMC
Yes - - PMC GPIO Banks 0, 1 (no bank 2)

- - Yes PMC GPIO Banks 3, 4

LPD_GPIO LPD
- Yes - LPD GPIO Bank 0 (no banks 1, 2)

- - Yes LPD GPIO Bank 3

LPD_I2C0
LPD_I2C1 LPD Yes Yes Yes

PMC_I2C PMC Yes - Yes

Octal SPI PMC Yes -

SD/eMMC0
SD/eMMC1 PMC Yes - Yes The clock frequency for the EMIO

interface is <= 25 MHz

SelectMAP PMC Yes - -

SPI0
SPI1 LPD Yes Yes Yes

Quad SPI PMC Yes - -

CoreSight™ Trace Out FPD 16-bit 16-bit 32-bit

TTC0
TTC1
TTC2
TTC3

LPD Yes Yes Yes Clock in and wave out

UART0
UART1 LPD Yes Yes Yes MIO only includes RX, TX, CTS, and RTS

USB_2.0 LPD Yes - - ULPI

LPD_SWDT LPD Yes Yes Yes (SWDT0)

FPD_SWDT FPD ~ ~ ~ (SWDT1)

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 200Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_iop_slcr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___lpd_iop_slcr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=200

MIO Pin Buffer Controls
Each MIO pin buffer has several register controls:

• Internal pull-up and pull-down

• Schmitt trigger input enable

• Output enable

• Output drive strength

The characteristics are individually controlled.

• PMC_IOP_SLCR register module for the PMC MIO pins, PMC MIO bank 0 and 1

○ PMC MIO pins 0 to 25, PMC MIO bank 0

○ PMC MIO pins 26 to 51, PMC MIO bank 1

• LPD_IOP_SLCR register module for the LPD MIO pins

○ LPD MIO pins 0 to 25, LPD MIO bank 2

The control registers are listed in these sections:

• Input Buffer Control Registers

• Output Buffer Control Registers

Input Buffer Control Registers
The buffer input control registers include:

• Internal pull-up enable

• Internal pull-down enable

• Schmitt trigger enable

There is also a voltage mode status bit for each MIO bank. This does not affect the functionality
of the I/O buffer.

Internal Pull-up and Pull-down Enables

Each I/O buffer has a weak pull-up and pull-down option. If both the pull-up and pull-down bits
are set = 1, the I/O buffer weakly holds the output to its last driven state.

Schmitt Trigger Input Enable

The I/O buffer includes a Schmitt trigger hysteresis option.

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 201Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_iop_slcr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___lpd_iop_slcr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=201

Voltage Mode Status

The nominal I/O voltage is detected by analog circuitry and reported in the VMode registers; this
are read-only registers.

Table 50: MIO Input Buffer Control Registers

Feature
PMC_IOP_SLCR Registers LPD_IOP_SLCR

Registers
DescriptionPMC MIO Bank 0 PMC MIO Bank 1 PS LPD MIO Bank

Pins 0 to 25 Pins 26 to 51 Pins 0 to 25
Weak pull-up MIO_Bank0_PU_En MIO_Bank1_PU_En MIO_Bank2_PU_En

0: Disable
1: EnableWeak pull-down MIO_Bank0_PD_En MIO_Bank1_PD_En MIO_Bank2_PD_En

Schmitt trigger MIO_Bank0_Schmitt_En MIO_Bank1_Schmitt_En MIO_Bank2_Schmitt_En

Voltage mode MIO_Bank0_VMode MIO_Bank1_VMode MIO_Bank2_VMode
Read-only:
0: 2.5/3.3V
1: 1.8V

Output Buffer Control Registers
The buffer output control include output enable and drive strength.

Output Enable

The output enable for each multiplexed I/O buffer is normally controlled by the peripheral
controller. There are tristate override registers that can be used to disable an entire bank of
signals, if needed.

When the tristate override control bit equals 1, the output on the I/O buffer is disabled and the
pin will float according to the weak pull-up or pull-down settings.

Output Drive Strength

The output drive strength is controlled by two bits per output using a bit from a drive 0 register
and a bit from a drive 1 register to select 2, 4, 8, and 12 mA drive strength for each individual
MIO pin.

MIO Output Buffer Control Registers

The MIO output controls are summarized in the following table.

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 202Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_pu_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_pu_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_pu_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_pd_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_pd_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_pd_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_schmitt_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_schmitt_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_schmitt_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_vmode.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_vmode.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_vmode.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=202

Table 51: MIO Output Buffer Control Registers

Feature
PMC_IOP_SLCR Registers LPD_IOP_SLCR

Registers
DescriptionPMC MIO Bank 0 PMC MIO Bank 1 PS LPD MIO Bank 2

Pins 0 to 25 Pins 26 to 51 Pins 0 to 25

Drive strength MIO_Bank0_Drv0_Sel
MIO_Bank0_Drv1_Sel

MIO_Bank1_Drv0_Sel
MIO_Bank1_Drv1_Sel

MIO_Bank2_Drv0_Sel
MIO_Bank2_Drv1_Sel

drv1 | drv0:
00: 2 mA
01: 4 mA
10: 8 mA
11: 12 mA

Slew MIO_Bank0_Slew_Sel MIO_Bank1_Slew_Sel MIO_Bank2_Slew_Sel 0: Slow-slew
1: Fast-slew

Tristate override MIO_Bank0_Tristate MIO_Bank1_Tristate MIO_Bank2_Tristate
0: Output enable is
controlled by the
peripheral
1: Output disabled

MIO Pin Routing
The peripheral I/O signal routing section includes these topics:

• MIO Routing Diagram

• MIO Routing Control Registers

• MIO Routing Functionality Details

A programming example is shown in the MIO Pin Programming section.

MIO Routing Diagram
There is often high flexibility as to where to route the I/O signals for a peripheral controller. In a
few cases, the IOP interfaces and signals are only available on the MIO pins (e.g., quad SPI). In
other cases, I/O signals are only available on the EMIO interface (e.g., LPD DMA handshake
control).

The PMC peripheral interface signals can only be routed to a PMC MIO pin, or the EMIO port
signals. For LPD peripheral interface signals, the first MIO pin routing decision is to select
between the PMC and the LPD MIO multiplexers. The selection is done using the LPD_MIO_Sel
register.

The following figure provides a general overview of the routing architecture.

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 203Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_drv0_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_drv1_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_drv0_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_drv1_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_drv0_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_drv1_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_slew_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_slew_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_slew_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_tristate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_tristate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_tristate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=203

Figure 34: MIO Routing Diagram

PMC MIO Bank 0
Pins 0 to 25

PMC MIO Bank 1
Pins 26 to 51

IOP

IOP

PMC
Peripheral
Interfaces

LPD
Peripheral
Interfaces

EMIO Signals
(Input, Output, OEN)

USB

LPD

Misc

Note: When a peripheral interface pin is not routed
to an MIO pin, the signal is available in the PL.

MIO pin routing registers, e.g., PMC_IOP_SLCR.MIO_PIN_8.

PMC
PL
LPD

Power Domains

The MIO pins can also be allocated to the
SYSMON ADC unit to measure pin
voltage.

LPD MIO Bank
Pins 0 to 25

PS9.v file

PL
ADC

X21697-032921

MIO Routing Control Registers
There are several routing control mechanisms for software.

• MIO multiplexer control registers in PMC and LPD

• LPD peripheral I/O can route to the LPD or to the PMC MIOs

• Miscellaneous MIO multiplexing control registers

• PMC SYSMON ADC channel input for voltage measurements

MIO Multiplexer Control Registers

The each multiplexer pin includes a routing control register:

• PMC_IOP_SLCR register module includes 52 registers: MIO_PIN_0 to MIO_PIN_51

• LPD_IOP_SLCR register module includes 26 registers: MIO_PIN_0 to MIO_PIN_25

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 204Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_iop_slcr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_51.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___lpd_iop_slcr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_25.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=204

LPD Peripheral I/O Routing to PMC

The LPD peripheral I/O signal can often be routed to either the PMC or LPD MIO multiplexers
using the LPD_IOP_SLCR LPD_MIO_Sel register. Routing options are included for the I/O signals
for SWDTs, I2C, CANFD, UART, TTC, SPI, and GEM MDIO.

Miscellaneous MIO Multiplexing Controls

There are several special-case I/O signal routing controls.

• SWDT reference clock select (MIO, EMIO, or APB interface); see System-Level Registers

• TTC reference clock source select; see TTC_Clk_Sel

• PSM wake-up input on MIO[0:5]

Loopback Functionality

The LPD MIO multiplexer includes the MIO_Bank2_Loopback register for some I/O peripherals.

• SPI controllers

• UART controllers

• CAN FD controllers

• I2C controllers

PMC SYSMON ADC Channel Input

The PMC system monitor has analog inputs that can be connected to the PMC or LPD MIO pins.

• PMC_IOP_SLCR MIO_Bank0_ADC_En register (PMC MIO Bank 0)

• PMC_IOP_SLCR MIO_Bank1_ADC_En register (PMC MIO Bank 1)

• LPD_IOP_SLCR MIO_Bank2_ADC_En register (PMC MIO Bank 1)

The system monitor functionality is described in the Versal ACAP System Monitor Architecture
Manual (AM006).

The system monitor registers are included in the PMC_SYSMON_CSR register module.

MIO Routing Functionality Details
The PMC and LPD MIOs have similar functionality. There are 52 routing channels in the PMC
and 26 channels in the LPD. The control registers for the input and output multiplexers are in
two separate register sets.

• PMC_IOP_SLCR.MIO_PIN{0:51}

• LPD_IOP_SLCR.MIO_PIN{0:25}

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 205Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___ttc_clk_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_loopback.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank0_adc_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_bank1_adc_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_adc_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_sysmon_csr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=205

If an I/O signal from a peripheral is not selected by the MIO_PIN routing register, then it usually
is available on the EMIO interface to the PL.

The multiplexing for outputs include several cascading levels. The level 3 multiplexing is used for
low-speed signals. The level 0 multiplexing is used for high-speed signals and many of the clocks.

Note: The first routing decision for the LPD I/O signals is between the LPD and PMC multiplexers. This
functionality is not shown in the following figure.

Figure 35: MIO Channel Diagram

Peripheral

(Output and
Enable)

Level 3 MUX

Level 2 MUX

0
1
2
3
4
5
6
7

Peripheral

0
1
2
3

Level 1 MUX Peripheral

Peripheral
(Input)

0

1

Peripheral
0

1
Level 0 MUX

MIO Pin Buffer

OEN

Active-High
Output Enable

[L3_SEL]

Output

Input

[L2_SEL]

MIO Bank Tristate register:
0: Let controller decide
1: Output Disable Override

PU

PD

Drive and
Slew

Low: Tristate Override
High: Drive Output

Output Enable

ADC

X23549-051021

MIO Pin Programming
Route Signal Through MIO

Routing a signal through an MIO can be a two-step process.

• Configure the MIO pin (required)

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=206

• Select between the PMC and LPD MIOs (not always required)

Configure I/O Buffer for Input

The I/O buffer attributes are listed in Output Buffer Control Registers.

The steps to configure the input for LPD MIO pin 18 include:

1. Select the MIO (PMC or LPD) using LPD_MIO_Sel (0: PMC MIO).

2. Route the signal through the MIO using the MIO_PIN_18 register.

3. Disable the output driver. Write a 1 to the MIO_Bank2_Tristate [PIN_18_TRI] bit.

4. Select the CMOS input (not Schmitt). Write 0 to the BANK_RX_SCHMITT [18] bit.

5. Enable the weak internal pull-up resister. Write 1 to the BANK_PU [18] bit.

6. Set the output drive to 2 mA. Write 0 to the BANK_SEL_DRV0 [18] and BANK_SEL_DRV1
[18] bits.

7. Select a slow slew rate. Write 0 to BANK_SEL_SLEW [18].

PCIe Reset on MIO
The following table includes the PCIe reset signals routed to the MIO pins. This is a software-
defined input signal using a GPIO channel in the PMC GPIO controller.

Table 52: PCIe Controller Reset Input Signals

MIO

Signal Name I/O
PMC MUX Pin

options LPD MUX Pin MIO-at-a-Glance
Table

A B
PCIe_RESET1_b Input 24 38 18 0

PCIe_RESET2_b Input 25 39 19 1

Section V: Signals, Interfaces, Pins, and Controls
Chapter 21: Multiplexed I/O Signals and Pins

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 207Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_18.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_tristate.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=207

Chapter 22

Boundary Interface Signals
The port interface signals traverse these power domain boundaries.

• PS-PL boundary

• PMC-PL boundary

PS-PL Boundary
The PS-PL boundary has many interfaces and signals that cross it, including:

• AXI PS-PL interfaces

• EMIO signals from PMC and LPD MIO multiplexers for I/O peripherals, flash, and more

• System interrupt and error signals

• Clock and reset signals

• PMC and PS configuration signals

AXI Interfaces
The PS-PL AXI interfaces provide direct connections between the PL and the LPD and FPD
interconnect. These connections are shown in PS Interconnect Diagram and listed in Logical Link
Layer. There are also two AXI4 masters in the PL. One connects to the LPD interconnect and the
other connects to the FPD Cache Coherent Interconnect (CCI).

PS-PL Signals
The PS-PL boundary includes the following signals:

• EMIO from LPD to PS power domains

Section V: Signals, Interfaces, Pins, and Controls
Chapter 22: Boundary Interface Signals

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=208

PMC-PL Boundary
The PMC-PL boundary includes the following signals:

• System interrupts

• System errors

• Extended MIO (EMIO)

Section V: Signals, Interfaces, Pins, and Controls
Chapter 22: Boundary Interface Signals

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=209

Section VI

Engines
This section includes the following chapters. Many engines are described in other documents as
shown in the overview.

• Overview of all engines in the device; all power domains

• Real-time Processing Unit RPU in Low power domain (LPD)

• Application Processing Unit APU in Full power domain (FPD)

• PS DMA Controller in Low power domain

Section VI: Engines

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=210

Chapter 23

Overview
The Versal™ ACAP functionality includes scalar, intelligent, and adaptable engines. These are
groups of building blocks for the system platform.

The scalar engines include RPU and APU. The DMA engines are also included. The intelligent
engines include the AI Engine and the DSP Engines in the PL. The PL has the adaptable logic
including the configurable logic blocks (CLB) and block and UltraRAMs.

Scalar Engines
The scalar engines include:

• Real-time processing unit (RPU)

• Application processing unit (APU)

Real-time Processing Unit

The RPU MPCore processor is integrated into the LPD subsystem of the PS as shown in the
Block Diagram. The implementation and functionality of the Cortex-R5F processor is detailed in
the Real-time Processing Unit chapter with additional information in the Arm documents.

The main features of the RPU:

• Dual Arm® Cortex®-R5F cores

• Lock-step and dual processor modes

• Tightly coupled memories for predictive execution times

Application Processing Unit

The APU MPCore processor is integrated into the FPD subsystem. The implementation and
functionality of the Cortex®-A72 processor is detailed in the Application Processing Unit chapter
with additional information in the Arm documents.

The main features of the APU:

• Dual Arm Cortex-A72 cores

Section VI: Engines
Chapter 23: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=211

• VFPv4 floating point, NEON, Crypto extension

• 48 KB instruction, 32 KB data caches

• GIC-500 interrupt controller

• 1 MB L2 Cache Coherent Interconnect (CCI)

Intelligent Engines
The Intelligent Engines include the AI Engine and the DSP Engine.

AI Engine
The AI Engine is a two-dimensional array of AI Engine tiles that each contain a high-performance
VLIW vector (SIMD) processor, integrated memory, as well as interconnects for streaming,
configuration, and debug. At the bottom of these tiles are the AI Engine array interface tiles that
provide the necessary logic to connect the AI Engine to other resources including the PL, PS, and
the NoC.

The AI Engine is integrated into the Versal™ ACAP AI Core series. For more information, see
Xilinx AI Engine and Their Applications (WP506) and for additional information, see Versal ACAP AI
Engine Architecture Manual (AM009).

DSP Engine
The DSP Engine combines high speed with small size to provide high performance and system
design flexibility. The DSP Engines are integrated into the PL.

Each engine includes a dedicated 27 × 24 bit multiplier and a 58-bit accumulator. The multiplier
can be dynamically bypassed, and two 58-bit inputs can feed a single-instruction multiple-data
(SIMD) arithmetic unit (dual 24-bit or quad 12-bit add/subtract/accumulate), or a logic unit that
can generate any one of ten different logic functions on the two operands.

New functional modes are implemented in the DSP Engine, including:

• 18 x 18 + 58 two's complement MAC with back-to-back DSP Engines

• Single-precision floating-point (binary32) accumulation

• Three-element two's complement vector dot product with accumulate or post-add in INT8
mode

For more information, see the Versal ACAP DSP Engine Architecture Manual (AM004).

Section VI: Engines
Chapter 23: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 212Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=212

Adaptable Engines
The adaptable engines include:

• Configurable logic block (CLB)

• Block RAM memory array

• UltraRAM memory array

Configurable Logic Block

The CLB is briefly described in Configurable Logic Block. For more information, see the Versal
ACAP Configurable Logic Block Architecture Manual (AM005).

Block RAM

The block RAM is briefly described in Block RAM. For more information, see the Versal ACAP
Memory Resources Architecture Manual (AM007).

UltraRAM

The UltraRAM is briefly described in UltraRAM. For more information, see the Versal ACAP
Memory Resources Architecture Manual (AM007).

DMA Units
There are many DMA units in the system:

• PMC secure-stream units

• General purpose PS DMA Controller with 8 descriptor-driven channels

• PL-instantiated DMA units

• CPM memory mapped and streaming DMA

Flash and I/O peripheral DMA units:

• Flash memory interface controllers (OSPI, QSPI, and SD/eMMC)

• I/O peripheral controllers (GEM Ethernet and USB 2.0)

Section VI: Engines
Chapter 23: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 213Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=213

Chapter 24

Real-time Processing Unit
The real-time processing unit (RPU) provides predicable software execution times using Arm®

Cortex®-R5F processors for real-time applications. The RPU is located in the LPD of the PS. Each
processor includes separate L1 instruction and data caches and tightly coupled memories (TCM)
to narrow down the deterministic behavior for real-time data processing applications. System
memory is cacheable, but the TCM memory space is non-cacheable.

The RPU is a dual MPCore that can be configured for dual-processor or lock-step mode. The
dual-processor mode provides higher performance. The lock-step configuration provides a high
level of reliability for functional safety.

The RPU can execute instructions and access data from its TCMs, the OCM memory, the main
DDR memory, and other system memories. When addressing system memory, the transactions
can be routed directly to the NoC for accessing DDR memory, or through the APU Cache
Coherent Interconnect (CCI) in the FPD for hardware coherent transactions with the APU’s L2
cache.

Arm Documentation

This chapter describes general processor features and the implementation included in the
Versal™ device. See the online Arm Cortex-R5F processor documentation for details.

Features
The Cortex-R5F processors include the following features:

• Integer execution unit with the Arm v7-R instruction set

• Single and double precision FPU with VFPv3 instructions

• Arm v7-R architecture memory protection unit (MPU)

• Dynamic branch prediction with a global history buffer and a 4-entry return stack

• 32 KB instruction L1 cache with ECC protection

• 32 KB data L1 cache with ECC protection

• 128 KB of TCM memory with ECC protection for each processor (256 KB total)

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=214

• CoreSight™ debug embedded trace module (ETM)

• Low latency and non-maskable, fast interrupts

• 64-bit master interface for accessing memory and shared peripherals

• 64-bit slave interface for system masters to access the TCMs

Comparison to Previous Generation Xilinx Devices
The RPU in the Versal ACAP is the same as the one in the Zynq® UltraScale+™device.

Cortex-R5F Processor Implementation
The following table describes the Arm Cortex-R5F processor implementation. These are fixed in
hardware.

Note: For more information, see the Arm Cortex-R5F Technical Reference Manual.

Table 53: RPU Implementation Settings

Configuration
Parameter Value Description

INITPPX 1 AXI peripheral interface enabled at reset

SLBTCMSB 0 B0 and B1 TCM interleaving by addr [3]

INITRAMA 0 Enable TCM_A

INITRAMB 1 Enable TCM_B

ENTCM1IF 1 Enable TCM_B1 interface

LOCZRAMA 1 TCM_A initial base address is zero

PPXBASE Global Base address of AXI peripheral interface

PPXSIZE 16 MBs Size of AXI peripheral interface

PPVBASE Global Base address of virtual-AXI peripheral interface

PPVSIZE 8 KBs Size of virtual-AXI peripheral interface

System Perspective
Block Diagram
The RPU block diagram is shown in the following figure.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=215

Figure 36: RPU Block Diagram

TCM A
64 KB

RPU GIC

Cortex-R5F
32 KB I/D Cache

64-bit

TCM B0
32 KB64-bit

64-bit

LLPP

CPU

64-bit

64-bit

64-bit

TCM A
64 KB

TCM B0
32 KB

Cortex-R5F
32 KB I/D Cache

CPU

TCM B1
32 KB

TCM B1
32 KB

64-bit64-bit

32-bit

64-bit

32-bit

OCM AXI Switch

FPU FPU

LLPP

X22712-050720

AXI System Interfaces
There are several AXI interfaces:

• Two 64-bit AXI masters: connect to the OCM switch to access system slaves

• 32-bit AXI slave: provides access to the RPU GIC interrupt controller

• 64-bit AXI slave: provides access to the CPU memories (ICache, DCache, and TCMs)

Access to the caches by other system masters is only available during debug when the CPUs are
put into their idle state. The AXI master interfaces enable the CPU memory system to have
access to peripherals and system memories including OCM and DDR.

Operating Modes
The RPU MPCore can operate in several modes.

• Dual-processor performance split mode

○ Each RPU core operates independently

○ Each RPU core has its own caches and TCMs

• Safety lock-step mode

○ Both RPU cores execute the same code in lock-step, clock-for-clock

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=216

○ The outputs from the lead RPU, core 0, are checked by core 1

○ Discrepancies are flagged as a system error

• Single CPU mode

○ If desired, RPU core 0 can be held in reset while core 1 runs normally with access to all 256
MBs of the TCM

The processor does not support dynamic configuration. Switching between the lock-step and
dual-processor configurations is only permitted immediately after a processor reset.

Lock-Step Architecture
The RPU lock-step architecture includes comparison and synchronization logic to continually
compare the data coming out of the CPUs. When the Cortex-R5F processors are configured to
operate in the lock-step configuration, the CPU0 interfaces with the system interconnect and the
local memories (including the TCMs and caches).

When the Cortex-R5F processors are in the lock-step mode, there should be code in the reset
handler to ensure that the distributor within the generic interrupt controller (GIC) dispatches
interrupts only to CPU0.

IMPORTANT! During the lock-step operation, all of the TCMs become available for a total of 256 KB. The
configuration of the TCMs is controlled by the RPU_DUAL_CSR GLOBAL_CNTL [TCM_COMB] register bit.

The RPU processor lock-step architecture is shown in the following figure.

Figure 37: RPU Lock-Step Architecture

CPU 1 TCMs

TCM A

TCM B

CPU 0 TCMs

TCM A
Cortex-R5F

CPU 0

Cortex-R5F
CPU 1

CPU 0 Caches

DCache

ICache

RPU GIC

Comparison and Synchronization Logic

TCM B

X23767-050720

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 217Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___global_cntl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=217

Configuration Registers
The RPU_DUAL_CSR register set includes several control and configuration registers for the
RPU. These registers are read/write.

Table 54: RPU Configuration Registers

Register Bit Field and Description Reset Value and Description

GLOBAL_CNTL

[CFGEE, 0]: endian mode during exception handling
[CFGIE, 1]: endian mode for instruction fetch
[DBGNOCLKSTOP, 2]: CPU clk gate in standby
[SLSPLIT, 3]: Lock-step or Dual processor mode
[SLCLAMP, 4]: Output clamping (RPU0 processor)
[TEINIT, 5]: Exception handling state at reset
[TCM_COMB, 6]: TCM configuration
[TCM_WAIT, 7]: Waitstate for TCM access
[TCM_CLK_CNTL, 8]: Gate clocks to TCMs
[GIC_AXPROT, 10]: AxPROT[1] bit to GIC

0: little endian
0: little endian
0: clock can be gated
0: lock-step mode (safety)
1: clamping enabled
0: Arm instructions
1: TCMs combined (256 KB)
0: no waitstates
0: clocks to TCMs not gated
0: secure transactions

RPU0_CONFIG
and
RPU1_CONFIG

[nCPUHALT, 0]: State after reset released
[VINITHI, 2]: Instruction fetch location after reset
[CFGNMFI, 3]: FIQ masking for RPU0

1: processor runs (not halted)
1: executes from OCM
0: enable FIQ masking

Power Modes and States
The RPU MPCore includes several power modes and power island states.

Power Modes

The CPUs include three power management states:

• Run

• Standby

• Shutdown

Each power level provides decreasing levels of power consumption, but increases the entry and
exit requirements.

The following table lists the power management modes.

Table 55: Power Management Modes

Power
Mode CPU Clock Power

State
TCM Memory

Retention Exit to Run Mode Description

Run Active On Yes ~

Standby When idle On Yes Pipeline restart

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 218Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___rpu_dual_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___global_cntl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=218

Table 55: Power Management Modes (cont'd)

Power
Mode CPU Clock Power

State
TCM Memory

Retention Exit to Run Mode Description

Shutdown Inactive Off No
Pipeline restart restores registers and configuration
from memory, invalidates caches, and reinitializes
caches and TCMs

Power Islands

The RPU MPCore includes several power islands as shown in the Power Diagram of the power
chapter.

Note: When only part of the TCM power islands are powered up, there is a restriction on accessing TCMs
that remains on.

Address Maps
There are several memory maps related to the RPU. These include local and global perspectives.

• This chapter includes:

○ CPU Local and Global Memory Map

○ Local Interrupt Registers

○ Memory Map Diagram

CPU Local and Global Memory Map
The local memory maps for the RPU CPUs include:

• Local TCM and cache memory map

• Local interrupt control memory map

The CPUs have direct access to this memory space without a protection unit.

The memory map from the CPU's point of view and a view from system-level masters is shown in
the following table.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=219

Table 56: CPU Local and Global Memory Map

Memory Type Size
(KB)

Dual Processor Mode Lock-Step Mode

RPU0 RPU1
Global Map

RPU0
Global Map

Local Map Local Map
RPU0 TCM_A 64 0x0000_0000 ~ 0xFFE0_0000 0x0000_0000 0xFFE0_0000

RPU0 TCM_B 64 0x0002_0000 ~ 0xFFE2_0000 0x0002_0000 0xFFE2_0000

RPU0 instruction cache 32 I-Cache ~ 0xFFE4_0000 I-Cache 0xFFE4_0000

RPU0 data cache 32 D-Cache ~ 0xFFE5_0000 D-Cache 0xFFE5_0000

RPU1 TCM_A (RPU0 in
lock-step mode) 64 ~ 0x0000_0000 0xFFE9_0000 0x0001_0000 0xFFE1_0000

RPU1 TCM_B (RPU0 in
lock-step mode) 64 ~ 0x0002_0000 0xFFEB_0000 0x0003_0000 0xFFE3_0000

RPU1 instruction cache 32 ~ I-Cache 0xFFEC_0000 ~ ~

RPU1 data cache 32 ~ D-Cache 0xFFED_0000 ~ ~

Local Interrupt Registers
The address location of the RPU interrupt controller registers is shown in the following table.

Table 57: Local Interrupt Control Address Map

Slave Address Block Size (KB) Base Address Register Set
CPU interrupt controller 4

RPU 0 interrupt distributor 4

RPU 1 interrupt distributor 4

Memory Map Diagram
The local memory maps for dual processor and lock-step are shown in the following figure.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=220

Figure 38: RPU CPUs TCM Address Map

LLPP: Private Regs & GIC

0xFFFF_FFFF
Dual Processor

Private Regs & GIC

TCM_B (128 KB)

TCM_A (128 KB)

Lock-step

0xF900_0000

0x8000_0000

TCMs
alias

0x0000_0000

0xFFE0_0000

DDRDRAM DDR DRAM

RPU0 TCM_A
RPU1 TCM_A
RPU0 TCM_B
RPU1 TCM_B

RPU0 TCM_A RPU1 TCM_A

RPU0 TCM_B RPU1 TCM_B

OCM 1 MB OCM 1 MB

RPU0 TCM_A
RPU1 TCM_A
RPU0 TCM_B
RPU1 TCM_B

X23768-050821

Address 0xF900_0000

The RPU accesses its Arm GIC-390 interrupt controller at 0xF900_0000 through a private low-
latency peripheral port (LLPP) accessible only to the RPU. Similarly, only the APU can access its
own GIC using the same address 0xF900_0000. From a global address perspective, this address
space is reserved.

Exception Vectors

The RPU exception vectors can be configured to be HIVEC (0xFFFF_0000) or LOVEC
(0x0000_0000). Because the OCM is mapped at HIVEC, and for the RPU to be able to execute
interrupt handlers directly from TCMs, the TCMs must be mapped starting at address
0x0000_0000 (=LOVEC). Also, to configure the APU with LOVEC in DRAM, the APU cannot
access TCMs at LOVEC. Consequently, TCMs are aliased into a local address map of the RPU for
the Cortex-R5F processor to access them starting at address 0x0000_0000.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=221

Processor Memory Datapaths
AXI Master Access to CPU Memory

The TCMs can be loaded with code and data coefficients by another system master when the
RPU is in its Halt mode. The RPU and TCMs must be powered on and the RPU must be out of
reset.

Datapaths

The datapaths to these memories are shown in the following figure.

Figure 39: CPU Memory Datapaths

AXI Masters

Load/Store Unit AXI Slave Prefetch Unit

RPU
Interconnect

Cortex-R5F

AXI
Peripheral
Interface

AXI Virtual
Peripheral
Interface

AHB
Peripheral
Interface

DCache
Control

ICache
Control

TCM A
Interface

TCM B
Interface

Level 1
Memory

AXI
Peripheral

Port

AHB
Peripheral

Port

AXI Master
Interface

B1 RAM

B0 RAM

A RAM

ICache
RAM

DCache
RAM

Peripherals/Memory Slaves

Level 2 System Memory

Level 2 System Memory

X23766-050720

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=222

Tightly Coupled Memories
The low-latency, tightly coupled memories (TCMs) provide predictable instruction execution and
predictable data load/store timing for the RPU processors. TCM memory address space is not
cached.

Each RPU processor contains two 32 KB memories and one 64 KB memory that are accessed via
the TCM A and B port interfaces, for a total of 128 KB per processor. In lock-step mode, the
processor has access to 256 KB of TCM memory.

The parallel memory architecture of the RPUs allows concurrent accesses of all three banks by
the CPU's load-store unit, instruction prefetch unit, and AXI slave port. The TCM_B includes two
32 KB banks for concurrent, parallel access.

Datapaths are 64-bits wide and are protected by ECC. Each CPU includes three datapaths to:

• 64 KB in TCM_A

• 32 KB in TCM_B0

• 32 KB in TCM_B1

TCMs are accessible after the processor is taken out of reset. The processor must be inactive
(idle) or in the halt state to allow another master to access the TCMs. The processors have direct
connections to their TCMs for low-latency access and there are no protection units.

The datapaths through the RPU are shown in Processor Memory Datapaths.

Usages

The TCMs can be used for any purpose, but are typically used as follows:

• TCM_A for interrupt or exception code for high speed, without cache miss delays

• TCM_B for data in process-intensive applications such as audio or video processing

Power Islands

The PSM controls power islands for each 64 KB TCM bank using register controls. The power
islands are described in Power Islands.

Memory Error Detection and Correction
The processor provides error checking and correction (ECC) data hardware.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=223

The ECC bits are computed on 32-bit data sets; they are computed and then stored in memory
with the data. When the data is accessed, the hardware can detect one and two-bit errors within
the 32-bit data and its ECC bits. The hardware detects all two-bit errors and can correct single-
bit errors, which is sometimes referred to as a single-error correction, double-error detection
(SEC-DED) ECC scheme.

RPU Memory Protection Unit
The RPU memory protection unit (MPU) works with the CPU's L1 memories to control the
accesses to and from the TCMs, caches, and external memory.

For a detailed description of the MPU, see the Cortex-R5F Technical Reference Manual.

The MPU partitions memory into regions and sets individual protection attributes for each
region. When the MPU is disabled, no access permission checks are performed and memory
attributes are assigned according to the default memory map. The MPU divides memory into a
maximum of 16 regions.

The following can be specified for each region using the MPU memory region programming
registers:

• Region base address

• Region size

• Sub-region enables

• Region attributes

• Region access permissions

• Region enable

Interrupts
The RPU includes local and system interrupt controllers.

Interrupt Types

The controller supports the following types of interrupts:

• Shared peripheral interrupts: Shared peripheral interrupts (SPIs) are general-purpose
interrupts generated by various sources in the system and manged by the GIC RPU interrupt
controller. The SPI interrupts are listed in the System Interrupts chapter.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=224

• Software generated interrupts:

• Software generated interrupts (SGIs) are inter-processor interrupts that are generated by
writing to the software generated interrupt register (GICD_SGIR).

• There are 16 SGIs available for each processor, and they have no effect on the hardware.

General Interrupt Controller and Configurations

The general interrupt controller (GIC) is based on the Arm GIC-390 and it is configurable.

• Security state for an interrupt

• Priority level of an interrupt

• Enabling or disabling of an interrupt

• Processors that receive an interrupt

GIC Programming Interface

The GIC distributor receives interrupts and provides the highest priority interrupt to the CPU
interface. An interrupt with a lower priority is forwarded when it becomes the highest priority
pending interrupt.

The GIC CPU interface has a priority mask and only accepts a pending interrupt if it is:

• Higher priority than the programmed interrupt mask, and

• Higher priority than the interrupt the processor is currently servicing

System Interrupts Generated by RPU
The RPU generates the system interrupts listed in the following table. These interrupts are also
listed in IRQ System Interrupts.

Table 58: RPU Generated System Interrupts

Description System Interrupt IRQ # Notes

Performance monitor RPU0_PERF_MON
RPU1_PERF_MON

40
41 RPU-based performance monitor

Miscellaneous processor
errors

RPU0_ERR
RPU1_ERR

43
44

Synchronization between RPU SW and
PL

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=225

GIC Interrupt Controller
There are two interfaces between the RPU MPCore and the RPU GIC.

• The distributor interface is used to assign the interrupts to each of the Cortex®-R5F MPCore
processors.

• The CPU interface with a separate set of 4 KB memory-mapped registers for each CPU
provides protection against unwanted accesses by one CPU to interrupts that are assigned to
the other.

The RPU MPCores processors access the RPU_GIC interrupt controller through their peripheral
interface switch. The low-latency peripheral interfaces are really designed for strongly ordered or
device type accesses, which are restrictive by nature. Memory that is marked as strongly ordered
or device type is typically sensitive to the number of reads or writes performed. Consequently,
instructions that access strongly ordered or device memory are never abandoned when they
have started accessing memory. These instructions always complete either all or none of their
memory accesses. The same is true of all accesses to the low-latency peripheral port, regardless
of the memory type.

Block Diagram
The GIC block diagram is shown in the following figure with SGI and SPI interrupt inputs.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=226

Figure 40: RPU GIC Block Diagram

nIRQ

CP
U

0
Di

st
rib

ut
or

SG
I D

is
tr

ib
ut

or

In
te

rr
up

t C
on

tr
ol

le
r D

is
tr

ib
ut

or
 (I

CD
)

Shared
Peripheral

Interrupts (SPI)

Softwre
Generated

Interrupts (SGI)

Software
Generated

Interrupts (SGI)

nFIQ
nIRQ

nFIQ CPU 0
InterfacenIRQ

nFIQ

CPU 0
CPU 1

IOP PL

nIRQCP
U

1
Di

st
rib

ut
or

nFIQ

nIRQ

nFIQ CPU 1
Interface

nIRQ

nFIQ

X24076-070520

Software Generated Interrupts
Each CPU can interrupt itself, the other CPU, or both CPUs within the MPCore using a software
generated interrupt (SGI). There are 16 software generated interrupts. An SGI is generated by
writing the SGI interrupt number to the enable_sgi_control register and specifying the target
CPUs. This write occurs through the CPU's own private bus. Each CPU has its own set of SGI
registers to generate one or more of the 16 software generated interrupts. The interrupts are
cleared by reading the interrupt acknowledge ICCIAR register or writing to the corresponding
bits of the interrupt clear-pending ICDICPR_SGI register.

All SGIs are edge triggered. The sensitivity types for SGIs are fixed and cannot be changed. The
control register is read-only, because it specifies the sensitivity types of all the 16 SGIs.

Shared Peripheral Interrupts
A group of over 150 system interrupts from various modules can be routed to one or both of the
CPUs or the PL. The interrupt controller manages the prioritization and reception of these
interrupts for the CPUs. The system interrupts are listed in IRQ System Interrupts.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 227Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_gic_pl390___enable_sgi_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_gic_pl390___icciar.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_gic_pl390___icdicpr_sgi.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=227

These system interrupts are routed to the shared peripheral interrupt (SPI) ports on the RPU
general interrupt controller (GIC).

SPI Interrupt Sensitivity
The shared peripheral interrupts (SPI) from the system IRQs can be targeted to either of the
CPUs, but only one CPU handles the interrupt. If an interrupt is targeted to both CPUs and they
respond to the GIC at the same time, the MPCore ensures that only one of the CPUs reads the
active interrupt ID#. The other CPU receives the spurious (ID 1023 or 1022) interrupt or the next
pending interrupt, depending on the timing.

Except for PL-to-PS interrupt signals (IRQ 116 to 127), all interrupt sensitivity types are
hardwired by the requesting sources and cannot be changed. The GIC must be programmed to
accommodate this. The BootROM does not program these registers. Consequently, the SDK
device drivers must program the GIC to accommodate these sensitivity types.

For an interrupt of level sensitivity type, the requesting source must provide a mechanism for the
interrupt handler to clear the interrupt after the interrupt has been acknowledged. This
requirement applies to any IRQ-F2P[n] (from PL) with a high-level sensitivity type.

For an interrupt of rising edge sensitivity, the requesting source must provide a pulse wide that is
large enough for the GIC to catch. This is normally at least two RPU clocks. This requirement
applies to any IRQ-F2P[n] (from PL) with a rising-edge sensitivity type.

The sensitivity control for each interrupt has a 2-bit field that specifies sensitivity type and
handling model.

Interrupt Prioritization
All of the SGI and SPI interrupt requests are assigned a unique ID number. The controller uses
the ID number to arbitrate. The interrupt distributor holds the list of pending interrupts for each
CPU and then selects the highest priority interrupt before issuing it to the CPU interface.
Interrupts of equal priority are resolved by selecting the lowest ID.

The prioritization logic is physically duplicated to enable the simultaneous selection of the
highest priority interrupt for each CPU. The interrupt distributor holds the central list of
interrupts, processors, and activation information, and is responsible for triggering software
interrupts to the CPUs.

SGI distributor registers are banked to provide a separate copy for each CPU. The interrupt
controller ensures that an interrupt targeting more than one CPU can only be handled by one
CPU at a time.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=228

The interrupt distributor transmits the highest pending interrupt to the CPU interface. It then
receives information that the interrupt is acknowledged, and can then change the status of the
corresponding interrupt. Only the CPU that acknowledges the interrupt can respond and process
it.

System Errors Generated by RPU
The RPU generates several type of system errors. The system errors are processed by the system
error accumulator described in System Errors.

The system errors generated by the RPU are listed in the following table.

Table 59: RPU Generated System Errors

Error Description Error Name Error Status Register and Bit Field
Safety configuration lock-step RPU_LS_ERR PSM_ERR1_STATUS [RPU_LS]

Safety-mode common-mode failure RPU_CCF_ERR PSM_ERR1_STATUS [RPU_CCF]

Uncorrectable memory ECC.
Floating point unit (FPU) error.
APB programming interface error.

RPU_SYS_ERR PSM_ERR1_STATUS [RPU]

Test and Debug
Interrupt Injection Mechanism
The RPU implements an interrupt injection function to inject interrupts into the generic interrupt
controller’s shared peripheral interrupts (SPI). The RPU GIC has 160 SPIs. Software can inject an
interrupt on each of the over 150 interrupt lines using this mechanism. The SPIs are divided into
five, 32-bit APB registers. The RPU implements an interrupt register and an interrupt mask
register. The logic in the following figure is replicated on each interrupt going to the SPI of the
RPU’s GIC. If the interrupt mask corresponding to the interrupt is set in the RPU_INTR_MASK
register, the RPU passes the APB register version of the interrupt to the GIC.

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 229Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=229

Figure 41: Interrupt Injection

SPI from System

SPI from APB RPU_INTR_0, 1, 2, 3, 4

SPI to GIC

Interrupt Mask from APB RPU_INTR_MASK
X23765-050720

The following table lists the mapping of the SPI bits.

Table 60: SPI Map to RPU Interrupt and RPU Interrupt Mask Registers

SPI RPU Interrupt Register RPU Interrupt Mask Register
SPI<31:0> RPU_INTR_0<31:0> RPU_INTR_MASK_0<31:0>

SPI<63:32> RPU_INTR_1<31:0> RPU_INTR_MASK_1<31:0>

SPI<95:64> RPU_INTR_2<31:0> RPU_INTR_MASK_2<31:0>

SPI<127:96> RPU_INTR_3<31:0> RPU_INTR_MASK_3<31:0>

SPI<159:128> RPU_INTR_4<31:0> RPU_INTR_MASK_4<31:0>

Events and Performance Monitor
The processor includes logic to detect various events that can occur, for example, a cache miss.
These events provide useful information about the behavior of the processor to use when
debugging or profiling code.

The events are made visible on an output event bus and can be counted using registers in the
performance monitoring unit.

Register Reference
There are several register sets associated with the RPU:

• CPU control and status

• Interrupts

• System-level control

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=230

Processor Control and Status Registers
The following table provides an overview of the dual RPU system control and status registers.
The RPU_DUAL_CSR register module.

Table 61: Dual RPU Control and Status Register Overview

Register Name Address Offset Access
Type Description

GLOBAL_CNTL 0x000 RW Global control

GLOBAL_STATUS 0x004 R Miscellaneous status information

ERROR_CNTL 0x008 RW Error response enable/disable

CCF_VAL 0x054 RW Common cause signal value

CCF_MASK 0x024 RW Common cause signal mask

SAFETY_CHK 0x0F0 RW Safety check register

RPU0_CONFIG
RPU1_CONFIG

0x100
0x200

RW Configuration parameters

RPU0_STATUS
RPU1_STATUS

0x104
0x204

R RPU status

RPU0_PWRDWN
RPU1_PWRDWN

0x108
0x208

RW Power-down request from the CPU

RPU0_ISR, RPU1_ISR 0x114, 0x214 WTC Interrupt status

RPU0_IMR, RPU1_IMR 0x118, 0x218 R Interrupt mask

RPU0_IEN, RPU1_IER 0x11C, 0x21C W Interrupt enable

RPU0_IDR, RPU1_IDR 0x120, 0x220 W Interrupt disable

RPU0_CACHE_BASE
RPU1_CACHE_BASE

0x124
0x224

RW Slave base address

RPU0_AXI_OVERRIDE
RPU1_AXI_OVERRIDE

0x128
0x228

RW AXI master attribute override

Section VI: Engines
Chapter 24: Real-time Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 231Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___rpu_dual_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___global_cntl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___global_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___error_cntl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___ccf_val.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___ccf_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___safety_chk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_pwrdwn.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_pwrdwn.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_ien.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_cache_base.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_cache_base.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu0_axi_override.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=rpu_dual_csr___rpu1_axi_override.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=231

Chapter 25

Application Processing Unit
This chapter contains these main sections:

• Features

• System Perspective

• Memory Space

• Execution Pipelines

• APU Address Model

• Virtualization

• Server Architecture

• Processor Counters

• Interrupts

• GIC Interrupt Controller

• Test and Debug

• Register Reference

The application processing unit (APU) provides general-purpose computing in a standard
programming environment based on powerful and feature-rich Arm® Cortex®-A72 cores with
their A64 instruction set in the v8-A architecture. The APU includes two A72 cores. The generic
interrupt controller (Arm GIC-500) is added to manage system interrupts. Other processors and
bus masters can interact with the APU L2 cache memory with error-correction code (ECC) to
form a tightly coupled heterogeneous system using the Cache Coherent Interconnect (CCI). The
APU is located in the FPD of the PS.

A72 Processor Implementation

The TRM provides an overview of the processor features and implementation notes for the
Versal™ device. An extensive set of documentation is available from Arm. The introduction to
Arm processors and documentation begins at the Arm developer architectures website. The IP
version is listed in IP Versions.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 232Send Feedback

https://developer.arm.com/architectures
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=232

Features
CPU Pipelines

• Single and double precision floating point unit, VFPv4 (see the Arm developer website for
more information)

• NEON single instruction multiple data (SIMD) extension, (see the Arm developer website for
more information)

• Cryptography extension, see Arm TRM document 100097_0003_05

Caches

The architecture supports hardware virtualization. Each Cortex-A72 processor includes a 48-KB
L1 instruction cache with parity protection and a 32 KB L1 data cache with ECC protection.

The processors have a built-in two-stage MMU that supports multi-threading and multi-
operating system applications. Masters in all parts of the system can potentially participate in the
APU L2 cache coherency address space by routing their transactions through the system
memory management unit (SMMU) via its translation buffer units (TBU) that are connected to
the CCI in the FPD. The SMMU maps the virtual addresses of masters to the shared physical
address space in main memory.

Power islands include:

• Each processor core can be enabled and disabled individually using its own power island

• L2 cache power island

The processor also includes the GIC-500 interrupt controller with its GIC v3 architecture.

To support real-time debug and trace, each processor has an embedded trace macrocell (ETM)
that communicates with the Arm CoreSight™ debug system.

Comparison to Previous Generation Xilinx Devices
The APU MPCore in the Versal device uses a dual Cortex-A72 MPCore compared to a quad
Cortex-A53 MPCore in the Zynq® UltraScale+™ MPSoC. The Cortex-A72 is newer and has
significantly more performance than the Cortex-A53, but also requires more power. Key pipeline
features include:

• Three-way instruction dispatch instead of two

• Out-of-order execution

• Faster clocking

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 233Send Feedback

https://developer.arm.com/architectures/instruction-sets/floating-point
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=233

APU MMU

The APU MMU is similar to the unit used in the Cortex-A53 processor from previous Xilinx
devices with some enhancements:

• AArch64 state provides 44 bits of physical address size

• 48-entry L1 instruction TLB

• 32-entry L1 data cache TLB

• 1024-entry L2 cache TLB

GIC Interrupt Control

The APU has a built-in interrupt controller for virtual interrupts. It also has an attached system
interrupt controller based on the Arm GIC-500. The programming model for interrupts is
significantly different than in the Zynq UltraScale+ MPSoC.

Arm Server Base System Architecture

The APU includes features to support the Arm server base system architecture (SBSA). These
include:

• APU Cortex-A72 (supersedes Cortex-A53)

• APU GIC-500 (Arm v3 architecture protocol supersedes v2)

System Perspective
The APU is central to the FPD and works closely with the APU L2 cache coherent interconnect
(CCI) and the system memory management unit (SMMU). The AMBA® interconnect provides
access to the LPD, PL, CPM and NoC.

FPD Block Diagram
The APU block diagram is shown in the following figure.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=234

Figure 42: FPD System Block Diagram

Snoop Control Unit (SCU)

L2 Cache Memory

CCI

APU0
APU1

APU MPCore

ACE 5

PL_ACP_FPD

PL_ACELITE_FPD

FPD_AXI_PL

PMC

OCM

ACE 4

CoreSight
Trace
TS

System Peripheral
Interrupts

Private Peripheral
Interrupts

LPD
Main Switch

CPM-PS
Switches

FPD
Main

Switch

PL_ACE_FPD

GIC Interrupt
Controller

Software Generated
Interrupts

Interrupt Control

Cortex-A72

FPU, NEON, Crypto
48 KB

L1 iCache
32 KB

L1 dCache
Debug,
Timers

TBU
0

TBU
3

TBU
2

XRAM

TBU
5

ACE-lite 3

ACE-lite 0

AXI 1 2 3 4 5

AXI 0

ACE-lite 1 ACE-lite 2

NMU0 NMU1 NSU1NSU2
NoC

NSU3 0 1 2 3
PL_AXI_FPD

Snoop
Snoop

NMU

128-bit
Bus Size

PMC
PL
LPD
FPD
SPD

Power Domains

Transaction
Request

GIC (MSI)

CoreSight
NSU0

FPD Programming Interfaces
for the Register Modules

DPC

SMMU TCU Co
nf

in
ed

 P
at

h

TBU
0-6

SMMU
Translation

Buffers

TBU
4

TBU
1

APU
GIC

PL

PL

PL Address
Translation
(PLAT)

TBU 6

PL

PL

PL

PL

AXI

PL

X21694-061221

APU MPCore Functional Units
Processor Pipelines

There are several pipelines and engines in the APU:

• CPU Pipeline with AArch32 and AArch64 instructions

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=235

• FPU Pipeline with 32 and 64-bit data

• NEON Pipeline with single instruction multiple data (SIMD) dispatch

• Cryptography Engine

L1 Caches

Each processor includes its own local L1 cache connected to the SCU and L2-cache memory.

Cache features include:

• 48 KB instruction cache protected with parity and includes a 48-entry fully associative TLB

• 32 KB data cache protected with ECC and includes a 32-entry fully associative TLB

L2 Cache

The 1 MB, unified L2 cache with ECC is physically addressed and physically tagged.

• 4-way set associative 1024-entry TLB

• PL can be coherent using S_ACE_FPD, S_ACP_FPD, S_AXI_HPC, NSU2, and NSU3 interfaces

• CPM can be coherent using ACE-Lite port via SMMU TBU 3

System Interfaces
The APU MPCore accesses the system through the Cache Coherency Interconnect (CCI). The CCI
also connects other system masters to the APU MPCore for two-way and I/O coherency.

Memory Space
The APU's Cortex-A72 includes an integrated memory management unit (MMU).

In the AArch32 state, the Arm® v8 address translation system resembles the Arm v7 address
translation system with large physical-address extensions (LPAE) and virtualization extensions. In
the AArch64 state, the Arm v8 address translation system resembles an extension to the long
descriptor format address translation system to support the expanded virtual and physical
address spaces. For more information on the address translation formats, see the Arm
Architecture Reference Manual v8 for the Arm v8-A architecture profile. The key differences
between the AArch64 and AArch32 address translation systems are that the AArch64 state
provides the ability to:

• Select the translation granule to either be 4 KB or 64 KB (AArch32 limited to be 4 KB)

• Configure the address space identifier (ASID) size to be either 8-bit or 16-bit (AArch32 limited
to an 8-bit value)

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=236

The maximum physical address size is:

• 44-bit in AArch64 state

• 40-bit in AArch32 state

The APU memory management unit (MMU) controls table-walk hardware that accesses
translation tables in main memory. The MMU works with the L1 and L2 memory system to
translate a virtual address (VA) to a physical address (PA). The MMU provides fine-grained
memory system control through a set of virtual-to-physical address mappings and memory
attributes held in page tables. These are loaded into the translation lookaside buffer (TLB) when a
location is accessed.

Address translations can have one or two stages. Each stage produces output LSBs without a
lookup. Each stage walks through multiple levels of translation as follows:

• 48-entry fully-associative L1 instruction cache TLB

• 32-entry fully-associative L1 data cache TLB for data load and store pipelines

• 4-way set-associative 1024-entry L2 cache TLB in each processor

• Intermediate table walk caches

• TLB entries contain a global indicator or an ASID to permit context switches without TLB
flushes

• TLB entries contain a virtual machine identifier (VMID) to permit virtual machine switches
without TLB flushes

Execution Pipelines
CPU Pipeline
The CPU pipeline includes:

• Variable length, super-scalar pipeline (up to 15 stages) with out-of-order execution

• Arm Arch64 v8A CPU architecture

• Arm Arch32 capable for legacy applications

• Dynamic branch prediction with branch target buffer and global history buffer, a return stack,
and an indirect predictor

FPU Pipeline
The floating point unit pipeline includes:

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=237

• VFPv4 execution in each core

NEON Pipeline
The NEON pipeline includes:

• Advanced SIMD extensions

• Arm v8-A architecture

Cryptography Engine
The cryptography engine builds on the advanced SIMD instruction set. The crypto engine can
use to accelerate the execution of AES, SHA, and SHA2-256 algorithms.

See the Arm Architecture Reference Manual v8 for more information.

APU Address Model
APU Addressing

In the AArch32 state, the Arm® v8 address translation system resembles the Arm v7 address
translation system with large physical-address extensions (LPAE) and virtualization extensions.

In AArch64 state, the Arm v8 address translation system resembles an extension to the long
descriptor format address translation system to support the expanded virtual and physical
address spaces. For more information regarding the address translation formats, see the Arm
Architecture Reference Manual v8 for the Arm v8-A architecture profile.

The memory management unit (MMU) controls table-walk hardware that accesses translation
tables in main memory. The MMU translates virtual addresses to physical addresses. The MMU
provides fine-grained memory system control through a set of virtual-to-physical address
mappings and memory attributes held in page tables. These are loaded into the translation
lookaside buffer (TLB) when a location is accessed.

Address translations can have one or two stages. Each stage produces the least significant bits
(LSB) output without a lookup. Each stage walks through multiple levels of translation.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=238

Virtualization
Virtualization allows multiple software stacks to run simultaneously on the same processor,
which enhances the productivity of the Versal ACAP. The role of virtualization varies from system
to system. For some designs, virtualization allows the processor to be kept fully loaded at all
times, saving power and maximizing performance. For others, virtualization provides a way to
partition the various software stacks for isolation or redundancy.

Note: The support for virtualization applies only to an implementation that includes Arm exception level-2
(EL2). Armv8 supports the virtualization extension to achieve full virtualization with performance
comparable to that of the native guest operating system.

The hardware provides virtualization features to support multiple virtual machines running on
the APU.

• APU Virtualization

• Virtual Interrupts

• Shared Virtual Memory

• Processor Counters

Server Architecture
The APU and subsystems include support for the Arm server based system architecture (SBSA).
The SBSA architecture aligns hardware with system software components for interoperability.
The specification comprises multiple levels that build incrementally on top of each other with
each level mandating additional functional aspects of the system. This includes specifying
features that the CPU and some key peripherals need to support to be compliant.

The Versal ACAP system is Arm SBSA Level-1 capable, at a minimum, as defined by the Arm
SBSA specification document number ARM-DEN-0029A.

The features specifically supporting the SBSA architecture include:

• SBSA L1 compatible components

○ APU Cortex-A72 core

○ UART SBSA

○ SWDT with generic and windowed timers

• APU generic interrupt controller (Arm GICv3 architecture in GIC-500)

○ Locality-specific peripheral interrupt (LPI)

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=239

○ System register interface enable (SRE)

○ Affinity routing enable (ARE)

• System firmware data structures such as ACPI or FDT

Processor Counters
• Physical Counter, also see System Counter

• Virtual Counters

• Debug Counter

Applications
The system counter can be used to generate one or more event streams to generate periodic
wake-up events. An event stream might be used for these reasons:

• To impose a timeout on a wait-for-event polling loop

• To safeguard against any programming error that means an expected event is not generated

Event Stream

An event stream is configured by these selections:

• Selecting which bit from the bottom 16 bits of a counter triggers the event, which determines
the frequency of the events in the stream

• Selecting whether the event is generated on each 0 to 1 transition or each 1 to 0 transition of
the selected counter bit

Physical Counter
The physical and virtual counters in the Arm v8 architecture are sourced from the 64-bit system
counter located in the LPD. For details, see System Counter.

The system counter provides the time base for the physical and virtual counters for the APU
processors. The system count is also accessible using memory-mapped registers in the LPD
memory space.

The count value for the APU processor's physical counter is the same as the system counter. For
virtual count, a fixed count for a virtual channel is subtracted from the system counter value to
provide a virtual count. The physical and virtual counters for the APU processors are
documented in the Arm Architecture Reference Manual Arm v8.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=240

The system counter is controlled by the IOP_SCNTR and IOP_SCNTRS register sets. The
frequency of the system counter tic clock is controlled by the TIMESTAMP_REF_CTRL register.
For more information, see System Counter.

Software can read the CNTFRQ register to determine the current system counter frequency in
these states and modes:

• 64-bit counter is private to each APU core

• Same PPI interrupt number for each APU core

• Extensions to the timer to AArch64:

○ When CNTKCTL.EL0PCTEN is set to 1, secure and non-secure EL0 modes

○ Non-secure EL1 physical timer

○ Secure EL1 physical timer

○ Non-secure EL2 physical timer

○ Virtual timer based on offset from physical timer

Accessing the Physical Counter Registers

The processor physical counter is implemented as the system counter. The functionality and
memory-mapped access methods are described in System Counter. The physical counter is also
accessible via the processor's local registers as described in this section. For each counter, all
counter registers have the same access permissions. Software with sufficient privileges can read
CNTPCT using a 64-bit system register read.

EL1 Physical Counter

The EL1 physical counter is accessible from EL1 modes, except that non-secure software
executing at EL2 controls access from non-secure EL1 modes.

When access from EL1 modes is permitted, CNTKCTL.EL0PTEN determines whether the
registers are accessible from EL0 modes. If an access is not permitted because
CNTKCTL.EL0PTEN is set to 0, an attempted access from EL0 is UNDEFINED.

The EL1 physical timer characteristics include:

• Except for accesses from the monitor mode, accesses are to the registers in the current
security state.

• For accesses from monitor mode, the value of SCR_EL3.NS determines whether accesses are
to the secure or the non-secure registers.

• The non-secure registers are accessible from hypervisor mode.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 241Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___timestamp_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=241

• CNTHCTL.NSEL1TPEN determines whether the non-secure registers are accessible from non-
secure EL1 modes. If this bit is set to 1, to enable access from non-secure EL1 modes
CNTKCTL.EL0PTEN determines whether the registers are accessible from non-secure EL0
modes.

If an access is not permitted because CNTHCTL.NSEL1TPEN is set to 0, an attempted access
from a non-secure EL1 or EL0 mode generates a hypervisor trap exception. However, if
CNTKCTL.EL0PTEN is set to 0, this control takes priority, and an attempted access from EL0 is
UNDEFINED.

EL2 Physical Counter

The EL2 physical counter is accessible from non-secure hypervisor mode, and from the secure
monitor mode when SCR_EL3.NS is set to 1.

Virtual Counters
Each APU core includes a virtual counter that indicates virtual time. The virtual counter contains
the value of the physical counter minus a 64-bit virtual offset. When executing in a non-secure
EL1 or EL0 mode, the virtual offset value relates to the current virtual machine. The CNTVOFF
register contains the virtual offset. CNTVOFF is only accessible from EL2 or EL3 when SCR.NS is
set to 1. The CNTVCT register holds the current virtual counter value.

Accessing the Virtual Counter

Software with sufficient privilege can read CNTVCT using a 64-bit system register read.

The virtual counter is accessible from secure and non-secure EL1 modes and from hypervisor
mode. CNTKCTL.EL0VTEN determines whether the registers are accessible from EL0 modes. If
an access is not permitted because CNTKCTL.EL0VTEN is set to 0, an attempted access from an
EL0 is UNDEFINED.

Private Counters
• 64-bit counter is private to the APU MPCore

• Auto-incrementing feature

• 64-bit comparator can assert a private interrupt

Local Processor Access

Typically, initializing and reading the system counter frequency includes setting the system
counter frequency using the system register interface, only during the system boot process. The
system counter frequency is set by writing the system counter frequency to the CNTFRQ
register. Only software executing at the highest exception level implemented can write to
CNTFRQ.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=242

Programming
There are several control functions as described in this section.

Local Memory-mapped System Registers

• Enabling and disabling the counter

○ CNTR, counter control register EN, bit [0]:

- 0: System counter disabled

- 1: System counter enabled

• Setting the counter value

Two contiguous RW registers CNTCV [31:0] and CNTCV [63:32] that hold the current system
counter value, CNTCV. If the system supports 64-bit atomic accesses, these two registers
must be accessible by these accesses.

• Changing the operating mode to change the update frequency and increment value. CNTCR,
counter control register FCREQ, bits [31:8]: frequency change request.

• Enabling halt-on-debug for a debugger to use to suspend counting. CNTCR, counter control
register HDBG, bit [1]: Halt-on-debug. Controls whether a halt-on-debug signal halts the
system counter.

○ 0: System counter ignores halt-on-debug

○ 1: Asserted halt-on-debug signal halts system counter update

Interrupts
Interrupt Types
The controller supports the four types of interrupts listed here.

• Shared peripheral interrupt: Shared peripheral interrupts (SPIs) are peripheral interrupts that
can be routed to a specific processor core that can handle the interrupt or a core that is
configured to receive this type of interrupt. These interrupts can be group 0 or group 1, and
can be either wire-based or message-based.

• Private peripheral interrupt: Private peripheral interrupts (PPIs) target a single specific
processor core and are independent for each core in the APU cluster. These interrupts are
used when the peripherals are tightly coupled to a particular core, can be group 0 or group 1,
and are only wire-based.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=243

• Software generated interrupts: Software generated interrupts (SGIs) are inter-processor
interrupts. SGIs can be generated by writing to the software generated interrupt register
(GICD_SGIR). There are 16 SGIs available for each processor in the MPCore. These interrupts
have no effect on the hardware.

• Locality-specific peripheral interrupts for virtualization: Locality-specific peripheral interrupts
(LPIs) are targeted peripheral interrupts that are routed to a specific processor in the MPCore.
LPIs can only be non-secure group 1 interrupts and only with edge-triggered behavior. These
interrupts are generated by a peripheral writing to a memory-mapped register in the GIC-500
interrupt controller and, consequently, are only message-based interrupts. The GIC-500
supports up to 56k LPIs. The cache size for frequently occurring MSI/MSI-x is 64 entries. The
device ID is delivered to the GIC via the AWUSER bits.

• PPI#22 – DCC interrupt

• PPI#23 – PMC overflow

• PPI#24 – CTI interrupt

• PPI#25 – Virtual interface management

• PPI#26 – Hypervisor timer

• PPI#27 – Virtual timer

• PPI#28 – Legacy PL FIQ

• PPI#29 – Secure timer

• PPI#30 – Non-secure timer

• PPI#31 – Legacy PL IRQ

Processor Interrupt Groups
The APU interrupt controller exception level (EL) grouping is:

• Group 0: interrupt is expected to be handled at EL3

• Group 1: secure interrupt is expected to be handled at secure EL1

• Group 1: non-secure interrupt is expected to be handled at:

○ EL2 in systems using virtualization, or

○ EL1 in systems without virtualization

Virtual Interrupts
The Arm GIC v3 interrupt controller (GIC-500) provides hardware virtualization.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 244Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=apu_gic_dist_main___gicd_sgir.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=244

Interrupt Translation Services

The APU interrupt controller provides interrupt translation services (ITS) to isolate the device and
provide ID translation for message-based interrupts. This enables virtual machines to program
devices directly.

LPI and ITS Cache Updates

GIC-500 has a cache to store the settings for LPI interrupts and interrupt translation (ITS) for the
message-based protocol. A cache miss results in up to three round trips to memory.

GIC Interrupt Controller
The APU processor includes a local interrupt controller for managing APU processor related
interrupts. It is attached to the generic interrupt controller (GIC-500) to capture system
interrupts.

To manage system interrupts, the APU includes the GIC interrupt controller, which is based on
the Arm GIC-500 generic interrupt controller and is compatible with the Arm GIC v3
architecture.

The APU GIC interrupt registers are listed in the GIC Registers section.

Test and Debug
Debug Counter
TSGEN is the debug timestamp generator. The SCNTRS.CNTCR register controls the counter
operation by enabling, disabling, or halting the counter. Normally, it is 400 MHz after boot, but
the frequency can be changed using the DBG_TSTMP_CTRL register.

Register Reference
Processor Control and Status Registers
The following tables provide an overview of the AArch32 registers and the APU core private
counters. The MPCore timers are defined by the AArch64 architecture specification.

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 245Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___dbg_tstmp_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=245

Local Register Access

The CNTPCT register holds the current physical counter value. The CNTPCT counter operates in
the LPD power domain to provide a reliable and uniform view of the system time to each of the
APU cores. This counter is controlled by the TIMESTAMP_REF_CTRL register.

Table 62: AArch32 Register Overview

Function Control Register
Timer frequency CNTFRQ

Kernel control CNTKCTL

Hypervisor control CNTHCTL

Virtual offset CNTVOFF

Table 63: APU Core Private Counter (AArch64)

Counter - Timer Physical Counter Virtual Counter Physical Secure
Counter

Hypervisor
Physical Counter

Timer value CNTP_TVAL_EL0 CNTV_TVAL_EL0 CNTPS_TVAL_EL1 CNTHP_TVAL_EL2

Timer control CNTP_CTL_EL0 CNTV_CTL_EL0 CNTPS_CTL_EL1 CNTHP_CTL_EL2

Compare value CNTP_CVAL_EL0 CNTV_CVAL_EL0 CNTPS_CVAL_EL1 CNTHP_CVAL_EL2

Timer count CNTPCT_EL0 CNTVCT_EL0

GIC Registers
Table 64: APU GIC Registers

Register Modules Base Address Description
APU_GIC_DIST_MAIN 0xF900_0000 Main interrupt distributor

GIC_DIST_MBSPI 0xF901_0000 SPI interrupt distributor

GIC_ITS_CTRL 0xF902_0000 ITS control

GIC_ITS_TRANS 0xF903_0000 ITS service (GITS translator)

GIC_A72_CPUIF 0xF904_0000 CPU interface

APU_GIC_A72_VIFCTL 0xF905_0000 CPU Virtual Interface Control

GIC_A72_VCPUIF 0xF906_0000 CPU Virtual Interface

GIC_REDIST_CTLLIP_0
GIC_REDIST_CTLLIP_1

0xF908_0000
0xF90A_0000

Redistributor registers for control and physical LPI interrupts:
APU0 and APU1

GIC_REDIST_SGISPI_0
GIC_REDIST_SGISPI_1

0xF909_0000
0xF90B_0000

Redistributor registers for SGI and PPI interrupts:
APU0 and APU1

reserved 0xF90C_0000 Through 0xF90F_FFFF

Section VI: Engines
Chapter 25: Application Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 246Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___timestamp_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=246

Chapter 26

PS DMA Controller
Introduction

The general purpose PS DMA controller is located in the LPD and moves data from a source to a
destination on the interconnect. The controller includes an AXI4 interface to read and write
memory with 16 word transfers for a total of 64 bytes per transaction.

The controller's two main programming modes are a simple register-based control and a flexible
linked descriptor table mode. In descriptor mode, the controller autonomously fetches the
descriptor tables from system memory.

The controller has eight separate channels that share common resources including the common
buffer. Each channel can be independently enabled, paused, or disabled at any time. The pause
functionality allows software to program a new sets of descriptors midway through the block
memory transfer.

The DMA implements a 4 KB common data buffer that is shared by all eight channels. A
controller structure is automatically managed by hardware where software enables and disables a
channel without concern for the allocation of the common data buffer. Each channel uses the
buffer on a first-come first-served basis. Buffer usage of each channel is controlled by
programming registers for issue capability and rate control of a channel.

For descriptor based operation, the DMA controller implements independent source (SRC) and
destination (DST) descriptors tables. The controller can transfer any size payload up to 1 GB with
byte granularity. Descriptor payloads can start and end on any byte alignment.

For performance, the controller supports an optional over fetch feature. For memory sources that
cannot support over fetch, the software can disable the feature on a per channel basis. Xilinx
recommends only using this feature if it is supported by the source being read.

Features
• Eight independent channels

• Scatter-gather descriptor driven mode

• Simple DMA mode

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=247

AXI DMA

• 128-bit AXI4 interface, 44/48-bit address

• Data transfers from one block of memory to another

• Descriptor driven with scatter-gather functionality

• Burst length of 16 data transfers

• Source (SRC) and destination (DST) payloads can start and end at any alignment, DMA takes
care of 4 KB boundary crossing

Operations

• DMA transfers can be programmed to initiate secure or non-secure transactions

• Up to 32 outstanding source transactions per channel

• Over fetching can be enabled/disabled on per channel basis

• Periodic transaction scheduling — period can be independently programmed per channel

• Simple register-based DMA and scatter-gather (SG) DMA modes

• Hybrid descriptor option in SG DMA mode

• DMA start, stop, and pause features

• Completion and error interrupts on a per-channel basis

• Error recovery

• Descriptor prefetch to maximize efficiency with 128-bit aligned source and destination
payloads

• Incremental and fixed type bursts, fixed bursts only in simple DMA mode

• Independent AXI burst length on both the source and destination transactions

• Flow control on a per channel basis with option PL EMIO flow control interface signals

Read-only DMA mode

• Read data is discarded in this mode

• Available in simple DMA mode

Write-only DMA mode

• Data specified in the control register is written to destination address locations, no read
command is issued

• Available in simple DMA mode

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=248

Comparison to Previous Generation Xilinx Devices
The LPD DMA is based on Xilinx® IP. The DMA version in the Versal ACAP is the same as in the
Zynq® UltraScale+™ MPSoCs except a 4 KB common buffer is implemented and there is a minor
change in the flow control interface (FCI) operation to the PL.

Note: In the Versal device, the behavior of the DMA2PL_CACK flow control signal is different from that of
the Zynq UltraScale+ MPSoC. In Versal devices, the PL must not use DMA2PL_CACK in combinational
logic to generate PL2DMA_CVLD because it can cause unpredictable operation. The signal is shown in PL
Flow-Control Interface.

Note: The LPD DMA is a PS DMA controller that is also known as the ADMA and is implemented using the
Xilinx ZDMA core.

System Perspective
Block Diagram
The system perspective block diagram is shown in the following figure.

Figure 43: System Block Diagram

PL

LPD_LSBUS_CLK

LPD_DMA_REF_CLK
LPD_DMA_RESET

LPD_DMA IRQs #92 to 99

32-bit APB

LPD_IOP_SW_CLK

LPD IOP
Switch

PL2DMA_CLK [0:7]
PL2DMA_CVLD [0:7]
DMA2PL_CACK [0:7]
DMA2PL_TVLD [0:7]
PL2DMA_TACK [0:7]

Optional flow control for
accessing memory in the PL

128-bit AXI
LPD Source
IOP Switch

Status and Error
Management

Channels 0 to 7

FCI
Flow Control

Channels 0 to 7

x8

PL NoC/DDR

Register Sets

4 KB
Common

BufferAXI
Interface

Channels 0 to 7

Descriptor (DSCR)
Management

Source (SRC) Data
Management

Destination (DST) Data
Management

Data Flow

Transaction
Initiator Target

Legend

X24032-052721

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=249

Functional Units
The major functional blocks include:

• Common buffer

• Arbiter

○ AXI read channel

○ AXI write channel

• DMA engine channels

Common Buffer

A common buffer is shared between the DMA channels to hold the AXI read transaction data
before it goes out on an AXI write channel. The common buffer is sized to allow usage of the full
AXI bandwidth. The size of the LPD_DMA common buffer is 4 KB.

• Shares the full buffer space between enabled channels. When only one channel is enabled, it
can use the full buffer memory space.

• Does not use/reserve any space in the memory if a channel is disabled (from a previous
enable).

• In the event of an error, the DMA channel frees all occupied common buffer entries.

• Shared buffer on a first-come first-served basis.

• Software can limit the common buffer usage of a particular channel by programming read-
issuing and rate-control registers. The design of the DMA ensures no starvation on any
channel irrespective of their rate control and read issuing parameters.

System Interfaces

AXI Read Arbiter

Each DMA channel uses the AXI master interface to read data descriptor tables and read/write
data buffers. The DMA implements round-robin arbitration. Arbitration is never granted to any
request if the common buffer does not have enough space. Consequently, the DMA does not put
back pressure on the AXI read channel.

If there is not enough space in the common buffer, the arbiter stays parked on the requesting
channel until space is available.

AXI Write Arbiter

The DMA channels share an AXI write channel. The features of the write arbiter are:

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=250

• Round-robin arbitration

• Common buffer flush in the event of an error

Memory Coherency
The reads and writes can be routed to the cache coherent interconnect (CCI) in the FPD for
memory coherency with the APU L2 cache. In descriptor mode, the memory coherency
parameters for the DMA transfer are sourced from the descriptor table in memory. In the simple
register DMA mode, the memory coherency parameters are sourced from APB registers.

• Register DMA

• Descriptor table, scatter-gather, SG DMA

The DMA coherent transaction routing to the CCI is controlled by the
LPD_INT_CSR.ROUTE_DMA register.

Register DMA

The memory coherency is controlled by the PS_DMA register.

SG DMA

Software programs the SRC and DST descriptors. Software programs registers to point to the
start of these descriptors in memory, and enables the channel. Upon receiving a channel enable,
the DMA channel fetches SRC and DST descriptors from memory and uses these parameters to
perform the actual data transfer. It is the responsibility of the software to program descriptors
before enabling a channel.

PL Flow Control Interface
DMA flow control signals are routed to the PL to manage accesses to PL memories. These signals
are not used when accessing non-PL memories, which includes DDR, OCM, XRAM, etc.

Programming Guide
The DMA channel control and status registers provide individual channel controllers. In simple
DMA mode, these registers are used to move data. In link-list mode, these channels process
descriptor tables to move data in memory.

Performance Considerations

The DMA provides more optimal performance when the controller is programmed with the
following considerations:

• Read and write descriptor payloads are 128-bit aligned (in scatter-gather mode)

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=251

• SRC and DST descriptors are 256-bit aligned

• SRC and DST payload is >4 KB

The guideline is to match the capabilities of the read and write AXI channels and the DMA for
the AXI read and write channels.

Channel Block Diagram
The DMA channel is responsible for the DMA operation and management.

Figure 44: Channel Block Diagram

LPD
Main Switch

128-bit
AXI

RResp

Read
Arbiter

Write
Arbiter

Source
Management

Destination
Management

Flow Control Interface
(for PL Memory Accesses)

Status and Error
Management

Descriptor
Management

QoS

QoS

AX
I I

nt
er

fa
ce

Common
Data Buffer

Cmd

BResp

Data

Cmd

Data

BResp

PL

AXI

NoC/DDR MC
and PL

X24033-011121

Modes and States
The controller has simple and scatter-gather modes with an optional hybrid mode. The controller
can be in an active or inactive state.

Modes

Each DMA channel is independently programmed in one of the following DMA modes:

• Simple mode

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=252

• Scatter-gather (standard and hybrid modes)

States

• Active

• Inactive

Simple Mode Programming
Simple DMA mode is also known as single-command mode because the DMA performs a data
transfer upon receiving a command in a mono-shot manner. In simple DMA mode, the DMA
transfer parameters are specified in the control registers. The DMA channel uses these
parameters to transfer the data from the SRC to the DST side. This is the single command mode
where the DMA channel operation is done after finishing the transfer. Subsequent transfers
require the following steps:

1. Update the control registers with new transaction parameters.

2. Enable the DMA channel.

The DMA channel only looks at the SRC size of the transaction. It is always assumed that the
transaction size of the DST side is the same as the SRC side’s transaction size.

There are simple DMA sub-modes. The read-only and write-only modes are only supported in
simple DMA mode. Each channel can be programmed in one of the following sub modes:

• In the read-only mode, the DMA channel reads the data (register specified location) but does
not write the data anywhere. This feature can be used to scrub the memory.

• In the write-only mode, the DMA channel reads preloaded data from the control registers and
writes it to memory. The DMA channel does not read data from a memory location. Software
loads the source data into the registers that are used to write the DST locations. In write-only
mode, both SRC and DST registers need to be configured.

Sequence Steps
The sequence steps for simple mode are outlined in this section.

Step 1

Wait until the DMA is in an idle state by reading the [STATE] field of CH_STATUS register and
ensuring it is either 00 or 11. In the case where the DMA is in PAUSE state, follow the steps to
bring the DMA out from PAUSE as described in Channel Pause.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 253Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=253

Step 2

• Ensure that the CH_CTRL0 [POINT_TYPE] bit is set = 0.

• Program the data source buffer address LSB into register CH_SRC_DSCR_WD0.

• Program the data source buffer address MSB into register CH_SRC_DSCR_WD1.

Step 3

• Program the data destination buffer address LSB into register CH_DST_DSCR_WD0.

• Program the data destination buffer address MSB into register CH_DST_DSCR_WD1.

Step 4

• In simple DMA mode, both the SRC and DST transaction sizes must be programmed. The
DMA uses the SRC transaction size but it also requires programming both registers. Program
the source data size into the CH_SRC_DSCR_WD2 register.

• Program the destination data transaction size into the CH_DST_DSCR_WD2 register. Make
sure that the SRC and DST transaction sizes are the same.

Step 5

Optionally, enable an interrupt by setting INTR as a 1 in the PS_DMA.CH_DST_DSCR_WD3
and/or CH_SRC_DSCR_WD3 registers.

Step 6

• If the source and destination buffer are allocated in non-cacheable memory or software
flushes the caches, then:

○ Set the DMA_Route [routing] bit.

○ Program the [ARCACHE] and [AWCACHE] bits in the CH_DATA_ATTR register to indicate
a cacheable transaction (e.g., 1111h).

Step 7

Enable the DMA channel to perform DMA transfers by setting the [EN] bit of CH_CTRL2
register. After enabling DMA, check for possible error conditions as described in Interrupts.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 254Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_ctrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_dscr_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_dscr_wd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_dscr_wd2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___dma_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_data_attr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_ctrl2.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=254

Descriptor Mode Programming
Transfer parameters are specified in the buffer descriptors (BD). Software programs the SRC and
DST BDs and enables a channel. The DMA channel uses the SRC and DST parameters for data
transfer in a continuous fashion, as long as there are requests for data transfer in the source BDs
and available destination buffers pointed by the destination BD. This can be viewed as memory-
to-memory transfer. The channel fetches the first descriptor from the DSCR start address upon
receiving an enable.

Data Flow
This section outlines the DMA model, modes, and the buffer descriptor (BD) format.

Model

The LPD DMA controller has eight DMA channels. Each channel is divided into two functional
sides (in simple DMA mode) or two queues (in scatter-gather DMA mode), source (read) and
destination (write).

The schematic in the following figure illustrates the source and destination side scatter-gather
mode buffer descriptor arrays. The buffer descriptors (DSCR) point to their respective buffers.
The DMA facilitates transfer of data from source (SRC) buffers to destination (DST) buffers. A
source side descriptor can go to multiple destination side descriptors.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=255

Figure 45: SRC and DST Descriptors Pointing to Data Buffers

Memory

SRC DSCR 0

SRC DSCR 1

SRC DSCR 2

SRC DSCR n

SRC BUFFER 0

SRC BUFFER 1

SRC BUFFER 2

SRC BUFFER n

Source Buffer
Descriptor Array

.

.

.

DST DSCR 0

DST DSCR 1

DST DSCR 2

DST DSCR 3

DST BUFFER 0

DST BUFFER 1

DST BUFFER 2

DST BUFFER n

Destination Buffer
Descriptor Array

.

.

.

X23733-032520

Buffer Descriptor Format

The buffer descriptor (BD) format used in scatter-gather mode is shown in the following table.
Both the SRC and DST implement the same format descriptor with a few exceptions. Similar
words are implemented in the control registers, which can be used in simple DMA mode. By
dividing the descriptor into 32-bit words and implementing them on the control registers, a
consistent view is provided in both simple and scatter-gather mode.

Table 65: Buffer Descriptor Format

Word
Number Field Name Size (bytes) Bits Description

0 ADDR LSB 4 [31:0] Lower 32 bits of the address pointing to the data/
payload buffer.

1 ADDR MSB 4
[11:0] Upper 12 bits of the address pointing to the data/

payload buffer.

[31:12] Reserved.

2 SIZE 4
[29:0] Buffer size in bytes (1 G = 230)

[31:30] Reserved.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=256

Table 65: Buffer Descriptor Format (cont'd)

Word
Number Field Name Size (bytes) Bits Description

3 CNTL 4

[0] Coherency: Reserved

[1]

DSCR element type:
Each descriptor can be viewed as a 128/256-bit
descriptor.
0: Current descriptor size is 128 bits (linear)
1: Current descriptor size is 256 bits (linked-list)

[2]

INTR
0: Completion interrupt is not required
1 (SRC-side): Interrupt is set at the completion of
this element. Completion indicates that data is
read, but it could be in the DMA buffer (and not
yet written to destination).
1 (DST-side): Interrupt is set at the completion of
this element. Completion indicates that data is
written to the destination location and BRESP is
received.

[4:3]

CMD
This field is valid only on a SRC descriptor and is
reserved on a DST descriptor.
00: Next DSCR is valid, the DMA channel continues
with scatter-gather operation (in this case).
Software must ensure that the next descriptor is
valid.
01: Pause after completing this descriptor.
Software can use this command to pause the DMA
operation and update the descriptors. After the
software is done updating the descriptors, it can
resume the channel from where it paused. If
software has updated a descriptor to new location,
it can resume the channel and tell it to fetch the
descriptor from the new location. Pause mode
allows software to keep the state of the channel
and avoid the enable sequence.
10: STOP after completing this descriptor. After
the DMA channel detects STOP, it finishes the
current descriptor payload transfer and goes to
IDLE. Any subsequent transfer requires the
software to follow an enable sequence. STOP does
not preserve the state of the channel.
11: Reserved.

[31:5] Reserved.

4 NEXT ADDR LSB 4 [31:0]
Lower 32 bits of the NEXT descriptor address. This
field exists only if the DSCR element type is set as
1.

5 NEXT ADDR MSB 4

[11:0] Upper 12 bits of the NEXT descriptor address.

[31:12]
Reserved.
This field exists only if the DSCR element type is
set as 1.

6 Reserved 4 [31:0]
Reserved.
This field exists only if the DSCR element type is
set as 1.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=257

Table 65: Buffer Descriptor Format (cont'd)

Word
Number Field Name Size (bytes) Bits Description

7 Reserved 4 [31:0]
Reserved.
This field exists only if the DSCR element type is
set as 1.

Decriptor Format
In scatter-gather DMA mode, the channel reads the data from the address specified in the SRC
descriptor and writes to a location specified by the DST descriptor. The DMA implements a
hybrid descriptor to support descriptor storage in two formats.

• Linear

• Linked-list

• Hybrid (multiple linear buffer descriptor arrays chained as a linked list)

Software can make use of a hybrid descriptor to dynamically switch between linear and linked-
list mode. The hybrid descriptor approach allows the DMA driver software to arrange descriptors
in a contiguous array of BDs, a linked list of BDs, or a mixed mode in which contiguous arrays of
BDs can be chained together to create a linked list of BD arrays. This approach allows the driver
software to be designed in a manner in which BDs can be allocated at initialization or in real time
(and chained to a preceding BD). In applications where contiguous sets of memory are easily
available, the software driver might not be able to manage a link list for descriptor storage. In this
case, the descriptor can be stored in a linear array.

To support previously described cases, the DMA implements a hybrid descriptor. Each descriptor
on the SRC and DST side implements a bit descriptor-element type, which indicates the type of
the current descriptor. This allows software to switch between a linear and a link-list scheme
dynamically. The following figure shows supported descriptor modes.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=258

Figure 46: DMA Supported Descriptor Mode Use-cases in Scatter-Gather Mode

Dscr0

Dscr1

Dscr2

Dscr3

Dscr4

Dscr5

Dscr6

Dscr7

Dscr0

Dscr1

Dscr2

Dscr3

Dscr4

Dscr5

Dscr6

Next Addr

Dscr3
Next Addr

Dscr0
Next Addr

Dscr7

Dscr8

Dscr13

Next Addr

Dscr5
Next Addr

Dscr4
Next Addr

Dscr2
Next Addr

Dscr1
Next Addr

Linear Descriptor Mode Linked-List Descriptor Mode Hybrid Descriptor Mode

128-bit Descriptor
Descriptor Element

Type = 0

256-bit Descriptor
Descriptor Element

Type = 1

128 and 256-bit Descriptor
Descriptor Element Type = 0 and 1

Linked-List Descriptor is Only
Used on Page Boundary

X23734-030520

Linked List Mode Use Case
Linear mode is used when software can find a contiguous set of memory to accommodate all the
buffer descriptors necessary (source and destination) as an array. The flowchart in the following
figure captures the main steps.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=259

Figure 47: Linked List Flowchart

Wait for Idle

Enable DMA channel

Disable interrupts
(if interrupt mode)

Source and destination
descriptor setup

DMA transfers
done?

Clear interrupt status

Wait for DMA
transaction to complete

Disable DMA channel

End

Interrupt
mode?

Enable interrupts
(if interrupt mode)

Poll descriptor
done status in
ZDMA_CH_ISR

register

No Wait for descriptor
done interrupt

Release descriptors

Fetch the
SRC and DST

buffer
descriptors

Transfer
data to DST

buffer

Fetch the
SRC buffer

Yes

X23741-030920

Step 1

Ensure that the DMA is not in a busy state by reading the [STATE] field of CH_STATUS register
and ensuring that it is not 10. If DMA is in the pause state, follow the steps to bring it out of the
pause state as described in Channel Pause.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 260Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=260

Step 2

1. Ensure the [POINT_TYPE] bit in CH_CTRL0 register is set to 1.

2. Allocate the source buffer descriptor objects in memory. Ensure that the buffer descriptor
object address is 256-bit aligned.

3. If the source and destination buffer are allocated in non-cacheable memory or software
flushes the caches, then:

• Set the DMA_Route [routing] bit.

• Program the [ARCACHE] and [AWCACHE] bits in the CH_DATA_ATTR register to indicate
a cacheable transaction (e.g., 1111h).

4. Allocate the destination buffer descriptor objects in memory. Ensure that the buffer
descriptor object address is 256-bit aligned. The address of the first buffer descriptor in a list
is written to CH_DST_START_L and CH_DST_START_U registers.

TIP: The buffer descriptors can also be pre-allocated during initialization time.

Step 3

For each allocated source buffer descriptor object, program the following.

1. Program the source data fragment to transfer into the source buffer descriptor object. The
ADDR LSB and ADDR MSB fields are programmed.

2. Program the size of each source data fragment to transfer into the source buffer descriptor
object. The size field is programmed.

3. Set the coherency bit if the source data buffer uses the CCI-500 for hardware coherency. Set
the ARCACHE field in the CH_DATA_ATTR register to indicate a cacheable transaction with
a value such as 1111b.

4. Set the DSCR element type to 0.

5. Set the INTR field if an interrupt is required after the data is read for transfer. Typically, this
can be set for the buffer descriptor object corresponding to the last source data fragment.
Setting the last source descriptor for interrupt reduces the number of interrupts received.

6. The non-final buffer descriptor command field can be set to 00 for the next descriptor valid.
For the final buffer descriptor, set the command field to 10 for STOP after completing this
descriptor.

TIP: If desired, set 01  to pause after completing the descriptor to put the DMA in a paused state after
completing the final buffer descriptor. The steps to bring a channel out of pause into a enabled/
disabled state are described in Channel Pause.

7. Program the NEXT ADDR LSB and NEXT ADDR MSB to point to the next source buffer
descriptor. If this is the last buffer descriptor in a linked list, these fields must be null.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 261Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_ctrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___dma_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_data_attr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_start_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_start_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_data_attr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=261

Step 4

For each allocated destination buffer descriptor object, program the following.

1. Program the destination data fragment to transfer into the destination buffer descriptor
object. The ADDR LSB and ADDR MSB fields are programmed.

2. Program the size of each destination data fragment to transfer into each respective
destination buffer descriptor. The size field is programmed.

3. If the source and destination buffer are allocated in non-cacheable memory or software
flushes the caches, then:

• Set the DMA_Route [routing] bit.

• Program the [ARCACHE] and [AWCACHE] bits in the CH_DATA_ATTR register to indicate
a cacheable transaction (e.g., 1111h).

4. Set the DSCR element type to 0.

5. Setting the last source descriptor for interrupt reduces the number of interrupts received. Set
the INTR field if an interrupt is required after the data is read for a transfer. Typically, this is
set for the buffer descriptor corresponding to the last source data fragment. Setting the last
destination descriptor for interrupt reduces the number of interrupts received.

6. The non-final buffer descriptor command field can be set to 00 for the next descriptor valid.
For the final buffer descriptor, set the command field to 10 for STOP after completing this
descriptor.

TIP: If desired, set 01  to pause after completing the descriptor to put the DMA in a paused state after
completing the final buffer descriptor. The steps to bring a channel out of pause into a enabled/
disabled state are described in Channel Pause.

7. Program the NEXT ADDR LSB and NEXT ADDR MSB to point to the next destination buffer
descriptor. If this is the last buffer descriptor in a linked list, these fields must be null.

Step 5

Enable the DMA channel by writing into the control register CH_CTRL2. This initiates the DMA
data transfer.

Step 6

Upon transfer completion, the DMA channel provides interrupts to the processor depending on
how the INTR field of the buffer descriptors are set. For information on handling interrupts, see
Interrupt Handling.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 262Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___dma_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_data_attr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_ctrl2.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=262

Software can use CH_IRQ_DST_ACCT and CH_IRQ_SRC_ACCT registers to decipher the number
of processed buffer descriptors on the source and destination sides. Software can internally
maintain counters of both the number of source and destination buffer descriptors configured for
the data transfer. Upon updating the registers with an equal count, software can infer that the
data transfer is complete. Software should count only those descriptors for which interrupts are
enabled.

Step 7

After the DMA transfers are done, disable the DMA channel. See Channel Disabled for more
information.

Linear Descriptor Use Case
In the linear descriptor use case mode, BDs are stored in a linear array. In Figure 46, the first
block shows the linear descriptor mode. This can be considered as one 4K page. Each descriptor
is 128 bits and the DMA channel can fetch 256 bits on every descriptor read. This allows the
DMA to fetch two descriptors in a single AXI read and reduces the number of descriptor fetches.

• Each descriptor is 128 bits wide

• Each descriptor must be 128-bit aligned

• The descriptor element type is always 0 (in linear descriptor mode).

ADDR LSB [31:0] WORD0

RSVD [31:12] ADDR MSB [11:0] WORD1

RSVD [31:29] SIZE [29:0] WORD2

RSVD [31:5] CNTL [4:0] WORD3

Linked-List Descriptor Use Case
Each descriptor is 256 bits wide, the first 128 bits store the descriptor information and the next
128 bits provide a pointer to the next descriptor. In this mode, the descriptor can be located
anywhere in the memory (it might not be in the same 4K page).

• Each descriptor is 256 bits wide.

• Each descriptor must be 256-bit aligned.

• The descriptor element type is always 1 (in link-list descriptor mode).

• DMA channel can only fetch the next descriptor if it has read a current descriptor. Two
descriptor fetches require two AXI reads.

ADDR LSB [31:0] WORD0

RSVD [31:12] ADDR MSB [11:0] WORD1

RSVD [31:29] SIZE [29:0] WORD2

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 263Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_irq_dst_acct.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_irq_src_acct.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=263

RSVD [31:5] CTRL [4:0] WORD3

NEXT DSCR ADDR LSB [31:0] WORD4

RSVD [31:12] NEXT DSCR ADDR MSB [11:0] WORD5

RSVD [31:0] WORD6

RSVD [31:0] WORD7

Hybrid Descriptor Use Case
Linear and link-list descriptor types can be chained to reduce software and hardware overhead.
For example, if software allocates two noncontiguous 4 KB pages to store descriptors, then it can
contiguously store BDs in the first page and make the last BD of the first page point to the first
BD of the next available page. Because the next address pointer in linear descriptor is not
required, this scheme reduces both memory usage and software overhead. The descriptor mode
diagram (Figure 46) details this use case.

• Each descriptor is aligned to its natural size.

○ Linear descriptor is 128-bit aligned.

○ Link-list descriptor is 256-bit aligned.

Buffer Descriptor Summary
• Both the SRC and DST descriptors must be aligned to their size.

• For efficiency, a DMA can prefetch a descriptor.

• The circular descriptor should always have at least one link-list element.

• Descriptors are not updated back to the memory. For instance, after a SRC/DST buffer
descriptor is used by the DMA for data transfer, no updating of any field of SRC or DST buffer
descriptor occurs to signal completion of a buffer descriptor to the software.

• A completion interrupt, along with status (interrupt accounting), is supported. The software
can read the content of PS_DMA.CH0_IRQ_SRC_CNT and PS_DMA.CH0_IRQ_DST_CNT
registers to find the number of buffer descriptors processed.

Interrupt Handling
Follow these steps to perform interrupt handling.

1. Read the status from the LPD_DMA.CH_ISR register.

2. If the [DMA_DONE] bit is set, mark the channel state as idle in the software context.

3. Check if the [DMA_PAUSE] bit is set. If yes, set the channel state to paused in the software
context.

4. If any other error bit is set, set the channel as idle in the software context.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=264

5. Clear the interrupt status from the LPD_DMA.CH_ISR register by writing back the value read
in step 1.

Done Interrupt Accounting
Note: The DMA channel does not update descriptors in memory.

When the controller is finished processing a descriptor table, it generates a SRC/DST done
interrupt and updates the interrupt count register. Each channel includes the following scheme
on both the SRC and DST sides.

• The software can selectively request a completion interrupt on descriptors. After a descriptor
is processed, the DMA increments the interrupt count register.

• A SRC descriptor done interrupt is generated after the DMA is done reading all the data
corresponding to the source buffer descriptor. The SRC descriptor done interrupt does not
guarantee that data is written at a destination location. Data can still be in a shared common
buffer.

• A DST descriptor done interrupt is generated after the DMA channel receives a response to
the last AXI write of the buffer corresponding to the DMA buffer descriptor. The DST done
interrupt ensures that data has been written to the memory location.

An interrupt is generated to the software as soon as the interrupt accounting’s count transitions
to non-zero. When the software takes this interrupt, it should also read the interrupt accountings
register. Count provides the number of processed descriptors with interrupt enabled. This
counter is cleared on read (due to coherency). This scheme eliminates the need for a timeout
mechanism. It also provides flexibility to the software to enable an interrupt on a required
descriptor.

The DMA channel implements a separate 32-bit interrupt account counter for the source and
destination sides. If the software does not read/clear the counter for a long time, this counter can
overflow. The DMA generates an interrupt to indicate the overflow condition on the interrupt
accounting counter. If a counter over flows on the last descriptor of a DMA transfer (DMA
DONE), the interrupt accounting counter overflow interrupt is generated.

Over Fetch
The DMA supports an AXI bus width of 128/64 bits. In the case where the source descriptor
payload ends at a non-128/64 bit aligned boundary, the DMA channel fetches the last beat as
the full-128/64 bit wide bus. This is considered an over fetch. The over fetch option can be
disabled. If an over fetch is disabled and the SRC descriptor payload ends on a non-128/64 bit
boundary, the DMA fetches any remaining bytes as a single byte AXI read.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=265

The example in the following figure uses a source descriptor size of 8190 bytes (with a start
address at 0x0000_0000 and end address at 0x0000_1FFD), a 128-bit wide AXI bus, and a
burst length of 16, the DMA can fetch 256 bytes in a single AXI burst. Two scenarios are
provided in this section.

Scenario 1: Over Fetch is Disabled

• 31 AXI read command with burst length of 16 and AXI size of 16 bytes (7936 bytes fetched).

• One AXI read command with burst length of 15 and AXI size of 16 bytes (240 bytes fetched).

• To fetch the remaining 14 bytes, the DMA channel issues 14 single-beat AXI read commands
with an AXI size of 1 byte.

Scenario 2: Over Fetch is Enabled

• 32 AXI burst length of 16 and AXI size of 16 bytes (8192 bytes fetched)

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=266

Figure 48: Over Fetch Scenarios

Over Fetching
Disabled

To fetch a buffer of 8190 bytes

Over Fetching
Enabled

To fetch a buffer of 8190 bytes

0x0000_0000 0x0000_0000

0x0000_1F00

0x0000_1FF0

0x0000_2000 0x0000_2000

DMAC to Ignore
Last 2 bytes

32 read requests
Each of size 256 bytes

(Burst length: 16, AXI size:16)
Total number of
bytes read: 8192

1 read request of size 240 bytes
(Burst length: 15, AXI size:16)

Total number of
bytes read: 8176

31 read requests
Each of size 256 bytes

(Burst length: 16, AXI size:16)
Total number of
bytes read: 7936

14 read requests
Each of size 1 byte

(Burst length: 1, AXI size:1)
Total number of
Bytes read: 8190

X23737-042320

RECOMMENDED: If the over fetch is disabled, it could significantly impact the performance of the DMA
channel. Xilinx recommends only disabling the over fetch when absolutely necessary.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=267

Transaction Control
The transaction control mechanism is used to control the rate and number of read/write data
transactions from a channel. The control parameters are applicable only to data transactions and
not for descriptor read transactions.

TIP: If the multiple rate control mechanism is enabled on a channel, a transaction is issued to arbitration
when all enabled rate control mechanisms provide permission to issue that transaction.

Data transactions on AXI read channels can be controlled per each channel using the following
control mechanisms.

Outstanding Transactions
Each DMA channel provides a control register PS_ZDMA.CH_CTRL1[SRC_ISSUE] where the
software can program a maximum number of read outstanding transactions. The DMA channel
uses this parameter to limit the number of outstanding read data transactions.

Rate Control
Each DMA channel can be independently programmed to issue transactions on a periodic basis.
Higher priority channels can have a shorter interval between transactions. The lower priority
channels can have a longer interval between transactions. The issue rate is independently
controlled for each channel using an interval count that is programmed into the CH_RATE_CTRL
[CNT] bit field. Rate control is enabled by setting CH_CTRL0 [RATE_CTRL] bit field = 1. There are
16 pairs of registers for rate control (8 channels).

Enabling rate control causes the DMA channel to copy the interval count, CH_RATE_CTRL [CNT]
bit field, into the channel's decrementing counter. This counter is decremented with every clock
cycle. When the counter reaches 0, the DMA channel issues a transaction to the arbiter and
again copies the interval count into the decrementing counter. The channel waits for the counter
to reach 0 again, and then issues another transaction and reloads the counter. The cycle
continues until disabled by setting [RATE_CTRL] = 0.

TIP: When rate control is enabled, the read data transaction frequency is always equal to or less than the
programmed rate control frequency (1/rate control count).

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 268Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_rate_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_ctrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_rate_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=268

PL Flow-Control Interface
When the DMA controller accesses a memory in the PL, the flow control interface (FCI) signals
are used to provide the data transfer handshake. There are eight sets of FCI signals; a set for
each channel. The PS_DMA.CH_FCI register configures the FCI flow control interface.

The PL provides credits to the DMA channel. Each credit is a permission for a single AXI
transaction. When the FCI is attached to the SRC (read), there is a permission to generate one
AXI data read transaction (write transaction when the FCI is attached to write DST). The
following table lists the FCI signals.

IMPORTANT! The maximum number of credits accepted are 32.

Table 68: Flow Control Interface Signals

Signal Description
PL2DMA_CLK PL clock: signals from/to PL are synchronous to PL2DMA_CLK. The DMA handles all clock

domain crossing.

PL2DMA_CVLD Credit valid signal to DMA.

DMA2PL_CACK Credit acknowledgment from DMA:

• Credits are accumulated when:

○ PL2DMA_CVLD is High, and

○ DMA2PL_CACK is Low

• Each FCI can accumulate up to 32 credits.

• If the FCI is not enabled, then the credits are cleared.

DMA2PL_TVLD Transaction valid.

PL2DMA_TACK Transaction acknowledgment: the DMA channel indicates that one write transaction is done
(AXI write command was generated and a BRESP is received) when DMA2PL_TVLD and
PL2DMA_TACK are True.

The timing diagram for the flow control interface is shown in the following figure.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=269

Figure 49: Flow Control Interface

X24070-060120

Note: The polarity of the CACK signal is reversed from the Zynq UltraScale+ MPSoC device.

Software can configure FCI to flow control either the SRC or DST based on whether the DMA
channel is reading from or writing to the PL memory.

• PL memory reads: program and configured SRC flow control

• PL memory writes: program and configure DST flow control

Flow-Control Interface Considerations
• Reset state

○ Channel is disabled

○ Program and configure the FCI flow control for SRC, DST, or both

○ ARLEN is used for all AXI transactions; both the SRC and DST sides

• Software configures the FCI to the correct side (SRC/DST)

• In case of an error, the DMA channel waits until the transaction valid FIFO is empty before
going to DONE with an error state

• The DMA channel stops issuing write commands if the PL does not provide a PL2DMA_TACK
in response to a DMA2_PL.TVLD for an extended time and the transaction FIFO goes full

When the FCI is attached to the DST side, the SRC transactions are limited by the threshold
allowed in the common buffer. This threshold can be programmed by the CH_FCI
[PROG_CELL_CNT] bit field in that channel. The DMA channel stops issuing data read commands
after the number of occupied cells exceeds the programmed cell count threshold. If the write side
of the channel is using FCI and the read side is not controlled, then the channel uses most of the
common buffer. This limits the other channels. By using the threshold on common buffer usage,
the channel's usage of the common buffer can be controlled.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 270Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_fci.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=270

After the channel is enabled with the FCI, the DMA channel accumulates incoming credits. Each
channel can accumulate up to 32 credits. Each transaction consumes one credit. The channel
does not issue a new transaction if a credit is not available. The credit is consumed upon
generation of read/write commands based on the FCI configuration. If the FCI is not enabled, it
does not affect the generation of AXI commands on the SRC/DST.

The FCI accepts credit from the PL memory as long as the credit FIFO is not full. Credits are
cleared until the channel is enabled. After a channel is enabled, a DMA channel uses credits to
flow control the SRC/DST AXI commands. In the event of an error, the DMA channel performs
an error-recovery sequence. After error recovery is done, the channel clears both the FCI_EN and
channel EN flags. After it clears the FCI_EN, the DMA channel clears all available and incoming
credits until the next peripheral enable. The software provides channel state information to the
PL memory (enable, pause, and error).

The DMA channel provides a transaction valid notification to the PL memory on every AXI write
transaction completion. A transaction valid is always generated on receiving a valid BRESP.
Irrespective of any read/write association, a transaction valid always indicates completion of a
write transaction. The software can calculate and provide the total number of valid transactions
expected to complete the current DMA transaction to the PL memory. The PL memory can use a
transaction valid to find where a DMA channel is in a current DMA transaction.

Flow-Control Programming Model
After each DMA transaction is done, the DMA channel clears both the channel enable
PS_DMA.CH_CTRL2 [EN] and FCI enable PS_DMA.FCI_EN [EN] register bits. The software must
re-enable the FCI interface for each DMA transaction. If the FCI interface is not enabled,
PS_DMA.FCI_EN [EN] = 0, the DMA channel flushes all incoming credits.

Credits are only valid when the FCI interface is enabled; PS_DMA.FCI_EN [EN] = 1.

• Setup channel mode: simple and scatter-gather (SG) mode.

• PS_DMA.CH_DSCR_ATTR and PS_DMA.CH_DATA_ATTR registers.

• Setup DMA mode:

○ Simple mode, program the DSCR registers.

○ SG mode, program the descriptor tables in memory and program the DSCR start address
register.

• Set the FCI control parameters, PS_DMA.CH_FCI [EN, SIDE].

• Set the enable bit, CH2_CTRL [EN]. This triggers the DMA channel to operate.

The DMA channel provides transaction acknowledgment for all valid credits received after the
PS_DMA.CH_FCI [EN] enable bit is set. The DMA channel clears the enable after the controller is
done with the DMA transaction. The software must enable FCI along with the channel enable for
subsequent DMA transfers.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=271

Suggested Use Model

The suggested use-model for applications is:

• SRC and DST payload addresses are aligned to programmed AXI burst length and an over
fetch is enabled.

• Software provides the transfer size details to the flow control slave.

Implementation Notes

• If the suggested use-model requirements are satisfied, attaching FCI to SRC/DST is not
required.

• When FCI is enabled, both the AXI read and write command use the same burst length SRC
AXI length (ARLEN).

• When the SRC and DST descriptor payloads are not aligned to the bus width, the number of
read and write transactions could be different.

• The size of the first and last transaction can be different based on the alignment of the read
and write payload.

• One credit means one AXI read or write transaction. The size of the transaction can vary
based on the 4k boundary crossing and over fetch disable. The DMA channel never generates
a transaction larger than the programmed ARLEN.

• Read/write transactions can be controlled using more than one mechanism. A channel might
not generate a transaction, even if it has credits, due to other channel control parameters.

○ Rate control counter.

○ Outstanding transaction count.

Attached to the SRC

Software can enable the FCI before enabling a channel. The DMA channel uses ARLEN on both
the SRC and DST sides.

Number of SRC transaction = Number of DST transaction
SRC AXI transaction size/length = DST AXI transaction size/length

If a DMA channel is reading data from the flow controlling slave, each credit given to the DMA
channel reads ARLEN x bus width (in bytes) worth of data. ARLEN x bus width (in bytes) worth of
data is written to the FCI slave if the DMA channel is writing data to a slave.

The DMA channel can accept up to 32 credits. The slave can use this to pipeline credits to the
DMA channel. Because of the aligned address requirement, each credit is the transfer size of
ARLEN x bus width (bytes). A slave uses this to keep track of the number of bytes transferred.
This information is used by slave to issue credits.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=272

Channel Reading from a Flow Controlling the PL Slave

A DMA channel reading from a flow controlling the PL slave scenario is similar to the suggested
use model except the one-to-one correlation between SRC and DST AXI commands does not
exist. The number of commands generated on the SRC side can be different than the DST. In this
case, the number of transaction valid responses can be less/more than the number of credits
used. Unless the software calculates the number of valid transactions required for DMA transfer,
the PL memory cannot use the valid transactions.

The DMA channel only generates read data transactions if credit is available. After it has enough
data to generate a write transaction, it issues a write command. The slave can snoop on the AXI
read channel to keep track of the number of beats/bytes read by the DMA channel.

Channel Writing to a Flow Controlling the PL Slave

In a DMA channel writing to a flow controlling the PL slave scenario, the software configures the
FCI to flow control the DST. Each valid credit allows the DMA channel to perform one AXI write
command. If the read/SRC is not flow controlled when the FCI is configured to the flow control
DST, the channel can issue multiple read transactions and use the entire common buffer, which
starves other channels. To resolve this issue, software configures the maximum number of entries
used by the DMA channel. After the DMA channel exceeds the programmed value, it does not
issue more read transactions. The PROG_CELL_CNT of the PS_ZDMA.CH_FCI register can be
programmed in the register.

Maximum number of occupied cells = (ARLEN + 1) << PROG_CELL_CNT

If the software programs PROG_CELL_CNT to zero, the maximum number of entries occupied by
the DMA channel is the same as one AXI4burst.

Because the SRC and DST addresses are unaligned and over fetch can be disabled, the DMA
channel might have to generate multiple read transactions to perform a single write transaction.
Because of this, it is advised to program PROG_CELL_CNT to a 1. As explained previously, the
number of SRC and DST transfers can be different and unless the software calculates the number
of valid transactions required for DMA transfer, the PL slave cannot use the valid transactions.

The DMA channel generates write data transactions only if credits are available. The write
command is only generated when enough credit and enough data is available to generate one
write transaction.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=273

Interrupts
Each DMA channel is independent with its own register set and core interrupts. An interrupt in
one channel does not affect the other channels. Each DMA channel can generate up to fifteen
different interrupts, which are listed in the following table. An interrupt can indicate the
completion of an operation or an error condition.

When a channel interrupt occurs, a bit is set High in its PS_DMA.ISR interrupt status register. If
the corresponding interrupt mask bit is Low (enabled), a system interrupt is generated. There is a
system interrupt for each of the eight DMA channels. These are numbered IRQ #92 to #99 and
are listed in IRQ System Interrupts.

The fifteen DMA channel interrupts can be grouped by interrupt source

• Programming interface: address decode error on APB interface (write by software)

• Descriptor list access (read by DMA unit)

• Data memory access (read and write)

The DMA channel interrupts are listed in the table.

Table 69: PS DMA Channel Interrupt Register Bits

Interrupt Bit Source Description
INV_APB 0 APB programming interface Address access error

SRC_DSCR_DONE 1 Descriptor management Read descriptor completion

DST_DSCR_DONE 2 Descriptor management Write descriptor completion

BYTE_CNT_OVRFL 3 DMA controller Byte count overflow

IRQ_SRC_ACCT_ERR 4 DMA controller Descriptor accounting done overflow on source
reads

IRQ_DST_ACCT_ERR 5 DMA controller Descriptor accounting done overflow on
destination writes

AXI_RD_SRC_DSCR 6 AXI transaction Read descriptor fetch error

AXI_RD_DST_DSCR 7 AXI transaction Write descriptor fetch error

AXI_RD_DATA 8 AXI transaction Read data error

AXI_WR_DATA 9 AXI transaction Write data error

DMA_DONE 10 DMA controller DMA done (with or without error)

DMA_PAUSE 11 DMA controller DMA pause state

WRBUFF_PERR 12 DMA controller RAM parity error; channel data in the common
buffer

FREE_LIST_PERR 13 DMA controller RAM parity error for list of the buffer blocks
available in the common buffer

LINK_LIST_PERR 14 DMA controller RAM parity error for managing the link list in
the DMA controller

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=274

Descriptions
Descriptor Access Done Interrupt

Each time a descriptor entry is done, the PS_DMA CH_ISR [SRC_DSCR_DONE, 1] or
[DST_DSCR_DONE, 2] interrupt bit is asserted for read and write operations, respectively.

Accounting Done Overflow Interrupts

The accounting overflow occurs when the number of descriptors processed exceeds the
programmed count.

When descriptor count is enabled, each descriptor done event increments a descriptor done
counter. There are separate accounting counter registers for SRC and DST transactions; PS_DMA
CH_ISR [IRQ_SRC_ACCT] and [IRQ_DST_ACCT] bits.

An interrupt accounting counter overflow is indicated as a SRC or DST interrupt; PS_DMA
CH_ISR [IRQ_SRC_ACCT_ERR, 4] and [IRQ_DST_ACCT_ERR, 5]. This is a non-fatal error as it
does not affect the channel functionality.

Byte Transfer Overflow Interrupt

A transfer overflow occurs when the number of bytes transferred is more than the bytes
requested.

The number of bytes to transfer is programmed in the PS_DMA CH_SRC_DSCR_WD2 and
CH_DST_DSCR_WD2 [SIZE] register fields. This value is compared with an internal counter. The
internal counter increments by 1 for each byte that is transferred on the interconnect. The
counter is updated when the channel receives the BREP signal to show the AXI transaction is
done.

Note: The internal counter continues to increment during an error.

A transfer overflow generates the PS_DMA CH_ISR [BYTE_CNT_OVRFL, 3] interrupt bit. This is
a non-fatal error and does not affect the functionality of the DMA channel.

AXI Descriptor Read Errors

If an error occurs during an AXI descriptor table read transaction, a descriptor read error
interrupt is generated. There are two interrupt bits; one when fetching source descriptors
PS_DMA CH_ISR [AXI_RD_SRC_DSCR, 6] and one when fetching destination descriptors
[AXI_RD_DST_DSCR, 7].

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 275Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_dscr_wd2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=275

AXI Data Access Errors

If an error occurs during an AXI data read/write transaction, the DMA channel performs an error
recovery sequence and recovers all occupied entries in the common buffer. After completing the
error recovery sequence, it generates the PS_DMA CH_ISR [AXI_RD_DATA, 8] or
[AXI_WR_DATA, 9] error interrupt and disables the channel.

DMA Done Interrupt

When the DMA data transfer is completed (with or without error), the controller asserts the
PS_DMA CH_ISR [DMA_DONE] interrupt.

DMA Pause Interrupt

The DMA data transfer can be paused using the CH_SRC_DSCR_WD3 [CMD] bit. When this
occurs, it can be seen in the CH_STATUS [STATE] and, optionally, generate an interrupt that is
posted to the PS_DMA CH_ISR [DMA_PAUSE] bit.

RAM Parity Errors

The controller includes three RAM memories that are protected by parity error logic. The parity
error causes bits to be set in the PS_DMA CH_ISR register:

• Common data buffer stores data [WRBUG_PERR, 12]

• Internal RAM indexes the slots available in the common buffer [FREE_LIST_PERR, 13]

• Internal RAM used to manage link lists [LINK_LIST_PERR, 14]

Software Programming Errors

Software must ensure the DMA is programmed properly. The controller hardware cannot recover
from a programming error. The DMA channel behavior is unpredictable.

Transaction Security
The DMA allows software to mark each channel secure/non-secure by programming the
LPD_SLCR_SECURE DMA_Ch0_TZ (0 to 7) register. The secure bit field [tz] includes eight bits to
set the TrustZone security setting for the 8 DMA channels. If a channel is marked secure, only a
secure master can access its DMA control and status registers. The DMA tags all the AXI
transactions secure if a channel is marked secure.

Secure DMA channel characteristics include the following:

• Only secure masters can access their control and status registers.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 276Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___dma_ch0_tz.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=276

• All AXI transactions from this channel are marked secure. They can access both secure and
non-secure regions.

Non-secure DMA channel characteristics include the following:

• Both secure and non-secure masters can access their control and status registers.

• All AXI transactions from this channel are marked non-secure, and can access only non-secure
regions.

Channel Pause
The software can pause any channel by setting the scatter-gather descriptor command bits to
pause. This feature is used to pause the DMA operation and program the next set of descriptors.

Current DSCR indicates CMD = Pause

If the current descriptor command bits indicates a pause, the DMA channel completes the
current descriptor payload to the DST locations. After it is done with data transfer, the DMA
channel goes into pause mode. The channel keeps the current operational state.

Coming Out of Pause
There are two ways to bring a channel out of pause and into active mode:

• Keep the current state and read the next descriptor continuously from the last descriptor
before going into pause.

CONT bit is set in the control register and [CONT_ADDR] = 0.

• Use the DSCR start address to fetch the first descriptor coming out of pause.

CONT bit is set in the control register and [CONT_ADDR] = 1.

Software can also put the DMA channel in disable mode from pause mode: Mode = Pause,
enable = 0, and [CONT] = 1.

Programming Model for Changing DMA
Channel States

A DMA channel can be in one of the following states at any time. This section explains each
state.

• Disabled

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=277

• Enabled

• Paused

Channel Enabled
The software can enable one or more channels at any time using the following enable sequence.

1. Setup channel mode (simple or scatter-gather mode).

2. Set the PS_ZDMA.CH_DATA_ATTR and PS_ZDMA.CH_DSCR_ATTR attribute registers.

3. Setup DMA mode.

a. Simple mode, program the DSCR registers.

b. In scatter-gather mode, program the DSCR in memory and program the DSCR start
address register.

4. Set enable bit in the PS_ZDMA.CH_CTRL2 register. This provides a trigger to the DMA
channel.

Channel Disabled
The channel can go into a disabled state for these reasons:

• Current SRC descriptor indicates CMD = STOP.

○ DMA processes the current descriptor and goes into a disable state.

○ DMA channel ensures that all the data is transferred to the DST memory location before
going into a disable state and updating the status register.

○ This mechanism can be used to indicate the end of an operation.

• DMA channel is in simple DMA mode and transfer is done.

○ After a channel is done transferring the data indicated into the SRC/DST DSCR register,
the channel goes into a disable state.

○ For subsequent transfers, the software must enable the channel.

• Software can put any paused channel into a disable state.

○ The current channel state is pause and it has received a CONT from the APB register.

Mode = Pause & enable = 0 and CONT = 1

The DMA channel goes into disable mode

• Any error detected on an AXI channel/descriptor programming puts the DMA channel into a
disable state.

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=278

Register Reference
DMA Channel Registers
The LPD DMA registers are listed in the following table. The register base address for each
channel is:

• Channel 0, 0xFFA8_0000

• Channel 1, 0xFFA9_0000

• Channel 2, 0xFFAA_0000

• Channel 3, 0xFFAB_0000

• Channel 4, 0xFFAC_0000

• Channel 5, 0xFFAD_0000

• Channel 6, 0xFFAE_0000

• Channel 7, 0xFFAF_0000

Table 70: LPD DMA Channel Register Set

Register Name Address Offset Access Type Description
ERR_CTRL 0x000 RW APB address decode error

CH_ISR
CH_IMR
CH_IER
CH_IDR

0x100
0x104
0x108
0x10C

WTC,
R
W
W

Interrupt status, mask, enable,
and disable

CH_CTRL0
CH_CTRL1
CH_CTRL2

0x110
0x114
0x200

RW Controls

CH_FCI 0x118 RW Flow control interface

CH_STATUS 0x11C R State of channel

CH_DATA_ATTR
CH_DSCR_ATTR

0x120
0x124

RW
RW

Data and descriptor AXI
parameters

CH_SRC_DSCR_WD0
CH_SRC_DSCR_WD1
CH_SRC_DSCR_WD2
CH_SRC_DSCR_WD3

0x128
0x12C
0x130
0x134

RW Source descriptor words

CH_DST_DSCR_WD0
CH_DST_DSCR_WD1
CH_DST_DSCR_WD2
CH_DST_DSCR_WD3

0x138
0x13C
0x140
0x144

RW Destination descriptor words

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 279Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___err_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_ctrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_fci.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_dscr_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_dscr_wd0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=279

Table 70: LPD DMA Channel Register Set (cont'd)

Register Name Address Offset Access Type Description

CH_WR_ONLY_WD0
CH_WR_ONLY_WD1
CH_WR_ONLY_WD2
CH_WR_ONLY_WD3

0x148
0x14C
0x150
0x154

RW Write only data words

CH_SRC_START_L
CH_SRC_START_H

0x158
0x15C RW Source descriptor start address

CH_DST_START_L
CH_DST_START_H

0x160
0x164 RW Destination descriptor start

address

CH_RATE_CTRL 0x18C RW Rate control count

CH_IRQ_SRC_ACCT 0x190
0x194

RW
RW

Source and destination interrupt
account count

I/O Flow Control Signals
The controller has a set of flow control signals attached to the PL. These are optionally used to
manage the flow of data between the controller and a slave memory in the PL.

Each channel has flow control signals routed to the PL.

• PL2DMA

• DMA2PL

Section VI: Engines
Chapter 26: PS DMA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 280Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_wr_only_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_src_start_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_dst_start_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_rate_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_irq_src_acct.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=280

Section VII

Embedded Processor,
Configuration, and Security Units

This section includes chapters that describe the functionality of a core set of PMC blocks. These
are listed below. This section does not include the flash controller chapters, JTAG, or system-
level topics. Those chapters are located in other sections of the TRM.

All of the chapters related to platform management are organized into groups in the Overview
chapter. The remaining chapters are assigned to platform management-specific functional units
and modules:

• Overview

• Platform Processing Unit (PPU)

• Processing System Manager (PSM)

• PL Configuration

○ Configuration Frame Unit (CFU)

○ Configuration Frame Interface (CFI)

• Slave Boot Interface (SBI)

• Streaming Interconnect Module

○ Secure Stream Switch

○ PMC DMAs

○ AES-GCM

○ SHA3-384

• RSA/ECDSA

• True Random Number Generator (TRNG)

• Physically Unclonable Function

• Battery-Backed RAM (BBRAM)

Section VII: Embedded Processor, Configuration, and Security Units

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=281

Chapter 27

Overview
The platform management hardware includes processors, configuration units, and security units
to support hardware and software boot operations. The PMC hardware architecture is illustrated
in PMC Interconnect.

The PMC includes the ROM code unit (RCU) processor running the BootROM code for the
hardware boot process. The PMC also includes the platform processing unit (PPU) running the
platform loader and manager (PLM) firmware that is loaded by the PMC BootROM code. The
platform management operations are described in the Platform Management Controller chapter.

The many chapters for the blocks that are used for platform management are divided into the
following groups. Many of these links go to other sections of the TRM.

Boot Interface Hardware

The boot modes are summarized in Boot Modes. The controllers for these boot modes are
described in these TRM sections:

• Section XIII: Flash Memory Controllers

• JTAG Boot Mode

• Slave Boot Interface

Platform Management Processors

There are three platform management processor units:

• ROM code unit (RCU runs BootROM code)

• Platform Processing Unit (PPU runs PLM firmware initially downloaded by BootROM)

• Processing System Manager (PSM runs firmware downloaded by PLM)

Inter-processor Interrupts

The inter-processor interrupts (IPI) enable the PPU, PSM, and other processors in the PS to signal
and send short private messages between each IPI agent.

• Inter-Processor Interrupts for processor-to-processor communications

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 27: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=282

Global Register Request Interrupts

The requests for platform management (from system software) are directed to the PLM firmware
in the PMC or to the PSM firmware in the LPD.

• Processor Global Registers

• PSM Global Registers

System Error Signals

System errors are reported via the error status accumulator registers:

• PMC Error Status Accumulator Registers

• PSM Error Status Accumulator Registers

Streaming Module

The streaming switch interfaces to the encrypted bit streams and security units are generally only
accessed by the PLM to manage authentication and encryption/decryption:

• AES-GCM

• SHA3-384

• PMC DMAs, DMA0 and DMA1

• Secure Stream Switch (SSS)

Additional PMC Units

Additional units include:

• RSA/ECDSA

• True Random Number Generator (TRNG)

• Battery-Backed RAM (BBRAM)

PMC Programming Interfaces

There are three programming/configuration interfaces.

• APB programming interface (memory mapped registers for PMC and PS)

• NPI programming interface (memory mapped registers for NoC, DDRMC, AI Engine and
others)

• CFU slave interface consumes PL configuration files (configuration frames)

These are described in Programming Interfaces chapter.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 27: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=283

Chapter 28

Platform Processing Unit
The platform processing unit (PPU) normally runs the platform loader and manager (PLM)
firmware. The PLM configures the system, downloads boot image files, monitors the system, and
provides platform services. The resources available to the PPU firmware include security, power
control, error detection, and functional safety features.

The PPU implements the MicroBlaze™ architecture. It is a host on the PMC main switch and
issues TrustZone-secure transactions.

Features
The PPU includes the following features:

• 32-bit MicroBlaze processor with triple modular redundancy (TMR)

• PPU RAM with 384 KB storage

○ Local PPU memory for instructions and data

○ ECC protected

The PPU can also access the PMC system RAM (128 KB) attached to the PMC main switch.

Programming Model
The PMC processing unit (PPU) is based on a MicroBlaze triple module redundant processor. The
platform loader and management (PLM) firmware is downloaded into the PPU RAM memory
during the BootROM process. The PLM controls the system during normal and abnormal
operations. The PLM programming uses the PPU processor programming model. The
programming model includes:

• MicroBlaze processor

• Global control and status registers

• PPU and PMC RAM memories

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=284

• Memory-mapped access to NoC, PL, and LPD resources

• Memory-mapped programming interfaces: APB and NPI

• System-level interrupts, errors, and other signals

Interrupts
Each PPU generates two system interrupts:

• Memory, FPU, access errors (IRQ 43, 44)

• Performance monitor (IRQ 40, 41)

The PPU receives the system interrupts via its GIC proxy registers.

APB Address Decode Error

The PPU generates a system interrupt when the APB programming interface detects an address
decode error.

GIC Proxy Interrupt Controller

The GIC proxy clients PPU and PSM receive all system interrupts. The masking is controlled by
the global registers.

Inter-processor Interrupts

The PPU processor is a hardwired IPI agent. This enables the PLM firmware to receive and
establish communication channels between itself and other IPI processor agents. The IPI is
described in Inter-Processor Interrupts.

System Interrupts
The PPU receives all of the system interrupts into its PMC Global register module.

Service Requests to PLM
When system software makes a platform service request, the PLM needs to analyze the system
state and take action on the request. If the request can be granted, it accesses its PMC local
registers to satisfy the request. If the request cannot be granted or there is an issue, it needs to
communicate back to the requester.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=285

The system software can make the following service requests to the PLM using the
PMC_GLOBAL registers. The requests are explained in these sections:

• Major subsystem power up and down in Power and Isolation

• Subsystem and controller resets in Reset Service Requests

• Test and debug CoreSight Wake-Up

Power and Isolation
The power-up, power-down, and isolation service requests for the major subsystems are
triggered by setting bits in the PPU global register set. The PLM firmware receives an interrupt
request unless the interrupt is masked. The PLM manages the service request interrupts with
status and mask registers.

Three power request types are as follows:

• Power up: REQ_PWRUP_TRIG

• Power down: REQ_PWRDWN_TRIG

• Isolation: REQ_ISO_TRIG

For three power domains:

• LPD

• SPD (includes NoC and DDRMC)

• PL

CoreSight Wake-Up
The CoreSight wake-up request is made by accessing the REQ_WAKEUP_TRIG register.

• Bit [0] for Arm GPR in LPD

• Bit [0] for Arm GPR in CPM

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 286Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_global.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_wakeup_trig.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=286

Authenticated JTAG
The Versal device allows for debug enablement of a secure system via an external interface (i.e.,
JTAG). JTAG is disabled by default when using Asymmetric Hardware Root of Trust Secure Boot
or Symmetric Hardware Root of Trust Secure Boot. The securely disabled JTAG port listens for a
cryptographically signed AUTH_JTAG message (RSA or ECDSA signed). If such a message is
received and the signature is verified, the JTAG port is enabled by the PMC. Improperly
authenticated messages can be ignored or can place the device into a secure lockdown. The
authenticated JTAG feature is disabled by default, automatically enabled when a PPK hash is
programmed, and can be permanently disabled using eFUSEs. A high-level overview of this
method is shown in the following figure.

The AES key selection values are included in the Versal ACAP Security Manual (UG1508). This
manual requires an active NDA to download from the Design Security Lounge.

Figure 50: Secure Enablement of JTAG Interface

Authenticated JTAG
Message Buffer

JTAG
TAP

JTAG/IF

PMC
MicroBlaze

Interrupt

AXI Register I/F

X24126-061220

Tamper Event Monitoring and Response
System

The Versal device has a robust tamper monitoring and response system. This system allows for
the detection of, with programmable responses to, voltage glitches, voltage and temperature
deviations, and activity on external debug interfaces (e.g., JTAG). Supporting extensibility to a
larger tamper system, the Versal device allows for the enablement of an external tamper trigger
with a programmable response. For additional details, see the Versal ACAP Security Manual
(UG1508). This manual requires an active NDA to download from the Design Security Lounge.

PMC Processor Register Reference
The PMC register modules include:

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 287Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=287

• Processor Global Registers

• Processor Local Registers

Each module includes a 32-bit APB programming interface. The APB programming interface is
described in Programming Interfaces.

Processor Global Registers
The global registers serve several purposes:

• Register set control and status

• Persistent and non-persistent 32-bit storage registers

• Miscellaneous status, state, and errors

• Platform service requests including power, isolation, reset, and wake-up

• Safety check

The PMC global register set is accessed via a 32-bit APB programming interface that can be
accessed by any permitted system processor.

The platform service request registers allow system software to make power-up, power-down,
isolation, and software reset requests by setting bits in the trigger registers. These are explained
in Service Requests to PLM.

The entire PMC global register set is summarized in the following table.

Table 71: PMC Global Register Set Overview

Register Name Offset Address Access Type Description
Miscellaneous

GLOBAL_CNTRL 0x0000 RW, R APB error, PLM firmware is loaded flag, MB
status, and MB clock control (GLOBAL_CTRL)

PMC_MULTI_BOOT 0x0004 RW Multiboot offset address

PPU_TMR_CTRL 0x0008 RW LMB ECC error propagation select

APB_MISC_ISR
APB_MISC_IMR
APB_MISC_IER
APB_MISC_IDR

0x0010+ W1C APB address decode error, secure stream
configuration error, and PUF access error

32-bit Storage Registers

GLOBAL_GEN_STORAGE0
GLOBAL_GEN_STORAGE1
GLOBAL_GEN_STORAGE2
GLOBAL_GEN_STORAGE3
GLOBAL_GEN_STORAGE4

0x0030+ RW
Storage registers 0, 1, 2, 3, and 4 are reserved
for use by the PLM firmware. There are also
PSM_GLOBAL storage registers, see PSM
Global Registers.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 288Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___global_cntrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_multi_boot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_tmr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___apb_misc_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___apb_misc_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___global_gen_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___global_gen_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___global_gen_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___global_gen_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___global_gen_storage4.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=288

Table 71: PMC Global Register Set Overview (cont'd)

Register Name Offset Address Access Type Description

PERS_GLOB_GEN_STORAGE0
PERS_GLOB_GEN_STORAGE1
PERS_GLOB_GEN_STORAGE2
PERS_GLOB_GEN_STORAGE3
PERS_GLOB_GEN_STORAGE4

0x0050+ RW
Persistent storage registers 0, 1, and 2 are
reserved for use by PLM firmware. Persistent
storage registers 3 and 4 are general use. The
persistent storage registers are only reset by
an external POR.

PMC Software Service Errors

PMC_GSW_ERR 0x0064 RW General software service errors from PLM

Power, Isolation, Reset, and Wake-up Requests

DOMAIN_ISO_STATUS 0x0100 R Isolation wall status

PWR_SUPPLY_STATUS 0x010C R Power supply status

REQ_PWRUP_ISR
REQ_PWRUP_IMR
REQ_PWRUP_IER
REQ_PWRUP_IDR
REQ_PWRUP_TRIG

0x0110+

R, W1C
R
W
W
W

System software power down requests:
- LPD
- SoC power domain (SPD)
- PL
The SPD includes NoC and DDR memory
controller power

REQ_PWRDWN_ISR
REQ_PWRDWN_IMR
REQ_PWRDWN_IER
REQ_PWRDWN_IDR
REQ_PWRDWN_TRIG

0x0210+

R, W1C
R
W
W
W

Power-up requests

REQ_ISO_ISR
REQ_ISO_IMR
REQ_ISO_IER
REQ_ISO_IDR
REQ_ISO_TRIG

0x0310+

R, W1C
R
W
W
W

Isolation requests

REQ_SWRST_ISR
REQ_SWRST_IMR
REQ_SWRST_IER
REQ_SWRST_IDR
REQ_SWRST_TRIG

0x0410+

R, W1C
R
W
W
W

System software reset requests:
- PS
- LPD
- SPD
- PL

REQ_WAKEUP_ISR
REQ_WAKEUP_IMR
REQ_WAKEUP_IER
REQ_WAKEUP_IDR
REQ_WAKEUP_TRIG

0x0430+

R, W1C
R
W
W
W

CoreSight™ wake-up GPR for LPD and CPM

Miscellaneous

DDR_RETENTION_CTRL 0x0324 RW
Hold the XPIO output latched values to
support DRAM self-refresh mode so the
DDRMC power (SPD) can be shut down

DBG_PWR_ACK 0x0444 RW CoreSight power-up acknowledge for LPD and
CPM

SSS_CFG 0x0500 RW Secure stream switch interface configuration

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 289Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_gsw_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___domain_iso_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pwr_supply_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_iso_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_iso_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_iso_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_iso_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_iso_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_wakeup_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_wakeup_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_wakeup_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_wakeup_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_wakeup_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ddr_retention_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___dbg_pwr_ack.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___sss_cfg.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=289

Table 71: PMC Global Register Set Overview (cont'd)

Register Name Offset Address Access Type Description

PPU_MB_FATAL
PPU_MB1_FT_STATUS
PPU_MB2_FT_STATUS
PPU_MB3_FT_STATUS

0x0610
0x0614
0x0618
0x061C

R PPU TMR redundancy logic status

PPU_RST 0x0620 RW PPU reset control

PPU_RST_MODE 0x0624 RW PPU reset mode configuration

PPU_AXI_QOS 0x0634 RW PPU AXI QoS value

SAFETY_CHK 0x0800 RW Safety check register

PL_STATUS 0x0880 R PL reset status

DONE 0x0884 RW DONE output pin control

SEM

SEM_STATUS
SEM_ERROR

0x1018
0x1020

RW SEM CRAM and NPI scan status

SEM_CFR_ERRCODE 0x1020 RW CRAM scan errorc code (or SEM_CMD_REG0)

SEM_CRAMERR_ADDRL0
SEM_CRAMERR_ADDRH0
(4 addresses: 0 to 3)

0x1040+ RW Four error addresses, eight registers

Software Mutexes

PMC_GLOBAL.PMC_MUTEX_n
registers 0x1100+ RW Software mutex registers

Register Write Locks

PPU_RST_LOCK 0x1200 RW Control locking of PPU_RST resettable
registers

POR_LOCK 0x1204 RW Control locking of POR resettable registers

Processor Local Registers
The PMC PLM firmware and the PSM firmware control system resets, power, isolation, wake-up,
and others. These software environments work together to manage the platform.

The PLM and PSM accept platform requests from system software via the Processor Global
Registers. These requests are normally turned into sequences for the PLM firmware and PSM
firmware that access the platform local control and status registers.

The PMC local control and status registers are listed in the following table.

Table 72: PMC Local Control and Status Registers

Register Name Offset
Address Access Type Description

Miscellaneous

BH_IMG_ATTR 0x0024 RW Boot header image attributes

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 290Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_mb_fatal.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_mb1_ft_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_mb2_ft_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_mb3_ft_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_rst.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_rst_mode.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_axi_qos.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___safety_chk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pl_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___done.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___sem_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___sem_error.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___sem_cfr_errcode.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___sem_cramerr_addrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___sem_cramerr_addrh0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___ppu_rst_lock.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___por_lock.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=290

Table 72: PMC Local Control and Status Registers (cont'd)

Register Name Offset
Address Access Type Description

SYS_INTERRUPT 0x0028 W System interrupt trigger for tamper, PUF

BBRAM_KEY_LOCK
EFUSE_KEY_LOCK

0x0034
0x0038

RW Unlock path from key space

32-bit Storage Registers

PMC_LCL_STORAGE0
PMC_LCL_STORAGE1
PMC_LCL_STORAGE2
PMC_LCL_STORAGE3
PMC_LCL_STORAGE4

0x0050+ RW General 32-bit storage registers

PERS_PMC_LCL_STORAGE0
PERS_PMC_LCL_STORAGE1
PERS_PMC_LCL_STORAGE2
PERS_PMC_LCL_STORAGE3
PERS_PMC_LCL_STORAGE4

0x0064+ RW General 32-bit storage registers
Reset only by a POR

Miscellaneous

PMC_BOOT_ERR 0x2000 RW RCU BootROM error indicator

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 28: Platform Processing Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=291

Chapter 29

Processing System Manager
The processing system manager (PSM) is a processor in the LPD that controls the power islands
in the PS. The PLM downloads firmware into the PSM RAM for the processor to execute.

The PSM includes global registers that are written by system software to request platform
services. This functionality is explained in PSM Global Registers.

The PSM is a triple module redundant (TMR) MicroBlaze™ processor.

Features
The PSM includes the following features:

• 32-bit MicroBlaze processor with triple modular redundancy

• Local RAM for instruction and data

• GIC proxy system interrupt controller

• Register controls for PS power islands

System Perspective
The PSM provides platform management services and is located in the LPD.

The PSM initiates 32-bit transactions to the LPD main switch.

The PLM, RPU, and other software can access the PSM MicroBlaze™ via a 32-bit ePort on the
LPD interconnect switch.

Interrupts
The PSM generates a core interrupt and a dedicated inter-processor interrupt (IPI).

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=292

• PSM core interrupt: IRQ #82

• PSM dedicated inter-processor interrupt (IPI): IRQ #61

The PSM also receives all the system interrupts via its GIC proxy registers.

Core Interrupts

The PPU generates a system interrupt when the APB programming interface detects an address
decode error.

System Interrupts

The PSM can be a GIC proxy client for the system interrupts. The interrupt masking is controlled
by the PSM global registers.

Reset
The PSM can be reset in several ways, including:

• POR reset

• PS reset

• LPD reset

Processor State After Reset
After a reset, the PSM can come up executing or in a sleep state. The control registers are shown
in the table.

Table 73: PSM Reset Mode and Wake-up Register Control

Register Name Bit Field Address Access
Type Description

PSM_RST_MODE

[rst_mode]

0xFF5E_0370 RW

PSM processor after reset:
00: Execution mode
01: Sleep mode

[wakeup]
PSM processor wake-up:
0: sleep
1: execute

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 293Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___psm_rst_mode.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=293

PSM Register Reference
• PSM Global Registers

• PSM Service Requests

• PSM Local Registers

PSM Global Registers
The entire PSM global register set is summarized in the following table.

Table 74: PSM Global Register Set Overview

Register Name Offset Address Access Type Description
Miscellaneous

GLOBAL_CTRL 0x0000 RW, R APB slave error enable, FW loaded, PSM master
R/W QoS, PSM sleep, wake status, and clock control

APU_PWR_STATUS_INIT 0x0008 RW APU 0 and 1 power state value

APB_ISR
APB_IMR
APB_IER
APB_IDR

0x0010+
R, W1C

R
W
W

APB programming interface address decode error

PS_SW_ERR 0x0020 RW Software errors detected by PSM

PSM_BOOT_SERV_ERR 0x0024 RW Boot and service errors detected by PSM

32-bit Storage Registers

GLOBAL_GEN_STORAGE0
GLOBAL_GEN_STORAGE1
GLOBAL_GEN_STORAGE2
GLOBAL_GEN_STORAGE3
GLOBAL_GEN_STORAGE4
GLOBAL_GEN_STORAGE5
GLOBAL_GEN_STORAGE6
GLOBAL_GEN_STORAGE7

0x0030+ RW General 32-bit storage registers.

PERS_GLOB_GEN_STORAGE0
PERS_GLOB_GEN_STORAGE1
PERS_GLOB_GEN_STORAGE2
PERS_GLOB_GEN_STORAGE3
PERS_GLOB_GEN_STORAGE4
PERS_GLOB_GEN_STORAGE5
PERS_GLOB_GEN_STORAGE6
PERS_GLOB_GEN_STORAGE7

0x0050+ RW General 32-bit storage registers. The persistent
storage registers are only reset by an external POR.

Power State Status

PWR_STATE
AUX_PWR_STATE

0x0100
0x0104

R Power and retention states for power islands and
memories

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 294Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___apu_pwr_status_init.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___apb_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___apb_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___apb_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___apb_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___ps_sw_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_boot_serv_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage5.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage6.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___global_gen_storage7.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage5.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage6.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage7.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pwr_state.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___aux_pwr_state.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=294

Table 74: PSM Global Register Set Overview (cont'd)

Register Name Offset Address Access Type Description
Power, Isolation, Reset, and Wake-up Requests

REQ_PWRUP_ISR
REQ_PWRUP_IMR
REQ_PWRUP_IER
REQ_PWRUP_IDR

0x0110+
R, W1C

R
W
W

System software power down requests:
- APU 0, APU 1, APU L2 cache
- RPU cores, TCM banks
- OCM banks, GEM 0, GEM 1, FPD

REQ_PWRDWN_ISR
REQ_PWRDWN_IMR
REQ_PWRDWN_IER
REQ_PWRDWN_IDR

0x0210+
R, W1C

R
W
W

System software power up requests

REQ_ISO_ISR
REQ_ISO_IMR
REQ_ISO_IER
REQ_ISO_IDR

0x0310+
R, W1C

R
W
W

FPD isolation request

REQ_SWRST_ISR
REQ_SWRST_IMR
REQ_SWRST_IER
REQ_SWRST_IDR

0x0410+
R, W1C

R
W
W

Subsystems and Power Islands:
- APU 0, APU 1, APU MP, RPU
- GEM 0, Gem 1, USB 2.0
- I/O peripherals, PS, LPD, FPD

REQ_WAKEUP_ISR
REQ_WAKEUP_IMR
REQ_WAKEUP_IER
REQ_WAKEUP_IDR

0x0700+
R, W1C

R
W
W

Wake-up requests:
- APU 0, APU 1 from APU GIC
- RPU 0, RPU 1 from RPU GIC
- USB 2.0
CoreSight wake-up requests:
- GPR for APU 0, APU 1
Debug power for:
- APU 0, APU 1, RPU, FPD

REQ_CTRL_ISR
REQ_CTRL_IMR
REQ_CTRL_IER
REQ_CTRL_IDR

0x0714+
R, W1C

R
W
W

Power-down requests:
- From APU 0, APU 1
- From RPU 0, RPU 1
Reset request from RPU 0
Warm reset request:
- For APU 0, APU 1 from APU MP
- For APU 0, APU 1 from APU debug
FPD power alarm

Miscellaneous

DBG_PWR_ACK 0x0808 RW
Debug power-up acknowledge:
- APU 0, APU 1
- RPU
- FPD

SAFETY_CHK 0x0A00 RW Safety check register

PSM Service Requests
This section includes the global registers used by system software to request several platform
services.

• Power up and down of domains and islands

• Isolation of interfaces and signals between power domains

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 295Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrup_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrup_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrup_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrup_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrdwn_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrdwn_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrdwn_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_pwrdwn_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_iso_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_iso_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_iso_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_iso_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_swrst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_swrst_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_swrst_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_swrst_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_wakeup_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_wakeup_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_wakeup_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_wakeup_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_ctrl_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_ctrl_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_ctrl_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_ctrl_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___dbg_pwr_ack.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___safety_chk.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=295

• Reset of subsystems and power domains

The service requests are serviced by the PLM and PSM firmware. System software writes to the
PMC and PSM global registers to request a service.

Power Islands

The power-up, power-down, and isolation service requests for the functional units are triggered
by setting bits in the PSM global register set. The PSM firmware receives an interrupt request
unless the interrupt is masked. The firmware manages the service request interrupts with status
and mask registers.

The power and isolation requests for the major subsystems are listed in the following table.

Table 75: PSM Global Power and Isolation Service Requests

Power Island

Power-up and -down Request Register
Bits Power State Status Bits

REQ_PWRUP_TRIG
REQ_PWRDWN_TRIG PWR_STATE

APU core 0
APU core 1

0
1

0
1

APU L2 cache 7 7

RPU core 0
RPU core 1

10
11

10
11

RPU 0 TCM A
RPU 0 TCM B
RPU 1 TCM A
RPU 1 TCM B

12
13
14
15

12
13
14
15

OCM Bank 0
OCM Bank 1
OCM Bank 2
OCM Bank 3

16
17
18
19

16
17
18
19

GEM1
GEM0

20
21

20
21

FPD 22 22

Wake-Up Service Requests

The blocks that the PSM can wake up are listed in the following table.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 296Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_trig.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=296

Table 76: PSM Wake-up Service Requests

Block Name
Wake-up Request

REQ_WAKEUP_TRIG Register Bits

APU core 0
APU core 1

0
1

RPU core 0
RPU core 1

4
5

USB 2.0 6

APU core 0 CoreSight
APU core 1 CoreSight

16
17

PSM Local Registers
The PS power island control and status registers are listed in the following table.

Table 77: PS Power Island Control and Status Registers

Register Name Offset
Address Access Type Description

APU0_PWR_CTRLAPU0_P
WR_STATUSAPU1_PWR_C
TRLAPU1_PWR_STATUS

0x0000+
RW
R
W
R

APU cores power control and status

RPU_PWR_CTRL
RPU_PWR_STATUS

0x0080
0x0084

RW
R RPU power control and status

L2_PWR_CTRLL2_CE_CTR
LL2_PWR_STATUS

0x00B0
0x00B8
0x00BC

RW
RW
R

L2 cache power control/status and chip enables

OCM_PWR_CTRLOCM_CE
_CTRLOCM_PWR_STATUS

0x00C0
0x00C8
0x00CC

RW
RW
R

OCM power control/status and chip enables

TCM_PWR_CTRLTCM_CE_
CTRL
TCM_PWR_STATUS

0x00D0
0x00D8
0x00DC

RW
RW
R

RPU power control/status and chip enables

GEM_PWR_CTRLGEM_CE
_CTRLGEM_PWR_STATUS

0x00E0
0x00E4
0x00E8

RW
RW
R

GEM power control/status and chip enables

DOMAIN_ISO_CTRL 0x00F0 RW Isolations: LPD-FPD and LPD-XRAM

LOC_PWR_STATE 0x0100 RW Power status of LPD blocks

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 297Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_wakeup_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu0_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu0_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu0_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu1_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu1_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu1_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___rpu_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___rpu_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___l2_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___l2_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___l2_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___l2_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___tcm_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___tcm_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___tcm_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___tcm_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___domain_iso_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___loc_pwr_state.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=297

Table 77: PS Power Island Control and Status Registers (cont'd)

Register Name Offset
Address Access Type Description

APB_ERR_ISRAPB_ERR_I
MRAPB_ERR_IERAPB_ER
R_IDR

0x0320

R, W1C
R
W
W

APB address decode error interrupt

APU_WFI_STATUS 0x0418 R APU wake for status on APU cores and L2 cache

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 29: Processing System Manager

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 298Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apb_err_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apb_err_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apb_err_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apb_err_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apb_err_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apb_err_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu_wfi_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=298

Chapter 30

PL Configuration
The PL is configured by sending programmable device image (PDI) partition information to the
configuration frame unit (CFU). The CFU interprets the data received via the PMC main AXI
switch and generates commands to the configuration frame interface (CFI). The CFI bus
transactions are sent to the CFRAMEs scattered throughout the programmable logic (PL). This
configures the DSPs, CLBs, block RAM, UltraRAM, distributed RAM, clocking structures, and
more in the PL.

Configuration Frame Unit
The configuration frame unit (CFU) translates AXI traffic into the CFI bus protocol, performs data
integrity checks, and manages the CFI traffic. The CFU also performs several functions including
frame write rate matching, frame read rate matching, frame read/write transition, row switching,
decompression, and putting the configuration frame interface (CFI) into idle.

The CFU is the only master for the CFI bus. The input CFU reference clock runs at the same rate
as the output CFI clock frequency. The CFU AXI interfaces support 32-bit, 64-bit, or 128-bit
transactions. The CFU AXI must 128-bit align the 32-bit and 64-bit transactions. The CFU
cannot support multiple AXI masters at the same time. A single master can control both CFU AXI
write and read to perform CFI readback.

The programmable device image (PDI) created with the Vivado® or Vitis™ tool contains PL
partition data that the PMC CFU manages. The CFU handles the transfer of configuration data
through the CFI to the configuration frames in the PL. The CFU ensures that the configuration
frames are ready to accept the CFI bus transactions sent to them. The CFU checks the packet
data to determine if the packet rate sent needs to be slower and throttles the AXI interface as
necessary. The CFU also performs data decompression on the PL_CFI partition included in
the .RCDO. PDI compression is set by default in the Versal™ device. For more information on
changing the compression option, see Vivado Design Suite User Guide: Programming and Debugging
(UG908).

The CFU includes a programming interface to the CFRAMExx_REG register modules. These are
used to configure the functionality, poll status, and generate PL global signal sequences. The CFU
provides several configuration frame data-in ports (CFRAMExx_FDRI) and a configuration frame
data-out port (CFU_FDRO).

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 30: PL Configuration

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 299Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=299

CFU Address Map

The PL configuration address space includes the following.

• Register modules

○ CFU_APB (aka CFU_CSR) at 0xF12B_0000

○ CFRAMExx_REG control and status registers (see following table)

• Data ports

○ CFU_STREAM at 0xF12C_0000, 4 KB

○ CFU_SFR at 0xF12C_1000, 4 KB

○ CFU_FDRO data-out port at 0xF12C_2000, 4 KB

○ CFRAMExx_FDRI data-in ports, 4 KB each (see following table)

Note: The number of configuration frames is based on the size of the PL and is dependent on the device.

Table 78: Configuration Frame Register and Data-In Port Address Map

Configuration
Frame Number Register Name Register Address Frame Port Name Frame Port Input

Address
0 CFRAME00_REG 0xF12D_0000 CFRAME00_FDRI 0xF12D_1000

1 CFRAME01_REG 0xF12D_2000 CFRAME01_FDRI 0xF12D_3000

2 CFRAME02_REG 0xF12D_4000 CFRAME02_FDRI 0xF12D_5000

3 CFRAME03_REG 0xF12D_6000 CFRAME03_FDRI 0xF12D_7000

4 CFRAME04_REG 0xF12D_8000 CFRAME04_FDRI 0xF12D_9000

5 CFRAME05_REG 0xF12D_A000 CFRAME05_FDRI 0xF12D_B000

6 CFRAME06_REG 0xF12D_C000 CFRAME06_FDRI 0xF12D_D000

7 CFRAME07_REG 0xF12D_E000 CFRAME07_FDRI 0xF12D_F000

8 CFRAME08_REG 0xF12E_0000 CFRAME08_FDRI 0xF12E_1000

9 CFRAME09_REG 0xF12E_2000 CFRAME09_FDRI 0xF12E_3000

10 CFRAME10_REG 0xF12E_4000 CFRAME10_FDRI 0xF12E_5000

11 CFRAME11_REG 0xF12E_6000 CFRAME11_FDRI 0xF12E_7000

12 CFRAME12_REG 0xF12E_8000 CFRAME12_FDRI 0xF12E_9000

13 CFRAME13_REG 0xF12E_A000 CFRAME13_FDRI 0xF12E_B000

14 CFRAME14_REG 0xF12E_C000 CFRAME14_FDRI 0xF12E_D000

Broadcast CFRAME_BCAST_REG 0xF12E_E000 CFRAME_BCAST_FDRI 0xF12E_F000

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 30: PL Configuration

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=300

Configuration Frame Interface
The configuration frame interface (CFI) is a dedicated 128-bit programming bus used to configure
the PL. The CFU is the only master for the CFI bus. The CFI bus protocol is translated by the CFU
from AXI. The CFI bus transactions are sent to all CFRAMEs. Each CFRAME has a logic controller
that decodes the row address to determine whether or not it should receive the CFI packet.

The CFI is pipelined as it travels through the CFRAMEs. The CFU monitors the CFI bandwidth
and pending operations to ensure that the CFRAME can accept the data being sent.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 30: PL Configuration

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=301

Chapter 31

Slave Boot Interface
The slave boot interface (SBI) is a Xilinx proprietary interface that buffers incoming configuration
data from the slave boot modes (JTAG and SelectMAP). The incoming data is then fetched by the
RCU or PPU using one of the PMC DMAs for further processing and loading to the configuration
interfaces. The SBI requires flow control to prevent overflow of the internal buffer using a BUSY
pin. For SelectMAP, when BUSY is asserted, the external controller must stop sending data
within 24 cycles. The SBI datapath and interface options are shown in the following figure. The
HSDP, SelectMAP, and JTAG data are adjusted to the 128-bit bus for processing.

Figure 51: SBI Datapath

SBI Buffer
(8 KB FIFO)

From Secure Stream Switch

To Secure Stream Switch

SBI Upsizer
(x32 -> x128)

PMC Main Switch (AXI)

SelectMAP
FIFO

(Data in)

JTAG FIFO
(Data in)

JTAG
(Data in)

SMAP Upsizer
(x8/x16 -> x32)

SelectMAP
(Data in)

SBI Downsizer
(x128 -> x32)

SelectMAP
FIFO

(Data out)

JTAG FIFO
(Data out)

JTAG
(Data out)

SMAP Downsizer
(x32 -> x8/x16)

SelectMAP
(Data out)

HSDP Upsizer
(x64 -> x128)HSDP (AXI)

X22572-121019

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 31: Slave Boot Interface

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=302

Chapter 32

Streaming Interconnect Module

Secure Stream Switch
The secure stream switch (SSS) in the PMC routes the data between the two DMAs (PMC DMA0
and PMC DMA1), AES-GCM, SHA3-384, SBI, and the PMC global signals. The data sources for
this switch are AES-GCM, SBI, and the two PMC DMAs. The data sources can only broadcast to
a set of specific destinations as shown in the following table.

Table 79: Secure Stream Switch

Data Source
Data Destination (Valid Broadcast Option)

PMC DMA0 PMC DMA1 AES-GCM SHA3-384 SBI
PMC DMA0 X X X X

PMC DMA1 X X X X

AES-GCM X X

SBI X X

Any invalid configuration takes on the default configuration that essentially ties all destination
ports to 0x0. The switch generates an error interrupt if data is broadcast into the system when
the switch is in default configuration or when data is received from an unintended interfacing
module during a particular configuration.

The configuration is set in the register, PMC_GLOBAL.SSS_CFG that resides in the
PMC_GLOBAL register space. A particular destination module listens to only one of the source
modules in the system at a particular instant in time.

PMC DMAs
The PMC has two 128-bit DMAs. The PMC DMA0 and PMC DMA1 are 2-channel simple DMAs
that allow separate control of the read and write channel.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 32: Streaming Interconnect Module

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=303

The PMC DMAs primary responsibility is to move data efficiently between the memory-mapped
128-bit AXI interface and the PMC secure stream switch domain. The PMC DMAs move data to
and from the cryptographic accelerators (AES, SHA) and SelectMAP through the secure stream
switch. The PMC DMAs are not bound to the PMC address space. For example, they can be used
to fetch a reconfiguration image from DDR memory. Both PMC DMAs are independent and can
be used simultaneously. In the SelectMAP boot mode, the PMC DMA1 is dedicated for the data
loading.

The features of the PMC DMAs include:

• Separate read channel (SRC) and write channel (DST) DMA

• Read channel fetches data from the PS-side(memory) and delivers it to the PMC stream switch
(SS) interface

• Write channel receives data from the PMC stream switch (SS) interface and delivers it to the
PS-side (memory)

• 128-bit AXI 3.0 interface on the PS-side

• Deep 128x128-bit data FIFOs for both the SRC and DST datapaths

• Single thread (single AXI-ID) operation for both read and write channels

• PMC DMA operates synchronously in the pmc_sec_clk clock domain

• SRC DMA only issues a read AXI command if there is enough space in the read data FIFO for
the entire burst

• Start address is 32-bit aligned

• PMC DMA hardware manages alignment between the SS-side and the AXI domain

• Transfer length is in units of 4-byte (32-bit) words

• Can accept two commands per channel via a 2-deep command FIFO

• Timeout mechanisms for both SRC (read) and DST (write) channels

• Dedicated APB interface for PMC DMA register access

AES-GCM
The Versal™ device AES accelerator operates in GCM mode offering symmetric authentication,
as well as decryption and encryption. Available at both boot and run time, this AES accelerator
offers built-in protection against differential power attacks (DPA) and supports protocol
protections (i.e., key rolling).

The AES-GCM supports a 256-bit key for boot and either a 128-bit or a 256-bit key afterward
and uses a 128-bit data interface (broken into 32-bit words).

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 32: Streaming Interconnect Module

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=304

The following key sources are supported:

• Battery-backed RAM (BBRAM)

• eFUSE

• Boot header

• User key register

• Black key (PUF encrypted key storage)

Initialization Vector Register

There are four initialization vector (IV) registers. These registers store both the AES-GCM IV, as
well as the data size of the next block (in support of key rolling).

For additional details, see the Versal ACAP Security Manual (UG1508). This manual requires an
active NDA to download from the Design Security Lounge.

SHA3-384
Versal™ ACAPs support the latest secure hash algorithm SHA3-384 standardized by NIST
(FIPS-202).

The SHA3-384 hardware accelerator included in the Versal ACAP implements the SHA-3
algorithm. It is used together with the RSA accelerator to provide image authentication. It is also
used to perform an integrity check of the RCU ROM prior to execution. The SHA-3 block
generates a 384-bit digest value. If a design requires a 256-bit digest, the least significant 256
bits of the digest should be used (see Recommendation for Applications Using Approved Hash
Algorithms NIST Special Publication 800-107).

The hash function is calculated on blocks that are 832-bits long (104 bytes). Only whole blocks
can be processed through the SHA. All messages processed by the SHA-3 accelerator must be
appropriately padded. See SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, NIST FIPS PUB 202 for padding requirements. SHA3-384 padding should be M || 01 ||
10 * 1.

For additional details, see the Versal ACAP Security Manual (UG1508). This manual requires an
active NDA to download from the Design Security Lounge.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 32: Streaming Interconnect Module

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 305Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-algorithms
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-algorithms
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=305

Chapter 33

RSA/ECDSA
The public key cryptographic algorithms ECDSA and RSA are used to verify the authenticity of
the programmable device image. Boot images can be authenticated using either RSA-4096 or
EDCSA (NIST P-384 curve). After boot, the RSA key length or ECDSA curve is user-selectable.

The Versal™ ACAP includes an accelerator for both RSA and ECDSA math, and it is available to
the user. For additional details, see the Versal ACAP Security Manual (UG1508). This manual
requires an active NDA to download from the Design Security Lounge.

The accelerator supports the following:

• RSA

○ Implements a modular exponentiation engine

○ R*R mod M precalculation

○ 2048, 3072, and 4096 key sizes

• ECDSA

○ Implements a point multiplier engine for elliptic curve cryptography

○ P-384 curve for initial boot

○ Support for a wide variety of NIST, SECG, SM2, and Brainpool curves for user images and
data beyond initial boot

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 33: RSA/ECDSA

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 306Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=306

Chapter 34

True Random Number Generator
The Versal™ device contains a true random number generator (TRNG). The TRNG enables
applications to be compliant with AIS-20/31 and NIST-800-90A/B/C standards. For additional
details, see the Versal ACAP Security Manual (UG1508). This manual requires an active NDA to
download from the Design Security Lounge.

To support these standards, the TRNG operates in three modes as shown in the following figure.

1. Entropy source output

2. Internal seed + DRNG output

3. External seed + DRNG output

Figure 52: TRNG Modes of Operation

Entropy Source

Digitization

DRNGUser Seed

Output

1

2

3

X24077-061220

Features include:

• Generates cryptographically secure random numbers

• Generates data blocks with a 32-bit wide interface

• Provides security strength of 256 bits

• Ring oscillator and PLL random sources

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 34: True Random Number Generator

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 307Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=307

Chapter 35

Physically Unclonable Function
The Versal™ device contains a physically unclonable function (PUF). The PUF creates a signature
(or fingerprint) of each device that is unique to that device. Its value is not “knowable” by Xilinx or
the user enabling usage as a key encryption key (KEK). This KEK is 256 bits in length with 256
bits of entropy and is used to encrypt the users red key allowing its storage in black (encrypted)
form. The black key can be stored in either eFUSEs, BBRAM, or external storage.

Enhanced from the previous generation, the Versal device PUF also outputs a user accessible
unique ID that is cryptographically isolated from the PUF KEK itself despite using the same
entropy source. While unique to each device, it is not considered a “secret” and does not have
the same access protections as the KEK itself.

For additional details, see the Versal ACAP Security Manual (UG1508). This manual requires an
active NDA to download from the Design Security Lounge.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 35: Physically Unclonable Function

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 308Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=308

Chapter 36

Battery-Backed RAM
The battery-backed RAM (BBRAM) includes 288 bits of memory for a 256-bit AES security key
and 32 bits for additional information. The additional 32 bits can be left unused, used for
configuration counting by the PLM, or used for user-defined purposes.

Software writes the AES key into the lower 256 bits using the eight write-only BBRAM_[0:7]
registers. After writing the AES key, software writes 32 ECC bits to the BBRAM_AES_CRC
register.

The write to the BBRAM_AES_CRC register causes the CRC engine to read back the AES key
from memory and calculate its own CRC. The BBRAM controller CRC engine calculated CRC is
then compared to the software CRC to verify the AES key was written correctly to the BBRAM
memory. The BBRAM_STATUS register indicates when the verification is complete and indicates
the result of the CRC using the [AES_CRC_DONE] and [AES_CRC_PASS] bits, respectively.

The 256-bit AES key can only be read by the AES engine. Software cannot read the 256-bit AES
security key in the BBRAM.

The upper 32 bits are read/write using the BBRAM_8 register. These 32 bits can be used to store
the configuration count information for the PLM. When configuration count information is not
required, the 32 bits are available for user applications. The BBRAM_8 register is write protected
by writing a 1 to the BBRAM_MSW_LOCK [VAL] bit. Once the bit is set, it remains set and the
register becomes read-only. The PMC must be reset to clear the [VAL] lock bit.

The 256-bit AES key can be securely updated by writing to the BBRAM APB programming
interface. After the key is updated, subsequent boots of the device will use the new key. Access
to the BBRAM can be protected by the PMC XPPU protection unit.

The BBRAM block diagram is shown in the following figure.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 36: Battery-Backed RAM

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=309

Figure 53: BBRAM Block Diagram

CRC
Engine

APB
Programming

Interface Control
Registers

256-bit AES Key

read by AES engine

Power Domains
PMC
BPD 32 bits 256 bits

PMC
APB

Switch

Controller

BBRAM
Memory

Done

CRC reg

X22418-071220

For additional details, see the Versal ACAP Security Manual (UG1508). This manual requires an
active NDA to download from the Design Security Lounge.

Section VII: Embedded Processor, Configuration, and Security Units
Chapter 36: Battery-Backed RAM

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 310Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=310

Section VIII

Interconnect
This section includes these chapters:

• Overview

• Interconnect Switches

• Transaction Attributes

• Transaction Routes

• PL Interconnect Interfaces

• Shared Virtual Memory

• System Memory Management Unit

• Cache Coherent Interconnect

• Memory Protection

• Xilinx Memory Protection Unit

• Xilinx Peripheral Protection Unit

Section VIII: Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=311

Chapter 37

Overview
The PMC, LPD, FPD, and CPM each include their own independent interconnect with both AXI
and APB ports.

• PMC Interconnect

• Block Diagram

• Full-power Domain

• CPM Interconnect

Each interconnect has one or more connections to the network on chip (NoC) interconnect to
provide access to the entire SoC, including the DDR memory controllers. There are direct AXI
channels between these four interconnects.

Transaction requests enter an interconnect on an ingress port (iPort) and leaves the interconnect
on an egress port (ePort). The global addressing and routing control registers enable transactions
initiated in one power domain to arrive in another domain. This includes transactions to
embedded memory and other device-level blocks, and between PMC, LPD, FPD, and CPM
blocks.

The integrity of a transaction is checked and monitored at the iPort. The iPort applies a
TrustZone security level based on register settings. Data parity errors are detected within the
interconnect. Parity is checked as the transaction leaves the interconnect through the ePort. The
ePort also includes a timeout feature that asserts a signal if the destination does not respond
within a predetermined amount of time. Transactions with parity errors are propagated to the
destination with an interrupt signal asserted. If a protection unit blocks a transaction, then the
protection unit responds to the transaction with an error signal asserted. An interrupt is also
generated. If a timeout occurs, the transaction is terminated by the ePort and a response is sent
back to the source. In this case, a reset of the destination is usually required.

The the first 4 GB of the global address space is focused on the PMC and PS. The Global and 4
GB memory spaces are described in the Address Maps chapter.

The route that transaction takes is defined at the ingress, iPort. The routing registers steer
transactions directly to the NoC or via the FPD SMMU and CCI for shared memory and APU L2
cache coherency.

Section VIII: Interconnect
Chapter 37: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=312

The TRM describes the details of the PMC and PS interconnects. The NoC is described in the
Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP Product
Guide (PG313).

Features
Transactions include several attributes that are used by the interconnect and the destination,
including:

• Single or burst data transfers

• Secure or non-secure TrustZone declaration

• System management identification (SMID)

• Transaction steering for shared memory and cacheability via the FPD SMMU and CCI

• Transactions include 44 or 48 bits of address for physical and virtual memory space

○ 44-bit addresses are received by the NoC, DDR memory, PL and other memory-mapped
destinations

○ 48-bit addresses are received by the SMMU for translation to a 44-bit physical address

• Quality of service (QoS) traffic types

The PPU and PSM processors generate a 32-bit address. This enables them to only access the
first 4 GBs of address space as defined in the PMC and PS Address Maps map. The other sources
of transactions can generate the 44- or 48-bit address; some do this with a base address register
appended to their 32-bit address generation.

The transaction attributes are explained in the Transaction Attributes chapter. The parameter
values used by each initiator are listed in PL Interconnect Interfaces chapter.

iPort Interfaces

The iPort interface receives transactions in to the interconnect switch and provides several
functions:

• Monitors the transaction to make sure it adheres to protocol

• Assigns the TrustZone security state for the source

• Generates data parity for writes

• Checks data parity for reads

• Supports isolation that will quiesce the interface

Section VIII: Interconnect
Chapter 37: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 313Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=313

ePort Interfaces

The ePort interface dispatches the transaction out from the interconnect switch to the
destination, and provides several functions:

• Monitors the transaction for timeout

• Checks data parity for writes

• Generates data parity for reads

• Supports isolation that will quiesce the interface

Between the iPorts and ePorts there can be a protection unit within the interconnect switch.

Comparison to Previous Generation Xilinx Devices
This section contrasts the many differences in the Zynq® UltraScale+™ MPSoC and Versal™
ACAP interconnects.

The NoC interconnect and NPI programming interface are new in the Versal devices and
significantly affect the overall architecture of the device by giving all parts of the device direct
access to one or more memory controllers and all of the integrated blocks in the device.

The Versal device adds a unifying NPI programming interface for all the non-PMC and PS register
modules that use the APB interface with single word reads and writes. The NPI host controller is
located on the PMC main interconnect switch and can burst program the register memory space.

The Versal device main and IOP interconnect switches within the PMC and PS have similar
hardware architectures as the Zynq UltraScale+ MPSoC devices, but with very different
implementations for timeout and isolation. The Versal device interconnects include parity
generation and checking and greater control over TrustZone security and transaction routing. See
the Interconnect Switches section.

MMUs

The MMUs in the APU cores and the FPD SMMU are similar to previous generation Xilinx®

devices, but with different programming models and improved features.

Interconnect Switches

The interconnect switches exist in each of the major subsystems including the PMC, LPD, and
FPD. The contrasting functionality is shown in the following table.

Table 80: Interconnect Switch Functionality

Function Zynq UltraScale+ MPSoC Versal ACAP Description
Bus isolation AXI isolation block (AIB) ePort Isolation For security and power management.

Section VIII: Interconnect
Chapter 37: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=314

Table 80: Interconnect Switch Functionality (cont'd)

Function Zynq UltraScale+ MPSoC Versal ACAP Description

Timeout AXI timeout block (ATB) ePort Timeout The timeout monitors the AMBA
interconnect slave connectors.

Transaction integrity
error checking ~ ePort and iPort

parity
Data parity is generated on incoming data.
The parity is checked when the data exits
the interconnect.

AXI Timeout

The AXI timeout function in the Versal ACAP is implemented on the ePorts of the interconnect
with new IP. The timeout function is similar to Zynq UltraScale+ MPSoC but the instances and
programming model are different.

AXI and APB Isolation

Isolation is done at the ports of the interconnect instead of using individual AXI isolation blocks
(AIB). Both the iPorts and ePorts include isolation.

Xilinx Memory Protection Unit

The Xilinx memory protection unit (XMPU) in the Versal ACAP is similar to the one in the Zynq
UltraScale+ MPSoC. The functional differences are shown in the following table.

Table 81: XMPU Functional Differences

Topic Zynq UltraScale+ MPSoC Versal ACAP

Error handling Poison the base address Issue a fail message on the interconnect back to
initiator.

Response to address in secure
range but ID match fails

Allow or deny based on default
read/write configuration By default, transaction is denied.

Xilinx Peripheral Protection Unit

The Xilinx peripheral protection unit (XPPU) in the Versal ACAP is similar to the one in the
Zynq UltraScale+ MPSoC except in the way an error is handled. The default setting is to deny a
transaction.

For the inter-processor interrupt (IPI) controller, the XPPU protects the whole address range
0xFF00_0000 to 0xFFFF_FFFF using 64 KB apertures. The IPI handles message buffer
protection using apertures 49d to 63d). The XPPU does not have 32-byte apertures for the IPI.

Section VIII: Interconnect
Chapter 37: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=315

Table 82: XPPU Functional Differences

Topic Zynq UltraScale+
MPSoC Versal Comment

Location Inserted on AXI channels Embedded into interconnect
switches.

The Versal interconnect
switches integrate isolation,
parity, access protection, and
integrity checking.

Error handling Poison the base address
Issue a fail message on the
interconnect back to
initiator.

Total number of apertures
128 x 32 B
256 x 64 KB
16 x 1 MB
1 x 512 MB

~
256 x 64 KB
16 x 1 MB
1 x 512 MB

Note: Only the LPD_XPPU
includes the 1 x 512 MB
aperture

IPI controller
Control registers and
message buffers protected
by the XPPU

Control registers and
message buffers protected
by the IPI controller.

New functionality in the IPI.

IPI message buffer location In XPPU In IPI controller. Message buffers are
protected by the IPI

System Perspective
The interconnect has several key system-level components:

• Network On Chip

• PMC and PS Interconnect

• Register Module Programming Interfaces

Network On Chip
The TRM introduces the network on chip (NoC) interconnect and includes it in high-level
subsystem block diagrams, but does not explain its implementation or behavior. See the NoC
product guide for its descriptions, guidance on configuration, and performance tuning, Versal
ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide
(PG313).

Configuration

The NoC is configured using the Vivado® IP integrator. Configuration data is written to the NoC
units via the NPI programming interface.

Section VIII: Interconnect
Chapter 37: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 316Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=316

PMC and PS Interconnect
The PMC and PS are coupled together with interfaces to the PL and CPM. Several 128-bit
AMBA® interfaces exist between the PS and the PL:

• LPD and FPD each have master ports to the PL

• PL has three slave ports to the PS with two-way or I/O coherency with the APU L2 cache

• PL has two slave ports to the LPD and FPD main switches

• The PS has pathways to the CPM

• The CPM has a channel to the SMMU TCU3 that connects to the FPD CCI AXI4-Lite port

The main switches in the PMC, LPD, and FPD are shown in the PS Interconnect Diagram.

Register Module Programming Interfaces
The APB and NPI programming interfaces enable software to access registers that control the
interconnect and all the other system units. The APB programming interfaces are located
throughout the PMC and PS on the main and IOP interconnects. The NPI programming interface
is controlled by a single host located in the PMC. The NPI host is controlled by software using
register accesses. Both interfaces provide address decode error reporting. The programming
interface summary includes:

• APB: 32-bit RW, multiple interface locations

• NPI: 32-bit RW with burst, single host attached to the PMC interconnect

Section VIII: Interconnect
Chapter 37: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=317

Chapter 38

Interconnect Switches
Transactions are routed through the interconnect switches based on address and, in some cases,
register-based routing information. The interconnect channels can carry physical and virtual
addresses. The majority of the interconnect carries a 44-bit physical address. The virtual address
transactions are routed to the FPD SMMU or the PL, which consists of a 48-bit address and the
49th bit for software context designation. The transactions travel on the AMBA® interconnect
and other protocol channels between the source of the transaction, through one or more
interconnect switches, and finally to the destination.

Note: The term "channel" generally means the entire group of AMBA signals going from one interface to
another, which includes the set of signals for a read, a write, and a transaction response. Channel also
means the path through an interconnect switch.

Ingress and Egress Ports

Transactions enter the interconnect switch on ingress ports (iPort) and leave the interconnect
switch on egress ports (ePorts). The transaction source asserts its request to an iPort. Inside the
interconnect switch, the transactions goes through isolation and parity logic in the iPort. The
transaction is steered through the switch and might go through a memory or peripheral
protection unit (XMPU or XPPU). Before exiting the interconnect, the transaction is monitored by
a timeout unit and a parity checking unit in the ePort. In the last stage before exiting on the
ePort, the isolation unit can be used to halt traffic and turn back new traffic in the interconnect.

Note: An iPort receives read, write, and write response signals from the destination. The iPort provides
parity generation for write data and parity checking for read data.

Interface Protocols

There are several types of interface protocols:

• AXI4 with 128, 64, and 32-bit data widths

• AHB4 masters and slaves (64 and 32-bit data)

• APB3 slaves (32-bit single data)

The AXI4 channels connect to interconnect switch iPorts. Then interconnect switch ePorts can
interface to a single AXI channel or multiple APB register module programming interfaces. The
AXI4 interface on an ePort can also provide access to memory resources, other interconnect
switches, or a configuration interface for a MicroBlaze processor, including access to its local
memories and caches.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=318

Address and Transaction Context

Each transaction includes an address that is interpreted as either 44 or 48 bits. All transaction
sources are capable of generating a 48-bit address. The upper 4 bits are only looked at by the
FPD SMMU TCUs as a transaction with a virtual address.

The 48-bit virtual address also includes a 49th bit to indicate a kernel or application context for
the FPD SMMU.

Burst Size

Transactions can have a burst size of up to 256 data beats. However, many destinations can only
accept 16 beats or single data beats. The iPort accepts the number of beats from the initiator and
measures out the data beat counts and data widths to satisfy the needs of the block attached to
the ePort.

QoS

The interconnect switch passes the QoS signals along with the transaction request. It does not
use the QoS signals to determine routing or priority. Priority for a master reaching a slave is on a
first-come, first-serve basis.

Poisoned Transactions

When a problem has been detected in a transaction, its poison signal is asserted. The poison
signal propagates to the destination. For example, the interconnect poisons a transaction when
an access is blocked by a protection unit or a parity error is detected. In some cases, the iPort
receives a transaction that is already poisoned. The interconnect can signal this with an interrupt
and allow it to propagate through to the ePort and out the switch.

Isolation

Isolation has a number of purposes. Processors simultaneously run multiple applications. These
applications can be physically and logically isolated from one another. The system enables an
exchange and communication of information in a controlled manner. An application can be
partitioned using interconnect inhibitors, as well as physical isolation where blocks are not
sharing logic, such as using the fabric to expand the isolated system. Isolation can also be used
when it is necessary to reset or power down logic.

Switch Architecture
The interconnect switches in the PMC and PS include:

• PMC Interconnect

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=319

• PMC IOP Interconnect

• PSM Interconnect

• LPD and OCM Interconnect

• LPD IOP Interconnect

• PS CPM Interconnect

• FPD Interconnect

• FPD Auxiliary Interconnect

Related Information

PL Interconnect Interfaces

Conceptual Interconnect Switch
A conceptual view of an interconnect switch is shown in the following figure.

Figure 54: Conceptual Interconnect Switch

Sw

iPorts

Sw

Sw

ePorts

Protection
Unit

AXI

AXI

APB

AXI

AXI

AXI

Transaction
Sources

Transaction
Destinations

X25182-061321

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=320

Features in the Pathway
In the following figure, transaction requests are presented to the incoming interface and pass
through the interconnect. They are received by an iPort and routed though the interconnect
crossbar based on the address. The pathway sometimes includes an XMPU or XPPU. The
transaction leaves the interconnect switch at an ePort. The features in this pathway are shown in
the following figure.

Figure 55: Interconnect Switch Features Diagram

Write Signals

Transaction Request Flow

XMPU,
XPPU

Read Signals

Write
Signals

Read
Signals

Is
ol

at
io

n

Crossbar Interconnect
(Routed by address)

Features:
* Isolation
* Parity Generation and Checking
* Transaction Packet Checking

Features:
* Isolation
* Parity Generation and Checking
* Transaction Timeout Monitor

Pa
rit

y

Timeout
Monitor

Is
ol

at
io

n

Pa
rit

y

An interconnect might have
one or more protection units
to restrict access to registers
and peripherals.

Generate

Generate

Check

Check

Reads/Writes

iPort ePort

Transaction
Checker

Reads/Writes

Incoming
Interface

Outgoing
Interface

X23846-042321

Switch Ingress Ports
Features

An iPort switch ports the interface to transaction requests. The iPorts include these features and
functions to monitor and control the interface.

• iPort Protocol Integrity Checker

• iPort Isolation

• iPort Parity Unit (generate on write data, check read data)

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=321

Inside the interconnect switch, transactions from the iPort are routed to an ePort based on the
transaction address. The transaction may pass through sub-switches and a protection unit before
exiting the interconnect on an ePort.

iPort AXI Connections

There are several types of AXI interfaces attached to the iPorts.

• Processors and other engines

• Interfaces from the PL

• Interfaces from another interconnect switch

Processors and other Engines

The RPU, APU, and LPD_DMA units connect to iPorts.

PL Interfaces

The following interfaces from the PL attach to iPorts.

• PL_AXI_LPD

• PL_AXI_FPD

Another Interconnect Switch

An iPort interface is sometimes attached to an ePort from another interconnect switch. This
connection is usually a 128-bit AXI interface for data memory transactions.

iPort Protocol Integrity Checker
Transaction Integrity

The transaction protocol is a monitor for integrity. If the data beat count is not correct, or there
are other irregularities, then an interrupt is asserted.

The protocol integrity of the incoming AXI transactions are monitored by the interconnect iPorts.
The following table lists the integrity violation features.

Table 83: iPort Protocol Integrity Checker Detection

Violation Detection Operation Next Step

Illegal AXI transaction incoming Detection is done by the transaction packet consistency
check (part of safety features)

Normally
requires an
interconnect
reset

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=322

Table 83: iPort Protocol Integrity Checker Detection (cont'd)

Violation Detection Operation Next Step

Missing/extra data word beats Detection is done by the transaction packet consistency
check (part of safety features)

Normally
requires an
interconnect
reset

Act as the master proxy to complete pending
transactions All mechanisms are for detection only, not handled

iPort Isolation
The isolation unit can block new bus traffic and wait for outstanding bus traffic to complete. This
is normally done prior to the power shutdown of a power domain or island. Isolation might also
be useful for security and safety.

When traffic is quiescent, the isolation unit asserts an interrupt so the firmware can take further
action..

iPort Parity Unit
The iPorts generate parity for write data entering the iPort. The iPorts check read data being
returned to the requester.

• Generate parity for write data

• Check parity on read data

Switch Egress Ports
The interconnect switch ePorts connect to destinations, which can include final destinations such
as register programming interfaces or memory resources. The ePorts also interface to other
interconnect switches.

The ePorts include several features and functions to monitor and control the interface. These
features are explained in the following sections:

• ePort Timeout

• ePort Isolation

• ePort Parity Unit

• ePort Reset

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=323

Attached Interfaces

There are several types of interfaces attached to ePorts:

• Programming interface (APB/AXI)

• Configuration interface (AXI)

• Data memory interface including interfaces from the PL (AXI/ACE)

Programming Interface

A programming interface (ProgIF) connects a switch to one or more register modules. The
protocol can be APB or AXI. If the interface is AXI, only one destination is connected to the
ePort. If the interface is APB, more than one register module interface can be connected to the
ePort.

Configuration Interface

A configuration interface (ConfigIF) connects a switch to another switch that can provide access
to register modules, controls, caches, and other local memories. The configuration interface is
usually a 32-bit AXI data bus.

Data Memory Interface

A data memory interface (DataMem) connects a switch to a memory, another switch, or the PL
for transferring data. The data memory interface protocol is AXI or ACE-Lite with a 64- or 128-
bit wide data bus.

ePort Timeout
The ePort timeout unit monitors the amount of time that a transaction is waiting on the attached
block (programming interface or data port). If the amount of time exceeds a threshold, then the
timeout unit provides an AXI response back to the initiator and raises an error flag. A timeout
condition can be caused by several situations, such as:

• An unresponsive or misbehaving block that is:

○ Powered-down

○ In its reset state

○ Congested

○ Deadlocked

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=324

Timeout Counter

The timeout counter starts when the request command from the master port has been accepted
by the interconnect switch and the transaction is routed to the slave port. When the slave
responds to the transaction request (either with data in the case of a read or bus response in the
case of a write), the timeout counter is reset and waits for another transaction from the master
port.

If the timeout counter expires during a transaction, the interconnect switch responds back to the
transaction initiator and generates a system interrupt.

ePort Isolation
The ePort isolation unit blocks new bus traffic and waits for outstanding bus traffic to complete.
This is normally done prior to the power shutdown of a power domain or island. Isolation might
also be useful for security and safety.

When traffic is quiescent, the isolation unit asserts an interrupt so the firmware can take further
action.

ePort Parity Unit
The ePorts check the parity on write data that has traversed the interconnect switch. The ePorts
generate parity on read data received from its interface:

• Check parity on write data

• Generate parity for read data

ePort Reset
The ePort register can issue a software reset to its attached block.

Each ePort includes its own reset domain but is also reset when the entire interconnect is reset.
Consequently, an ePort can be individually reset or by the interconnect switch reset. The
individual ePort resets are controlled by the interconnect configuration registers.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=325

Switch Diagrams
The PMC and PS interconnect switch port and channel diagrams are divided into the following:

• PMC Interconnect

• PMC IOP Interconnect

• PSM Interconnect

• LPD and OCM Interconnect

• LPD IOP Interconnect

• FPD Interconnect

• FPD Auxiliary Interconnect

• PS CPM Interconnect

PMC Interconnect
The PMC interconnect ports are controlled by the PMC_INT_CSR register module.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=326

Figure 56: PMC Interconnect Channels and Ports

DMA1_AXI_PMC

XMPU

PPU_AXI_PMC

intpmc_intpmciou_axi

PMC
Main

Switch

PMC RAM Memory

PMC_AXI_SBI

PMC_AXI_RAM
intpmc_pmcocm_axi

PMC_AXI_NPI
intpmc_npi_axi

PMC SBI Memory
Interface

NPI HOST Controller

PMC
APB

Switch

PMC_APB_SYSTEM CRP,
PMC_INT_CSR

PMC_APB_PERIPHERAL

PMC_CFU_CSR

PMC
Aux

Switch

PMC_MDM_PPU
intpmc_ppu1mdmhsd_axi

PPU processor

PMC_APB_CFU_CSR

DMA0_AXI_PMC
pmcdma0_intpmc_axi

PMC_DMA0

RCU_AXI_PMC
ppu0_intpmc_axi

RCU

PMC_AXI_LPD
pmc_ps_axi0

PMC_AXI_NOC
pmc_noc_axi0

LPD InterfaceLPD_AXI_PMC
ps_pmc_axi0

NOC_AXI_PMC
noc_pmc_axi0

LPD Interface

NoC Interconnect

pmcdma1_intpmc_axi

XPPU

XPPU_NPI

intpmc_sbi_axi

PMC_BBRAM_CTRL,
PMC_SBI_CSR
PMC_DMA0, 1, PMC_ANLG

PMC_JTAG_CSR

PMC_APB_SECURITY

PMC_APB_EFUSE

PMC_AES, PMC_SHA3,
PMC_TRNG,
PMC_ECDSA_RSA

PMC_EFUSE_CTRL,
PMC_EFUSE_CACHE

PMC_RAM_CSR,
PPU_TMR_TRACE,
PMC_RAM_CSRPMC_APB_PROCESSOR

IOP_AXI_PMC

PMC_AXI_IOP

PMC
IOP

Switch

PMC_APB_JTAG

intpmciou_intpmc_axi

DPC_AXI_PMC

SYSMON_AXI_PMC

DAP_AXI_PMC

sysmonroot_intpmc_axi

dpc_intpmc_axi

jtagdap_intpmc_axi

ppu1_intpmc_axi

Register Module

Flash and
Peripheral
Interfaces

Channel

intpmc_pmctap_apb, intpmc_dapreg_apb

PL
Configuration

intpmc_cfustream_axi

PMC_AXI_CFU_STRM

PMC_APB_GLOBALPMC_GLOBAL

PMC_RTC PMC_APB_RTC

PMC_APB_SYSMONPMC_SYSMON

Register Module

intpmc_sbireg, bbram, pmcanlg_apb,
pmcdma0reg, pmcdma1reg, pmcanlg_apb

intpmc_ppu1ram; ppu1tmrtrace, pmcocmcfg

intpmc_trng, ecdsarsa, aes, sh

intpmc_efuse_apb

intpmc_cfureg_apb

intpmc_crp_apb, intpmc_config_apb

intpmc_rtc_apb

intpmc_pmcglobalreg_abp

intpmc_sysmonroot_abp

Channel

PPU RAM,
Debug,
Config

Channel

ChannelSource

Destination

PMC SysMon

DPC

DAP

CFU

PMC_APB_XPPUPMC_XPPU

PMC_XMPU PMC_APB_XMPU

PMC_APB_XPPU_NPIPMC_XPPU_NPI

xmpu_apb, xmpu_firewall_gpv

xppu_apb, xppu_firewall_gpv

xppu_npi_apb, xppu_npi_firewall_gpv

PPU
MicroBlaze
Processor

ROMCode Unit

PMC_DMA0

NoC Interconnect

128-bit
64-bit

32-bit

Data Bus Width

PMC
PL
LPD
FPD
SPD

Power Domains
XPPU XMPU

Protection Units

Tr
an

sa
ct

io
n

Re
qu

es
t

iPort
Interconnect Ports

ePort

PMC_NOC
CIPS

NOC_PMC
CIPS

X25125-042421

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=327

PMC IOP Interconnect
The PMC IOP switch provides interfaces to the flash memory controllers and other register
modules as shown in the following figure.

Figure 57: PMC IOP Interconnect Channels

PMC IOP
Switch

Quad SPI Flash

OSPI register module

IOP_AXI_PMC

Memory Space

DMA data
Octal SPI Flash

DMA data

QSPI register module

SD_eMMC 1
DMA data

SDeMMC0 reg module

SD_eMMC 0
DMA data

SDeMMC0 reg module

PMC_APB_GPIO PMC_GPIO

Register Modules

PMC_APB_I2C PMC_I2C

PMC_APB_SLCR PMC_SLCR

PMC_APB_SLCR_SECURE PMC_SLCR_SECURE

PMC Switch

PMC_AXI_IOP

PMC_APB_GPV PMC_INT_GPV

PMC Aux
Switch

32-bit

Data Bus Width

PMC

Power Domain

XPPU
Protection Unit

Tr
an

sa
ct

io
n

Re
qu

es
t

iPort
Interconnect Ports

ePort

PMC Sw only

PMC Sw only

PMC Sw only

PMC Sw only

intpmciou_intpmc_axi

intpmc_intpmciou_axi

PMC_XPPU

PMC_AXI_OSPI

PMC_APB_OSPI

PMC_APB_QSPI

QSPI_AXI_PMC

PMC_AXI_SDeMMC1

SDeMMC1_AXI_PMC

PMC_AXI_SDeMMC0

SDeMMC0_AXI_PMC

OSPI_AXI_PMC
Channels

Channels

X25177-042421

PSM Interconnect
The PSM interconnect ports are controlled by the PSM_INT_CSR register module.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=328

Figure 58: PSM Interconnect Channels and Ports

MB_AXI_PSM

LPD_AXI_PSM

psmublaze_intpsm

intlpd_intpsm

PSM
Switch

LPD Switch

psm_apb

intpsm_intlpd

MB Registers

PSM MicroBlaze

LPD Switch

psm_global_apb

PSM_Global Registers

intpsm_mdm

MicroBlaze MDM

psm_gpv

PSM_INT_GPV Registers

intlpd_intpsm_axi

intpsm_intlpd_axi

Register Modules

ChannelSource
Channel Destination

PSM_APB_MB

PSM_AXI_LPD

PSM_APB_GLOBAL

PSM_MDM_MB

PSM_APB_INT_GPV

X25155-042421

LPD and OCM Interconnect
The following figure illustrates the LPD and OCM interconnect channels and ports.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=329

Figure 59: LPD and OCM Interconnect Channels and Ports

RPU0_AXI_OCM_SW XRAM_XMPU

OCM_XMPU

FPD_AXI_OCM_SW

RPU1_AXI_OCM_SW

rpu0_axi, rpu0_intlpd_axi

rpu1_axi, rpu1_intlpd_axi

intfpd_intlpdocm_axi

intfpd_intlpd_axi

LPD OCM
Switch

OCM memory

OCM_SW_AXI_XRAM
intlpd_ocmext_axi

OCM_SW_AXI_OCM
intlpd_ocm_axi

OCM_SW_AXI_PL
intlpd_afifslpd_axi

OCM_SW_AXI_NOC
ps_pmc_rpu_axi0
ps_noc_rpu_axi0

XRAM memory

PL Interface

NoC Interconnect

RPU 0 Core

RPU 1 Core

FPD Data Interface

FPD Interface

PL Interface
afifmlpd_intlpd_axi

intpsm_intlpd_axi
psm_lpd_axi

adma_intlpd_axi

PS Manager

LPD DMA Ch0:7

LPD Main
Switch LPD_AXI_FPD FPD SMMU TBU0

LPD_AXI_PMC

intlpd_intfpd_axi

PMC Interconnectintiou_intlpd_axi

lpdmain_ocm iou_lpdmain

Switch

LPD_XPPU

LPD_SYSMON regs

RPU_DUAL_CSR,
OCM_CSR,
XRAM_CTRL{0:7}

Switch

APB

IPI

CRL, LPD_SLCR,
LPD_SLCR_SECURE

LPD_GPV

LPD_INT_CSR

CPM4_CSR regs

CPM_CFG APB Switch

LPD_IOP Switch

PSM Switch

RPU0: Config, TCM, C

RPU1: Config, TCM, C

LPD_DMA_CH0:7
PL_AXI_LPD_CSR

ps_pmc_axi0

iintlpd_adma_apb, intlpd_afifmlpd_apb

intlpd_rpu_apb, ocmCntrl_apb, intlpd_ocmext_apb

intlpd_ipi_apb

intlpd_crl_apb, intlpd_lpdslcr_apb, intlpd_lpdslcrsecure_apb

lpd_gpv

intlpd_config_apb

128-bit
64-bit

32-bit

Data Bus Width

PMC
PL
LPD
FPD
SPD

Power Domains

XPPU XMPU
Protection Units

Tr
an

sa
ct

io
n

Re
qu

es
t

iPort
Interconnect Ports

ePort

LPD
IOP

Switch

intlpd_intiou_axi
lpdmain_iou

OCM_SW_AXI_LPD LPD_AXI_OCM_SW

pmc_ps_axi0

PMC Interconnect
Register Modules

DestinationsChannels

64-bit

32-bit

FPD_AXI_LPD

PL_AXI_LPD

PSM_AXI_LPD

DMA_AXI_LPD

IOP_AXI_LPD

LPD_AXI_IOP

PMC_AXI_LPD

M_AXI_HP_LPD

intlpd_sysmonsat_apb
LPD_APB_SYSMON

LPD_AXI_RPU0

LPD_AXI_RPU1

LPD_AXI_IOP

LPD_AXI_CPM_CFG

LPD_AXI_PSM

LPD_APB_DMA_PLAXI

LPD_APB_CPM_CSR

LPD_APB_PROCESSOR

LPD_APB_IPI

LPD_APB_GPV

LPD_APB_SYSTEM

LPD_APB_INT

ps_cpm_cfg_axi

intlpd_cpmpcsr_apb

intlpd_intiou_axi

intlpd_intpsm_axi

intlpd_rpu0_axi

intlpd_rpu1_axi
S_AXI_HP_LPD

CIPS

CIPS

afifs_lpd

afifm4_lpd

RPU_NOC, LPD_NOCCIPS

X24779-042621

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=330

LPD IOP Interconnect
The LPD IOP interconnect switch is shown in the following figure. The LPD IOP switch is
protected by an iPort and ePort in the LPD switch.

Figure 60: LPD IOP Interconnect Interfaces

USB_AXI_LPD
usb_xm

USB 2.0

GEM0_AXI_LPD
gem0_iou

GEM0

GEM1_AXI_LPD
gem1_iou

GEM1 Host
Switch

LPD IOP Switch

Switch

LPD_AXI_IOP

LPD Switch

IOP_AXI_LPD
channel channel

intlpd_intiou_axiintiou_intlpd_axi

Channels

LPD_IOP_INT_GPV

LPD_AXI_USB
Switch

Register
Switch

LPD_SLCR_SECURE
LPD_SCNTR
LPD_SCNTR_SECURE
LPD_CAN0, CAN1
LPD_GPIO
LPD_GEM0, GEM1
LPD_TTC0, 1, 2, 3

LPD_SLCR

LPD_SWDT
LPD_I2C0, 1
LPD_SPI0, 1
LPD_UART0, 1

Register Modules

LPD_INT_GPV

64-bit

32-bit

Data Bus Width

iPort

Interconnect
Ports

ePort

Tr
an

sa
ct

io
n

Re
qu

es
t

iPort ePort

X25176-042621X24779-030921

FPD Interconnect
The FPD interconnect is controlled by the FPD_INT_CSR register set.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=331

Figure 61: FPD Interconnect Channels and Ports

FPD
SMMU

FPD CCI
Switch

FPD
Main
Switch

FPD_CCI4_AXI_NOC

PCIe
Switch

TBU 0

APU
MPCore

AXI 2

AXI
0

AXI
1

intfpd_intlpd_pcie_axi

FPD_CCI5_AXI_NOC

FPD_CCI3_AXI_NOC

FPD_CCI2_AXI_NOC

ps_noc_cci_axi3, cci_noc_mem5

ps_noc_cci_axi2, cci_noc_mem4

ps_noc_cci_axi1, cci_noc_mem3

ps_noc_cci_axi0, cci_noc_mem2

LPD Switch

LPD OCM
Switch

intfpd_intlpd_axi

intfpd_intlpdocm_axi

AXI 3

AXI 4

AXI 5

coresw_afifs_slave

TBU 1

TBU 2

TBU 4

TBU 3

noc_ps_cci_axi1

afifm2m_intfpd

noc_ps_cci_axi0

TBU 5

intlpd_intfpd_pcie_axi

GIC_AX_FPD
gic_intfpd

NOC_AXI_SMMU4
noc_ps_nic_axi1

NOC_AXI_SMMU5
noc_ps_nci_axi0

PL_AXI_FPD
afifm0m_intfpd

intlpd_intfpd_axi

FPD SMMU Table
Update Requests

TBU 6

LPD main
sw

PL fabric

PL fabric

PL_ADDR_FPD

FPD_ADDR_PL

128-bit
64-bit

32-bit

Data Bus Width

PMC
PL
LPD
FPD
SPD

Power Domains

XPPU XMPU
Protection Units

Tr
an

sa
ct

io
n

Re
qu

es
t

iPort
Interconnect Ports

ePort

FPD

NoC ch. 2

NoC ch.1

NoC ch. 0

NoC ch. 3

CPM_PS
sw

NoC ch. 0

NoC ch.1

NoC ch. 2

NoC ch. 3

PS_CPM

PL interface

FPD_SMMU5_AXI_NOC

FPD_SMMU4_AXI_NOCSw

Sw

(data)

FPD Aux
Switch

Configure,
Control,
Status
registers

XMPU

DBG_AXI_FPD
dbg_intfpd_axi

APU
Interrupt
Controller

ps_noc_nci_axi0

ps_noc_nci_axi1

CoreSight

FPD_AXI_PCIE

FPD_CCI1_AXI_PCIE

PL Address Translation (PLAT)

plat

plat

ePort

ePorts

S_AXI_HP_FPD1
CIPS

Verify that CIPS names have
not changed.

PL_ACELITE_FPD

NOC_AXI_SMMU1_CCI

NOC_AXI_SMMU2_CCI

CPM_PS_AXI_FPD

LPD_AXI_FPD

S_AXI_HP_FPD1
CIPS

(control)

FPD_AXI_PL

FPD_AXI_PS_CPM

FPD_AXI_LPD

FPD_AXI_LPD_OCM

S_AXI_HP_FPD
CIPS

NoC
Interconnect

PS_NCI_NOC0
CIPS

PS_NCI_NOC1
CIPS

PS_CCI_NOC1
CIPS

PS_CCI_NOC0
CIPS

PS_CCI_NOC3
CIPS

PS_CCI_NOC2
CIPS

X25058-042621

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=332

FPD Auxiliary Interconnect
The following figure illustrates the FPD auxiliary interconnect channels and ports.

Figure 62: FPD Aux Interconnect Channels and Ports

FPD_AXI_GPV FPD_INT_GPV
fpd_gpv

FPD_APB_SLCR
FPD_SLCR_SECURE
FPD_SLCR

intfpd_fpdslcr,
intfpd_fpdslcrsecure

FPD_APB_SMMU_SWDT
intfpd_smmu, intfpd_wdt

FPD_APB_INT
FPD_XMPU
FPD_INT_CSR

intfpd_config_apb
intfpd_firefall_config_apb

FPD_APB_APU_CRF APU_DUAL_CSR
intfpd_apu, intfpd_clkrtdctrlf

FPD_APB_PLAFI PL_AXI_FPD_CSR
PL_ACELITE_FPD_CSRintfpd_afifm0, intfpd_afifm2

FPD_APB_CCI

FPD_APB_SYSMON

FPD_CCI_CORE
FPD_CCI_CSR

FPD_SYSMON_CSR

intfpd_main_cci

intfpd_sysmonsat_apb

Register ModulesChannels

FPD Aux
Switch

FPD Aux
APB

Switch

FPD_AXI_AUX

FPD_AXI_SMMU_TCU FPD_SMMU_TCU,
FPD_SMMU_SECURE_TCU register modulesintfpd_intfpdtcu_prog

FPD_AXI_GIC

FPD_AXI_DBG

APU GIC controller
registers

CoreSight Interface
intfpd_dbg

FPD
Interconnect

Miscellaneous Interface Channels

Sw
SMMU

CRF

gicsw1_gic

ePorts

FPD_SWDT
FPD_SMMU_CSR

X25178-042921

PS CPM Interconnect
When the CPM is present, there are two switches in the LPD power domain that connect the
CPM to the PS:

• PS_CPM (PS to CPM requests)

• CPM_PS (CPM to PS requests)

Note: CPM4 is a device option. See Coherency for PCIe Module.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=333

The connections for the two CPM4 switches to the CPM are shown in the following figure.

Figure 63: PS CPM Interconnect Channels and Ports

LPD_AXI_CPM_CFG CPM CFG
APB switch

DPC_AXI_PS_CPM

FPD_AXI_PS_CPM

NOC_AXI_PS_CPM

CPM_PS_AXI_FPD

CPM_PS_AXI_NOC

CPM_PS_APB_DPC

PS_AXI_CPM

CPM

NOC
cpm_ps_axi1

ps_cpm_pcie_axi

hsdp_intlpd_axi

cpm_ps_axi0

noc_ps_pcie_axi0

intfpd_intlpd_pcie_axi

OUT
switch

IN
switch

CPM_AXI_PS

PS-CPM
switch

intlpd_intfpd_pcie_axi

intlpd_hsdp_apb
intlpd_aurora_apb

ps_pmc_pcie_axi0

ps_cpm_cfg_axi

CPM_PS
switch

PMC
LPD
FPD
SPD

Power Domains

iPORT

LPD Interconnect Ports

ePORT

Interconnect

CPM4_CSR
Register Module

From LPD Switch

APB

CPM
Register
Modules

-
APB

programming
interfaces

FPD SMMU TBU 3

NoC
Interconnect

Debug Packet
Controller

FPD Switch

Debug Packet
Controller

Transaction
Source

LPD
CPM_AXI_NOC

NoC Interconnect

NOC_CPM_PCIE_0CIPS

CPM_PCIE_NOC_0CIPS

CPM_PCIE_NOC_1CIPS

X24825-060421

Interconnect Channels and Ports
There are many interconnect ports in the PMC, PS, and CPM. The ports are characterized as
follows:

• Host: Host interfaces source the transaction and are connected to an iPort

• ProgIF: Register programming interfaces often have an ePort

• Config: Configuration interfaces have an ePort, but never an iPort

• Switch: Types of interface channels attached to port modules:

○ Interface includes an ePort and iPort module

○ ePort module to another switch without an iPort module

○ Neither interface has a port because the channel is a path within switches in the same
domain or has other protection

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=334

The PMC, PS, and CPM interface channels are listed in the following table.

Table 84: Interconnect Channels and Ports

Interconnect Channel Source Port Destination Port
Notes

Name Type Name Type Name Port Type
CPM_AXI_NOC Data CPM ePort NoC Interconnect - cpm_ps_axi1

CPM_AXI_PCIE Data CPM Main Switch ePort CPM PCIe Interface - intcpm_pcie_axi

CPM_AXI_PS Switch CPM Main Switch ePort CPM_PS Switch iPort cpm_ps_axi0

CPM_PS_AXI_FPD Data CPM_PS Switch ePort FPD_SMMU_TBU3 - intlpd_intfpd_pcie_axi

CPM_PS_AXI_NOC Data CPM_PS Switch ePort NoC Interconnect - ps_noc_pcie_axi0

CPM_PS_APB_DPC Data CPM_PS Switch ePort Debug Packet
Controller - intlpd_hsdp_apb

DAP_AXI_PMC Host JTAG DAP
Controller - PMC Switch iPort jtagdap_intpmc_axi

DBG_AXI_FPD Host CoreSight - FPD Switch iPort dbg_intfpd_axi

DMA_AXI_LPD Host LPD_DMA
controller - LPD Switch iPort adma_intlpd_axi

DMA0_AXI_PMC Host PMC_DMA0 - PMC Switch iPort pmcdma0_intpmc_axi

DMA1_AXI_PMC Host PMC_DMA1 - PMC Switch iPort pmcdma1_intpmc_axi

DPC_AXI_PMC Host DPC - PMC Switch iPort dpc_intpmc_axi

DPC_AXI_PS_CPM Host DPC - PS_CPM iPort hsdp_intlpd_axi

FPD_ADDR_PL Addr FPD_SMMU_TBU6 - PL Fabric - plat (addr translation)

FPD_APB_PLAXI ProgIF FPD_Aux Switch ePort PL_AXI_FPD_CSR - intfpd_afifm0

FPD_APB_PLACELITE ProgIF FPD_Aux Switch ePort PL_ACELITE_FPD_C
SR - intfpd_afifm2

FPD_APB_APU_CRF ProgIF FPD_Aux Switch ePort APU_DUAL_CSR -

FPD_APB_CRF ProgIF FPD_Aux Switch ePort CRF Controller -

FPD_APB_CCI ProgIF FPD_Aux Switch ePort FPD_CCI_CORE - intfpd_main_cci

FPD_APB_CCI ProgIF FPD_Aux Switch ePort FPD_CCI_CSR - intfpd_main_cci

FPD_APB_INT ProgIF FPD_Aux Switch ePort FPD_INT_CSR - intfpd_config_apb

FPD_APB_INT ProgIF FPD_Aux Switch ePort FPD_XMPU - intfpd_firefall_config_ap
b

FPD_APB_SLCR ProgIF FPD_Aux Switch ePort FPD_SLCR - intfpd_fpdslcr

FPD_APB_SLCR ProgIF FPD_Aux Switch ePort FPD_SLCR_SECURE - intfpd_fpdslcrsecure

FPD_AXI_SMMU_CSR ProgIF FPD_Aux Switch ePort FPD_SMMU_CSR - intfpd_smmu

FPD_AXI_SMMU_TCU ProgIF FPD_Aux Switch ePort FPD_SMMU_TCU -

FPD_AXI_SMMU_SECURE
_TCU ProgIF FPD_Aux Switch ePort FPD_SMMU_SECUR

E_TCU -

FPD_AXI_SWDT ProgIF FPD_Aux Switch ePort FPD_SWDT - intfpd_wdt

FPD_AXI_AUX Switch FPD Switch - FPD_Aux Switch - -

FPD_AXI_DBG Data FPD_Aux Switch ePort CoreSight - intfpd_dbg

FPD_AXI_GIC ProgIF FPD_Aux Switch ePort APU GIC x11 Reg
Modules - gicsw1_gic

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=335

Table 84: Interconnect Channels and Ports (cont'd)

Interconnect Channel Source Port Destination Port
Notes

Name Type Name Type Name Port Type

FPD_AXI_GPV ProgIF FPD_Aux Switch - FPD_INT_GPV
Registers - fpd_gpv

FPD_AXI_LPD Data FPD Switch ePort LPD main Switch - intfpd_intlpd_axi

FPD_AXI_OCM_SW Switch FPD Switch ePort OCM Switch in LPD iPort intfpd_intlpdocm_axi

FPD_AXI_PCIE Switch FPD Switch - PCIE_PCIe Switch - -

FPD_AXI_PL Data FPD Switch ePort AXI Interface to PL
Fabric - coresw_afifs_slave

FPD_AXI_PS_CPM Switch FPD_PCIE Switch - PS_CPM Switch iPort intfpd_intlpd_pcie_axi

FPD_AXI_SMMU_TCU Config FPD_Aux Switch - FPD SMMU - intfpd_intfpdtcu_prog

FPD_CCI0_AXI_PCIE Switch FPD_CCI port 0 - FPD_Main Switch - -

FPD_CCI1_AXI_PCIE Switch FPD_CCI port 1 - FPD_PCIE Switch - -

FPD_CCI2_AXI_NOC Data FPD_CCI port 2 ePort NoC channel 0 - ps_noc_cci_axi0

FPD_CCI3_AXI_NOC Data FPD_CCI port 3 ePort NoC channel 1 - ps_noc_cci_axi1

FPD_CCI4_AXI_NOC Data FPD_CCI port 4 ePort NoC channel 2 - ps_noc_cci_axi2

FPD_CCI5_AXI_NOC Data FPD_CCI port 5 ePort NoC channel 3 - ps_noc_cci_axi3

FPD_SMMU4_AXI_NOC Data FPD_SMMU TBU 4 ePort NoC channel - ps_noc_nci_axi1

FPD_SMMU5_AXI_NOC Data FPD_SMMU TBU 5 ePort NoC channel - ps_noc_nci_axi0

GIC_AXI_FPD Data APU_GIC_xxx - FPD Switch - gic_intfpd

IOP_AXI_PMC Switch PMC_IOP Switch - PMC Switch iPort intpmciou_intpmc_axi

LPD_APB_CPM_CSR ProgIF LPD Switch ePort CPM4_CSR - intlpd_cpmpcsr_apb

LPD_APB_GPV ProgIF LPD Switch - LPD_INT_GPV
Registers - lpd_gpv

LPD_APB_IPI ProgIF LPD Switch ePort IPI Register
Module - intlpd_lpdipi_apb

LPD_APB_DMA ProgIF LPD Switch ePort LPD_DMA registers - intlpd_adma_apb

LPD_APB_PLAXI ProgIF LPD Switch ePort PL_AXI_LPD_CSR intlpd_afifmlpd_apb

LPD_APB_RPU_DUAL_CS
R ProgIF LPD Switch ePort RPU_DUAL_CSR - intlpd_rpu_apb

LPD_APB_OCM_CSR ProgIF LPD Switch ePort OCM_CSR intlpd_ocmCntrl_apb

LPD_APB_XRAM_CTRL{0:
3} ProgIF LPD Switch ePort XRAM Control

Registers intlpd_ocmext_apb

LPD_APB_SLCR ProgIF LPD Switch ePort LPD_SLCR - intlpd_lpdslcr_apb

LPD_APB_SLCR_SECURE ProgIF LPD Switch ePort LPD_SCLR_SECURE intlpd_lpdslcrsecure_apb

LPD_APB_CRL ProgIF LPD Switch ePort CRL Registers intlpd_crl_apb

LPD_AXI_CPM_CFG Switch LPD Switch ePort CPM_CFG APB
Switch - ps_cpm_cfg_axi

LPD_AXI_FPD Switch LPD Switch ePort FPD_SMMU_TBU0 - intlpd_intfpd_axi

LPD_AXI_IOP Switch LPD Switch ePort LPD_IOP Switch - intlpd_intiou_axi,
lpd_main_iou

OCM_SW_AXI_NOC Data OCM Switch in LPD ePort NoC Interconnect - ps_noc_rpu_axi0

OCM_SW_AXI_OCM Data OCM Switch in LPD ePort OCM Memory - intlpd_ocm_axi

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=336

Table 84: Interconnect Channels and Ports (cont'd)

Interconnect Channel Source Port Destination Port
Notes

Name Type Name Type Name Port Type
LPD_AXI_OCM_SW Switch LPD Switch - OCM Switch in LPD - iou_lpdmain

OCM_SW_AXI_PL Switch OCM Switch in LPD ePort AXI to PL Fabric - intlpd_afifslpd_axi,
m_axi_lpd

LPD_AXI_PMC Switch LPD Switch ePort PMC Switch iPort ps_pmc_axi0

LPD_AXI_PSM Switch LPD Switch - PSM Switch - intlpd_intpsm_axi

LPD_AXI_RPU0 Config LPD Switch ePort RPU0: config, TCM,
Cache - intlpd_rpu0_axi

LPD_AXI_RPU1 Config LPD Switch ePort RPU1: config, TCM,
Cache - intlpd_rpu1_axi

OCM_SW_AXI_XRAM Data OCM Switch in LPD ePort XRAM Memory - intlpd_ocmext_axi

MB_AXI_PSM Data PSM MicroBlaze
Config, Cache - PSM Switch - psmublaze_intpsm

NOC_AXI_TBU1_CCI Switch NoC Interconnect - FPD SMMU TBU1
and CCI - noc_ps_cci_axi1

NOC_AXI_TBU2_CCI Switch NoC Interconnect - FPD SMMU TBU2
and CCI - noc_ps_cci_axi0

NOC_AXI_TBU4 Switch NoC Interconnect - FPD SMMU TBU4 - noc_ps_nci_axi1

NOC_AXI_TBU5 Switch NoC Interconnect - FPD SMMU TBU5 - noc_ps_nci_axi0

NOC_AXI_PMC Switch NoC Interconnect - PMC Switch iPort noc_pmc_axi0

NOC_AXI_PS_CPM Switch NoC Interconnect - PS_CPM Switch iPort noc_ps_pci_axi0

OCM_SW_AXI_LPD Switch OCM Switch in LPD - LPD Switch - lpdmain_ocm

PL_ACELITE_FPD Switch ACE_Lite from PL - FPD_SMMU_TBU2 - afifm2m_intfpd

PL_ADDR_FPD Addr Address-only from
PL - FPD_SMMU_TBU6 - plat (addr translation)

PL_AXI_FPD Switch AXI from PL - FPD SMMU TBU5 iPort afimf0m_intfpd

PL_AXI_LPD Switch AXI from PL - LPD Switch iPort afifmlpd_intlpd_axi

PMC_APB_CFU_CSR ProgIF PMC Switch ePort CFU_CSR registers - intpmc_cfureg_apb

PMC_APB_EFUSE ProgIF PMC Switch ePort PMC_EFUSE_CTRL - intpmc_efuse_apb

PMC_APB_GLOBAL ProgIF PMC Switch ePort PMC_GLOBAL
registers - intpmc_pmcglobalreg_a

pb

PMC_APB_JTAG ProgIF PMC Switch ePort PMC_JTAG_CSR -
pmctap_apb,
pmcdap_apb,
dapreg_apb

PMC_APB_BBRAM ProgIF PMC Switch ePort PMC_BBRAM_CTRL - intpmc_bbram_apb

PMC_APB_ANLG ProgIF PMC Switch ePort PMC_ANLG intpmc_pmcanlg_apb

PMC_APB_SBI_CSR ProgIF PMC Switch ePort PMC_SBI_CSR intpmc_sbireg_apb

PMC_APB_DMA0_CSR ProgIF PMC Switch ePort PMC_DMA0_CSR intpmc_pmcdma0reg_ap
b

PMC_APB_DMA1_CSR ProgIF PMC Switch ePort PMC_DMA1_CSR intpmc_pmcdma1reg_ap
b

PMC_APB_RAM_CSR ProgIF PMC Switch ePort PPU_RAM_CSR - intpmc_ppu1ram_apb

PMC_APB_PPU_TMR ProgIF PMC Switch ePort PPU_TMR_xxx intpmb_ppu1tmrtrace_a
pb

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=337

Table 84: Interconnect Channels and Ports (cont'd)

Interconnect Channel Source Port Destination Port
Notes

Name Type Name Type Name Port Type
PMC_APB_RAM_CSR ProgIF PMC Switch ePort PMC_RAM_CSR intpmc_pmcocmcfg_apb

PMC_APB_RTC ProgIF PMC Switch ePort PMC_RTC - intpmc_rtc_apb

PMC_APB_AES ProgIF PMC Switch ePort PMC_AES - intpmc_aes_apb

PMC_APB_ECDSA_RSA ProgIF PMC Switch ePort PMC_ECDSA_RSA intpmc_ecdsarsa_apb,
ecdsarsa_apb

PMC_APB_SHA3 ProgIF PMC Switch ePort PMC_SHA3 intpmc_sha_apb,
sha_apb

PMC_APB_TRNG ProgIF PMC Switch ePort PMC_TRNG intpmc_trng_apb,
trng_apb

PMC_APB_SYSMON ProgIF PMC Switch ePort PMC_SYSMON - sysmonroot_apb

PMC_APB_CRP ProgIF PMC Switch ePort CRP registers - intpmc_crp_apb

PMC_APB_INT_CSR ProgIF PMC Switch ePort PMC_INT_CSR intpmc_confg_apb

PMC_APB_XMPU ProgIF PMC Switch - PMC_XMPU - xmpu_apb,
xmpu_firewall_gpv

PMC_APB_XPPU ProgIF PMC Switch - PMC_XPPU - xppu_apb,
xppu_firewall_gpv

PMC_APB_XPPU_NPI ProgIF PMC Switch - PMC_XPPU_NPI - xppu_npi_apb,
xppu_npi_firewall_gpv

PMC_AXI_CFU_STRM Data PMC Switch ePort CFU_STREAM - intpmc_cfustream_axi

PMC_AXI_IOP Switch PMC Aux Switch ePort PMC_IOP Switch - intpmc_intpmciou_axi,
lpdmain_iou

PMC_AXI_LPD Switch PMC Switch ePort LPD Switch iPort pmc_ps_axi0

PMC_AXI_NOC Switch PMC Switch ePort NoC Interconnect - pmc_noc_axi0

PMC_AXI_NPI Config PMC Switch ePort NPI_HOST
Controller - intpmc_npi_axi

PMC_AXI_RAM Data PMC Switch ePort PMC RAM Memory - intpmc_pmcocm_axi

PMC_AXI_SBI Data PMC Switch ePort PMC_SBI data port - intpmc_sbi_axi

PMC_MDM_PPU Config PMC Switch ePort PPU_MDM Debug - intpmc_ppu1mdmshd_a
xi

PPU_AXI_PMC Data PPU Processor - PMC Switch iPort ppu1_intpmc_axi

PS_AXI_CPM Switch PS_CPM Switch ePort CPM Main Switch iPort ps_cpm_pcie_axi

PSM_APB_GLOBAL ProgIF PSM Switch ePort PSM_GLOBAL
registers - psm_global_apb

PSM_APB_INT_GPV ProgIF PSM Switch - PSM_INT_GPV - psm_gpv

PSM_APB_MB ProgIF PSM Switch ePort PSM MicroBlaze
Registers - psm_apb

PSM_AXI_LPD Switch PSM Switch ePort LPD Switch - intpsm_intlpd_axi

PSM_MDM_MB Confg PSM Switch ePort PSM MicroBlaze
Config, Cache - intpsm_mdm

RCU_AXI_PMC Data RCU Processor - PMC Switch iPort ppu0_intpmc_axi

RPU0_AXI_OCM_SW Data RPU 0 Processor - OCM Switch in LPD iPort rpu0_axi, rpu0_intlpd_axi

RPU1_AXI_OCM_SW Data RPU 1 Processor - OCM Switch in LPD iPort rpu1_axi, rpu1_intlpd_axi

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=338

Table 84: Interconnect Channels and Ports (cont'd)

Interconnect Channel Source Port Destination Port
Notes

Name Type Name Type Name Port Type
SYSMON_AXI_PMC Data PMC SysMon - PMC Switch iPort sysmonroot_intpmc_axi

Interconnect Register Set Overview
The interconnect control and status registers are contained in the INT_CSR and INT_GPV register
sets.

CSR Registers

These CSR interconnect register sets control the functionality of the iPort and ePorts.

• PMC_INT_CSR

• PSM_INT_CSR

• LPD_INT_CSR

• FPD_INT_CSR

• CPM4_INT_CSR

GPV Registers

The GPV interconnect registers control the functionality of the QoS generator and the resilience
fault controller.

• PMC_INT_GPV

• PMC_IOP_INT_GPV

• PSM_INT_GPV

• LPD_INT_GPV

• LPD_IOP_INT_GPV

• FPD_INT_GPV

• CPM4_INT_GPV

• XRAM_INT_GPV

Note: The GPV register set descriptions are currently not available.

Section VIII: Interconnect
Chapter 38: Interconnect Switches

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 339Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_int_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___psm_int_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___lpd_int_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___fpd_int_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___cpm4_int_csr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=339

Chapter 39

Transaction Attributes
The interconnect transaction attributes include the data and address widths, as well as the
AxCACHE, AxUSER, and AxPROT command signals that accompany the transaction request as
defined by the Arm® AMBA® AXI and ACE Protocol Specification.

Transactions are initiated with several types of attributes in addition to an address and a read/
write request. The transaction attribute settings and options for each source are described in the
following sections.

Note: Not all parameters apply to all transactions. Some transaction have fixed attribute signal values while
others have signal values that can be configured dynamically.

The transaction attribute signals include the following.

• Address

• Data

• System Management ID

• TrustZone Security

• AxCACHE

• Quality of Service

• Safety FeaturesPoisoned Transaction

Transactions from the LPD hosts can be individually routed directly to memory or to the FPD
SMMU TBUs and the CCI for shared memory and coherent transactions.

Address
The PMC/PS interconnect transactions include a 44- or 49-bit address:

• 44-bit physical address (32 TB)

• 48-bit virtual address (512 TB) plus a context selection bit

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=340

When routing a transaction to the FPD SMMU, use a 48-bit address with a 49th bit used to
define the operating contect: application or kernel. All other destinations, including memories,
NoC, and PL, use 44-bit addressing. The routing controls for each source are listed in Routing and
Coherency Controls section.

Data
The interconnect includes the AXI and APB interface protocols. The AXI data width can be 32,
64, or 128 bits. The APB protocol is used for the 32-bit programming interfaces and low-
bandwidth data ports.

The smallest data transaction is a single 32-bit word. The largest transaction is a 128-bit data
word with a burst of 256 data cycles (4 KB burst size).

• AXI: Sources can burst up to 256 words

• APB: Receive single 32-bit data word

• NPI: Receive burst of 32-bit data words

• AXI: Destinations can only receive up to 16 words

Transaction Adaptation

The interconnect manages transaction requests. When the source and destination have a
different data width or burst length, the transaction is modified, including breaking up a long
burst into shorter bursts.

When an AXI transaction includes a 256-word burst, but the destination only supports 16-word
bursts, the interconnect breaks the transaction into 16-word bursts with the proper data width
for the destination interface.

System Management ID
Each transaction source generates one or more 10-bit system management ID (SMID) numbers.
The SMID is used by the SMMU, XMPU, XPPU, and IPI to identify the source of a transaction to
ensure it has the authority to access the destination.

Every PMC and PS transaction is assigned one or more unique SMID value starting with bit [9] =
1. Each non-PMC/PS transaction is assigned one or more unique number with bit [9] = 0. The
SMID value is driven on the AxUSER channel. See PMC and PS SMID Table for an assignment
list.

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=341

When a transaction is routed through a TBU in the SMMU, the 10-bit SMID value is
concatenated with a 5-bit stream field that is unique to each TBU in the SMMU. See Stream IDs
for assignments.

Features
Each unique SMID (one or more) per source is applied to both reads and writes. The SMIDs
provide the following characteristics and features:

• A source can have more than one SMID if it has different memory access threads that should
be treated differently for system management purposes (e.g., multi-channel DMA).

• A source can have more than one SMID if it can support dynamic switching between two or
more contexts.

• SMIDs traverse end-to-end over the NoC and AXI interconnect (soft and hard) via the
AxUSER bits.

• PS masters are assigned a fixed set of SMIDs. The assignments for the PL masters is
configurable.

• SMID [9] bit is hardwired and splits the masters into two groups:

○ 1: PS masters.

○ 0: Non-PS masters (including NoC, AI Engine, CPM, and PS-PL AXI slave interfaces).

• SMID values for PL IP are programmed by the PMC CFU using PL configuration frames.

• The non-PS sources routed to the NoC are assigned SMIDs by the PLM via the NPI
programming interface.

• The non-PS source NoC (including the PL to PS AXI master interfaces) are assigned SMIDs by
CFRAMEs.

• A device can have dynamic context. In this case, the device is assigned a set of SMID values,
and the appropriate device driver software has access permission to change the SMID within
the allocated SMID set, but does not have access permission to change the SMID outside of
the assigned set.

• SMID values are tied to permissions and security.

• SMID values are ECC protected as they traverse the interconnect.

Comparison to Previous Generation Xilinx Devices

In the Zynq® UltraScale+™ MPSoC, the master ID was either a fixed 10-bit value per master such
as USB, SD, etc., or a combination of a fixed value and a subset of the master’s AXI ID.

In the Versal device, a new type of unique device ID is defined, known as system management ID
(SMID). The SMID replaces the Zynq UltraScale+ MPSoC master/stream ID. This provides several
advantages:

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=342

• Flexibility

• Scalability

• ID assignment is not tied to the choice of PS input port

• ID is unique regardless of the path it takes via hard/soft interconnect or NoC

• ID is unique regardless of the physical location of the soft IP attachment to the NoC (i.e.,
support for relocatable partial reconfiguration)

• ID is preserved in cases of PL device virtualization/coherency (PL to NoC to PS to NoC to
DDRMC)

Global SMID Assignments
At the top-level, the SMIDs are divided into groups as shown in the following table.

Table 85: Global SMID Assignments

Transaction Source
SMID Bits

[9] [8] [7] [6:0]
Non-PMC, PS (firmware settings)

CPM PCIe 0 0 x CPM

PL and AI Engine 0 1 x PL and AI Engine

PMC and PS

PMC

1 x x See PMC and PS SMID TableLPD

FPD

PMC and PS SMID Table
The system management IDs (SMID) are encoded in the AxUSER bits [9:0]:

• [9] always = 1 for PMC/PS sources

• [8:7] always = 00 as reserved for PMC/PS

• [6:0] bit values are assigned individual PMC/PS sources

Table 86: PMC and PS System Management IDs

Name SMID [9:0] Notes and Configuration Registers
PMC Sources

RCU (BootROM) 10_0100_0110

PPU (PLM firmware) 10_0100_0111

DAP controller 10_0100_0000

PMC SysMon 10_0100_0001

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=343

Table 86: PMC and PS System Management IDs (cont'd)

Name SMID [9:0] Notes and Configuration Registers

SD/eMMC0
SD/eMMC1

10_0100_0010
10_0100_0011

QSPI flash 10_0100_0100

OSPI flash 10_0100_0101

PMC_DMA0
PMC_DMA1

10_0100_1000
10_0100_1011

HSDP_DPC 10_0100_1001

LPD Sources

RPU0 processor 10_0000_00xx RPU0_SMID_CFG register

RPU1 processor 10_0000_01xx RPU1_SMID_CFG register

LPD_DMA

Ch 0
Ch 1
Ch 2
Ch 3
Ch 4
Ch 5
Ch 6
Ch 7

10_0001_000x
10_0001_001x
10_0001_010x
10_0001_011x
10_0001_100x
10_0001_101x
10_0001_110x
10_0001_111x

LPD_DMA_SMID_CFG register

USB 2.0 10_0011_000x USB_SMID register

GEM 0 Ethernet MAC
GEM 1

10_0011_0100
10_0011_0101

PSM 10_0011_1000

HSDP_DMA 10_0011_1001

FPD Sources

APU MPCore 10_0110_xxxx Bits [3:0] are determined by AXI_ID, see APU SMID [3:0]

SMMU 10_0111_0100

APU GIC interrupt controller 10_0111_0010

CoreSight 10_0111_0011

PCIe 10_0101_0xxx Bits [2:0] are determined by PCIe device ID

PL to PS Sources

Miscellaneous 0x_xxxx_xxxx Bit [9] is always 0

APU SMID [3:0]
APU SMID [3:0] bits are derived from the APU AXI ID, and are listed in the following table.

Table 87: APU SMUD Bits [3:0]

AXI_ID[6:5] SIMD [3:0]
00 1000

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 344Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___rpu0_smid_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___rpu1_smid_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___lpd_dma_smid_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_smid.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=344

Table 87: APU SMUD Bits [3:0] (cont'd)

AXI_ID[6:5] SIMD [3:0]
01 1000

10 1000

11 0 | AXI_ID[2:0]

TrustZone Security
The Arm TrustZone technology tags the security level of each transaction. The tags are
propagated through the interconnect using the ARPROT[1] and AWPROT[1] AXI signals.

The protection signals are used by the protection units (XPPU and XMPU) and SMMU to restrict
transaction access. The protection units work to support safety and security applications.
Because TrustZone defines the security level of each AXI transaction, the system protection units
can be used to allow or disallow a transaction based on its security level. Secure transactions can
optionally access non-secure slaves, if allowed. Non-secure transactions cannot access secure
locations.

Features
TrustZone technology provides a foundation for system-wide security and the creation of a
trusted platform. The basic principle behind TrustZone technology is the isolation of all software
and hardware states and resources into two worlds, trusted and not trusted.

A non-secure virtual processor can only access non-secure system resources, whereas, a secure
virtual processor can see all resources. Resource access is extended to bus accesses using the NS
flag, which is mapped to the AxPROT[1] attribute on the AXI interconnect.

Any part of the system can be designed to be part of the secure world including debug,
peripherals, interrupts, and memory. By creating a security subsystem, assets can be protected
from software attacks and common hardware attacks.

Typical example TrustZone technology use cases include firmware protection, security
management, and peripheral/IO protection.

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=345

Architecture
In accordance with the recommendations of Arm’s Trusted Base System Architecture
specification, devices developed with TrustZone technology enable the delivery of platforms
capable of supporting a full trusted execution environment (TEE) and security-aware applications
and secure services, or trusted applications (TA). A TEE is a small secure kernel that is normally
developed with standard APIs and developed to the TEE specification evolved by the Global
Platform industry forum. See Arm Documents for more information.

TrustZone technology enables the development of a separate rich operating system and trusted
environments by creating additional operating modes to the normal domain, known as the secure
domain and the monitor mode. The secure domain has the same capabilities as the normal
domain while operating in a separate memory space. The secure monitor acts as a virtual
gatekeeper controlling migration between the domains.

The TrustZone technology forms the basis of a trusted secure environment for Arm systems. It
enables a secure world (secure operating system) to be separated from a non-secure world (main
operating system). TrustZone technology enables isolation between a secure and a non-secure
world, which is enforced by hardware such that a non-secure world cannot access the resources
in a secure world, but a secure world can access both secure and non-secure resources.

Security Profiles
Each system master provides a security setting with each AXI transaction. The AXI transactions
pass through a protection unit to help maintain system integrity for security and safety
applications. Profiles types include secure, non-secure (NS), programmable, and dynamic.

• Secure slaves prevent unauthorized access by non-secure masters

○ Slave security profiles for most peripherals are implemented by the XPPU and XMPUs

○ Access to several system control register sets must always be done by a secure master

• DDR memory controllers, OCM, and XRAM can include secure and non-secure regions

○ Programmable on a per region basis (1 MB for DDRMC, 4 KB for OCM and XRAM)

○ Configurable using the respective XMPU protection units

• Several types of masters

○ Fixed type: secure or non-secure

○ Programmable: a register selects between secure and non-secure

○ Dynamic: master can change security levels on a per transaction basis, e.g., PS-PL AXI
interfaces

• System boot assumes secure mode until the RCU reads the boot header.

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=346

• RPU MPCore does not use TrustZone technology. The transactions from the RPU into the
APU TrustZone environment can be configured as secure or non-secure; the default is to issue
secure transactions

TrustZone Profile
The security profile for transaction sources and destinations are listed in the following table.

Table 88: TrustZone Profile

PS Entity Destination Port Source Port Notes
APU

APU MPCore/L2 ~ Both

GIC Both ~ Global interrupt controller (GIC)

APU system counter Secure ~ System counter uses two APB ports (secure and
non-secure)

APU system counter Non-secure ~

CCI

CCI control registers Both (internal) ~ Cache Coherent Interconnect (CCI) control
registers can be configured to be secure or non-
secure

SMMU

TCU APB Secure ~ SMMU_REG

TBU AXI Both Both Programmable

XPPU, XMPU

APB interface Secure ~

AXI interface Both Both Programmable

LPD DMA Unit

DMA channels SLCR configurable SLCR configurable Programmable on a per channel basis

RPU

RPU Cores ~ SLCR configurable

RPU TCMs XPPU configurable ~ External AXI slave port

LPD Peripherals and Slaves

Secure SLCR Secure ~

PMC Secure Secure

eFUSE/BPD/SYSMON Secure ~ Fuses, battery power unit, system monitor

CoreSight Secure Secure

IOP peripherals XPPU configurable SLCR configurable I2C, GPIO, SPI, GEM Ethernet, SD/eMMC, CAN,
USB, UART, QSPI, OSPI

LP slave interfaces on
APB

XPPU configurable ~ Potential secure slaves: reset-controller

TTC0 to 3 Configurable ~

LPD_SWDT,
FPD_SWDT

~ Watchdog timers

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=347

Table 88: TrustZone Profile (cont'd)

PS Entity Destination Port Source Port Notes
FPD Peripherals and Slaves

Secure SLCR Secure ~

FP slaves APB XPPU configurable ~ Potential secure slaves: reset-controller and PCIe

DDR Memory, OCM, and XRAM

DDR Memory
Controller

XMPU configurable ~ Secure/non-secure per region with 1 MB
granularity

OCM XMPU configurable ~ Secure/non-secure per region with 4 KB
granularity

Accelerator RAM
(XRAM)

XMPU configurable ~

Notes:
1. Secure: peripheral or memory device is always secure, independent of the condition.
2. Non-secure: peripheral or memory device is always non-secure, independent of the condition.
3. Configurable: peripheral or memory device could be configured as secure or non-secure but only one mode is

allowed at any given time.
4. Both: part of the peripheral or memory device is secure while the other part is non-secure.

AxCACHE
The cacheability of a transaction is used by the CCI to determine if a cache look-up is required
and if there is a hit, what to do with the read or write data.

The cache and buffer policy for a transaction is encoded in four AxCACHE signals. There are two
separate sets of signals for reads and writes. The four AxCACHE signals are driven from register
bits and are defined as follows when the bit is set High.

• Bufferable, bit [0]: interconnect can delay transaction before reaching its destination; most
relevant to writes

• Cacheable, bit [1]: transaction is not compared to the APU L2-cache by the CCI

• Read Allocate, bit [2]: a cache miss allocates space for the read data from system memory

• Write Allocate, bit [3]: a cache miss allocates space for the write data from the initiator

The four AxCACHE [3:0] bits are combined together.

• 0000: non-cacheble and non-bufferable

• 0001: bufferable only

• 0010: cacheable but does not allocate

• 0011: cacheable and bufferable, does not allocate

• 0110: cacheable write-through, allocates on read

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=348

• 0111: cacheable write-back, allocates on read

• 1010: cacheable write-through, allocates on write

• 1011: cacheable write-back, allocates on write

• 1110: cacheable write-through, allocates on both read and write

• 1111: cacheable write-back, allocates on both read and write

Many PS peripheral transaction hosts can be programmed to route their transactions directly to
DDR memory or to the APU SMMU and the CCI first. The AxCACHE attributes are valid when
the transaction is routed through the SMMU and CCI.

• RPU processors

• LPD DMA controllers

• SD_eMMC, OSPI, GEM controllers

Quality of Service
Each AXI transaction includes four quality of service (QoS) signals. These signals seamlessly flow
with the transaction from the source, through the AXI switches and the network on chip (NoC)
interconnect, and to the destination to support three different traffic types.

• Low latency: typically CPU to DDR memory transactions

• Isochronous: real-time deadlines

• Best effort: bulk transfers and not time critical

Sources
The source of the QoS signals can be from the transaction requester or the interconnect ingress
port (iPort) attached to the requester.

PL to PS Interfaces

The QoS signals for three PL to PS interface can be statically configured using the register
settings or dynamically set by input signals in the PL:

• S_AXI_Lite_FPD

• S_AXI_FPD

• S_AXI_LPD

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=349

Traffic Types
Three different traffic types are defined:

• Low latency: typically CPU to DDR memory transactions

• Isochronous: real-time deadlines

• Best effort: bulk transfers and not time critical

Low Latency Transactions

For high-priority transactions, low latency is the key for meeting performance requirements. The
APU and RPU MPCores can specify low latency transactions so their memory access requests
are serviced in a timely manner to avoid or minimize CPU pipeline stalls.

Low latency transactions are usually associated with cache fill and replacement.

Video Isochronous Transactions

Another category of masters that can live with longer latency in typical conditions is isochronous
(or video class) transactions. However, there is critical moment (maximum latency) in which data
must be available without causing a system degradation. The key requirement is a guaranteed
maximum latency. The example masters are video encoder, camera sensor, or display device.

Best Effort Transactions

High-throughput and best effort transactions are allowed with long latency but need high
throughput to achieve architectural performance goals. These types of masters include DMAs,
the CPM, and PL functional units.

Safety Features
There are two integrity checking mechanisms in the interconnect:

• Transaction integrity checking in the iPorts

• Data parity generation and checking

Transaction Integrity

See iPort Protocol Integrity Checker.

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=350

Data Parity

The AXI interconnect includes parity checking on data channels. Parity is generated as the data
enters the interconnect and it is checked as it exits the interconnect. See iPort Parity Unit and
ePort Parity Unit.

Poisoned Transaction
When a problem is detected in a transaction, its poison signal is asserted. The poison signal
propagates to the destination. For example, the interconnect poisons a transaction when an
access is blocked by a protection unit or a parity error is detected. In some cases, the iPort
receives a transaction that is already poisoned. The interconnect can signal this with an interrupt
and allow it to propagate through to the ePort and out the switch.

Section VIII: Interconnect
Chapter 39: Transaction Attributes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=351

Chapter 40

Transaction Routes
Transactions are mainly routed by their address. However, there are transactions from the PL,
LPD, and CPM that can be routed directly to memory or to the system memory management unit
(SMMU) and the cache coherent interconnect (CCI) in the FPD using register controls. The route
through the SMMU uses a 48-bit virtual address that is translated to a 44-bit physical address.
This translation enables a shared memory environment with other processors. This route requires
the cache signals to be valid because the CCI must decide how to handle the transaction I/O
coherency with the APU L2 and PL system caches. Coherency checking can be disabled by
declaring the transaction as non-cacheable in AxCACHE. In this case, the transaction flows
through the CCI without disturbing the caching system.

The routing and coherency options are listed in the Routing and Coherency Controls section.

Cache transaction are identified using the four AxCACHE bits. The encoding is shown in the
AxCACHE section. In some cases, the host generates these four bits on a per transaction basis. In
other cases, the AxCACHE bits are defined by register settings. In this situation, a register write is
required to switch a host between coherent and non-coherent transactions.

Routing and Coherency Controls
The programmable transaction routing and coherency controls are summarized in the following
table.

Table 89: Transaction Routing and Coherency Controls

Transaction Host Routing Control AxCACHE Signal Control
LPD

RPU0 processor LPD_INT_CSR RPU0_Route [routing] Generated by the R5F processor

RPU1 processor LPD_INT_CSR RPU1_Route [routing] Generated by the R5F processor

LPD DMA ch 0:7 LPD_INT_CSR DMA_Route [routing] Individual channel registers: PS_DMA
CH_DATA_ATTR

PSM processor PSM_INT_CSR PSM_Route [routing]

GEM 0 LPD_IOP_SLCR GEM0_Route [routing] LPD_IOP_SLCR GEM0_Coherent
[GEM0_AXI_COH]

GEM 1 LPD_IOP_SLCR GEM1_Route [routing] LPD_IOP_SLCR GEM1_Coherent
[GEM1_AXI_COH]

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 352Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___rpu0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___rpu1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___dma_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_dma___ch_data_attr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_int_csr___psm_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_coherent.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=352

Table 89: Transaction Routing and Coherency Controls (cont'd)

Transaction Host Routing Control AxCACHE Signal Control
USB 2.0 LPD_IOP_SLCR USB_Route [routing]

PL

PL_AXI_LPD LPD_INT_CSR PL_AXI_LPD_Route [routing] Defined by PL fabric

PMC

PPU processor PMC_INT_CSR PPU_Route [routing]

PMC DMA 0 PMC_INT_CSR DMA0_Route [routing]

PMC DMA 1 PMC_INT_CSR DMA1_Route [routing]

JTAG DAP controller PMC_INT_CSR DAP_Route [routing]

PMC SYSMON PMC_INT_CSR SysMon_Route

PMC IOP

SD_eMMC 0 DMA PMC_IOP_SLCR SD0_Route [routing] PMC_IOP_SLCR SD0_Coherent [SD0_AXI_COH]

SD_eMMC 1 DMA PMC_IOP_SLCR SD1_Route [routing] PMC_IOP_SLCR SD1_Coherent [SD1_AXI_COH]

QSPI DMA PMC_IOP_SLCR QSPI_Route [routing] PMC_IOP_SLCR QSPI_Coherent [QSPI_AXI_COH]

OSPI DMA PMC_IOP_SLCR OSPI_Route [routing] PMC_IOP_SLCR OSPI_Coherent [OSPI_AXI_COH]

CPM Transaction Route Use Cases
The supported transaction routes to and from the CPM are shown in the Block Diagram below.

Block Diagram
The supported interconnect datapaths between the PS/PL and the CPM are shown in the figure
below. The paths are grouped as follows:

• PCIe Root Complex Mode (RC) datapaths:

○ Inbound from CPM: RC_IN x

○ Outbound to CPM: RC_OUT x

• PCIe Endpoint Mode (EP) datapaths:

○ Inbound from CPM: EP_IN x

○ Outbound to CPM: EP_OUT x

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 353Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_int_csr___pl_axi_lpd_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_int_csr___ppu_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_int_csr___dma0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_int_csr___dma1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_int_csr___dap_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_int_csr___sysmon_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___qspi_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___qspi_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_coherent.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=353

Figure 64: CPM Transaction Route Block Diagram

NoC Interconnect

CCI

ACE-Lite

SMMU

TBU3

DDR Memory
Controllers(s)

FPD Sw

OCM Sw OCM
Memory

RC_IN 2

FPD_AXI_PL

RC_IN 3

CPM Interconnect

CPM_PS switch

EP_IN 4

cpm_ps_axi0

RC_IN 5

AXI AXI

PS_CPM
switch CPM

Interconnect

PL Fabric

RC_OUT 2

RC_OUT 3

APU
MPCore

DPC
Debug

EP_IN 1

EP_IN 2

AFI_FS0
M_AXI_PL
M_AXI_HP_PL

TBU5

DBG, NoC

ACE-Lite

RC_OUT 1

RC_OUT 5

RC_IN 1

RC_IN 4

xxx
aximm1

EP_IN 3

EP_OUT 1

EP_OUT 3

EP_OUT 2

ACEACE-Lite

afifs2

EP_OUT 4

EP_OUT 5

PL Fabric

EP_IN 5afifs0

CPM_PS_APB_DPCCPM_PS_AXI_FPD

CPM_AXI_PS

PCIe 0 PCIe 1 DMA

NoC Interconnect

PL Fabric

PL_AXI_FPD

Outbound
to CPM

CPM4

CPM_NOC0

CPM_NOC1

PL Fabric

CPM_AXI_NOCCPM_PS_AXI_NOC
intlpd_intfpd_pcie_axi
lpd_fpd_pcie_axi
 aximm0

cpm_ps_axi1ps_pmc_pcie_axi0
ps_noc_pci_axi0

TBU2

PL_ACELITE_FPD

RC_OUT 4 Inbound from CPM

PMC
PL
LPD
FPD
SPD

Power Domains

RC_OUT
RC_IN

EP_IN
EP_OUT

Transaction Routes

X25398-061321

PCIe Root Complex Mode
The transactions to and from the CPM are summarized in the following table for the PCIe® root
complex mode. The direction of the transaction is reflected in the route name:
source_destination. The PS designation includes everything that is not the CPM (e.g, NoC/DDR).

Note: The root names that include an asterisk (*) include restrictions or programming notes.

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=354

Table 90: Transactions in PCIe Root Complex Mode

Route
Name Source Via Destination Notes

Inbound from CPM

RC_IN 1 CPM_NOC0
CPM_PS switch,
SMMU/CCI, and
NoC Interconnect

DDR memory or PL Set the CCI_CFG_1 [0]
bit = 1

RC_IN 2 CPM_NOC0
CPM_PS switch,
SMMU/CCI, and
FPD to OCM switch

OCM memory

RC_IN 3 CPM_NOC0
CPM_PS switch,
SMMU/CCI, and
and FPD switch

FPD_AXI_PL interface

RC_IN 4 CPM_NOC1 NoC Interconnect DDR memory or PL Physical address

RC_IN 5 CPM_NOC0 CPM_PS switch Debug Packet Controller Physical address

Outbound To CPM

RC_OUT 1 APU CCI, and
PS_CPM switch CPM Interconnect

RC_OUT 2 PL NoC Interconnect CPM Interconnect

RC_OUT 3 PL_AXI_FPD interface
SMMU TBU 5,
CCI, and
PS_CPM switch

CPM Interconnect

RC_OUT 4 PL_AXILITE_FPD
SMMU TBU 2,
CCI, and
PS_CPM switch

CPM Interconnect

RC_OUT 5 Debug Packet Controller PS_CPM switch CPM Interconnect

PCIe Endpoint Mode
The transactions to and from the CPM are summarized in the following table for the PCIe®

endpoint mode. The direction of the transaction is reflected in the route name:
source_destination. The PS designation includes everything that is not the CPM (e.g, NoC/DDR).

Note: The root names that include an asterisk (*) include restrictions and/or programming notes.

Table 91: Transactions in PCIe Endpoint Mode

Route
Name Source Via Destination Notes

From CPM To PS

EP_IN 1 CPM_NOC0 CPM_PS switch, and
NoC Interconnect DDR memory or PL Physical address

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 355Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___cci_cfg_1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=355

Table 91: Transactions in PCIe Endpoint Mode (cont'd)

Route
Name Source Via Destination Notes

EP_IN 2 CPM_NOC0

CPM_PS switch,
SMMU TBU 3
CCI,
FPD, and
OCM switch

OCM memory

EP_IN 3 CPM_NOC0
CPM_PS switch,
SMMU TBU 3,
CCI, and
FPD switch

FPD_AXI_PL interface

EP_IN 4 CPM_NOC1 NoC Interconnect DDR memory or PL Physical address

EP_IN 5 CPM_NOC0 CPM_PS switch Debug Packet Controller

From PS To CPM

EP_OUT 1 APU CCI,
PS_CPM switch CPM Interconnect

EP_OUT 2 PL NoC Interconnect CPM Interconnect

EP_OUT 3 PL_AXI_FPD interface
SMMU TBU 5,
CCI,
FPD switch, and
PS_CPM switch

CPM Interconnect

EP_OUT 4 PL_AXILITE_FPD
SMMU TBU 2
CCI, and
PS_CPM switch

CPM Interconnect

EP_OUT 5 Debug Packet Controller PS_CPM switch CPM Interconnect

Transaction Route Restrictions
There are a few routing options to avoid because of the potential for deadlock.

• CCI AXI Port Routing Restriction

• PCIe Root Port Mode Routing Restriction

• PCIe Endpoint Mode Routing Restriction

CCI AXI Port Routing Restriction
All CCI outbound traffic must not be rerouted back to any of the SMMU TBUs. This restriction is
shown in the following figure.

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=356

Figure 65: Restriction on CCI Outbound Traffic

Snoop

Source from any
transaction host

TBU

TBU

Any path via
NoC, LPD, or CPM

CCI
ACE-Lite 1, 2, or 3

ACE 4

AXI 0, 1, 2, 3, 4, or 5

APU
MPCore

L2 cache

X25329-061321

PCIe Root Port Mode Routing Restriction
In root port mode, incoming PCIe traffic to the CCI ACE-Lite port goes through the SMMU TBU3.
In this situation, traffic from any source (e.g., PS, PL) to the CPM must go directly to the CPM
without passing through a TBU. This restriction is shown in the following figure.

Figure 66: Restriction on PCIe Root Port Mode I/O Coherent Traffic

Snoop

Other sources TBU CCIACE-Lite

ACE

AXI 0, 1, 2, 3, 4, or 5

APU
MPCore

L2 cache

CPM with PCIe

TBU
Unsupported

TBU

Transaction request

Any source

Root Port Mode

ACE-Lite

X25330-042821

PCIe Endpoint Mode Routing Restriction
In endpoint mode, a TBU can be used to map transactions from a master before going to the
PCIe controller. In this case, the output from other incoming traffic to the PCIe controller must
not be routed to a TBU. This restriction is shown in the following figure.

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=357

Figure 67: Restriction on PCIe Endpoint Mode Inbound Traffic Routed to TBU

TBU 3

Endpoint Mode

From CPM

CCI ACE-lite

CPM with PCIe

TBU

Any source
to CPM

Snoop

APU
MPCore

L2 cache

ACE

AXI
 0 1 2 3 4 5 6

To CPM

X23693-052621

Section VIII: Interconnect
Chapter 40: Transaction Routes

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=358

Chapter 41

PL Interconnect Interfaces
There are several AMBA® interface channels between the PS and PL.

The PL interfaces are summarized here and are shown in several block diagrams, including in the
PS Interconnect Diagram section.

• PL to PS Interfaces

○ PL_ACE_FPD provides AXI coherency extension (ACE) to FPD cache coherency
interconnect (CCI)

○ PL_ACP_FPD provides an accelerator coherency port (ACP) to the APU MPCore L2 cache
snoop control unit

○ PL_ACELITE_FPD provides an I/O cache coherent port to SMMU and CCI

○ PL_AXI_FPD connects to the FPD main switch

○ PL_AXI_LPD connects to the LPD main switch

The LPD and FPD each have an AXI interface channel to the PL fabric. The data width on the PS
side is always 128 bits. The PL interface data width can be configured as 32, 64, or 128 bits as
defined in the FPD_AXI_PL_Width register.

• PS to PL Interfaces section

○ FPD_AXI_PL: interface AXI port from FPD main switch to PL

○ OCM_SW_AXI_PL: interface AXI port from LPD OCM switch to PL

Disabled Signal to PL Held High

When a controller or a block in the PMC or PS is disabled or powered-down, its signals to the PL
fabric are held High.

PL to PS Interfaces
The memory protection and coherency features of the PL to PS interfaces are shown in the
following table.

Section VIII: Interconnect
Chapter 41: PL Interconnect Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 359Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr___fpd_axi_pl_width.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=359

Table 92: PL to PS Interfaces

Interface Name Alternate Name APU L2 Cache
Coherency Description Register Control

To FPD

PL_ACE_FPD S_ACE_FPD Two-way PL to FPD CCI

PL_ACP_FPD S_ACP_FPD I/O coherency PL to APU MPCore
snoop control unit

PL_ACELITE_FPD S_AXI_HPC, AFIFM2 I/O coherency PL to FPD AXI Refer to the PL_AFI
register module.PL_AXI_FPD AFIFM0, AFIFM - PL to FPD AXI

PL_ADDR_FPD PLAT -
Address translation
only from PL to FPD
SMMU TBU 6

-

To LPD

PL_AXI_LPD AFIFM4 - PL to LPD AXI Refer to the PL_AFI
register module.

ACE Interface
The APU cache-coherent interconnect (CCI) includes an AXI coherency extension (ACE) to the PL
(S_ACE_FPD). This interface is an extension to the AXI protocol with two-way coherency
between the APU L2-cache and a cache subsystem in the PL.

Coherency is further discussed in the Cache Coherent Interconnect chapter.

ACP Interface
The accelerator coherency port (ACP) is a 128-bit AXI interface to enable coherent transactions
from the PL to snoop the APU L2 cache that includes write allocation into the APU L2 cache. The
ACP does this by connecting to the snoop control unit (SCU) inside the APU MPCore.

The ACP interface is generally used for legacy applications but has other, general applications.

AXI Interface
There are two PL to PS interfaces; one to the FPD and one to the LPD. These are standard AXI4
protocol.

PS to PL Interfaces
There are two configurable PS to PL AXI interfaces. One is from the FPD to the PL (via the LPD).
The other is from the LPD to the PS. The interface parameters and the PS-to-PL AXI interface
attributes are listed in the following table.

Section VIII: Interconnect
Chapter 41: PL Interconnect Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 360Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pl_afi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pl_afi.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=360

The two PS to PL interfaces are mapped within the low 4 GB memory address space.

Table 93: PS-to-PL AXI Interfaces

Interface
Name

Alternate
Name

Address
Width
(Bits)

Data Width
(Bits) Base Address Size Notes

From FPD

FPD_AXI_PL M_AXI_FPD,
AFIFS 44 32, 64, or 128 0x8000_0000 512 MB

FPD_ADDR_PL PLAT 48 None N/A N/A Address
translation only

From LPD

LPD_AXI_PL M_AXI_LPD,
AFIFS 44 32, 64, or 128

0xA400_0000 192 MB
0xB000_0000 256 MB

Note: The data bus width of the LPD_AXI_PL and FPD_AXI_PL interfaces are controlled by the
LPD_AXI_PL_Width and FPD_AXI_PL_Width registers, respectively.

Register Reference
The following table lists the PL interface control and status registers.

Table 94: PL Interface Control and Status Registers

Interface Name Register Module Name Register Module
Description Address

PL to PS Interfaces (PL_AFI register module type)

PL_AXI_FPD PL_AXI_FPD_CSR
Control and status registers for
the PL to the FPD main AXI
interconnect switch (e.g.,
RD_CTRL)

0xFD36_0000

PL_ACELITE_FPD PL_ACELITE_FPD_CSR
Control and status registers for
the PL interface to the FPD
SMMU and CCI (e.g., RD_CTRL)

0xFD38_0000

PL_AXI_LPD PL_AXI_LPD_CSR
Control and status registers for
the PL interface to the LPD AXI
main switch (e.g., RD_CTRL)

0xFF9B_0000

PS to PL Interfaces (Data width in SLCR registers)

LPD_AXI_PL LPD_SLCR Control the interface width:
LPD_AXI_PL_Width 0xFF41_9000

FPD_AXI_PL FPD_SLCR Control the interface width:
FPD_AXI_PL_Width 0xFD61_5000

Section VIII: Interconnect
Chapter 41: PL Interconnect Interfaces

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 361Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___lpd_axi_pl_width.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr___fpd_axi_pl_width.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pl_afi___rd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pl_afi___rd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pl_afi___rd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___lpd_axi_pl_width.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr___fpd_axi_pl_width.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=361

Chapter 42

Shared Virtual Memory
In some designs, multiple operating systems are required to run on the APU MPCore. Running
multiple guest operating systems on a CPU cluster requires hardware support to virtualize the
processor system into multiple virtual machines (VMs) to allow each guest operating system to
run on its VM.

Operating systems are generally designed to run on native hardware. The system expects to be
executing in the most privileged mode and assumes total control over the whole system. In a
virtualized environment, it is the VM that runs in privileged mode, while the operating system is
executing at a lower privilege level.

When booting, a typical operating system configures the processor, memories, I/O devices, and
peripherals. When executing, it expects exclusive access to such devices, including changing the
peripherals' configuration dynamically, directly managing the interrupt controller, replacing MMU
page table entries (PTE), and initiating DMA transfers.

When running de-privileged inside a virtual machine, the guest operating system cannot execute
the privileged instructions necessary to configure and drive the hardware directly. The VM must
manage these functions. In addition, the VM could be hosting multiple guest operating systems.
Consequently, direct modification of shared devices and memory requires cautious arbitration
schemes.

The level of abstraction required to address this, and the inherent software complexity and
performance overhead, are specific to the characteristics of the architecture, the hardware, and
the guest operating systems. The main approaches can be broadly categorized in two groups:

• Full virtualization

• Paravirtualization

In full virtualization, the guest operating system is not aware that it is virtualized, and it does not
require any modification. The VM traps and handles all privileged and sensitive instruction
sequences, while user-level instructions run unmodified at native speed.

In paravirtualization, the guest operating system is modified to have direct access to the VM
through hyper-calls or hypervisor calls. A special API is exposed by the VM to allow guest
operating systems to execute privileged and sensitive instruction sequences.

Section VIII: Interconnect
Chapter 42: Shared Virtual Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=362

The Arm® Cortex®-A72 exception level-2 (EL2) provides processor virtualization. The Arm® v8
supports virtualization extension to achieve full virtualization with near native guest operating
system performance.

System Perspective
The system memory management unit (FPD SMMU) enables system masters to share sections of
the APU memory map. The FPD CCI provides the option to interact with the APU's L2 cache.

• The address from masters are interpreted by the SMMU as a virtual address that is mapped to
a physical address. The physical address is used by the CCI and system memories.

The PS includes memory management units (MMUs) to support multi-OS and multi-threaded
kernels.

• APU MMU includes two-stage address translation (with page table look-up memory
protection)

• FPD SMMU includes two-stage address translation (with page table look-up memory
protection)

The PS memory address translation is shown in the following figure.

Section VIII: Interconnect
Chapter 42: Shared Virtual Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=363

Figure 68: PS Memory Address Translation

CCI
Physical Address
Non-coherent

Virtual

ACE-Lite

Two-way Coherent Snooping
Physical Address

PL_AXI_FPD

PMC

LPD DMA

NoC

I/O Coherent

Virtual Address
Non-coherent

TBU 0 SMMU

Interconnect Routing

Physical

PMC
PL
LPD
FPD
SPD

Power Domains

APU

Guest OS

Virtual Machine

Virtual Address

Intermediate Address

Physical Address

PL

TBU 6

PL

Address Only

DDR Memory Controller(s)

PL_ACELITE_FPD

NoC

CPM

Tr
an

sa
ct

io
n

Re
qu

es
t

128-bit

NoC Interconnect

PL_ACE_FPD

ACE

Virtual

Power Domains

Applications

AXI

FPD Main Sw PCIe Sw

TBU 1 2TBU 4 TBU 5

SW

TBU 3

X21695-061321

APU Virtualization
A processor element is in hypervisor mode when it is executing at EL2 in the AArch64 state. An
exception return from hypervisor mode to software running at EL1 or EL0 is performed using the
ERET instruction.

EL2 provides a set of features that support virtualizing the non-secure state of an Arm v8-A
implementation. See the Arm® Architecture Reference Manual Arm® v8 for more information.

The basic model of a virtualized system involves the following:

• A hypervisor software, running in EL2, is responsible for switching between virtual machines.
A virtual machine is comprised of non-secure EL1 and non-secure EL0.

• A number of guest operating systems, that each run in non-secure EL1, on a virtual machine.

• For each guest operating system, there are applications that usually run in non-secure EL0, on
a virtual machine.

Section VIII: Interconnect
Chapter 42: Shared Virtual Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=364

The hypervisor assigns a virtual machine identifier (VMID) to each virtual machine. EL2 is
implemented only in a non-secure state, to support guest operating system management.

EL2 provides information in the following areas:

• Provides virtual values for the contents of a small number of identification registers. A read of
one of these registers by a guest operating system or the applications for a guest operating
system returns the virtual value.

• Traps various operations, including memory management operations and accesses to many
other registers. A trapped operation generates an exception that is taken to EL2.

• Routes interrupts to the appropriate area:

○ The current guest operating system.

○ A guest operating system that is not currently running.

○ The hypervisor.

In a non-secure state, the following occurs:

• The implementation provides an independent translation regime for memory accesses from
EL2.

• For the EL1 and EL0 translation regime, address translation occurs in two stages.

○ Stage 1 maps the virtual address (VA) to an intermediate physical address (IPA). This is
managed at EL1, usually by a guest operating system. The guest operating system believes
that the IPA is the physical address (PA).

○ Stage 2 maps the IPA to the PA. This is managed at EL2. The guest operating system might
be completely unaware of this stage. Hypervisor creates the stage 2 translation table.

Execution Modes

The following figure shows the Arm v8 execution modes discussed in this section.

Section VIII: Interconnect
Chapter 42: Shared Virtual Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=365

Figure 69: Arm v8 Execution Modes

Non-secure State

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

Supervisor (Guest OS1)

AArch64 or AArch32

Supervisor (Guest OS2)

AArch64 or AArch32

Hypervisor Mode

AArch64 or AArch32

EL0

EL1

EL2

SVC

HVC

SMC

Secure Monitor Mode

Supervisor (Secure OS)

AArch64 or AArch32

App 0

AArch64 or
AArch32

App n

AArch64 or
AArch32

EL3

Secure State

X24071-060220

Virtualized System

The hypervisor directly controls the allocation of the actual physical memory, which fulfills its
role as arbiter of the shared physical resources. This requires two stages (VA→IPA, and IPA→PA)
of address translation. The following figure shows the traditional versus virtualized systems
addresses in the translation stage.

Figure 70: Traditional Versus Virtualized Systems Address Translation Stage

Applications

OS

Hardware

Applications

Guest OS

VM

Hardware

Traditional System Virtualized System

Virtual Address (VA)

Intermediate Physical Address (IPA)

Physical Address (PA)

Virtual Address (VA)

Physical Address (PA)

X24072-060220

Section VIII: Interconnect
Chapter 42: Shared Virtual Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=366

Interrupt Virtualization
The APU GIC v3 interrupt virtualization is a mechanism to aid interrupt handling, with native
distinction of interrupt destined to secure-monitor, hypervisors, currently active guest operating
systems, or non-currently-active guest operating systems. This reduces the complexity of
handling interrupts using software emulation techniques in the hypervisor.

Section VIII: Interconnect
Chapter 42: Shared Virtual Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=367

Chapter 43

System Memory Management Unit
The system memory management unit (SMMU) supports memory virtualization for processors
and other transaction hosts. The main functions of the SMMU include:

• Address translation

• Transaction security state control

• Memory protection using page table look-ups

These functions are performed with a combination of the seven translation buffer units (TBU 0
to 6). Four of these are in the path of incoming AXI interfaces outside of the FPD to the CCI. The
translation and protection tables that are cached in the TBU are updated by the SMMU
translation control unit (TCU).

Features
The functions of the SMMU are performed in the TBUs and include:

• Accepts 48-bit virtual address from processors and other transaction hosts

• Generates a 44-bit physical address for the CCI or DDR memory, and other memory-mapped
destinations

• Page tables provide memory protection from unauthorized or errant accesses

Comparison to Previous Generation Xilinx Devices
The Arm® SMMU-500 is in both the Zynq UltraScale+ MPSoC and the Versal ACAP.

TBU Instances
There are seven TBUs supported by the SMMU TCU. These are listed in the following table with
their system masters and destinations.

Section VIII: Interconnect
Chapter 43: System Memory Management Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=368

Table 95: System Masters

SMMU Unit System Masters Destination
TBU0 LPD AXI protocol CCI S3 ACE-lite

TBU1 NoC NSU3 CCI S2 ACE-lite

TBU2 Switch from S_AXI_HPC ACE_lite, or NoC NSU2 CCI S1 ACE-lite

TBU3 CPM CCI S0 ACE-lite, MSI

TBU4 Noc NSU1 Switch to FPD main switch

TBU5 NoC NSU0, S_AXI_HP, CoreSight FPD main switch or NoC NMU

TBU6 Noc NSU NoC NMU

Address Translation Examples
The SMMU provides address translation for an I/O device to identify more than its actual
addressing capability. In the absence of memory isolation, I/O devices can corrupt system
memory. The SMMU provides device isolation to prevent DMA attacks. To offer isolation and
memory protection, it restricts device access for DMA-capable I/O to a pre-assigned physical
space.

Native, Non-Virtual
As an example, consider the AXI interfaces from the programmable logic to the PS that pass
through the SMMU in the PS. When enabled, the SMMU also offers protection from DMA
masters in the PL restricted access to the PS memory region. This is protection in the context of
a symmetric multiprocessing system running an OS. The OS on an APU can isolate the DMA
from interfering with other devices under the APU. In a similar way, the SMMU can also be
enabled to restrict DMA units or other PS masters from accessing the PS memory region.

Virtual
The SMMU enables address translation in a virtualized system. An SMMU provides isolation
among different guest operating systems by setting appropriate translation regimes and context.
This isolation among guest operating systems prevents malfunction, faults, or hacks in one
domain from impacting other domains. An SMMU provides system integrity in a virtualized
environment.

Additionally, the SMMU supports two security states. In a system with secure and non-secure
domains, SMMU resources can be shared between secure and non-secure domains. For details
on two security states in the SMMU, see the Arm System Memory Management Unit
Architecture Specification.

Section VIII: Interconnect
Chapter 43: System Memory Management Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=369

Stream IDs
The SMMU uses a 15-bit stream ID to perform address translations. This information is part of a
transaction and indicates which master originated the request.

Stream ID bits [9:0] are the same as the system management ID (SMID) bits (see APU SMID
[3:0]). Stream bits [14:10] are assigned by the TBU that the transaction passes through. There are
seven TBUs:

• TBU 0 appends 000_00b

• TBU 1 appends 000_01b

• Etc.

• TBU 6 appends 001_10b

Memory Protection Functionality
When an address space is not mapped to valid address translation entry, then the transaction
generates a slave error back to the master.

Section VIII: Interconnect
Chapter 43: System Memory Management Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=370

Chapter 44

Cache Coherent Interconnect
The cache coherent interconnect (CCI) is a coherent interconnect that enables hardware
coherency. In hardware coherent systems, an operating system can run over multiple processor
clusters without complicated cache maintenance software.

The CCI provides tight memory coherency between the APU L2 cache and a PL system cache
using the ACE interface protocol to support multiple heterogeneous processing environments.
The CCI is part of the FPD interconnect. It is based on the Arm® CCI-500 with its snoop filter
(SF) table feature.

The hardware-based I/O coherency is used by transaction hosts using the ACE-Lite interface
protocol. The ACE-Lite ingress ports attach to the LPD, CPM, NoC, and PL. The address of the
transaction requests are compared with previously cached memory in the APU L2 cache and a PL
system cache, if it is instantiated and connected.

The CCI can issue a snoop request to the ACE interfaces and use its snoop filter table to
determine if a memory location is cached. If there is a cache hit, the data is returned to the
source. When the transaction is non-cacheable or the memory address of the transaction is not
in a cache (miss), the CCI operates like a regular interconnect and forwards the transaction to the
memory address destination.

There are two register modules dedicated to the CCI. These include the FPD_CCI_CORE register
module based on the IP from Arm, the much smaller FPD_CCI_CSR register module, and three
registers in the LPD_SLCR register module for controlling stripping of the output ports to the
NoC interconnect. These are listed in the CCI Register Reference section.

ACE Ports

The ACE ports tie the APU and PL processing complexes together so they can have a cache
coherent shared memory space.

• APU MPCore with L2-cache

• PL MicroBlaze™ with system cache

ACE-Lite Ports

The ACE-Lite ingress ports provide I/O coherency for transactions for host transactions from
several sources.

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 371Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___fpd_cci_core.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___fpd_cci_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___lpd_slcr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=371

• LPD-routed transactions, TBU0

• NoC transactions, TBU1

• PL and NoC transactions, TBU2

• CPM transactions, TBU3

The AxCACHE signals provide caching and buffering information. See AxCACHE.

CCI Destination AXI Interfaces

There are six AXI interfaces routed to the following destinations.

• FPD switch, AXI 0

• FPD CPM switch, AXI 1

• NoC 0, AXI 2

• NoC 1, AXI 3

• NoC 2, AXI 4

• NoC 3, AXI 5

CCI Snoop Filter Table

The CCI-500 includes a snoop filter that provides an efficient way to determine if an address is
cached. The snoop filter can often resolve coherency messaging without broadcasting a snoop
request to both ACE interfaces.

ACP Interface to APU MPCore

A PL processor without a system cache can attach directly to the APU MPCore snoop control
unit (SCU) using the ACP interface (PL_ACP_FPD). This enables the PL processor memory
accesses to be coherent with the APU caches.

Note: The PL_ACP_FPD interface does not go to the CCI; it is included here as an alternative to using the
CCI. The PL_ACP_FPD interface is described in the ACP Interface section.

Arm Documentation

There are three Arm documents related to the CCI-500.

• CCI-500 Guide for ACE-Lite and ACE Interfaces

• Arm CoreLink CCI-500 Cache Coherent Interconnect Technical Reference Manual

• AMBA AXI and ACE Protocol Specification

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 372Send Feedback

https://developer.arm.com/documentation/100095/0003/Level-2-Memory-System/
https://developer.arm.com/documentation/100023/
https://developer.arm.com/documentation/ihi0022/h
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=372

Features
• Hardware-based memory coherency between ACE hosts (APU L2-cache and PL system cache)

• I/O coherency with ACE-Lite connected hosts

• Crossbar interconnect functionality between sources and destinations

• Snoop filter (SF) with entry table to improve performance for snoop table misses

• DVM message transport between masters for communication between MMUs

• Quality of service (QoS) features for traffic management

• Data striping is supported on the four AXI interfaces to the NoC

• Performance monitoring unit (PMU) to count performance-related events

• Support for Arm TrustZone technology to provide secure, non-secure, and protected states

• Programmer registers to control coherency and interconnect functionality

The CCI supports secure and non-secure operations that can be used within a system that uses
Arm TrustZone to provide secure, non-secure, and protected states. The CCI also supports cache
maintenance operations and exclusive accesses.

The PMU provides events and counters that indicate CCI run-time performance. PMU registers
are in the FPD_CCI_CORE register module and provide information on the status of the
interconnect. These registers can be used for system debug. See the Arm CoreLink CCI-500
Cache Coherent Interconnect Technical Reference Manual, section 2.4 for more information.

In addition, the CCI provides a set of QoS regulation and control mechanisms. For this and
additional functionality, see the Arm CoreLink CCI-500 Cache Coherent Interconnect Technical
Reference Manual, section 2.4 for more information.

Comparison to Previous Generation Xilinx Devices
The FPD includes the Arm CCI-500 cache coherency interface IP. There are some notable
differences to the CCI-400 in the Zynq® UltraScale+™ MPSoC.

The CCI-500 provides a snoop filter that keeps a record of the addresses stored in the attached
caches. The snoop filter can often resolve coherency messaging without broadcasting the inquiry
to all ACE interfaces.

The CCI-500 does not support QVN. To support low-latency (LL) and best effort (BE) quality of
service (QoS) traffic simultaneously through the CCI effectively, the CCI uses a custom address
decode scheme that is optionally enabled via register programming.

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 373Send Feedback

https://developer.arm.com/documentation/100023/
https://developer.arm.com/documentation/100023/
https://developer.arm.com/documentation/100023/
https://developer.arm.com/documentation/100023/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=373

Cache Coherency
There are two types of coherency options. There are six ingress port (iPort) interfaces on the CCI.

• Two for Two-way Coherency

• Four for I/O Coherency

Two-way Coherency
Two-way coherency enables a host transaction to snoop another attached cache.

Reads can hit or miss in the other cache. A miss is forwarded to system memory. A hit in the
other cache returns the data memory from the other cache.

Writes can hit or miss in the other cache. The action taken by the CCI can have several effects
depending on the AxCACHE attribute setting. These are listed in the AxCACHE section.

The 128-bit PL_ACE_FPD two-way coherent interface allows a PL interface host to snoop the
APU L2 cache and it allows the APU L2 cache and ACE Lite interfaces to snoop the PL cache.
This interface from the PL to PS provides full two-way hardware coherency between the APU
MPCore and a system master in the PL.

The PL_ACE_FPD interface uses the full ACE protocol. This is an extension to the AXI protocol to
provide hardware cache coherency.

I/O Coherency
I/O coherency (one-way) enables system masters to snoop the APU L2 cache. If there is a read
hit in the L2 cache, then the L2 cache sources the data. If there is a write hit in the L2 cache, then
the action depends on the coherency policy requested by the master. I/O coherency with the
CCI is supported by the PL_ACELITE_FPD interface attached to an ACE-Lite port of the CCI. The
master can also access the SMMU and CCI via the NoC.

The ACE coherency protocol ensures that all masters observe the correct data value at any given
address location by enforcing that only one copy exists whenever a store occurs to the location.
After each store to a location, other masters can obtain a new copy of the data for their own
local cache, allowing multiple copies to exist. See the Arm® AMBA® AXI and ACE protocol
specification for a detailed overview.

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=374

Snoop Filter
The CCI includes a snoop filter with a local look-up table to determine if the requested memory
data is in one of the attached caches. See the Arm CoreLink CCI-500 Cache Coherent
Interconnect Technical Reference Manual section 2.4 for more information.

Snoop Filter Table Management
The local snoop filter look-up table is sized for the 1 MB APU L2 cache and a 256 KB PL cache.
Larger PL caches are supported. When the snoop filter look-up table does not have room for a
cache-tracking entry, the snoop filter controller evicts a table entry out to system memory and
sets up a new entry for the cache look-up.

Snoop Filter Memory Access Reads

When the snoop filter controller needs to update the look-up table, it reads from memory using
the SMID attribute from the host that is requesting the memory coherent transaction. The
SMIDs for each host are listed in a table in the System Management ID section.

Snoop Filter Memory Access Writes

If the snoop table entry is already occupied, the CCI must evict the entry and write it out to
system memory. In this case, the CCI always uses an SMID attribute value of 00_0000_0000.

The XMPUs that protect system memory need to be programmed to allow these write
transactions from the snoop filter in the CCI.

AXI Outgoing Ports
The CCI outgoing ports and their destinations are listed in the following table.

Table 96: CCI Outgoing Ports and Their Destinations

CCI
Outgoing

Port

Destination
FPD_AXI_PL
LPD_AXI_PL
Interfaces

OCM and
XRAM

FPD/LPD/PMC
Destinations CPM NoC includes access to

DDR, PL, AI Engine

AXI 0 Yes Yes Yes ~ ~

AXI 1 ~ ~ ~ Yes ~

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 375Send Feedback

https://developer.arm.com/documentation/100023/
https://developer.arm.com/documentation/100023/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=375

Table 96: CCI Outgoing Ports and Their Destinations (cont'd)

CCI
Outgoing

Port

Destination
FPD_AXI_PL
LPD_AXI_PL
Interfaces

OCM and
XRAM

FPD/LPD/PMC
Destinations CPM NoC includes access to

DDR, PL, AI Engine

AXI 2
AXI 3
AXI 4
AXI 5

~ ~ ~ ~ Yes, with striping option

Striping NoC Interfaces
The four AXI interfaces to NoC can be individually mapped to system memory or striped to
improved throughput. Striping can be across two (in pairs) or all four of the AXI interfaces to
NoC.

Address Mapping

Almost all of the memory ranges for the CCI can be striped AXI are striped. The default stripe
size is 4 KB. This means accesses to the striped memory regions come out on one of the four CCI
outgoing ports AXI 2, AXI 3, AXI4, and AXI 5. However, the memory range between 2 TB and 4
TB is not striped. Accesses to the region from 0x200_0000_0000 to 0x3FF_FFFF_FFFF always
come out on a single port. This memory range maps to the PL NoC address space. The assigned
port depends on the CCI configuration defined in three LPD_SLCR registers listed in the CCI
Register Reference section.

1. If an incoming port is configured for 4-way interleaving, or 2-way on outgoing ports AXI 2
and AXI 3, then:

• Traffic in the 2 TB to 3 TB memory space range is routed to CCI port AXI 2

• Traffic in the 3 TB to 4 TB memory space range is routed to CCI port AXI 3

2. If an incoming port is configured for 2-way interleaving on outgoing ports AXI 4 and AXI 5,
then:

• Traffic in the 2 TB to 3 TB memory space range is routed to CCI port AXI 4

• Traffic in the 3 TB to 4 TB memory space range is routed to CCI port AXI 5

3. The 290 GB reserved address space above the PL-via NoC region (see reserved address
space) is still routed to the NOC (DDR region). It is expected that the NoC will issue a decode
error for this reserved space to reduce the timing impact in the CCI address decoder.

The first configuration (1) is the default setting. All of the slave ports are configured for 4-way
striping so the address range 0x200_0000_0000 to 0x2FF_FFFF_FFFF is routed to the CCI port
AXI 2 while 0x300_0000_0000 to 0x3FF_FFFF_FFFF is routed to the CCI port AXI 3.

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=376

Transaction Attribute Management
Transaction attributes are affected by and modified by the CCI. The CCI responds to QoS
settings.

QoS Response
The CCI-500 does not support QVN. To support low-latency (LL) and best effort (BE) quality of
service (QoS) traffic simultaneously through the CCI effectively, the CCI makes use of a custom
address decode scheme that is optionally enabled via register programming.

• FPD_CCI_CSR.ARQOS_OVR_SI0 (0 to 5)

• FPD_CCI_CSR.AWQOS_OVR_SI0 (0 to 5)

• FPD_CCI_CSR.QOS_MAX_OT_SI0 (0 to 5)

CCI Register Reference
The CCI is controlled by registers in three register modules.

• FPD_CCI_CORE register module

• FPD_CCI_CSR register module

• LPD_SLCR register module:

○ CCI_CFG_0 register

○ CCI_CFG_1 register

○ CCI_MAP register

CCI CSR
The CCI core registers are summarized in the following table.

Table 97: CCI CSR Register Set Overview

Register Name Offset Address Access Type Description

APB_ERR_CTRL 0x000 RW APB transaction error signal
enable

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 377Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___fpd_cci_core.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___fpd_cci_csr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___lpd_slcr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___cci_cfg_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___cci_cfg_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___cci_map.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=377

Table 97: CCI CSR Register Set Overview (cont'd)

Register Name Offset Address Access Type Description

APB_MISC_ISR
APB_MISC_IMR
APB_MISC_IER
APB_MISC_IDR

0x010
0x014
0x018
0x01C

WTC
R
W
W

APB address decode error
and event counter overflow
interrupts

MISC_CTRL 0x040 RW CoreSight™ debug enables
invasive/secure

CCI Core
The CCI core registers are summarized in the following table.

Table 98: CCI Core Register Set Overview

Register Name Offset Address Access Type Description
CTRL_OVR 0x0000 RW

SECR_ACC 0x0008 RW

STATUS 0x000C R

IMPR_ERR 0x0010 RW

QOS_THRESHOLD 0x0014 RW

PMC_CTRL 0x0100 RW, R

Egress Port Controls

SNOOP_CTRL_SI0 (AXI 0)
SHARE_OVR_SI0 (AXI 0)
ARQOS_OVR_SI0 (AXI 0)
AWQOS_OVR_SI0 (AXI 0)
QOS_MAX_OT_SI0 (AXI 0)

0x1000
0x1004
0x1100
0x1104
0x1110

RW, R
RW
RW
W

RW

Snoop, share, QoS: AXI 1
AXI 2
AXI 3
AXI 4
AXI 5

base address:
0x2000
0x3000
0x4000
0x5000
0x6000

misc

Event Controls

EVNT_SEL_0
EVNT_DATA_0
EVNT_CTRL_0
EVNT_CTRL_OVFL_0

0x1_0000
0x1_0004
0x1_0008
0x1_000C

RW

EVNT_xxx_1
EVNT_xxx_2
EVNT_xxx_3
EVNT_xxx_4
EVNT_xxx_5
EVNT_xxx_6
EVNT_xxx_7

0x2_0000
0x3_0000
0x4_0000
0x5_0000
0x6_0000
0x7_0000
0x8_0000

misc

Section VIII: Interconnect
Chapter 44: Cache Coherent Interconnect

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=378

Chapter 45

Memory Protection
The interconnect has several features that protect the system slaves from erroneous application
software and misbehaving hardware interfaces. Erroneous software includes malicious and
unintentional code that corrupts system memory or causes system failures. Misbehaving
hardware includes incorrect device configuration, malicious functionality in the PL, or an
unintentional design.

Each bus master is assigned a master ID number. Each master specifies a read/write access type
and address for each transaction. In addition, the Arm TrustZone technology tags the security
level of each AXI transaction. The access type, address, and security level are checked by
protection mechanisms before reaching the destination to determine if the master has the
authority to access the requested memory (this includes memory locations and memory-mapped
registers).

Functional Units
The MMUs restrict access using page table faults. The protection units compare the credentials
of the master with the current access controls for that address location.

• APU MPCore MMU page mapping

• SMMU page mapping

• XMPU protection units

• XPPU protection units

The following table summarizes the system protection units terminology.

Table 99: Memory Protection

Access Unit Description
APU MPCore MMU Monitors the transactions from the APU processors.

FPD SMMU

The SMMU includes one translation control unit (TCU) and six translation buffer units
(TBU). The SMMU provides protection (and address translation) for all non-APU
transactions targeting the PS address space. The protection functionality is applied to the
physical address that occurs after the address translations. The SMMU registers are
accessible only from the APU.

Section VIII: Interconnect
Chapter 45: Memory Protection

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=379

Table 99: Memory Protection (cont'd)

Access Unit Description

XMPU

The XMPUs provides memory partitioning and TrustZone protection for memories:
- PMC RAM and SBI
- OCM memory port
- XRAM memory ports
- DDR memory controller

XPPU
Several XPPUs:
- PMC_XPPU to PMC CFU and IOP programming interfaces
- NPI_XPPU to NPI programming interfaces
- LPD_XPPU to LPD programming interfaces and PSM slave access

Use Case Examples
In this system protection use case, the RPU runs a safety application where a certain region of
the OCM might be required to be protected and dedicated for use by the RPU. Some peripherals
like the UART controller and the QSPI controller might also require protection and be dedicated
for use by the RPU. The following are needed to accomplish these requirements:

• RPU generates transactions

• XMPU protects the region of the OCM for access only by the RPU master ID; other regions of
the OCM can be accessed by other masters

• XPPU protects the UART controller and QSPI controller for use by the RPU master ID

TrustZone Security
The TrustZone technology provides a foundation for system-wide security. TrustZone technology
is a software-controlled, hardware-enforced system for separating secure and non-secure AXI
transactions. Masters are assigned a security profile that is either statically controlled (always
secure or always non-secure), or dynamically controlled using a configuration register. Similarly,
software processes are assigned a secure or non-secure state.

A non-secure application can only access non-secure system resources, whereas, a secure
application can see all resources. Resource access is extended to bus accesses using the non-
secure, NS flag, which is mapped to the AxPROT[1] signal in the AXI protocol. Any part of the
system can be designed to be part of the secure world including debug, peripherals, interrupts,
and memory. By creating a secure subsystem, assets can be protected from software and
hardware attacks.

Section VIII: Interconnect
Chapter 45: Memory Protection

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=380

Chapter 46

Xilinx Memory Protection Unit
The Xilinx memory protection unit (XMPU) verifies that a system master is explicitly allowed to
access a memory address. The XMPU is a region-based memory protection unit. This section
describes the XMPU in detail, including configuration and functionality.

System protection is applied to incoming AXI transaction requests from masters. The transaction
is checked for:

• Master ID (unique for each master)

• TrustZone secure or non-secure (NS)

• Read or write access type

XMPUs appear on the slave interconnect ports:

• PMC_XMPU on IOP flash and CFU

• OCM_XMPU for the OCM memory

• FPD_XMPU on slaves

• Accelerator RAM (when present), with an XMPU on each of the four AXI ports

• DDR memory controller ports; one per controller

The XMPUs are shown in the system block diagram PS Interconnect Diagram.

Use Case Example

In this system protection use case, the RPU runs a safety application where a certain region of
the OCM might be required to be protected and dedicated for use by the RPU. To accomplish
these requirements, the following are required:

• RPU generates secure transactions

• XMPU can protect a region of the OCM for exclusive use by the RPU and makes the rest of
memory available for use by allowed masters

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=381

Features
General Features

The XMPU includes these features:

• Transaction monitoring:

○ Allow request to proceed

○ Block request and respond to transaction source

• Programming interface to access control registers

• Lock register

○ Configure with TrustZone secure transactions prior to registers being locked

○ When the lock is set, writes to interrupt registers are the only ones allowed

○ Once the lock is set, the lock is only unlocked by a POR reset

• Error and status reporting

○ Failed message generated and passed to addressed slave

○ Interrupt for interconnect transaction permission violation

○ Interrupt for register access violations

• Memory partitioning and protection

○ Isolate a master

○ Give set of masters access to address ranges

Region Features

• 16 regions defined

• Each region with start address and end address

• Define address range with 4 KB or 1 MB granularity

• Regions can overlap

○ In case of overlap, the higher region# has higher priority

• Each region can be independently enabled or disabled

• Disabled region is not used for protection checking

• Read and write permission for each region can be independently enabled or disabled

• Each region can be independently set to secure or non-secure

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=382

• If permission or secure check violations are detected, then the transaction is blocked and an
error is generated

System Perspective
PMC and PS Instances
The following table lists the system protection units. The region size is fixed at 4 KB.

Table 100: XMPU PMC and PS Instances

Name Granularity Upstream Master Downstream Slave Control Registers
Base Address

PMC_XMPU 4 KB PMC main switch IOP, flash, CFU 0xF12F_0000

OCM_XMPU 4 KB OCM switch OCM memory 0xFF98_0000

FPD_XMPU 4 KB FPD main switch APU GIC and FPD
slaves 0xFD39_0000

XRAM and DDRMC Instances
The following table lists the XRAM and DDRMC instances.

Table 101: XMPU XRAM and DDRMC Instances

Name Granularity Upstream Master Downstream Slave Programming
Interface

Accelerator RAM

XRAM_LPD_XMPU

4 KB

OCM switch

Accelerator RAM APBXRAM_PL0_XMPU
XRAM_PL1_XMPU
XRAM_PL2_XMPU

PL fabric

DDR Memory Controller (one per controller)

DDRMCx_XMPU 1 MB Four-port NoC
interface DRAM controller NPI

Memory Regions
Each XMPU has 16 regions, numbered from 0 to 15. Each region is defined by a start address and
an end address. There are two region address alignment types. The 4 KB granularity is used for
all XMPUs except the one in the DDRMC.

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=383

When a memory space is included in more than one XMPU region configuration, the higher
region number has higher priority (that is, region 0 has lowest priority). Each region can be
independently enabled or disabled. If a region is disabled, it does not include protection checking.

If none of the regions are enabled or the request does not match any of the regions, then a
subtractive decode determines whether or not the request is allowed. That is, the XMPU takes
the default action as specified in the XMPU control register.

Access Checking Operations
An incoming read or write request on a port is checked against each XMPU region as described
in this section.

TIP: When a memory space is included in more than one XMPU region, the higher region number has
higher priority (that is, region 0 has the lowest priority). This determines the set of permissions used for the
checks described in this section.

For the enabled region, two basic checks are completed first.

• Check if the address of the transaction (AXI_ADDR) is within the region. That is,
START_ADDR ≤ AXI_ADDR ≤ END_ADDR.

• Check whether the master ID of the incoming transaction is allowed. That is, incoming_MID &
MID_Mask == MID_Value & MID_Mask.

If these checks are true, then the region configuration is checked with regards to security and
read and write permissions.

Note: Disabled regions do not grant permissions.

Master ID Validation
Each XMPU uses the inbound Master ID in each AXI transaction to validate the transfer. The
Master ID is masked by the [MASK] bit field and then compared against the [ID] bit field of the
Rxx_MASTER region registers. If the following equation is satisfied (along with security and read/
write checks), the transaction is allowed. In this equation, these are [10-bit parameters] in the
Rxx_MASTER region register:

[ID] & [MASK] == AXI_MasterID & [MASK]

Security Validation
• If the region is configured as secure, then only the secure request can access this region.

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=384

• If the region is configured as secure, then the read and write permissions are independently
checked to determine whether or not the transactions are allowed.

• If the transaction is non-secure and the region is configured as secure, then the check fails,
and the transaction is handled as described in Error Handling.

• If the region is configured as non-secure and the transaction is non-secure, then read and
write permissions are independently checked to determine whether or not the transaction is
allowed. If the check fails, the transaction is handled as described in Error Handling.

Block Diagram
The XMPU functional block diagram is shown in the following figure.

Figure 71: XMPU Functional Block Diagram

ARADDR

Rnn_START_ADDR

Start < ARRADR < END

Rnn_END_ADDR

12 or 20
upper bits

ARID

Rnn_MASTER_ID.mask

ARID & mask == value & mask

Rnn_MASTER_ID.value

Priority Encoder
16 Region Match Signals

R00_CONFIG

R15_CONFIG

. .
 .

. . .
Security and
Permission

Check

NSCheckType
RegionNS
RdAllowed 0=Allow

1=Fail

No Match

Rnn_CONFIG Enable

ARPROT[1]

DefRDAllowed

Lowest region
number that
matches

16 Regions Compared

X23533-121119

Error Handling
Errors can occur from security or read/write violations. When an error occurs, the XMPU records
the type of violation, the transaction address, and the master ID of the first transaction that
failed. The protection unit flags the violation and can generate an interrupt. When a security
violation occurs, there is an additional logging to indicate that the error was a security violation.
Only one error and the first error is recorded for both read/write AXI channels.

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=385

Permission and Security Violations

When a permission or security violation is detected, the XMPU asserts the error flag in the
transaction header. This header is read to determine what action to take. The XMPU also records
the address, error type, and master ID number. An interrupt can be generated. Only the first
occurrence of an error is recorded. For simultaneous read and write errors, only the write error is
recorded.

The transaction is stored in these registers:

• ERR_STATUS1_LO, ERR_STATUS1_HI (address)

• ERR_STATUS2 (master ID number)

The type of violation is recorded in the ISR register:

• [SecurityVIO]

• [WrPermVIO]

• [RdPermVIO]

Transaction Signals
The format of the transaction signals is shown in the following table. There are two sets of
signals, one for reads and one for writes.

Table 102: Transaction Signals

Entry Description
Master offset address Transaction address

User flags Master ID

Security flag Protection (PROT)

Valid Valid indicator

Hold

Error flag Pass/fail result

Read or write indicator 0 = write, and 1 = read

Hide Hide control from CTRL [HideAllowed] bit output from XMPU to
protection wrapper

Sideband Interrupt

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 386Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xmpu___err_status1_lo.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xmpu___err_status1_hi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xmpu___err_status2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xmpu___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xmpu___ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=386

Configuration
The XMPU is configurable either one time or through a secure master. At boot time, the XMPU
can be configured and its configuration is locked. If an XMPU register set is locked, the XMPU
can only be reconfigured after the next power-on reset (POR). If the configuration is not locked,
the XMPU can be reconfigured any number of times by trusted software (using a secure master).

RECOMMENDED: Xilinx recommends only configuring each XMPU one time. When an XMPU is
programmed, all of its settings must be programmed to ensure that only the allowed transactions go
through.

Section VIII: Interconnect
Chapter 46: Xilinx Memory Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=387

Chapter 47

Xilinx Peripheral Protection Unit
The Xilinx peripheral protection unit (XPPU) protects the system addressable programming
registers from erroneous application software and misbehaving hardware interfaces. Erroneous
software includes malicious and unintentional code that corrupts system register settings or
causes system failures. Misbehaving hardware includes incorrect device configuration, malicious
functionality, or unintentional design.

There are several XPPU in the LPD and PMC for register programming:

• PMC main switch to APB programming interfaces (PMC_XPPU)

• PMC main switch to NPI control unit that accesses the NPI programming interfaces
(PMC_XPPU_NPI)

• LPD main switch to APB programming interfaces (LPD_XPPU)

The XPPUs are identified in the system PS Interconnect Diagram.

The XPPU looks at several transaction attributes to determine if the transaction should be
allowed to proceed normally. The attributes include the 44-bit physical address, the AxPROT[1]
security bit, and the system management ID (SMID) bits that are encoded in the AxUSER
command signals. These attributes are used to restrict the access to memory mapped peripheral
interfaces.

Features
The XPPU has several features:

• Access control for a specified set of address apertures on a per-master basis

• Access control granularity on a per-peripheral or a per-message buffer basis

• Up to 20 simultaneous sets of one or more masters

• Several sets of programmable apertures, including:

○ 256 x 64 KB for peripheral ports

○ 16 x 1 MB for peripheral ports

○ Single 512 MB for flash memory controller

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=388

• AXI transaction permission violation interrupt

• APB slave interface address decode error interrupt

The XPPU interfaces consist of the following:

• AXI interface programming port where sysem ID is carried on lower bits of AxUSER

• AXI interface control port where system ID is carried on lower bits of AxUSER

• AXI clock (same for all ports)

• APB programming interface (requires secure transactions to access)

• Level-sensitive, asynchronous interrupt output

System Perspective
The basic protection operations and their system interfacing to the system is shown in the
following figure.

Figure 72: XPPU Match and Permission Diagram

APB
Interface

AxADDR
AxUSER
AxPROT

APB

Control
Registers

Permission
RAM

Address
Decode

ADDR

ID
Permission

CheckMatch

Data

Aperture
Information

Master ID
Lookup

From
Source AxADDR

AxUSER
AxPROT

To Target

Transaction
Violation

Set error status
registers

X23528-111719

Instances
The locations of the various system protection modules in the PS are shown in the PS
Interconnect Diagram.

The following table lists the system protection units.

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=389

Table 103: XPPU Instances

Name Upstream Downstream
LPD_XPPU LPD main switch LPD IOP slave switch

PMC_XPPU PMC main switch PMC IOP slave switch

PMC_XPPU_NPI PMC main switch NPI bus master

Access Checking Operation
For every read and write transaction, the XPPU determines if the transaction is allowed to
proceed with fine grain control of specific addresses. If the transaction is allowed, then it
proceeds normally. If the transaction is not allowed, it asserts an error flag that is detected
downstream.

An AXI transaction request is allowed to access the address space defined by an APERPERM_xxx
register if these conditions are satisfied:

• The requesting master fits one or more of the profiles of a MASTER_IDxx register.

• The bit for the that profile is set in the [PERMISSION] bit field. For example, if the master
satisfies the MasterID and read/write permissions of the MASTER_ID00 register and bit 0 of
the [PERMISSION] bit field = 1, then the transaction is allowed to proceed.

• The transaction request satisfies the APERPERM_xxx [TRUSTZONE] bit setting.

IMPORTANT! XPPU is used to configure the device control address space to be TZ or non-TZ. Devices
(peripherals) are configured to be TZ or non-TZ by separate registers—this control is not provided by XPPU.

Aperture Permissions
Aperture List
The following table shows the four sets of apertures and the address protected for each
aperture.

Table 104: XPPU Aperture List

Aperture Size Address
Interval

Number of
Apertures

Base Address of Aperture Registers
PMC_XPPU PMC_XPPU_NPI LPD_XPPU

64 KB 0x0001_0000 256 0xF100_0000 0xF600_0000 0xFF00_0000

1 MB 0x0010_0000 16 0xF000_0000 0xF700_0000 0xFE00_0000

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=390

Table 104: XPPU Aperture List (cont'd)

Aperture Size Address
Interval

Number of
Apertures

Base Address of Aperture Registers
PMC_XPPU PMC_XPPU_NPI LPD_XPPU

512 MB 0x2000_0000 1 0xC000_0000 Does not exist 0xE000_0000

Master ID Entry
When an AXI transaction is received, the master ID (MID) that is available as part of AxUSER is
compared against all entries of the MID list, together with parity checks (if enabled).

An AXI MID matches the nth entry if the following is true:

(MASTER_IDnn.MASTER_ID_MASK & MID == MASTER_IDnn.MASTER_ID_MASK &
MASTER_IDnn.MASTER_ID) && (~CTRL.MID_PARITY_EN || CTRL.MID_PARITY_EN &
(MASTER_IDnn.MASTER_ID_PARITY == Computed parity))

An entry in the master ID list consists of the fields shown in the following table.

Table 105: XPPU Master ID Entry

Name Bit Field Bit Field Description
Master ID MID [9:0] The master ID to match

ID mask MIDM [25:16] The ID mask

Read-only MIDR [30] If set, only read transactions are allowed

Register parity MIDP [31] Parity of bits [30, 25:16, 9:0]

For a matched entry, if it is enabled by the corresponding bit of the PERMISSIONS field (as
defined by the PERM field shown in Table 106) and if the read only (MASTER_IDnn.MIDR) bit is
set, only read transactions are allowed and write transactions are not allowed.

The bitwise result of matching against each entry of the master ID list is stored in the match
vector (MATCH [m–1:0]. The parity bit is computed and written by the software if the parity
option is enabled.

Register Format
The XPPU aperture register structure enumerates the permission settings on each protected
peripheral. Each APERPERM_xxx register entry contains the information listed in the following
table.

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=391

Table 106: Aperture Permissions Register Format

Field Name Bit Field Description

PERMISSION [19:0]

Master ID profile permission. Each of the 20 [PERMISSION] bits correspond
to the MASTER_ID{0:19} registers. The [PERMISSION] field helps to
determine if the transaction request of the master characterized by a
MASTER_ID register is permitted.
0: Not allowed
1: Allowed
A 1 in bit position n (n < m) indicates that the nth entry in the master ID list
has permission to access the aperture. This check is further qualified by
parity and TrustZone checks.

TRUSTZONE [27]
0: Only secure transactions are allowed
1: Secure or non-secure transactions are allowed

PARITY [31:28]
The hardware checks the parity bits for the [PERMISSION] and
[TRUSTZONE] bit fields. Software must generate and load the parity bits
before the protection unit uses the register.

Four parity bits are added to protect the (TrustZone and permission) fields, which are equally
divided into four protected fields. Parity must be computed by software when writing an entry in
the aperture permission list. If the controller detects a parity error, then a status bit is set.

• Bit [31] is parity for bit [27] and bits [19:15]

• Bit [30] is parity for bits [14:10]

• Bit [29] is parity for bits [9:5]

• Bit [28] is parity for bits [4:0]

The aperture permission list must be completely initialized by software to 0 before the XPPU can
be enabled. The software is also required to compute and write parity. For unprotected
apertures, all supported master match bits in the permission RAM should be set to 1.

Protected Addresses
The XPPU protects the address ranges shown in the following figure.

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=392

Figure 73: XPPU Aperture Memory Map

0x0000_0000

512 MB aperture

LPD_XPPU

PMC_XPPU_NPI

PMC_XPPU

16 MB

64 KB apertures (256x)

1 MB apertures (16x) 16 MB

64 KB apertures (256x)

1 MB apertures (16x)

16 MB

16 MB

0xF200_0000

0xF600_0000

0xF700_0000

0xF800_0000

0xFE00_0000

0xFF00_0000

0x1_0000_0000

0xF100_0000

0xF000_0000

16 MB

16 MB

512 MB aperture

0xE000_0000

64 KB apertures (256x)

1 MB apertures (16x)

0xC000_0000

512 MB

512 MB

LPD_XPPU

X23529-061521

Permission Checking
Permission checking is performed using the master ID and TZ security settings of the transaction.
The MasterID sets one or more of the 20 local MATCH bits that are compared against the
address-selected aperture permission register, APERPERM_xxx. The XPPU also tests the
AxPROT[1] and R/W signals with the APERPERM_xxx [TRUSTZONE] bit. The following equation
is for read transactions.

Transaction_OK = (MATCH & PERMISSION != 0)

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=393

AND { (TRUSTZONE == 1) OR {(AxPROT[1] == 0) && (TRUSTZONE == 0) }}

• The first term means that the incoming AXI master ID, after the mask is applied, should be
listed in the master ID list, and it should also be listed as an allowed master in the aperture
permission list, APERPERM_xxx registers.

• The second term means that the incoming AXI TrustZone (on AxPROT [1]) should meet the
aperture (slave) TrustZone setting.

The result from this equation is further qualified with the parity check on the selected register
from the aperture permission list if the parity check is enabled.

If all of the these checks pass, the transaction is allowed.

Error Handling
The following table lists the possible errors that can be encountered by the XPPU and how they
are handled.

Table 107: Error Handling in XPPU

Error1 Actions
Master ID list parity error The MASTER_IDnn register associated with the parity error is disabled and cannot

enable a match, that is, MATCH [nn] is forced to 0. The MID_PARITY bit of the ISR
register is set and an interrupt can optionally be signaled.

Master ID list read only error A master ID read-only error occurs when any matched MASTER_IDnn register is
enabled by the corresponding bit of the PERM field from the selected entry for the
addressed peripheral, its MIDR bit is set, and the transaction is a write. When
multiple master IDs are both matched and enabled and one or more have MIDR
bits set, a master ID read-only error is still flagged. The MID_RO bit of the ISR
register is set.

Master ID list miss error When all MATCH vector bits are zero, a master ID miss error occurs. The MID_MISS
bit of the ISR register is set.

Aperture permission list parity error The transaction is disallowed and APER_PARITY bit of the ISR register is set. An
interrupt can optionally be signaled.

Transaction TrustZone error2 When a non-secure transaction attempts to access a secure slave, a transaction
TrustZone error occurs. This error is flagged only when there is no MID_MISS error
and no APER_PARITY error. This error is not flagged when there is a MID_MISS
error or an APER_PARITY error. The transaction fails and an interrupt can
optionally be signaled.

Transaction permission error2 When a master ID is not allowed to access a slave, a transaction permission error
occurs. An access to an address not covered by the XPPU causes this type of error.
This error is flagged only when there is no MID_MISS error and no APER_PARITY
error. This error is not flagged when there is a MID_MISS error or an APER_PARITY
error. The transaction fails. An interrupt can optionally be signaled.

Notes:
1. Access to an address not covered by the aperture permission registers goes through the XPPU intact.
2. The first transaction address, master ID, and read/write mode are captured for debugging. When there are

simultaneous read/write errors, only the write error is recorded. Only the first error is recorded. To record further
errors, the ISR (interrupt status register) must be cleared first.

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 394Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=394

Configuration
The XPPU is configurable either one time or through TrustZone (TZ) accesses. At boot time, the
XPPU can be configured and its configuration is locked so that it can only be reconfigured at the
next system reset. If the configuration is not locked, the XPPU can be reconfigured any number
of times by TZ accesses.

For dynamic reconfiguration, the software can directly configure the registers.

Security Lock

Before the lock bit is set, configuration can be changed by TZ secure accesses. After the lock bit
is set, the configuration cannot be changed, even by secure accesses.

The software can chose to lockdown the values in the XPPU registers so they cannot be
changed. Access can be re-enabled after a POR.

For dynamic reconfiguration, the XPPU lock must not be asserted.

The lock bit does not prevent the interrupt status registers from being cleared, i.e., the ISR
registers are not included in the lock. The accesses to clear the interrupts still need to be TZ
secure. All other interrupt registers (IER, IDR) are protected under LOCK. Only the ISR register
can be modified when the lock is set.

Master ID Validation
Each XPPU also uses the Master ID in each AXI transaction to validate the transaction. The
Master ID is masked by the [MIDM] bit field and then compared against the [MID] bit field in the
MASTER_IDxx registers. If the following equation is satisfied (along with [TRUSTZONE] and
[PERMISSION] checks in the APERPERM_xxx register), then the transaction is allowed. In this
equation, these are [10-bit parameters] in the MASTER_IDxx register.

[MID] & [MIDM] == AXI_MasterID & [MIDM]

Section VIII: Interconnect
Chapter 47: Xilinx Peripheral Protection Unit

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 395Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=xppu___isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=395

Section IX

Interrupts and Errors
This section includes these chapters:

• System Interrupts

• Inter-Processor Interrupts

• System Errors

• Error Containment

Section IX: Interrupts and Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=396

Chapter 48

System Interrupts
The system interrupt sources provide flexibility for platform control, targeted actions and
signaling events.

Most system blocks generate an interrupt to signal the completion of a task or to alert that an
event occurred. For example, when a direct memory access (DMA) unit completes its transfer or
an advanced peripheral bus (APB) programming interface detects an address decode error, a
system interrupt can be generated.

In many cases, multiple interrupts are generated within a controller. The enabled interrupts are
OR'd together to create a single system interrupt.

There are over 150 system interrupts. The system interrupts are routed to the PMC, PSM,
RPU_GIC, APU_GIC, and PL.

Some common system interrupts include:

• I/O peripheral control interrupts

• Inter-processor interrupts (IPI)

• Timer interrupts

• Correctable and uncorrectable errors

• APB programming interface address decode errors

System Interrupt Controllers
There are several system interrupt controllers:

• RPU: GIC-390, v2 architecture

• APU: GIC-500, v3 architecture

• PMC: MicroBlaze™

• PSM: MicroBlaze

• PL fabric: controller instantiated for MicroBlaze or other PL-based processor

Section IX: Interrupts and Errors
Chapter 48: System Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 397Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=397

Interrupt Source Accumulators

The subsystem generates an interrupt when something occurs that software should know about.
There are usually multiple reasons why an interrupt is generated. The local interrupt sources are
controlled by a local interrupt accumulator. The OR'd result becomes a system interrupt.

IRQ System Interrupts
The system interrupts are generated by various subsystem units and are routed to the system
interrupt controllers. The system interrupts are listed in the following table.

Table 108: IRQ System Interrupts

IRQ Name IRQ Number
(RPU, APU GIC)

GICPx_IRQ Bit
(GIC Proxy) Description

IRQ Status Register 0

reserved 32:39 GICP0 [0:7] reserved

RPU0_PERF_MON 40 GICP0 [8]
Performance monitor

RPU1_PERF_MON 41 GICP0 [9]

OCM 42 GICP0 [10] OCM error

RPU0_ERR 43 GICP0 [11] Combined errors: FPU, memory ECC, and AXI slave
accessRPU1_ERR 44 GICP0 [12]

LPD_GPIO 45 GICP0 [13] LPD GPIO controller

LPD_I2C0 46 GICP0 [14] LPD I2C 0 controller

LPD_I2C1 47 GICP0 [15] LPD I2C 1 controller

SPI0 48 GICP0 [16] SPI 0 controller

SPI1 49 GICP0 [17] SPI 1 controller

UART0 50 GICP0 [18] UART 0 controller

UART1 51 GICP0 [19] UART 1 controller

CANFD0 52 GICP0 [20] CANFD 0 controller

CANFD1 53 GICP0 [21] CANFD 1 controller

USB_Transfer 54:57 GICP0 [22:25] USB 2.0 controller bulk transfer, isochronous
transfer, controller interrupt, control transfer

USB_Controller 58 GICP0 [26] USB 2.0 controller

PMC_BUF_IPI 59 GICP0 [27] OR of all IPIs targeted to PMC with message buffer

PMC_NOBUF_IPI 60 GICP0 [28] OR of all IPIs targeted to PMC without message
buffer

PSM_IPI 61 GICP0 [29] OR of all IPIs targeted to PSM

IPI0 62 GICP0 [30] IPI 0 interrupt

IPI1 63 GICP0 [31] IPI 1 interrupt

IRQ Status Register 1

IPI2 64 GICP1 [0] IPI 2 interrupt

Section IX: Interrupts and Errors
Chapter 48: System Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=398

Table 108: IRQ System Interrupts (cont'd)

IRQ Name IRQ Number
(RPU, APU GIC)

GICPx_IRQ Bit
(GIC Proxy) Description

IPI3 65 GICP1 [1] IPI 3 interrupt

IPI4 66 GICP1 [2] IPI 4 interrupt

IPI5 67 GICP1 [3] IPI 5 interrupt

IPI6 68 GICP1 [4] IPI 6 interrupt

TTC0_CLK[0:2] 69:71 GICP1 [5:7] TTC controller 0, timer/clocks 0 to 2

TTC1_CLK[0:2] 72:74 GICP1 [8:10] TTC controller 1, timer/clocks 0 to 2

TTC2_CLK[0:2] 75:77 GICP1 [11:13] TTC controller 2, timer/clocks 0 to 2

TTC3_CLK[0:2] 78:80 GICP1 [14:16] TTC controller 3, timer/clocks 0 to 2

LPD_SWDT 81 GICP1 [17] SWDT in LPD

PSM 82 GICP1 [18] PSM interrupt

LPD_XPPU 83 GICP1 [19] XPPU in LPD

LPD_INT 84 GICP1 [20] OR of LPD interconnect masters and slaves

PMC_SysMon 85 GICP1 [21] PMC system monitor

reserved 86:87 GICP1 [22:23] reserved

GEM0 88 GICP1 [24] GEM controller 0

GEM0_Wakeup 89 GICP1 [25] GEM controller 0 wake-up

GEM1 90 GICP1 [26] GEM controller 1

GEM1_Wakeup 91 GICP1 [27] GEM controller 1 wake-up

LPD_DMA[0:3] 92:95 GICP1 [28:31] LPD DMA channels 0 to 3

IRQ Status Register 2

LPD_DMA[4:7] 96:99 GICP2 [0:3] LPD DMA channels 4 to 7

LPD_XMPU 100 GICP2 [4] XMPU in LPD

LPD_SWDT_RSTPEND 101 GICP2 [5] SWDT in LPD reset pending

LPD_SWDT_WS[0:1] 102:103 GICP2 [6:7] SWDT in LPD WS 0 and 1

CPM 104 GICP2 [8] OR of CPM interrupts and events

CPM_CE 105 GICP2 [9] CPM interrupt 1, correctable error

USB_PME 106 GICP2 [10] USB power management unit (PME) located in the
PMC power domain

CPM_UE 107 GICP2 [11] CPM interrupt 2, uncorrectable error

reserved 108:109 GICP2 [12:13] reserved

XRAM 110 GICP2 [14] Accelerator RAM controller

XRAM_CE 111 GICP2 [15] Accelerator RAM correctable error

XRAM_UE 112 GICP2 [16] Accelerator RAM uncorrectable error

reserved 113:115 GICP2 [17:19] reserved

PL_PS_Group0_[0:7] 116:123 GICP2 [20:27] PL_IRQ[0:7] to LPD

PL_PS_Group1_[0:3] 124:127 GICP2 [28:31] PL_IRQ[8:11] to FPD

IRQ Status Register 3

PL_PS_Group1_[4:7] 128:131 GICP3 [0:3] PL_IRQ[12:15] to FPD

Section IX: Interrupts and Errors
Chapter 48: System Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=399

Table 108: IRQ System Interrupts (cont'd)

IRQ Name IRQ Number
(RPU, APU GIC)

GICPx_IRQ Bit
(GIC Proxy) Description

FPD_SWDT 132 GICP3 [4] SWDT in FPD

reserved 133 GICP3 [5] reserved

FPD_XMPU 134 GICP3 [6] XMPU in FPD

APU_L2 135 GICP3 [7] APU L2-cache double bit ECC error

EXT_ERR 136 GICP3 [8] External error

APU processor 137 GICP3 [9] APU interrupts

CCI 138 GICP3 [10] FPD cache coherent interconnect (CCI)

FPD_SMMU 139 GICP3 [11] FPD system memory management unit (SMMU)

FPD_SWDT_WS0 140 GICP3 [12] SWDT controller in FPD, WS0

FPD_SWDT_RSTPEND 141 GICP3 [13] FPD_SWDT reset pending

FPD_SWDT_WS1 142 GICP3 [14] SWDT controller in FPD, WS1

reserved 143:151 GICP3 [15:23] reserved

CFU 152 GICP3 [24] Configuration frames unit

reserved 153 GICP3 [25] reserved

PMC_GPIO 154 GICP3 [26] PMC GPIO controller

PMC_I2C 155 GICP3 [27] PMC I2C controller

OSPI 156 GICP3 [28] OSPI controller

QSPI 157 GICP3 [29] QSPI controller

SD/eMMC0 158 GICP3 [30] SD/eMMC controller 0

SD/eMMC0_Wakeup 159 GICP3 [31] SD controller 0 wake-up

IRQ Status Register 4

SD/eMMC1 160 GICP4[0] SD/eMMC controller 1

SD/eMMC1_Wakeup 161 GICP4[1] SD controller 1 wake-up

reserved 162 GICP4[2] reserved

PMC_DMA0 163 GICP4[3] PMC DMA 0

PMC_DMA1 164 GICP4[4] PMC DMA 1

PMC_AXI 165 GICP4[5] OR of PMC interconnect masters and slaves

PMC_XPPU 166 GICP4[6] PMC XPPU

PMC_XMPU 167 GICP4[7] PMC XMPU

SBI 168 GICP4[8] SMAP bus interface

AES 169 GICP4[9] AES

RSA 170 GICP4[10] ECDSA RSA

EFUSE 171 GICP4[11] eFuse

SHA 172 GICP4[12] SHA

TRNG 173 GICP4[13] True random number generator

RTC_Alarm 174 GICP4[14] RTC alarm

RTC_Seconds 175 GICP4[15] RTC seconds

SysMon 176 GICP4[16] Voltage and temperature system monitor

Section IX: Interrupts and Errors
Chapter 48: System Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=400

Table 108: IRQ System Interrupts (cont'd)

IRQ Name IRQ Number
(RPU, APU GIC)

GICPx_IRQ Bit
(GIC Proxy) Description

reserved 177 GICP4[17] reserved

NPI_IRQ0 178 GICP4[18] NPI interrupt 0, DDRMC_MB all correctable software
errors and interrupts

NPI_IRQ2 179 GICP4[19] NPI interrupt 2, DDRMC_MC all correctable errors

NPI_IRQ5 180 GICP4[20] NPI interrupt 5, AI Engine all correctable errors and
miscellaneous events

NPI_IRQ6 181 GICP4[21] NPI interrupt 6, AI Engine debug events and
miscellaneous events

NPI_IRQ7 182 GICP4[22] NPI interrupt 7, AI Engine miscellaneous events

NPI_IRQ8 183 GICP4[23] NPI interrupt 8, GT interrupts and requests

NPI_IRQ9 184 GICP4[24] NPI interrupt 9, GT all correctable errors

reserved 185 GICP4[25] reserved

NPI_IRQ20 186 GICP4[26] NPI interrupt 20, NoC user interrupts and errors

NPI_IRQ21 187 GICP4[27] NPI interrupt 21, NoC user interrupts and errors

NPI_IRQ22 188 GICP4[28] NPI interrupt 22, NoC user interrupts and errors

NPI_IRQ23 189 GICP4[29] NPI interrupt 23, NoC user interrupts and errors

PMC RAM 190 GICP4[30] PMC RAM

reserved 191 GICP4[31] reserved

Register Reference
There are several sets of system interrupt masking registers. There are multiple interrupt
controller types receiving the system interrupts.

Interrupt Masking Registers
The system interrupts are distributed to the destinations listed in the table.

Table 109: System Interrupt Masking Registers

Destination Controller ISR and IMR Programming Model
PMC GIC proxy PMC_GLOBAL PPU MicroBlaze™

Section IX: Interrupts and Errors
Chapter 48: System Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=401

Table 109: System Interrupt Masking Registers (cont'd)

Destination Controller ISR and IMR Programming Model
PSM GIC proxy PSM_GLOBAL PSM MicroBlaze

RPU Arm® GIC-390 Arm v2 architecture

APU Arm GIC-500 Arm v3 architecture

PL Output signal None ~

Section IX: Interrupts and Errors
Chapter 48: System Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=402

Chapter 49

Inter-Processor Interrupts
The inter-processor interrupts (IPI) enable one processor (source agent) to interrupt another
processor (destination agent). The source agent optionally writes to a request message buffer
and the destination agent optionally writes to a response message buffer. The communications
process uses the IPI interrupt register structure, the system interrupt structure, and the IPI
message buffers.

There are a maximum of ten agents and eight sets of message buffers; two of the agents do not
have message passing buffers. Three of the agents are hardwired: PSM, PMC, and PMC_NOBUF.
The other agents are assigned by their system management IDs (SMID).

In a typical situation, the source agent writes a 32-byte request message and then triggers an
interrupt to the destination agent. The destination agent reads the request message and,
optionally writes a response message. There are eight sets of 32-byte message/response buffers
for each agent (16 total buffers per agent) for a total of 128 IPI message buffers. Each source-
destination pair must establish their own message-passing communication protocols. These
message buffers are access protected by the LPD_XPPU protection unit and IPI logic.

When the interrupt is serviced, the destination agent clears its status interrupt bit. This bit is
observed by the source agent's observation register. This is an accumulation of the status
interrupt bits from each of the destination agents. The source agent processor can have more
than one active outstanding interrupt and message passing activity. The IPI interrupt registers are
access protected by the LPD_XPPU protection unit and IPI registers.

Features
The IPI features include:

• Cross-processor communication interrupts with message passing

○ Source agent (a processor)

○ Destination agent (a processor)

• Up to 10 agents:

○ Three hardwired assignments: PSM, PMC, and PMC_NoBuf

○ Seven programmable agents assigned to a system processor

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=403

• Agent assignments:

○ Master ID tags in IPI registers for message and interrupt register access

○ System interrupt routing

• IPI agent interrupt registers:

○ Protected by 64 KB apertures in LPD_XPPU

• Message buffers are protected by hardware, and aperture controls using SMID

○ 64 request message buffers, 32 bytes each

○ 64 response message buffers, 32 bytes each

Comparison to Previous Generation Xilinx Devices
The Versal™ ACAP inter-processor interrupt mechanism is similar to the one in the Zynq®

UltraScale+™ MPSoC with several differences as shown in the following table.

Table 110: IPI Comparison to Previous Generation Xilinx Devices

Feature Zynq® UltraScale+™ MPSoC Versal™ ACAP

IPI register set access control XPPU controls the read/write access of
different masters

IPI provides protection to interrupt
registers

Message buffer protection XPPU provides protection
(0xFF99_0000) IPI provides protection (0xFF3F_0000)

Message buffer programming Fully programmable and in software
control Read/write access hardcoded

Permission setting XPPU had permission RAM entries for
128 32B apertures

Permissions are hardcoded in
hardware

Message buffer In XPPU Within the IPI

Lock feature Not present Lock feature added

System Perspective
System Management IDs

The IPI uses a processor's SMID to match it with an IPI agent. This includes three hardwired
agent slots (PSM, PMC, and PMC_NOBUF) and the seven programmed slots (IPI 0 to 6). The
SMID provides information to the LPD_XPPU protection unit and IPI controller.

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=404

System Interrupts

In addition to using SMIDs, the processors must be able to receive and process a system
interrupt. The system interrupts for the PMC and PS are described in System Interrupts.
Processors in the PL need to have SMID assigned to them that are recognized by the protection
mechanisms and must have access to the PS-PL system interrupt outputs.

A processor is also a source and a destination agent to itself.

Power Domain

The IPI is in the PS LPD power domain with system interrupt connections to the FPD, PMC, and
PL.

System Errors

System errors include the following:

• APB programming interface address decode error

• Interrupt register and message buffer access violations

○ Detected in LPD_XPPU and IPI

○ Master system ID incorrect

○ Security level violation

○ Write violation

Agent Communications
The communications between the two agents depends on their prearranged protocol. The IPI
provides a framework for this communications.

Source Agent Initiates Action

To generate an interrupt, the source agent writes a 1 to a bit in its trigger (TRIG) register that
corresponds to the destination agent. The source agent can verify that the bit is set in the
destination agent's status register by reading its own observation (OBS) register. However, it
cannot determine if the interrupt is enabled to generate the IRQ interrupt signal to the
destination processor without accessing its GIC interrupt controller.

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=405

Destination Agent Response

When an agent receives an IPI system interrupt, it reads its IPI interrupt status register (ISR) to
determine the source agent. After servicing the interrupt, with or without a message response,
the destination agent clears its ISR by writing a 1 to the bit. This clearing of the destination ISR
bit can be detected by the source using its observation register. The destination agent can also
issue an IPI system interrupt back to the source agent.

Interrupt Architecture

Interrupt Functionality
The interrupt architecture includes ten sets of registers with six registers per set. Each set is
divided between sending an interrupt (TRIG and OBS) and receiving an interrupt (ISR, IMR, IER,
and IDR); refer to Agent Interrupt Registers. Access to each set of interrupt registers is isolated to
an agent by apertures in the LPD_XPPU protection unit followed by security screening by
TrustZone apertures in the IPI (e.g., the IPI.TZ_APER_PSM register).

To send an interrupt, the source agent writes a 1 to the bit in its trigger register that corresponds
to the desired destination agent processor. This causes the destination status register, ISR, bit to
be set and generates a corresponding system interrupt. The source agent can observe the state
of the interrupts that it has triggered to the destination agents using its observation register
(OBS). The registers and signal routes are shown in the following figure.

Figure 74: Source-Destination Interrupt Functions

Trigger Register (TRIG)

0 5 Write

Observation Register (OBS)

0 5 Read

PMC
source agent

1 Status request set = 1 by source agentISR

PSM
destination agent

1IMR

1

PSM system IRQ
(OR of all bits)

IER

IDR

PMC source agent
interrupt to mask

Write 1 to enable

Write 1 to disable

Destination
IPI 3 (example)

Observe
interrupt request statusSend interrupt

with message

Same bit value

Read

W1C

X23897-052620

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 406Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=406

System Interrupt Registers

Software must program the system interrupt registers associated with the destination processor
to enable the interrupt to propagate to the desired destination agent processor. This is one of the
system interrupt controller registers (e.g., PMC_GLOBAL.GICP0_IRQ_MASK). All system
interrupts are also routed directly to the PL. Refer to the System Interrupts chapter for the list of
system interrupts. The destination agent processes interrupts in a normal manner; it can mask
and clear its status register to control the system interrupt.

Interrupt Signal Mapping
Each interrupt channel has six registers. Two registers are for sending an interrupt and four
registers are for receiving an interrupt. The trigger and observation registers are used to send and
monitor interrupts. The status/clear, mask, disable, and enable registers are used to receive an
interrupt. There are ten sets of interrupt registers. The hardwired and programmable channel
assignments are shown in the following figure.

Figure 75: IPI Interrupt Channel Architecture

Source
Agent

Registers

* Trigger (TRIG)
* Observe (OBS)

PSM

PMC

IPI 0

IPI 1

IPI 2

IPI 3

IPI 4

IPI 5

PMC_NOBUF

IPI 6

XPPU 64KB
Aperture

Permissions

PSM

IPI AGENT
Assignments

PMC

IPI 0

IPI 1

IPI 2

IPI 3

IPI 4

IPI 5

PMC_NOBUF

IPI 6 (no buf)

Destination
Agent

Registers
* Status-w1c (ISR)
* Mask (IMR)
* Enable (IER)
* Disable (IDR)

IRQ System
Interrupt

61

59

62

63

64

65

66

67

60

68

Hardwired

Programmable

Trigger and
Observation
Bit Routing

PMC

IPI 0

IPI 1

IPI 2

IPI 3

IPI 4

IPI 5

PMC_NOBUF

IPI 6

PSM

X24078-060220

Note: It is the responsibility of the individual processors to mask unwanted IPI system interrupts in their
GIC interrupt controller. These controllers are listed in System Interrupts.

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=407

Message Passing Architecture
The messaging system connects eight agents together in a mesh configuration. The message
passing between agents can be done exclusively between the sources and destinations by
programming the 128 permission apertures in the LPD_XPPU that correspond to the
0xFF30_0000 to 0xFF30_01FF memory range.

The IPI does not control the content of the message buffers. It is up to the source and
destination processor agent software to define the back-and-forth interrupt signaling and the
content put into the request and response message buffers. The content of the message buffers
does not affect the hardware; it is only written and interpreted by the processors. The use of the
message buffers is optional.

Messaging Diagram
The following figure illustrates the IPI message passing architecture for an agent.

Figure 76: IPI Message Passing Diagram

Message
Buffers (32B each)

Request

LPD_XPPU 32B Permission Apertures

Agents

PSM
Response

Read

Write

Request
PMC

Response

Read

Write

Request
Agent 8

Response

Read

Write

Write

Read

Write
Read

WriteRead

Source
Agent

Destination
Agent

Note: It is possible for a processor to
exchange messages with itself.

128 total buffers:
8 per agent x
2-way communication

Agents:
1. PSM
2. PMC
3. IPI 0
4. IPI 1
5. IPI 2
6. IPI 3
7. IPI 4
8. IPI 5

The IPI TrustZone Apertures provide
additional access restrictions.

X24053-053020

Agent Example
The example in this section shows the message buffer address offsets and access types for the
APU assigned as the IPI_2 agent. The other IPI_x agents can be assigned as needed; this includes
additional PSM or PMC agents. All buffers are 32 bytes. The base address for the message
buffers is 0xFF3F_0000.

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=408

Table 111: IPI 2 Message Buffer Example Assigned to APU

Offset
Address Buffer Type

Source Agent Destination Agent

Name Access
Type Name Access

Type
0x0800 Request

APU Example
(assigned to IPI_2)

RW
PSM

R
0x0820 Response R RW

0x0840 Request RW
PMC

R
0x0860 Response R RW

0x0880 Request RW
IPI_0

R
0x08A0 Response R RW

0x08C0 Request RW
IPI_1

R
0x08E0 Response R RW

0x0900 Request RW APU this example RW
0x0920 Response RW RW

0x0940 Request RW IPI_3 R
0x0960 Response R RW

0x0980 Request RW IPI_4 R
0x09A0 Response R RW

0x09C0 Request RW IPI_5 R
0x09E0 Response R RW

Register Reference and Address Map
The IPI address space is protected by the LPD_XPPU. Apertures 048 through 063 are used to
validate software accesses to the IPI address space.

Table 112: IPI Address Map

Address Range Register Table Protection Notes
Control and Configuration Registers
0xFF30_0000 Control Registers LPD_XPPU and LOCK register

Interrupt Registers: Trigger, status, observation, and mask

0xFF31_0000
0xFF32_0000
...
0xFF3A_0000

Agent Interrupt Registers Only the first 32 bytes of
address space are used

0xFF3C_0000 Reserved

Message Buffers: Request and response
0xFF3F_0000 Message Buffer IPI 4 KB of address space: 128

message buffers (32 bytes
each)

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 409Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___lock.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=409

Control Registers
The IPI control registers are summarized in the following table. Access to the registers are
controlled by the LPD_XPPU protection unit and the IPI Register Write Lock Bit.

Table 113: IPI Control Registers

Register Name Offset
Address

Access
Type Lockable Description

APB_ERR_CTRL 0x0000 RW Yes APB address decode SLVERR error
signal enable

APB_MISC_ISR
APB_MISC_IMR
APB_MISC_IER
APB_MISC_IDR

0x0010
0x001C
0x0018
0x001C

R, W1C
R
W
W

All except ISR
Access violation and ECC error
interrupt status, mask, enable and
disable

LOCK 0x0090 RWSO NA Locks write access to all IPI
registers except the ISR

SAFETY_CHK 0x0030 RW No Safety check registers

ERR_STATUS1_L
ERR_STATUS1_U
ERR_STATUS2

0x0028
0x0038
0x003C

R NA Address and ID of error
transaction

MASTER_ID00
MASTER_ID01
MASTER_ID02
MASTER_ID03

0x0040+ R NA

Master identification for:
PSM read/write
PSM read-only
PMC read/write
PMC read-only

MASTER_ID04
MASTER_ID05
Etc.
MASTER_ID19

0x0050+ RW Yes Master identification for software
defined masters

IPI_ECC_CTRL 0x0094 RW Yes ECC control

IPI_ECC_CE_FFA
IPI_ECC_CE_FFD
IPI_CE_FFE

0x0098+ R Yes
First failing address, data and ECC
register access with correctable
error

IPI_ECC_UE_FFA
IPI_ECC_UE_FFD
IPI_UE_FFE

0x00A4+ R Yes
First failing address, data and ECC
register access with un-correctable
error

IPI_FI_CNTR
IPI_FI_D
IPI_FI_S

0x00B0+ Yes Fault injection count, data, and
syndrome

TZ_APER_PSM
TZ_APER_PMC
TZ_APER_IPI0
TZ_APER_IPI1
TZ_APER_IPI2
TZ_APER_IPI3
TZ_APER_IPI4
TZ_APER_IPI5

0x00BC+ RW Yes
Source agent message buffer
TrustZone security access settings:
0: secure access required
1: non-secure

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 410Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___apb_misc_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___apb_misc_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___lock.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___safety_chk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___err_status1_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___err_status1_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___err_status2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id00.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id01.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id02.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id03.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id04.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id05.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___master_id19.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ecc_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ecc_ce_ffa.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ecc_ce_ffd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ce_ffe.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ecc_ue_ffa.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ecc_ue_ffd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_ue_ffe.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_fi_cntr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_fi_d.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi_fi_s.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=410

Table 113: IPI Control Registers (cont'd)

Register Name Offset
Address

Access
Type Lockable Description

TZ_APER_INTR 0x00DC RW Yes Interrupt register security access
settings for all agents

Register Write Lock Bit

The IPI registers can only be configured by a TrustZone secure transaction. The secure
transaction is routed through the LPD_XPPU protection unit to make sure the master has access
privileges before it is allowed to reach the IPI programming interface with its additional
restrictions.

Writes to the IPI registers can be blocked by setting the LOCK [ReqWrDis] lock bit = 1. Once this
bit is set, it can only be cleared by a POR.

After the lock bit is set, many of the registers can no longer be written to until a POR occurs. The
lockability of the registers are shown in the Control Registers table.

Agent Interrupt Registers
The IPI interrupt registers are listed in the following table. The base address is 0x0FF30_0000.
These registers have access restriction based on the processor's SMID and settings in the
IPI.TZ_APER_INTR register.

The IPI processor interrupt management registers are not affected by the IPI register LOCK
control register.

Table 114: IPI Processor Interrupt Management Registers

Register Name Offset Address Access
Type Description

PSM_TRIG
PSM_OBS
PSM_ISR
PSM_IMR
PSM_IER
PSM_IDR

0x10000+

W
R

W1C
R
W
W

PSM agent interrupt registers

PMC_TRIG
PMC_OBS
PMC_ISR
PMC_IMR
PMC_IER
PMC_IDR

0x20000+

W
R

W1C
R
W
W

PMC agent interrupt registers

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 411Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___lock.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___psm_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___psm_obs.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___psm_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___psm_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___psm_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___psm_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_obs.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_idr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=411

Table 114: IPI Processor Interrupt Management Registers (cont'd)

Register Name Offset Address Access
Type Description

IPI0_TRIG
IPI0_OBS
IPI0_ISR
IPI0_IMR
IPI0_IER
IPI0_IDR

IPI0: 0x30000+
IPI1: 0x40000+
IPI2: 0x50000+
IPI3: 0x60000+
IPI4: 0x70000+
IPI5: 0x80000+
IPI6: 0xA0000+

W
R

W1C
R
W
W

Programmable agents for IPI interrupts and
messaging

Except, IPI 6 does not include message or
response buffers

PMC_NOBUF_TRIG
PMC_NOBUF_OBS
PMC_NOBUF_ISR
PMC_NOBUF_IMR
PMC_NOBUF_IER
PMC_NOBUF_IDR

0x90000+

W
R

W1C
R
W
W

PMC agent interrupt registers without message
and response buffers

Message Buffer
The base address for message buffers is 0xFF3F_0000.

The IPI message buffer address map is shown in the following table.

Table 115: IPI Message Buffer Address Map

Master Offset
Address Buffer Type Size

Source Agent Destination Agent

Name Access
Type Name Access

Type

0x000 to 0x01FF

Request 32B

PSM

RW
PSM

RW

Response 32B RW RW

Request 32B RW
PMC

R

Response 32B R RW

Request 32B RW
IPI 0

R

Response 32B R RW

Request 32B RW
IPI 1

R

Response 32B R RW

Request 32B RW
IPI 2

R

Response 32B R RW

Request 32B RW
IPI 3

R

Response 32B R RW

Request 32B RW
IPI 4

R

Response 32B R RW

Request 32B RW
IPI 5

R

Response 32B R RW

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 412Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi0_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi0_obs.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi0_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi0_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi0_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___ipi0_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_nobuf_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_nobuf_obs.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_nobuf_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_nobuf_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_nobuf_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ipi___pmc_nobuf_idr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=412

Table 115: IPI Message Buffer Address Map (cont'd)

Master Offset
Address Buffer Type Size

Source Agent Destination Agent

Name Access
Type Name Access

Type

0x0200 to 0x03FF Requests and
Responses 512B PMC RW, R PSM, PMC, IPI0, IPI1,

IPI2, IPI3, IPI4, IPI5 RW, R

0x0400 to 0x05FF " 512B IPI 0 RW, R " RW, R

0x0600 to 0x07FF " 512B IPI 1 RW, R " RW, R

0x0800 to 0x09FF " 512B IPI 2 RW, R " RW, R

0x0A00 to 0x0BFF " 512B IPI 3 RW, R " RW, R

0x0C00 to 0x0DFF " 512B IPI 4 RW, R " RW, R

0x0E00 to 0x0FFF " 512B IPI 5 RW, R " RW, R

Programming Examples
Two programming examples are provided in this section.

Send an IPI Communication
This section describes how a source agent sends an IPI communication message. The source
agent initiates the communications.

1. Write a 32 byte request message into the appropriate destination message buffer.

2. Write a 1 in the destination trigger bit.

3. Optionally, verify that the interrupt is posted by reading the observation register.

4. Determine that the interrupt has been processed with one of the following steps. The
protocol must be established between the two agents:

a. Source agent polls its observation register until the destination status bit is cleared
indicating that the destination agent has processed the interrupt.

b. Receive another IPI interrupt from the destination agent.

Receive an IPI Communication
This section describes how a destination agent receives an IPI communication message. The
destination agent accesses its IPI registers.

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 413Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=413

1. Prepare to receive a message request with one of the following steps.

a. Enable the interrupt from the sender using the IPI mask register, IMR, and in the
processor's system interrupt controller by accessing its GIC registers.

b. Destination agent polls its IPI status register for bits being set.

2. When an interrupt is received, optionally write a 32-byte response into the appropriate
message buffer.

3. Signal to the source agent that the interrupt has been processed with one of the following
steps.

a. Clear the destination IPI status register.

b. Issue an IPI interrupt back to the source agent.

Section IX: Interrupts and Errors
Chapter 49: Inter-Processor Interrupts

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=414

Chapter 50

System Errors
There are approximately 100 system errors generated by the hardware. A system error indicates
that one or more serious problems have been detected in a controller, processor, memory, or
other functional unit in the device.

Each error signal is routed to either the PMC or PSM error accumulator module (EAM) and the
PL fabric. The accumulators latch the system error signals. Each EAM has two status registers.
The state of these status registers are only reset by a POR.

• PMC Error Status Accumulator Registers

• PSM Error Status Accumulator Registers

• JTAG ERROR_STATUS Register, bits 0 to 63 includes errors only routed to PMC EAM

• PL fabric port signals, all system errors

The error signals routed to the PMC EAM are also latched into the JTAG TAP controller's
ERROR_STATUS register.

Error Sources

Each system error can be from a single event or an OR of several events. Each block or
subsystem that creates a system error stores the details of its reported error, which includes
more about the source and characteristics of the error. The software and the PL can also
generate system errors. There are many types of system errors, including:

• Correctable and uncorrectable ECC

• APB register programming interface address decode error

• Single event upset (SEU) detected error

• RPU lock-step and common cause failures

• Power failures

• Security violations

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 415Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=415

Error Accumulator Modules

Each system error is associated with either the PMC or PSM error accumulator module (EAM),
which means that each system error is routed to only one status register bit. The PMC has two
status registers that are independent of the two status registers located in the LPD. A diagram of
the EAM is shown in System Error Accumulators.

The system error status registers are sticky. They are cleared by software writing a 1 to the
register bit or by a POR reset. Software programs the state of the mask registers by writing to
interrupt enable and disable registers.

Events Generated by EAMs

The error accumulators can generate several major system events, each with its own set of
programmable mask registers.

• Four PMC EAM outputs

○ Internal POR

○ System reset, SRST

○ ERROR_OUT pin state

○ PMC interrupt handler

• Three PSM EAM outputs

○ PSM IRQ handler (general)

○ PSM IRQ handler (correctable)

○ PSM IRQ handler (uncorrectable)

Error Signal to PL

The outputs of both the PMC and PSM error accumulator outputs are also routed to the PL
fabric.

JTAG Error Status Register

The PMC error accumulator outputs are readable via the ERROR_STATUS Register.

EAM Error Status Registers

All system error status registers can only be cleared by software or by a POR. A system reset
does not clear the system error status registers.

Other Types of System Errors

The Versal™ device includes other types of errors:

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=416

• RCU BootROM code detected errors, see BootROM Error Codes section.

• PLM firmware detected errors (see Versal ACAP System Software Developers Guide (UG1304))

System Error Accumulators
The system error accumulators are programmed to generate one or more system signal activities:

• PMC Error Status Accumulator Registers

○ Generate PMC IRQ interrupt to PLM

○ Assert ERROR_OUT output pin (PIN)

○ Assert system reset (SRST)

○ Assert internal POR

○ Most error in the JTAG controller error register, listed in ERROR_STATUS Register

• PSM Error Status Accumulator Registers

○ General IRQ handler in PSM firmware

○ Correctable IRQ handler in PSM firmware

○ Uncorrectable IRQ handler in PSM firmware

• System error signals are also routed to the PL

After the system error is latched, they are routed so they can generate one or more actions.

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 417Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=417

Figure 77: System Error Signal Accumulation

Raw Status
Registers

PL port output signals

System reset (SRST)

PMC IRQ handler
(non-correctable)

PMC_ERR1_STATUS
PMC_ERR2_STATUS

PMC

Hardware Errors

ERROR_OUT pin

PMC_POR1_MASK
PMC_POR2_MASK POR reset

PMC_ERR_OUT1_MASK
PMC_ERR_OUT2_MASK

PMC_SRST1_MASK
PMC_SRST2_MASK

PMC_IRQ1_MASK
PMC_IRQ2_MASK

PSM_IRQ1_MASK
PSM_IRQ2_MASK

PSM_CR_ERR1_MASK
PSM_CR_ERR2_MASK

PSM_NCR_ERR1_MASK
PSM_NCR_ERR2_MASK

PMC IRQ handler
(correctable)

PSM IRQ handler
PSM_ERR1_STATUS
PSM_ERR2_STATUS

PSM

PMC IRQ handler

PMC Mask Registers

ECC CE, UE

JTAG Controller
Error Register

PSM Mask Registers

Error Sources

Hardware Errors

ECC CE, UE

RCU, PLM, CFU, DDR, NoC, AI
Engine, SysMon, PL, NPI

Error Sources
PS software, PSM firmware,
PSM, OCM, APU L2, RPU, GIC,
Clocks, CPM, LPD/FPD
interconnect, XRAM

X21699-112120

Functional Safety Errors
A safety error occurs when logic or a memory cell changes state due to a physical anomaly. The
system can detect these anomalies. When a safety error occurs, it is important to ensure that the
system remains in a safe state. This can include any of a number of actions. Broadly, responses
fall into two categories.

• Correctable Error:

A bit error is detected and corrected, usually by the hardware. The event is recorded and an
interrupt is signaled.

Note: The typical response is for the platform loader and manager (PLM) to report the event to the
system safety software so it can be monitored and analyzed.

• Uncorrectable Error:

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=418

An error that is detected but cannot be corrected. The event is recorded and an interrupt is
signaled.

Note: The typical response is for the PLM to indicate that a system-level intervention is required, which
might include a partial or complete system reset.

Security Errors
A security error occurs when a secure asset is exposed. When a security error is detected, the
system usually responds with a secure lockdown and zeroization of key system elements before a
reset restart is issued.

Programming Model
The PLM firmware and PSM firmware can store errors and other information in their respective
storage registers. There are general software error registers in the PMC that are potentially
accessible by all system processors including the PMC itself. For more information, see Error
Accumulator Registers.

System Error Masking Example

The routing of each system error is controlled by mask registers. Each system error is normally
routed to one of several destinations controlled by the mask registers as shown in the following
figure.

Figure 78: System Error Masking Example

PMC_ERR1_ISRSystem
Error

PMC_IRQ1_IMR

PMC_IRQ1_IER PMC_IRQ1_IDR

Enable, W

System Error routed to
PPU interrupt controller

0: Not detected
1: Detected

R W1C

POR, SRST, ERR_OUT, JTAG, PL
Destinations

PPU Interrupt
(PLM firmware)

0: Enabled
1: Masked

R

PPU in PMC running PLM

X23920-050820

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=419

Programming Interface
The PMC error accumulator is programmed using a 32-bit APB programming interface.

Error Accumulator Registers
The system error accumulator registers are included in two register modules:

• PMC_GLOBAL error accumulator signal destinations:

○ ERROR_OUT output signal listed in the PMC Dedicated Pins chapter

○ POR: power-on reset signal shown in the Reset Circuitry, EAM, and JTAG TAP Controller

○ IRQ: PMC and PSM interrupt controller signals

○ SRST: system reset signal

Table 116: System Error Accumulator Registers

Type
Register Names Access

Type Description
PMC Accumulator PSM Accumulator

Status PMC_ERR1_STATUS
PMC_ERR2_STATUS

PSM_ERR1_STATUS
PSM_ERR2_STATUS R

Raw status:
0: Deasserted
1: Asserted

Masks

PMC_ERR_OUT1_MASK
PMC_ERR_OUT2_MASK
PMC_POR1_MASK
PMC_POR2_MASK
PMC_IRQ1_MASK
PMC_IRQ2_MASK
PMC_SRST1_MASK
PMC_SRST2_MASK

PSM_CR_ERR1_MASK
PSM_CR_ERR2_MASK
PSM_NCR_ERR1_MASK
PSM_NCR_ERR2_MASK
PSM_IRQ1_MASK
PSM_IRQ2_MASK

R
Mask:
0: Enabled
1: Masked

Enables

PMC_ERR_OUT1_EN
PMC_ERR_OUT2_EN
PMC_POR1_EN
PMC_POR2_EN
PMC_IRQ1_EN
PMC_IRQ2_EN
PMC_SRST1_EN
PMC_SRST2_EN

PSM_CR_ERR1_EN
PSM_CR_ERR2_EN
PSM_NCR_ERR1_EN
PSM_NCR_ERR2_EN
PSM_IRQ1_EN
PSM_IRQ2_EN

R

Enable:
0: Ignored
1: Enable error
IMR set to 0

Disables

PMC_ERR_OUT1_DIS
PMC_ERR_OUT2_DIS
PMC_POR1_DIS
PMC_POR2_DIS
PMC_IRQ1_DIS
PMC_IRQ2_DIS
PMC_SRST1_DIS
PMC_SRST2_DIS

PSM_CR_ERR1_DIS
PSM_CR_ERR2_DIS
PSM_NCR_ERR1_DIS
PSM_NCR_ERR2_DIS
PSM_IRQ1_DIS
PSM_IRQ2_DIS

R
Disable:
0: Ignored
1: Disable error (IMR is set to 1)

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 420Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err2_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err2_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err_out1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err_out2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_por1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_por2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_irq1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_irq2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_srst1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_srst2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_cr_err1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_cr_err2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_ncr_err1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_ncr_err2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_irq1_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_irq2_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err_out1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err_out2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_por1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_por2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_irq1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_irq2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_srst1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_srst2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_cr_err1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_cr_err2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_ncr_err1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_ncr_err2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_irq1_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_irq2_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err_out1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err_out2_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_por1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_por2_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_irq1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_irq2_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_srst1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_srst2_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_cr_err1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_cr_err2_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_ncr_err1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_ncr_err2_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_irq1_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_irq2_dis.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=420

PMC Error Status Accumulator Registers
The PMC error accumulation module includes two status registers:

• PMC_ERR1_STATUS register: described in the PMC Error Status 1 section

• PMC_ERR2_STATUS register: described in the PMC Error Status 2 section

PMC Error Status 1

The raw error status 1 bits in the PMC_ERR1_STATUS register are listed in the following table.

Table 117: PMC System Error Accumulation Module Register 1

Error Name
System

Error
Status
Reg Bit

PLM Mask
JTAG Error
Status Reg

Bit
Description

reserved 0 0x000 63 reserved

BootROM NCR 1 0x001 62 BootROM non-correctable error; set during boot

PLM CR 2 0x002 61 PLM boot correctable error; set during boot

PLM NCR 3 0x003 60 PLM boot non-correctable error; set during boot

GSW CR 4 0x004 59 General software correctable error; set by any
processor after boot

GSW NCR 5 0x005 58 General software non-correctable error; set by any
processor after boot

CFU 6 0x006 57 CFU error

CFRAME 7 0x007 56 CFRAME error

PSM CR 8 0x008 55 PSM correctable error

PSM NCR 9 0x009 54 PSM non-correctable error

DDRMC MB CR 10 0x00A 53 DDRMC MicroBlaze™ correctable ECC

DDRMC MB NCR 11 0x00B 52 DDRMC MicroBlaze non-correctable ECC

NOC CR 12 0x00C 51 NoC correctable error

NOC NCR 13 0x00D 50 NoC non-correctable error

NOC user 14 0x00E 49 NoC user error

MMCM lock 15 0x00F 48 MMCM lock error

AIE CR 16 0x10 47 AI Engine correctable error

AIE NCR 17 0x11 46 AI Engine non-correctable error

DDRMC MC ECC CR 18 0x12 45 DDRMC memory correctable ECC

DDRMC MC ECC NCR 19 0x13 44 DDRMC memory non-correctable ECC

GT CR 20 0x14 43 GT correctable error

GT NCR 21 0x15 42 GT non-correctable error

SYSMON CR 22 0x16 41 System monitor correctable error

SYSMON NCR 23 0x17 40 System monitor non-correctable error

User PL0 24 0x18 39 User-defined PL error

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 421Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err2_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err1_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=421

Table 117: PMC System Error Accumulation Module Register 1 (cont'd)

Error Name
System

Error
Status
Reg Bit

PLM Mask
JTAG Error
Status Reg

Bit
Description

User PL1 25 0x19 38 User-defined PL error

User PL2 26 0x1A 37 User-defined PL error

User PL3 27 0x1B 36 User-defined PL error

NPI Host 28 0x1C 35 NPI Host reported error

SSIT Error 3
SSIT Error 4
SSIT Error 5

29
30
31

0x1D
0x1E
0x1F

34
33
32

Stacked silicon integrated (SSI) technology with
super logic regions (SLR) errors 3 to 5

PMC Error Status 2

The raw error status 1 bits in the PMC_ERR2_STATUS register are listed in the following table.

Table 118: PMC System Error Accumulation Module Register 2

Error Name

System
Error

Status
Regist
er Bit

PLM Mask
JTAG Error

Status
Register Bit

Description

PMC APB 0 0x20 31 PMC APB programming interface address decode
errors

PMC BootROM 1 0x21 30 BootROM validation error

RCU hardware 2 0x22 29 RCU hardware error

PPU hardware 3 0x23 28 PPU hardware error

PMC parity 4 0x24 27 PMC switch and IOP interconnect parity errors

PMC CR 5 0x25 26 PMC correctable errors

PMC NCR 6 0x26 25 PMC non-correctable errors

PMC SYSMON Alarms: 0
to 9

7
8
9
10
11
12
13
14
15
16

0x27
0x28
0x29
0x30
0x31
0x32
0x33
0x34
0x35
0x36

24
23
22
21
20
19
18
17
16
15

System monitor remote alarms for temperature
shutdown and power supply failure

CFI NCR 17 0x31 14 CFI non-correctable error

SEU CRC 18 0x32 13 CFRAME SEU CRC error

SEU ECC 19 0x33 12 CFRAME SEU ECC error

reserved 20 0x34 11 reserved, returns 0

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 422Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err2_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=422

Table 118: PMC System Error Accumulation Module Register 2 (cont'd)

Error Name

System
Error

Status
Regist
er Bit

PLM Mask
JTAG Error

Status
Register Bit

Description

reserved 21 0x35 10 reserved, returns 1

RTC alarm 22 0x36 9 RTC alarm error

NPLL 23 0x37 8 PMC NPLL lock error; asserted while locking or
when lock is lost

PPLL 24 0x38 7 PMC PPLL lock error; asserted while locking or
when lock is lost

Clock monitor 25 0x39 6 Clock monitor errors

PMC timeout 26 0x3A 5 PMC interconnect timeout errors; from mission
and timeout interrupt status registers

PMC XMPU 27 0x3B 4
PMC_XMPU error detection; includes read
permission, write permission, and security
violations

PMC XPPU 28 0x3C 3
PMC XPPU error detection; includes master ID not
found, master ID parity error, read permission,
master ID access, and TrustZone violations

SSIT Error 0
SSIT Error 1
SSIT Error 2

29
30
31

0x3D
0x3E
0x3F

2
1
0

Stacked silicon integrated (SSI) technology SLR
errors 0 to 2

PSM Error Status Accumulator Registers
The PSM error accumulation module includes two status registers:

• PSM_ERR1_STATUS register: described in the PSM Error Status 1 section

• PSM_ERR2_STATUS register: described in the PSM Error Status 2 section

PSM Error Status 1

The raw error status 1 bits in the PSM_ERR1_STATUS register are listed in the following table.

Table 119: PSM System Error Accumulation Register 1

Error Name
System

Error Reg
Bit

PLM Mask Description

PS_SW_CR 0 0x40 PS software write can set this bit

PS_SW_NCR 1 0x41 PS software write can set this bit

PSM_B_CR 2 0x42 PSM firmware write can set this bit

PSM_B_NCR 3 0x43 PSM firmware write can set this bit

MB_FATAL 4 0x44 OR of MicroBlaze fatal errors

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 423Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err2_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=423

Table 119: PSM System Error Accumulation Register 1 (cont'd)

Error Name
System

Error Reg
Bit

PLM Mask Description

PSM_CR 5 0x45 PSM correctable error

PSM_NCR 6 0x46 PSM non-correctable error

OCM_ECC 7 0x47 OCM ECC non-correctable error

L2_ECC 8 0x48 APU L2-cache ECC non-correctable error

RPU_ECC 9 0x49

OR of many errorsRPU_LS 10 0x4A

RPU_CCF 11 0x4B

GIC_AXI 12 0x4C APU GIC access port

GIC_ECC 13 0x4D APU GIC ECC non-correctable error

APLL_LOCK 14 0x4E APU PLL lock error; asserted while locking or when looses lock

RPLL_LOCK 15 0x4F RPU RPLL lock error; asserted while locking or when looses lock

CPM_CR 16 0x50 CPM correctable error

CPM_NCR 17 0x51 CPM non-correctable error

LPD_APB 18 0x52 LPD APB address decode errors: IPI, USB_2, CRL, S_AXI_LPD.
LPD_IOP_SLCR, LPD_IOP_SECURE_SLCR

FPD_APB 19 0x53 FPD APB address decode errors: CRF, S_AXI_HP, S_AXI_HPC.
FPD_SLCR, FPD_SECURE_SLCR

LPD_PAR 20 0x54 LPD AXI main interconnect parity error

FPD_PAR 21 0x55 FPD AXI main interconnect parity error

IOP_PAR 22 0x56 LPD IOP interconnect parity error

PSM_PAR 23 0x57 PSM interconnect parity error

LPD_TO 24 0x58 LPD interconnect timeout error

FPD_TO 25 0x59 FPD interconnect timeout error

PSM_TO 26 0x5A PSM interconnect timeout error

XRAM_CR 27 0x5B Accelerator RAM correctable error

XRAM_NCR 28 0x5C Accelerator RAM non-correctable error

reserved 29 to 31 0x5D to 0x5F reserved

PSM Error Status 2

The error status bits in the PSM_ERR2_STATUS register are listed in the following table.

Table 120: PSM System Error Accumulation Register 2

Error Name
System

Error Reg
Bit

PLM Mask Description

LPD_SWDT 0 0x60 LPD system watchdog timer

FPD_SWDT 1 0x61 FPD system watchdog timer

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 424Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err2_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=424

Table 120: PSM System Error Accumulation Register 2 (cont'd)

Error Name
System

Error Reg
Bit

PLM Mask Description

reserved 2 to 17 0x62 to 0x71 reserved

LPD_MPU_ERR 18 0x72 LPD MPPU violations and errors

LPD_XPPU_ERR 19 0x73 LPD XPPU violations and errors

FPD_XMPU_ERR 20 0x74 FPD XPPU violations and errors

reserved 21 to 31 0x75 to 0x7F reserved

Error Status Register Mapping
The system errors are accumulated in several memory-mapped registers and the JTAG error
status register. TRM links to error status information:

• 160-bit JTAG ERROR_STATUS Register table.

• Memory-mapped PMC Error Status Accumulator Registers tables.

• Memory-mapped PSM Error Status Accumulator Registers tables.

The error types with cross-referencing between the memory-mapped and JTAG error status
registers are shown in the following table.

Table 121: Error Status Register Mapping

Error Type
JTAG

ERROR
STATUS bits

AM012 Register
Reference Link Notes

System errors routed to PLM
firmware

31:0 PMC_ERR1_STATUS From several sources:
RCU, PLM, CFU, DDR, NoC, AI
Engine, SYSMON, PL, and NPI.63:32 PMC_ERR2_STATUS

General software error code for PLM 93:64 PMC_GSW_ERR Data field. CR and NCR flags

PLM minor error code 109:94
PMC_FW_ERR Written by the PLM firmware

PLM major error code 123:110

BootROM last error detected 135:124

PMC_BOOT_ERR
See list in BootROM Error Codes
section.
Written by the RCU BootROM
code.

BootROM first error detected 147:136

reserved 159:148 - reserved

System errors routed to PSM
firmware

na PSM_ERR1_STATUS From several sources:
PS software, OCM, APU, RPU, GIC,
clocks, CPM, LPD, FPD, and XRAM.na PSM_ERR1_STATUS

Section IX: Interrupts and Errors
Chapter 50: System Errors

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 425Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err2_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_gsw_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_fw_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_boot_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_err1_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=425

Chapter 51

Error Containment
The Versal™ ACAP includes integrity monitoring functionality in nearly all functional units. When
a failure is detected, the functional unit asserts a signal to the error accumulation module (EAM).
The routing of the system errors is shown in the figure in the System Error Accumulators section.
Each system error can be caused by one or more reasons. Software programs the EAM registers
to determine how the device will respond to each system error.

Types of errors include:

• Correctable and uncorrectable memory errors (separate error signals)

• Mismatch in the triple module redundant (TMR) MicroBlaze™ processors

• Parity errors and timeout on the interconnect

• XMPU and XPPU access violations

Each system error is routed to either the PMC or PSM error accumulator status registers:

• PMC_ERR1_ISR

• PMC_ERR2_ISR

• PSM_ERR1_ISR

• PSM_ERR2_ISR

These status registers have an associated mask registers for each of the possible resulting actions
that are generated.

Section IX: Interrupts and Errors
Chapter 51: Error Containment

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=426

Section X

Timers, Counters, and RTC
This section includes these chapters:

• Summary of Counters and Timers

• Real-Time Clock

• System Counter

• Triple-Timer Counters

• System Watchdog Timers

Section X: Timers, Counters, and RTC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=427

Chapter 52

Summary of Counters and Timers
The following table is a summary of the system timers.

Note: The xxx_LSBUS_CLK is the APB programming interface clock.

Table 122: Summary of System Timers

Name Location Time Base Bits Register Control Usages

System
counter 1x LPD TS_REF_CLK 64

Memory-mapped registers
in LPD and APU local-
processor registers

System-wide physical count
and virtual machine count
using count offset System
Counter

TTC 4x LPD
Selectable:
- LPD_LSBUS_CLK
- PS REF_CLK pin
- RPU_REF_CLK

32 LPD_IOP_SLCR (clocking)
TTC register set (config)

Triple timer counter for
general purpose usage
Triple-Timer Counters

SWDT
1x LPD LPD_LSBUS_CLK LPD and FPD SLCR

(clocking)
LPD and FPD SWDT (config)

System watchdog timer
with windowing to define
upper and lower expected
response time1x FPD FPD_LSBUS_CLK

CoreSight™
debug
counter

Section X: Timers, Counters, and RTC
Chapter 52: Summary of Counters and Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=428

Chapter 53

Real-Time Clock
The real-time clock (RTC) resides in the PMC and maintains an accurate time base for system and
application software. It includes calibration circuitry to offset temperature and voltage
fluctuations in applications requiring greater accuracy. The RTC also provides alarm setting and
periodic interrupt features. The real-time clock provides continuous operation powered by the
PMC auxiliary supply (VCCAUX_PMC) or the battery supply (VCC_BATT). When the auxiliary
supply is available, the RTC uses it to keep the counters active. The RTC automatically switches
to the battery power supply when the auxiliary supply is not available.

The RTC generates two system interrupt signals to the generic interrupt controller (GIC), the GIC
proxy, and the programmable logic (PL) once every second and when an alarm event occurs. The
periodic second tick interrupt can be used by all system processors. The alarm control must be
managed at a system level with the processors.

As shown in the following figure, the RTC subsystem has three main modules: counter module,
control register module, and oscillator module. The RTC counters module is powered by the
battery power domain and includes three counters, calibration circuitry, and logic used to retain
the programmed time. The RTC control register module is implemented in the PMC power
domain and incorporates all of the registers associated with the RTC controller. The oscillator
module is supplied by the battery power domain and provides the RTC clock.

Section X: Timers, Counters, and RTC
Chapter 53: Real-Time Clock

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=429

Figure 79: RTC Controller Block Diagram

RTC Control
Registers

RTC Counters

Control

Calibration

Time Set

Status

Counts

Interrupts

VCC_BATT

Power
MUX

Voltage
Detect

VCCAUX_PMC

CONTROL [Battery_Enable]

O
sc

ill
at

or

RTC Supply

APB Slave
Interface

Crystal

PMC
BPD

Power Domains

X21400-111519

Features
The RTC has the following features:

• Continuous operation using auxiliary or battery power supplies

• Alarm setting and periodic interrupts

• Complex calibration circuits for highly accurate time keeping

• 32-bit seconds counter represents 136 years of time

• Three counters:

○ x 32-bit seconds counter

○ x 16-bit tick counter to measure a second based on 32 kHz crystal

○ x 4-bit fractional counter for calibration

Section X: Timers, Counters, and RTC
Chapter 53: Real-Time Clock

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=430

Counter Module
The RTC counter module contains the 32-bit seconds counter, 16-bit tick counter, and 4-bit
calibration counter. The counter module maintains a previously programmed time for read back
and calibration by software and maintains the current time in seconds. The counter module
calibration circuitry is used to calculate one second with a maximum PPM inaccuracy.

The seconds counter is a 32-bit synchronous counter that holds the number of seconds from a
specific reference point known by the operating system. The seconds counter can represent a
time of up to 136 years. Initially, the current time is calculated through the clock device driver in
the operating system, which is based on the number of seconds that elapse from a reference
point. This current time value is programmed into the RTC counters through the time-set register
used to initialize the seconds counter. The seconds counter is then clocked every second to
increment and hold the updated current time. The current time is read through the interface to
the RTC controller.

For every oscillator clock cycle, the value in the tick counter is compared against the value stored
in the calibration register. If these values match, the tick counter is reset to zero and an interrupt
is generated. The interrupt signal from the RTC counters is asserted for one RTC clock cycle and
is captured on the positive-edge transition of the interrupt status register RTC controller. The
follow-on interrupt from the RTC counters can be used by a clock device driver to calculate the
time and date.

When enabled, the fractional calibration feature takes effect every 16 seconds and delays the
release of the clear signal to the tick counter by the number of oscillator cycles programmed in
the fractional calibration field of the calibration register.

Calibration
The clear signal that is used to reset the tick counter can be extended/delayed by logic that
operates with the fractional calibration value to provide fractional tick adjustment. Every time
the fraction counter asserts an extend clear signal to the tick counter, the clear function to the
tick counter remains asserted. Any inaccuracy in the oscillator is compensated for by adjusting
the calibration value and making the remaining inaccuracy a fraction of a tick in every second.
The impact of the remaining inaccuracy can be compensated for by using a fraction counter.

Every 16 seconds the accumulated inaccuracy can be approximated by the total number of ticks
between zero and 16. This value is programmed in the fractional calibration segment of the
calibration register. After 16 seconds, the fraction counter starts incrementing from zero to this
value. During the time the fraction counter is incrementing, the clear signal to the tick counter
stays asserted. As a result, the tick counter increments are delayed by the value of ticks every 16
seconds.

Section X: Timers, Counters, and RTC
Chapter 53: Real-Time Clock

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=431

When the fraction comparator determines that the fraction counter value is equal to the
maximum fractional calibration value, the fraction comparator releases the clear signal of the tick
counter. This clear signal allows the fractional counter to start incrementing again. The fractional
calibration register also includes an enable bit. When this bit is a 1, the fraction comparator
performs the operations associated with fractional calibration, including the tick counter extend
clear signal.

RTC Accuracy
For the 32.768 kHz crystal oscillator, the static inaccuracy of the RTC is bounded to ±30.5 ppm if
the selected crystal has a larger static inaccuracy. For example, a crystal inaccuracy of +50 ppm in
one-million ticks generates 50 extra ticks (or off by 1–9/16 of a tick every second). Increasing the
calibration value by one leaves 9/16 of the tick. Therefore, the static +50 ppm crystal in accuracy
impacts the RTC similar to a +17.17 ppm crystal, because some of the inaccuracy is accounted
for through the seconds calibration.

By enabling the fractional calibration feature, the second calculation logic can perform further
calibration by delaying the clearing of the tick counter by one to 15 oscillator ticks every 16
seconds. In the previous example, after every 16 seconds, the clock is nine ticks ahead.
Therefore, by programming the value of nine into the fractional calibration field of the calibration
register, the time is adjusted by nine ticks every 16 cycles, which corrects the static inaccuracy of
the oscillator.

External Clock Crystal and Circuitry
The typical crystal used for the RTC is a 20 ppm, 32.768 kHz crystal (see the following figure).
Using the RTC calibration mechanism, the effective inaccuracy is reduced to less than two. Using
a 65.536 kHz crystal further reduces the effective calibration inaccuracy to less than 1 ppm.

Figure 80: Crystal Circuit Example

20 ppm

GND

22 pF 50V 22 pF 50V

32.768 kHZ

RTC_PADI

RTC_PADO

4.7MΩ
1/10 W

5%

1

2

1

2

1

2

1

2

X1

X2

COG, NPOCOG, NPO

X23540-071020

Section X: Timers, Counters, and RTC
Chapter 53: Real-Time Clock

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=432

Interfaces and Signals
The RTC interfaces to logic in the PMC and includes these features:

• An APB interface to access the registers within the controller and the RTC counters

• Interrupt status, interrupt mask, interrupt enable, and interrupt disable registers manage the
seconds and alarm interrupts

• The RTC control register enables the crystal oscillator, controls power to the RTC, and enables
address errors when accesses are made to the regions within the RTC address space that are
not mapped to registers

IMPORTANT! The RTC control register must be programmed every time the PMC power domain is
powered. Otherwise, the value returned by reading the control register can be different from the actual
control settings stored in the battery power domain.

Registers
The RTC control and status registers are listed in the following table.

Table 123: RTC Register Summary

Register Name Width R/W Type Reset
Value Description

SET_TIME_WRITE 32 WO 0h Program the RTC with the current time

SET_TIME_READ 32 RO 0h Read the last write done by software to
SET_TIME_WRITE

CALIB_WRITE 21 WO 0h Store the value that is used to generate one
second based on the oscillator period

CALIB_READ 21 RO 0h Read back the calibration value that was
programmed in the RTC

CURRENT_TIME 32 RO 0h 32-bit timer value in seconds

ALARM 32 RW 0h Program the alarm value for the RTC

RTC_INT_STATUS 2 WTC 0h Raw interrupt status

RTC_INT_MASK 2 RO 3h Interrupt mask applied to the status

RTC_INT_EN 2 WO 0h Write a 1 to enable an interrupt

RTC_INT_DIS 2 WO 0h Write a 1 to disable an interrupt

ADDR_ERROR 1 WTC 0h Register address decode error interrupt status

ADDR_ERROR_INT_MASK 1 RO 1h Register address decode error interrupt mask

ADDR_ERROR_INT_EN 1 WO 0h Write a 1 to enable address decode error
interrupt

ADDR_ERROR_INT_DIS 1 WO 0h Write a 1 to disable address decode interrupt

Section X: Timers, Counters, and RTC
Chapter 53: Real-Time Clock

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 433Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___set_time_write.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___set_time_read.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___calib_write.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___calib_read.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___current_time.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___alarm.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___rtc_int_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___rtc_int_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___rtc_int_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___rtc_int_dis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___addr_error.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___addr_error_int_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___addr_error_int_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___addr_error_int_dis.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=433

Table 123: RTC Register Summary (cont'd)

Register Name Width R/W Type Reset
Value Description

CONTROL 32 RW 0200_0000h Controls the battery enable, clock crystal
enable, and APD address decode error

SAFETY_CHK 32 RW 0h Endpoint connectivity safety check

Section X: Timers, Counters, and RTC
Chapter 53: Real-Time Clock

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 434Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_rtc___safety_chk.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=434

Chapter 54

System Counter
The system counter is used by software to acquire a time stamp that is accessible to all
processors. The APU can access the time count using a CPU local register. The other processors
access the LPD_SCNTR register module. The system counter is physically located in the LPD.

The counter is clocked by the TS_REF_CLK from the LPD clock controller. This reference clock is
controlled by the TIMESTAMP_REF_CTRL register.

System Memory Mapped Register Access

The count value is accessible using memory-mapped registers in the LPD memory space and by
local registers in the APU cores. All registers access the same value from system counter in the
LPD.

The system memory-mapped register modules include:

• LPD_SCNTR (read-only)

• LPD_SCNTRS (read/write by secure master)

A72 Local Register Access

Software can access the local processor counter registers in v8 architecture.

• Enabling and disabling the counter using CNTCR [EN] bit:

○ 0: disabled

○ 1: enabled

• Match the tick count in CNTFRQ register to the to TS_REF_CLK frequency

• Set the counter value:

○ Two contiguous RW registers CNTCV [31:0] and CNTCV [63:32] hold the current count

○ Writing to CNTCV [63:32] starts the counting

• Enable halt-on-debug for a debugger to use to suspend counting. Use CNTCR [HDBG] bit [1]:

○ 0: system counter ignores halt-on-debug signal

○ 1: halt-on-debug signal halts system counter update

Section X: Timers, Counters, and RTC
Chapter 54: System Counter

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 435Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___timestamp_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=435

Changing the operating mode to change the update frequency and increment value. CNTCR,
counter control register FCREQ, bits [17:8]: frequency change request.

Processor Virtual Counters

The processor's virtual counters are derived from the system counter. The virtual counter is a
count subtracted from the system count. Each virtual world can have their own counter value.
The single physical system counter drives and multiple virtual counters.

Section X: Timers, Counters, and RTC
Chapter 54: System Counter

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 436Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=436

Chapter 55

Triple-Timer Counters
The triple-timer counter (TTC) can generate periodic interrupts or can be used to count the
widths of signal pulses from an MIO pin or from the PL.

There are four TTCs in the LPD. Each TTC has its own set of control and status registers that are
accessed via its 32-bit APB programming interface attached to the LPD IOP switch. Each TTC
can be individually protected by the LPD_XPPU protection unit. All three timer/counters within a
TTC must have the same security status because a single APB programming interface serves the
entire TTC.

Features
• Selectable clock input:

○ Internal PS bus clock based on the APB interface (IOP_REF_CLK)

○ Internal clock (from PL)

○ External clock (from MIO)

• Three independent 32-bit timer/counters

• 16-bit prescaler for the clock

• Three system interrupts, one for each timer counter

• Interrupt on overflow and counter match programmable values is generated as a system
interrupt

• Increment and decrement counting

• Generate a waveform output (for example, PWM) through the MIO and to the PL fabric

Operating Modes

Each of the timer counters can operate in one of these modes:

• Interval timing mode (increment and decrement count)

• Overflow detection mode (increment and decrement count)

• Event timer mode

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=437

The register matching interrupt can be enabled in each of these modes.

Reset State

After reset, the TTC counters are set to this configuration:

• Overflow mode

• Internal clock selected

• Counter disabled

• All interrupts disabled

• Event timer disabled

• Output waveforms disabled

System Perspective

All four of the TTC controllers are located in the LPD subsystem.

Block Diagram
The following figure shows the input clocks, wave out signals, and system interrupts. TTC 0 has
more clocking options than TTC 1 or 2 as shown in the figure.

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 438Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=438

Figure 81: TTC Block Diagram

TTCx_IO_REF_CLK0

TTCx_IO_REF_CLK1

APB:
LPD_LSBUS_CLK

LPD_IOP_SLCR.LPD_MIO_SEL (PMC vs. LPD select)

Timer/Clock 0

Timer/Clock 1

Pre-
scaler

32-bit
Counter

Intr

Timer/Clock 2

Status and Control RegistersLPD_LSBUS_CLK

MIO pin:
TTCx_CLK

IRQ # System
Interrupt

Pin:
REF_CLK

LPD:
RPU_REF_CLK

LPD_IOP_SLCR.TTC_CLK_SEL [TTCx]

APB
Programming

Interface

TTC.CLK_CTRL0
[C_Src]

LPD_IOP_SLCR.MIO_PIN_xx (Pin select)

EMIO:
TTCx_WAVE1

EMIO:
TTCx_WAVE2

Event
Counter

Pre-
scaler

32-bit
Counter

Intr IRQ # System
Interrupt

Event
Counter

Pre-
scaler

32-bit
Counter

Intr IRQ # System
Interrupt

Event
Counter

MIO–EMIO
Multiplexing

MIO–EMIO
Multiplexing

MIO-EMIO Multiplexer Control Registers

MIO pin:
TTCx_WAVE

EMIO:
TTCx_WAVE0

EMIO:
TTCx_CLK1

EMIO:
TTCx_CLK2

EMIO:
TTCx_CLK0

TTC.CLK_CTRL1
[C_Src]

TTC.CLK_CTRL2
[C_Src]

TTCx_REF_CLK

TTCx_IO_REF_CLK2

X22245-032321

Interrupts

Three interrupt signals are available for use at the system level. A system interrupt occurs when a
bit in the interrupt enable register and the corresponding bit in the interrupt detect register are
both set. The interrupt register takes the interrupt signals from the timer-counter module and
stores them until the register is read. When the interrupt register is read by the processor, it is
reset. To enable an interrupt, it is necessary to write a 1 to the corresponding bit position in the
interrupt enable register.

The interrupt of various types are combined. Each type can be individually enabled within each
timer/clock.

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 439Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=439

• Counter interval

• Counter matches

• Counter overflow

• Event timer overflow

Prescalar

The interface includes a prescaler module to provide a selectable clock frequency for driving the
timer counter. The prescaler can be programmed to operate on the clock options shown in the
figure. The selected clock is then divided down to provide the count clock. Division can be from
÷2 to ÷65536 using CLK_CTRL0 [PS_V].

Each prescaler can be independently programmed. The counter module can count up or count
down, and can be configured to count for a given interval. It also compares three match registers
to the counter value and generates an interrupt if one matches.

Counter Module

The counter module can increment or decrement and can be configured to count for a given
interval. It also compares three match registers to the value of the counter and generates an
interrupt if one matches.

Overflow Detection Functional Model
Overflow Detection Mode

If the interval bit in the counter control register is not set, the counter can count up to or down
from its full 32-bit value. An interrupt is generated when the count passes through zero. To
increment, when the counter value register reaches FFFF_FFFFh, it overflows to zero, and then
the overflow interrupt is set and counting up is restarted. To decrement, when the counter value
register reaches zero, the overflow interrupt is set. The counter then overflows to FFFF_FFFFh
and counting down is restarted.

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 440Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___clk_ctrl0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=440

Interval Timing Functional Model
Interval Timing Mode

If the interval bit is set in the counter control register, the counter counts up to or down from a
programmable interval value. An interrupt is generated when the count passes through zero.
When interval mode operation is not enabled, the counter is free-running. To increment, when
the counter value register is equal to the interval register value, the counter is reset to zero, the
interval interrupt is set, and counting up is restarted. To decrement, when the counter value
register is equal to zero, the interval interrupt is set. The counter is then reset to the interval
register value and counting down is restarted.

Event Timer Functional Model
Event Timer Mode

The event control timer operates by having an internal 16-bit counter clocked by the local bus
clock that resets to 0 during the non-counting phase of the external pulse and increments during
the counting phase of the external pulse.

The event control timer registers (e.g., TTCn_EVENT_CONTROL_TIMER_1) control the behavior
of the internal counter.

• [E_En] bit: when 0, immediately resets the internal counter to 0, and stops incrementing

• [E_Lo] bit: specifies the counting phase of the external pulse

• [E_Ov] bit: specifies how to handle an overflow at the internal counter (during the counting
phase of the external pulse)

○ 0: overflow causes [E_En] to be 0 (see the [E_En] bit description)

○ 1: overflow causes the internal counter to wrap around and continues incrementing

○ When an overflow occurs, an interrupt is always generated (subject to further enabling
through another register)

The event register is updated with the non-zero value of the internal counter at the end of the
counting-phase of the external pulse. The event register shows the widths of the external pulse,
measured in number of cycles of clock cycles. If overflow occurs, the event register is not
updated and maintains the old value.

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 441Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=441

Register Reference
See Processor Control and Status Registers for an overview of the AArch32 registers.

Accessibility

The TTC control and status registers are accessed by their APB bus interface via the PMC local
AXI interconnect. These registers are protected from the non-PMC bus masters using the XPU
protection unit at the incoming PMC AXI switch.

Register Overview

The following table lists the four sets of TTC registers. There are four TTC controllers (n = 0 to 3
in the table).

Table 124: TTC Register Overview

Register Name Access
Type Description

CLK_CTRL0
CLK_CTRL1
CLK_CTRL2

RW Clock control for a counters 0, 1, and 2.

CNT_CTRL0
CNT_CTRL1
CNT_CTRL2

RW Operational mode and reset for a counters 0, 1, and 2.

CNT_VAL0
CNT_VAL1
CNT_VAL2

R Current counter value for a counters 0, 1, and 2.

INTERVAL_CNT0
INTERVAL_CNT1
INTERVAL_CNT2

RW Maximum count value for a counters 0, 1, and 2.

MATCH0_CNT0
MATCH1_CNT0
MATCH2_CNT0

RW Match values for counter 0; when count matches a value,
then the interrupt bit is set.

MATCH0_CNT1
MATCH1_CNT1
MATCH2_CNT1

RW Match values for counter 1; when count matches a value,
then the interrupt bit is set.

MATCH0_CNT2
MATCH1_CNT2
MATCH2_CNT2

RW Match values for counter 2; when count matches a value,
then the interrupt bit is set.

ISR_CNT0
IER_CNT0

R
RW

Interrupts for counter 0: status and enable for interval,
match, overflow, and event.

ISR_CNT1
IER_CNT1

Interrupts for counter 1 int: status and enable for interval,
match, overflow, and event.

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 442Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___clk_ctrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___clk_ctrl1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___clk_ctrl2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___cnt_ctrl0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___cnt_ctrl1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___cnt_ctrl2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___cnt_val0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___cnt_val1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___cnt_val2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___interval_cnt0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___interval_cnt1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___interval_cnt2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match0_cnt0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match1_cnt0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match2_cnt0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match0_cnt1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match1_cnt1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match2_cnt1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match0_cnt2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match1_cnt2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___match2_cnt2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___isr_cnt0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___ier_cnt0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___isr_cnt1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___ier_cnt1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=442

Table 124: TTC Register Overview (cont'd)

Register Name Access
Type Description

ISR_CNT2
IER_CNT2

Counter 2 interrupts: status and enable for interval, match,
overflow, and event.

EVT_CTRL_TMR0
EVT_CTRL_TMR1
EVT_CTRL_TMR2

Enable, pulse, and overflow.

EVT_CYCLE_TMR0
EVT_CYCLE_TMR1
EVT_CYCLE_TMR2

APB interface clock cycle count for event.

TTC I/O Signals
The TTC controller includes two I/O signals. The signals are listed in the following table.

Table 125: TTC Controller I/O Signals

MIO
Signal Name I/O PMC MIO Pin LPD MIO Pin MIO-at-a-Glance Table

TTC0_CLK
TTC1_CLK
TTC2_CLK
TTC3_CLK

I

MIO-at-a-Glance

0

TTC0_WAVE
TTC1_WAVE
TTC2_WAVE
TTC3_WAVE

O 1

Section X: Timers, Counters, and RTC
Chapter 55: Triple-Timer Counters

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 443Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___isr_cnt2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___ier_cnt2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___evt_ctrl_tmr0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___evt_ctrl_tmr1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___evt_ctrl_tmr2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___evt_cycle_tmr0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___evt_cycle_tmr1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ttc___evt_cycle_tmr2.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=443

Chapter 56

System Watchdog Timers
The system watchdog (SWDT) timer is used to detect and recover from various malfunctions.
The watchdog timer can be used to prevent system lockup (e.g., when software becomes trapped
in a deadlock). There are two watchdog functions:

• Generic timeout

• Windowed watchdog

○ Three time periods starting with the closed-window period

○ The size of the open and closed windows are programmable

The generic watchdog timer expects an interrupt handler running on a processor to restart the
watchdog timer at regular intervals before the timer counts down to zero. When the timer does
reach zero and the watchdog is enabled, one or a combination of a system reset, interrupt, or
external signal is generated. The watchdog timeout period and the duration of any output signals
are programmable.

The windowed watchdog function expects the interrupt handler to send a command on a
periodic basis that is not too soon and not too late from the previous command. Watchdog
timing is commonly used in embedded systems to activate fail-safe circuitry in the event of a
fault. The Versal™ ACAP SWDT provides windowing, program sequence flow, and a Q&A token
request/response protocols.

There are two system watchdog timers:

• LPD SWDT

○ Protecting the RPU MPCore software execution

○ Reset the RPU, other functional units, or the entire PS

• FPD SWDT

○ Protecting the APU MPCore software execution

○ Reset the APU and other FPD functional units

Applications

• Resetting watchdog too soon

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 444Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=444

When a fault occurs and causes the RPU processor to enter a software routine that writes the
SWDT reset command, it is possible that the software erroneously stays in the loop and
repeatedly issues the reset command in relatively quick succession. This can be detected by
the SWDT and cause it to generate an interrupt. Windowing increases the complexity of
resetting the timer to prevent the likelihood of this occurring.

• Performance bounding

An additional use of the watchdog timer is to ensure the performance of the LPD stays within
expected bounds. A narrow window of time is given to the open window that is carefully
calculated to be achievable under all correct operation scenarios. If a fault occurs that causes
some performance degradation, the timer is not reset within the narrow available time
window and the SWDT issues an interrupt. If the watchdog timer detects a problem, the error
manager is alerted via the SWDT interrupt.

Features
The SWDT has the following features:

• Selectable reference clock input from MIO/EMIO port signal or an LSBUS_CLK clock

• Up to 100 MHz reference clock frequency

• One or a combination of resets and interrupts

• Variable timeout periods from 1 ms to 30 seconds with a 100 MHz reference clock

• Programmable reset period

• Multiple device reset sources

• Windowed and generic watchdog timer functions

Comparison to Previous Generation Xilinx Devices
The IP for the Versal ACAP system watchdog timer is new. The new IP includes both generic
functionality and windowed watchdog functions.

Instances
There are two watchdog timers with the same programming model.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=445

Table 126: Watchdog Timers

Register Module
Name Instance Name Other Known Terms Description

SWDT

LPD_SWDT SWDT0, WWDT0
System watchdog timer in
LPD with generic and
windowed functions

FPD_SWDT SWDT1, WWDT1,
FPD_WWDT

System watchdog timer in
FPD with generic and
windowed functions

System Perspective
Block Diagram
The system watchdog timer block diagram is shown in the following figure.

Figure 82: System Watchdog Timer Block Diagram

PL EMIO

Registers

xxx_LSBUS_CLK

Main IRQs #81, 132

Generic
Watchdog

Timer
S

32-bit
APB

Interconnect
Switch

Interrupts
and Resets

LPD and FPD SWDT IRQs:

Reset Pending IRQs #101, 141

WS0 IRQs #102, 140
WS1 IRQs #103, 142

Windowed
Watchdog

Timer

LPD and FPD

Window
Counter

Fail
Counter

QA
Generation

MIOMIO/EMIO

SWDT_Clk_Sel

X23894-030321

System Interface
Both timers have a 32-bit APB slave programming interface.

• LPD SWDT is accessible from the FPD main switch

• FPD SWDT is accessible from the LPD IOP switch

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=446

System Signals
The system signals include clocks, resets, and interrupts.

Clocks

The watchdog timer receives two clocks. One clock is for the APB register module:

• LPD_LSBUS_CLK for the LPD SWDT

• FPD_TOPSW_CLK for the FPD SWDT

The other clock is used by the watchdog counters and has several sources:

• PMC MIO pins

• LPD MIO pins

• EMIO port signals

Resets

The SWDT includes a warm reset and a system reset from the LPD or FPD reset controller.

Interrupts

The SWDT generates several system interrupts that include controller, reset pending, and two
window interrupts. The IRQ numbers for the SWDT and other units are listed in IRQ System
Interrupts.

Programming Model
The watchdog timer includes memory-mapped registers that are accessed by software via the
APB programming interface. The APB interface is used for accessing the SWDT registers via the
IOP switch

Window Mode

In windowed mode, the timer starts with an adjustable period called "close (first) window time"
followed by another period called "open (second) window time." The timer has to be restarted
within the open window time. If software tries to restart the timer outside of the open window
time period, it generates a reset. With this method, the timer includes a more stricter
requirement on the software execution and provides more predictability. If software is running
out of control, there is a greater probability that it fails to fulfill a strict timing requirement of the
timer restart and, consequently, can reduce the probability of an errant restart of the watchdog.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 447Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=447

As a result, the timer can increase the probability of recovering from anomalies whereas the
timer might not be able to help.

The windowed mode helps to monitor the proper operation of the RPU processor. Its basic
function is to expect the RPU to issue a periodic clear command to the timer by writing to one of
its registers. The SWDT expects the command to occur on a periodic basis that is not too soon
and not too late.

Modes and States
There are three modes of operation:

• Basic windowed watchdog mode

• Q & A watchdog mode

• Generic watchdog mode

Generic Mode
The basic function of the generic watchdog is to count for a fixed period, during which it expects
to be refreshed by the system indicating normal operation. If a refresh occurs within the watch
period, the period is refreshed to the start. If the refresh does not occur, the watch period
expires, a signal is raised, and a second watch period starts.

The initial signal is typically wired to an interrupt and alerts the system. The system can attempt
to take corrective action that includes refreshing the watchdog within the second watch period.
If the refresh is successful, the system returns to the previous normal operation. If it fails, the
second watch period expires, and a second signal is generated. The signal is fed to a higher agent
as an interrupt or reset for it to take executive action.

The watchdog uses the generic timer system counter as the timebase for determining when to
trigger an interrupt.

An explicit watchdog refresh happens when one of these events occurs:

• Generic Watchdog Refresh register is written

• Generic Watchdog Offset register is written

• Generic Watchdog Control and Status register is written

Basic Window Mode
When the timer is enabled in basic mode, the software must restart or disable it in the open
(second) window duration only. If software is successful, it is considered a good event.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 448Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=448

If the timer gets a restart attempt or disablement attempt in the close (first) window, it is
considered a bad event. In this scenario, the timer is not disabled.

Also, if the timer does not get any restart or disablement before the second window expires, it is
considered a bad event.

Open and Closed Windows

• Closed Window: A reset command received during this time is a fault of its own (interrupt).

• Open Window: The reset command is expected during this time period (normal).

• Late: The reset command was expected before this time (interrupt).

Q and A Window Mode
When the window timer mode is enabled in Q&A mode, the timer generates the question or
token for the software to read from the TVAL of the Enable and Status Register (ESR). The
software then generates a 32-bit response or answer. The response to each question is four
bytes and is provided by four different APB writes into the TRR register.

A good event occurs if the three correct response bytes are written in the first window in correct
order followed by writing the last response byte in the second window. When the response bytes
are not written in correct order or in the correct window period, it is considered a bad event. The
timer can be disabled only if the fail counter value is 0 in this mode.

The question/token start point can be controlled through a seed value that is taken into
consideration from enable to enable. The question/token sequence (within a set of 16 questions)
or repetition can be controlled through feedback configuration bits. The value is taken into
consideration at the last correct answer. This requires shadow register implementation.

Challenge-Response Feature

The window mode provides a challenge-response feature. The timer has a set of 32-bit registers
that contain the expected response. The responses are computed at boot time and programmed
into the timer. Each time the timer is cleared a new question index is loaded into the "challenge"
register. The CPU computes the response and places it in the response register and then clears
the watchdog. The timer checks the response against the register value referenced by the
question index. If the value does not match, the error aggregate module (EAM) is sent a signal.
The challenge-response feature can be enabled or disabled. If enabled, the timer ensures that the
watchdog is cleared with the time window and the challenge-response condition is satisfied.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 449Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=449

Programming Sequences
Generic Mode Sequence
The programming sequence for the generic WDT mode is provided in this section.

1. Set the GWOR register to configure the window periods.

2. Set the GWEN bit to enable the generic WDT, which starts the first window.

3. Software might generate the explicit refresh by writing into GWRR, GWOR, or GWCSR.

4. If the explicit refresh is not received before the timeout of the first window, the GWS[0] bit is
set and gwdt_ws0 is asserted, which starts the second window.

5. If the explicit refresh is not received before the timeout of the second window, the GWS[1]
bit is set and gwdt_ws1 is asserted.

6. GWS[0] and GWS[1] remain asserted until an explicit refresh or watchdog reset occurs.

Basic Window Sequence
The programming steps for the basic window mode are provided in this section.

1. If required, set the [WDP] bit (to enable protection against accidental clearing).

2. Configure the first and second window count registers according to the close/open window
requirements/constraints.

3. Set the interrupt position in the second window according to the requirements (SBC [7:0] &
BSS [1:0]).

4. If required, the enable fail counter, program sequence monitor, and second sequence timer
functions (FCE, PSME, and SSTE).

5. If PSME is enabled, write TSR0.

6. Enable the watchdog, [WEN] bit. This generates the first kick and starts the first window. This
step (WEN 0->1) auto-clears the MWC bit to make the address space read-only.

After completing the first window, the watchdog enters in the second window period and the
core sets the WSW bit. Software might generate the next restart kick (or might disable the
watchdog) any time after the WSW bit is set.

The TSR1 can be written any time irrespective of whether the WSW is set or not (enable
MWC, write TSR1, and disable MWC). The TSR0 and TSR1 comparison is done at the restart
kick/disable event if the PSME is enabled.

7. Wait for the SWDT system interrupt.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 450Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=450

8. Enable the MWC and restart/disable the watchdog according to the requirement (clear
WINT, WSW or clear WINT, WSW, WDP, WEN).

• If software attempts to restart or disable the watchdog in the first window, it is considered
a bad event. The disable request is not honored.

• If software does not restart or disable the watchdog before the second window rolls over,
it is considered a bad event.

• If a PSME is enabled and a TSR mismatch was found at the restart/disable time in the
second window, it is considered a bad event. If the PSME is disabled, the TSR values are
not compared.

• If the fail counter is disabled, a single bad event leads to SWDT_RESET generation. The
scratch bits store the last bad event. Scratch bits can be cleared post the AXI reset.

• If the SSTE is disabled, the SWDT_RESET is generated immediately.

• If the SSTE is enabled, the SWDT_RESET is generated after the SC count expires.

• If software restarts/disables the watchdog in the second window, it is considered a good
event.

• If the fail counter is enabled, a good event decrements the fail counter by 1 unless it is 0,
and a bad event increments the fail counter by 1 unless it is 7.

• If the fail counter is 7 and a bad event occurs, it leads to SWDT_RESET generation based
on [SSTE].

• Fail counter status can be tracked through the ESR register.

9. If the watchdog is restarted, it starts with a new cycle with the first window.

Note: After generating the SWDT_RESET, the watchdog stops running and the [WEN] bit auto-clears.

Q and A Window Mode Programming Sequence
The programming sequence for the Q and A window mode are provided in this section.

1. If required, set the Funct_Ctrl [WDP] bit (to enable protection against accidental clearing).

2. Configure the first and second window count registers according to the open/close window
requirements/constraints.

3. Set the interrupt position in the second window according to the requirements Funct_Ctrl
[SBC] and [BSS] bits.

4. If required, enable the second sequence timer function using the [SSTE] bit. The fail counter
is always enabled and the [PSME] bit has no meaning in this mode.

5. The seed value should be programmed in the Token_FB register before enabling the
watchdog.

6. Set the first feedback configuration in the Token_FB [SEED] bit field.

7. Set the watchdog mode Funct_Ctrl [WM] bit.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 451Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___funct_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___funct_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___token_fb.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___token_fb.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___funct_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=451

8. Enable the watchdog timer using the Enable_and_Status [WEN] bit.

9. Enable the WProt [MWC] and write the TRR register to start the first question-answer
sequence.

After the window mode is enabled in Q and A mode, a write to the Token_Resp [ANS]
register field triggers the first sequence run and starts the first window. Subsequently, each
new token-response sequence starts after the last correct answer of the previous run.

The default value of the [ACNT] field is “00” and after step 9, this field updates to “11.”

Step 9 also takes into account the first feedback configuration for the first time.
Subsequently, feedback configuration updates are considered at each new sequence run.

The first question or token is presented in the ESR register after step 9. Subsequent tokens
are presented at each new sequence run.

Software should provide four correct responses with correct timing for each question/token.
The answer to each question is four byte data that needs to be written byte after byte (MSB
to LSB) into the TRR register. The first three writes must occur in the first window time and
the last write must occur in the second window.

10. Write three correct responses in the Token_Resp register in the first window interval. The
first window always completes. The second window starts if the watchdog has received three
correct responses in the first window.

It is also possible to receive a fourth response (either correct or incorrect) in the first window
(after receiving three correct responses). In this case, appropriate status error bots are set
(TOKEN_EARLY, SEQ_ERR, and TOKEN_ERR) and the fail counter increments. The watchdog
waits for the first window to expire and then moves to the second window, and expects the
fourth correct response there.

If the watchdog received no response (timeout), or received only one correct response or
received only two correct responses until the first window expired, then it restarts with the
first window and expects the same question-answer sequence (i.e., the question cannot be
changed by token feedback configuration).

With each correct byte response, the [ACNT] status updates. [ACNT] does not change with
an incorrect response. Each incorrect response is considered a bad event and increments the
fail counter. There can be more than three responses possible in the first window due to
incorrect responses.

11. Wait for the SWDT system interrupt.

12. Change the token feedback configuration if required.

13. Write the last correct response in the second window.

Note: The second window might time out in the absence of any response, expire waiting for the last or
fourth correct response, or finish earlier than the programmed value after receiving the last or fourth
correct response.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 452Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___enable_and_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___wprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___token_resp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___token_resp.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=452

If it times out or expires, the watchdog restarts with the first window and expects the same
question-answer sequence (i.e., the question cannot be changed by token feedback
configuration).

The Enable_and_Status [ACNT] bit does not change with an incorrect response. Each
incorrect response is considered a bad event and increments the fail counter. With a correct
byte response, the [ACNT] status updates to “11.”

There can be more than one response possible in the second window due to incorrect
responses.

14. The next question is presented in the Enable_and_Status register.

15. Repeat steps 10-13.

16. After enabled in Q and A mode, the window mode can be disabled only when the fail counter
is zero. An attempt to disable the watchdog does not change the fail counter in Q and A
mode.

Note: After generating the SWDT_RESET, the watchdog stops running and the [WEN] bit auto-clears.

Register Reference
SWDT Register Set
The register modules for the SWDTs are located at these base addresses:

• LPD SWDT 0xFF12_0000

• FPD SWDT 0xFD4D_0000

The registers are summarized in the following table.

Table 127: SWDT Register Set

Register Name Offset Address Access Type Description
Common Registers

WProt 0x0000 RW Master write control

Funct_Ctrl 0x0008 RW Function control

Enable_and_Status 0x0004 R, RW, W1C Enables and interrupt status

IER
IDR
IMR

0x0030
0x0034
0x0038

W
W
R

Interrupt enable, disable, and mask

Generic Timer Registers

G_Refresh 0x1000 RW Generic watchdog refresh

G_Ctrl_Status 0x2000 RW, R Generic watchdog control and status

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 453Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___enable_and_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___enable_and_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___wprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___funct_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___enable_and_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___g_refresh.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___g_ctrl_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=453

Table 127: SWDT Register Set (cont'd)

Register Name Offset Address Access Type Description
G_Offset 0x2008 RW Generic watchdog offset

G_Warm_Reset 0x2FD0 RW Generic watchdog warm reset

Window Timer Registers

Wind1_Cfg 0x000C RW First window configuration

Wind2_Cfg 0x0010 RW Second window configuration

Wind_SST_Cfg 0x0014 RW Second sequence timer configuration

Task_Sig0 0x0018 RW Task signature reg 0

Task_Sig1 0x001C RW Task signature reg 1

SST_Timer 0x0020 R Second sequence timer

Token_FB 0x0024 RW Token feedback

Token_Resp 0x0028 RW Token response

System-Level Registers
Clock Source Select

The SWDT clock source can be from the APB programming clock, the PL EMIO, or the MIO pins
using the clock select registers.

• LPD_IOP_SLCR SWDT_Clk_Sel register

• FPD_SLCR SWDT_Clk_Sel register

I/O Signal Routing

The SWDT I/O signals can be routed through the PMC or LPD MIO pins as shown in SWDT I/O
Signals .

Resets

Each SWDT has an individual reset control.

• LPD SWDT block reset control: RST_LPD_SWDT

• FPD SWDT block reset control: RST_FPD_SWDT

For high-level resets, see Resets Overview.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 454Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___g_offset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___g_warm_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___wind1_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___wind2_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___wind_sst_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___task_sig0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___task_sig1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___sst_timer.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___token_fb.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=swdt___token_resp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___swdt_clk_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr___swdt_clk_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_lpd_swdt.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_fpd_swdt.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=454

SWDT I/O Signals
There are six SWDT signals available via the MIO. There are six groups of signals as shown in the
MIO-at-a-Glance and detailed in the following table.

Table 128: SWDT Controller I/O Signals

MIO EMIO

Signal Name I/O
PMC MIO Pin LPD MIO MIO-at-

a-Glance
Table

Signal
Name I/OA B C D E F

LPD_SWDT_CLK
FPD_SWDT_CLK I 0

6
12
18

26
32

38
44

0
6

12
18 0 I

LPD_SWDT_RST
FPD_SWDT_RST O 1

7
13
19

27
33

39
45

1
7

13
19 1 O

LPD_SWDT_RST_PEND
FPD_SWDT_RST_PEND1 O 2

8
14

20 or 21
28
34

40
46

2
8

14
20 2 O

LPD_SWDT_INT
FPD_SWDT_INT2 O 3

9
15
na

29
35

41
47

3
9

15
21 3 O

LPD_SWDT_WS0
FPD_SWDT_WS03 O 4

10
16
22

30
36

42
48

4
10

16
22 4 O

LPD_SWDT_WS1
FPD_SWDT_WS14 O 5

11
17
23

31
37

43
49

5
11

17
23 5 O

Notes:
1. Window timer reset is asserted after the SST count expires (active-High).
2. Window mode, deasserts when the LPD_SWDT.MISC_ISR or FPD_SWDT.MISC_ISR [WINT] register bit is cleared (active-

High).
3. Generic timer, asserts High after first window timeout.
4. Generic timer, asserts High after second window timeout.

Section X: Timers, Counters, and RTC
Chapter 56: System Watchdog Timers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 455Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=455

Section XI

Memory
The following chapters describe the integrated RAM in the PMC and PS:

• Overview

• On-Chip Memory

• XRAM Memory

• External Memories

• Embedded Memories

• Small Storage Elements

Section XI: Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 456Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=456

Chapter 57

Overview
The various memories are summarized in this section to provide a system perspective and to
provide an accounting for safety-critical applications.

Memory Controllers

There are several types of memory controllers:

• DDR memory on NoC

○ DDR4 and LPDDR4

○ One or more 64-bit interfaces with 8-bit ECC

• Flash memory in PMC (OSPI, QSPI, SD/eMMC)

• Additional memory controllers instantiated in the PL

On-Chip Memories

There are several on-chip memories:

• On-Chip Memory in LPD

• XRAM Memory in LPD (device option)

• Embedded Memories

○ PPU RAM for PLM code and data

○ PMC RAM for boot image files and other data structures

○ RPU tightly coupled memories (TCMs)

○ APU L2-cache RAM

PL Building-Block Memories

On-chip memories can be instantiated in the PL using building block memories:

• Block RAM

• UltraRAM

• Distributed RAM

Section XI: Memory
Chapter 57: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 457Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=457

Small Storage Elements

For safety, many small storage memory elements include parity or ECC:

• Small Storage Elements

Data Retention

The following memories include a data retention mode:

• 256 KB OCM

• 4 MB Accelerator RAM

• RPU TCMs

• APU L2-cache

• DDR memory

Section XI: Memory
Chapter 57: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 458Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=458

Chapter 58

On-Chip Memory
The on-chip memory (OCM) contains 256 KB of memory that is accessible with its 128-bit AXI
interface port. The OCM also includes ECC memory data protection.

The 256-bit memory array provides high bandwidth for AXI read and write transactions. Optimal
bandwidth is achieved when the read and write accesses are a multiple of 256 bits with 256-bit
address alignment. The OCM controller implements a read-modify-write function to
accommodate writes that are not 256 bits in size or are not aligned to a 64-bit boundary.

The OCM controller arbitrates between the read and write channels. The OCM has eight
exclusive access monitors that can simultaneously keep track of up to eight exclusive access
transactions.

Accesses to the OCM are protected by the OCM_XMPU protection unit. It divides the OCM
memory space into 64 memory blocks of 4 KB each. Each block is assigned security attributes
independently.

System masters access the OCM via the LPD OCM switch; this includes the two Cortex-R5F
processors, and masters with access to the LPD or FPD main switches. Memory accesses from
the RPU are treated with a higher priority than memory transaction requests from other masters.

Coherency

The OCM is normally accessed by the RPU, however, it can also be accessed by the APU. In cases
where both the APU and the RPU use the OCM, and the APU caches the OCM memory range,
the RPU can snoop the APU cache to maintain I/O coherency by routing the transaction through
the FPD CCI. The APU cannot snoop the RPU caches if the RPU caches the OCM memory range.

Features
The OCM RAM and controller provide:

• 256 KB of high-speed, low-latency memory

• Optimized for RPU accesses

• 64-bit ECC with single-bit error correction and two-bit error detection

• Exclusive access requests (up to eight outstanding transactions)

Section XI: Memory
Chapter 58: On-Chip Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 459Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=459

• Memory protection via the OCM_XMPU with master ID and TrustZone

• Error reporting and injection

• Four memory banks with separate power islands

Comparison to Previous Generation Xilinx Devices
The OCM in the Versal™ device is similar to the Zynq® UltraScale+™ MPSoC.

System Perspective
Block Diagram
The OCM high-level block diagram is shown in the following figure.

Figure 83: OCM High-level Block Diagram

OCM

Bank 364 KB + ECC

Bank 264 KB + ECC

Bank 164 KB + ECC

Bank 064 KB + ECC

Exclusive Monitors (8)

RPU core0

RPU core1

FPU Main Switch

64

64

128

128

O
CM

 S
w

itc
h

O
CM

_X
M

PU

M_AXI_LPD

LDP Switch

NoC

On-chip
Power FETs

LPD Power

X23883-050820

States
Software must not access a bank that is powered down or in data retention.

Section XI: Memory
Chapter 58: On-Chip Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 460Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=460

Power

Each memory bank has on-chip FETs to control the bank's power using control register bits. See
PSM Service Requests for a list of power requests.

Data Retention

The OCM memory retention state is accessible by the PMC_GLOBAL.AUX_PWR_STATE register.

Address Map
The address range assigned to the OCM memory exists in the higher 256 KB in the 4 GB address
map (32-bit addresssing). This cannot be modified.

The 256 KB RAM array is mapped to a high address range (0xFFFC_0000 to 0xFFFF_FFFF) in
a granularity of four independent 64 KB banks. Each bank is on a separate power island
controlled by the PMC. The mapping summary is listed in the following table.

Table 129: OCM Memory Bank Mapping

Memory Bank Address Range Size
0 0xFFFC_0000 to 0xFFFC_FFFF 64 KB

1 0xFFFD_0000 to 0xFFFD_FFFF 64 KB

2 0xFFFE_0000 to 0xFFFE_FFFF 64 KB

3 0xFFFF_0000 to 0xFFFF_FFFF 64 KB

Memory Address Protection
The OCM memory is protected by the OCM_XMPU protection unit using Master ID, TrustZone
status, and address ranges that are configured as read and/or write.

The XMPU defines 16 address regions where each region is configured for read or write
protection for a set of masters, and it can be configured as a secure or non-secure TrustZone
region. The base address and upper address for each region is defined with a 4 KB granularity.

If a read/write, master, or TrustZone violation occurs, the XMPU returns an SLVERR error signal
back to the master. Valid data is not returned to the master on a read operation and no data is
written to the OCM on a write operation.

Section XI: Memory
Chapter 58: On-Chip Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 461Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=461

ECC Protection
The 64-bit ECC protection applies to both AXI interfaces. If all eight bytes are being written, a
new ECC value is generated (on per 64-bit aligned basis) and written to the ECC part of memory.
If a sub-64 bit write transaction is requested (less than 8 bytes), the controller reads the
associated 64-bit data from the RAM, modifies it, and writes it back with a new ECC value. If the
read part of the read-modify-write sequence detects an uncorrectable error, the write is not
performed and the controller responds by asserting the SLVERR error signal back to the master.

Error Reporting

If a correctable/uncorrectable error is detected during read, the read address is captured in the
OCM controller. For a correctable error, an optional system interrupt can be generated. For
uncorrectable errors, a SLVERR response is generated.

Subsequent errors generate an error signal and a SLVERR response, but if the previous read error
address is not cleared by software, then any follow-on read error address is lost.

Error Injection

Software can inject 1-bit or 2-bit errors per 64-bit (an ECC word) based on register values (64+8
bits). The 72 bits are XOR-ed with data and syndrome bits being written.

ECC Operations
If errors occur due to a fault injection or other reasons, an interrupt is generated. The
OCM.APB_MISC_ISR register provides the interrupt status and the cause of the error. This is a
sticky register that holds the value of the interrupt until cleared by a value of 1. Read bits 6 and 7
of the status register for information on whether the error is correctable or uncorrectable.

Read Correctable Error Registers

1. Retrieve the address of the first occurrence of an access with a corrected error. Read the 18-
bit [ADDR] bit field in the CE_FFA register.

2. Retrieve ECC syndrome bits of corrected error. Read CE_FFE [SYNDROME] bit field.

3. Retrieve corrected data. Read the four data words using the ocm_csr.OCM_CE_FFD0, 1, 2,
and:3registers.

Read Uncorrectable Error Registers

1. Retrieve the address of the first occurrence of an access with an uncorrected error. Read the
18-bit [ADDR] bit field in the UE_FFA register.

Section XI: Memory
Chapter 58: On-Chip Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 462Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ce_ffa.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ce_ffe.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ue_ffa.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=462

2. Retrieve ECC syndrome bits of uncorrected error. Read UE_FFE [SYNDROME] bit field.

3. Retrieve uncorrected data. Read the four data words using the UE_FFD0, 1, 2 and 3 registers.

Inject Error

Errors can be injected into a RAM array.

1. Enable error response by setting the third bit of the ERR_CTRL register.

2. Enable ECC by setting the zeroth bit of the ECC_CTRL register.

3. To only detect single bit errors, set the first bit of the ECC_CTRL register. By default this bit is
zero and it indicates that single-bit errors are corrected.

4. To inject an error on every write after fault injection count cycle, set the second bit of the
ECC_CTRL register. If a zero is programmed for the same bit in the register, then only a single
fault is injected.

5. The fault injection count must be programmed by setting the required value in the first 24
bits of the FI_CNTR register.

6. A fault can be injected into the syndrome bits using the FI_SY register. Faults in the data
words can be injected using the FI_D0, 1, 2, and 3 registers.

7. Interrupts can be enabled for different errors by setting the required bits of the
APB_MISC_IER register.

8. Unwanted interrupts can be disabled by setting the required bits of the APB_MISC_IDR
register.

9. Reading the APB_MISC_IMR register gives information regarding the type of interrupts that
are masked out. This is a read-only register and reflects the settings done on the IER and IDR
registers.

Section XI: Memory
Chapter 58: On-Chip Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 463Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ue_ffe.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ue_ffd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___err_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ecc_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ecc_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___ecc_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___fi_cntr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___fi_sy.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___fi_d0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___apb_misc_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ocm_csr___apb_misc_imr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=463

Chapter 59

XRAM Memory
The 4 MB accelerator RAM (XRAM) is available in some Versal™ AI Core series devices. The
XRAM is divided into four separate memory banks with four system interfaces: an AXI port from
the LPD PS and three PL AXI ports. The XRAM supports simultaneous access by each port to its
associated bank. It also allows full cross-bank access from any port to any bank.

The LPD PS port is a 128-bit AXI4 interface. Each PL interface is AXI4 and can be independently
configured for 32, 64, 128, or 256-bit data widths. Each port has their own XMPU protection
unit to facilitate simultaneous read and write access with full security and access type
restrictions on a per master basis.

The XRAM is initialized by the PLM during the boot process. The control of the XRAM defaults
to the programming interface from the PMC. This can be handed off to the PL after boot, if
desired. In this case, the LPD PS AXI port is disabled and all controls, including the memory clock
are driven from the PL.

For power management, each bank is split into four 256 KB sub-banks that can individually
power-down. The power to the sub-banks is controlled by register bits. The memory also
provides a low-power, data retention mode.

Some Versal ACAPs include accelerator RAM, an additional 4 MB of memory with ECC located
outside of the PS. This memory provides direct access from the RPU via a 128-bit AXI interface
and can also be accessed from the PL through two 256-bit AXI interfaces. The memory is divided
into four banks supporting concurrent read or write accesses from the PL and RPU to different
banks.

Features
• Four 1 MB banks with parallel, concurrent access paths

• Sixteen power islands (256 KB each) with data retention control

• Each PL interface can be configured as 32, 64, 128, or 256-bit data width

• Controlled by LPD or PL

• 64-bit ECC protection on memory

○ ECC values are stored in physically separate memory from the data

Section XI: Memory
Chapter 59: XRAM Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 464Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=464

○ ECC error injection support

• Read-modify-write for sub-width (less than 64-bit) transfers

• TrustZone support with 4 KB granularity

• Propagation of all errors to the system error accumulator

Comparison to Previous Generation Xilinx Devices
The accelerator RAM is new to Xilinx® Versal devices.

System Perspective
Block Diagram
The XRAM block diagram is shown in the following figure.

Figure 84: XRAM Block Diagram

1 MB Memory BankCTRL

XMPU

AXI Switch

XMPU

XMPU

XMPU

AXI4-Lite (from LPD)

AXI4 (from PL)

AXI4 (from PL)

AXI4 (from PL)

Control and Status
Registers

1 MB Memory BankCTRL

1 MB Memory BankCTRL

1 MB Memory BankCTRL

APB (from LPD)

AXI (from PL)

Four Banks:

X24075-111820

System Interfaces
AXI4 Interfaces

The AXI4 ports include:

Section XI: Memory
Chapter 59: XRAM Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 465Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=465

• One 128-bit to OCM switch from the LPD

• Three configurable 32 to 128-bit ports from the PL

Programming Interface

There are two programming interface choices:

• 32-bit APB programming interface port is attached to the LPD switch (default interface)

• AXI interface port connected to the PL fabric (optional interface)

Clock
The accelerator RAM clock is controlled by a clock divider in the LPD. It is clocked at the same
frequency as the RPU and OCM memory using the RPU_OCM_XRAM_CTRL register.

Reset
The accelerator RAM is reset by the RST_XRAM [RESET] bit at 0xFF5E_0364.

Power
The XRAM is located in the LPD power domain and includes 16 power islands.

Address Map
The XRAM has two main addressable features. The memory banks are addressable from
0xFE80_0000 to 0xFEBF_FFFF (4 MB). The registers and control interface are addressable at
0xFF8E_0000.

• Control and status: 0xFF8E_0000

• Four XMPU protection units: 0xFF93_0000, 0xFF93_4000, 0xFF93_8000, 0xFF93_C000

• SLCR: 0xFF95_0000

Memory Address Protection
The XMPU protection units described in Xilinx Memory Protection Unit are included; one on
each of the four memory banks.

Section XI: Memory
Chapter 59: XRAM Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 466Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rpu_ocm_xram_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_xram.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=466

ECC Protection
ECC protection is applied to 64-bit data to generate eight syndrome bits.

Errors are reported as system interrupts IRQ #111 for correctable and #112 for uncorrectable.
They are also reported as system errors to the PSM.

Section XI: Memory
Chapter 59: XRAM Memory

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 467Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=467

Chapter 60

External Memories
External memory is controlled by on-chip memory controllers:

• DDR memory controller (DDR MC)

• Flash memory controllers (QSPI, OSPI, SD)

• PL instantiated DDR memory using Block and UltraRAM hardware

DDR Memory Controller

The integrated DDR memory controller (DDRMC) supports both the DDR4 and LPDDR4
memory interfaces. It can be configured with a 32-bit or 64-bit DRAM interface with or without
ECC. All devices have at least one DDR memory controller, and some devices include multiple
DDR memory controllers.

The controller has four NoC interface ports to handle multiple streams of traffic and supports five
quality of service (QoS) classes to ensure appropriate prioritization of the memory requests. The
controller accepts burst transactions and implements command reordering to maximize the
efficiency of the memory interface. Reliability features include error correction, address parity,
and DQS gate tracking. Power saving features include DRAM self-refresh and automatic DRAM
power down.

For more information on the integrated DDRMC, see the Versal ACAP Programmable Network on
Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313).

Flash Memory Controllers (in PMC)

The flash memory controllers are introduced in I/O Signals with details in Section XIII: Flash
Memory Controllers.

• Quad SPI controller

• Octal SPI controller

• Two SD/eMMC controllers

Section XI: Memory
Chapter 60: External Memories

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 468Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=468

Chapter 61

Embedded Memories
There are several types and sizes of on-chip, embedded memory.

• PPU RAM

• PMC RAM

• RPU tightly-coupled memory (TCM)

• APU L2-cache memory

PPU RAM

The PPU RAM is 384 KB with ECC protection. The memory is used for the platform loader and
manager (PLM) firmware code and data structures. It is normally only accessed by the PLM.

PMC RAM

The PMC RAM is 128 KB with ECC protection. The PMC_RAM memory is used by the PLM to
store shared data structures and other purposes. It is accessible to any master with access
privileges. It is protected by the PMC_XMPU protection unit.

RPU Tightly-Coupled Memory

The RPU includes 256 KB of memory tightly couple memory (TCM) for predictable access
latency to the Cortex-R5F processors. The TCM is divided into 6 banks with parallel interconnect
to the processors. The TCM banks are described in Tightly Coupled Memories.

APU L2-Cache Memory

The APU Cortex-A72 MPCore includes a 1 MB L2-cache that can be shared with processor in
the PL with its own L2 cache using two-way coherency/snoop activities. The L2 cache is coupled
with the CCI and SMMU to provide memory sharing and virtualization. The L2-cache is part of
the APU.

Section XI: Memory
Chapter 61: Embedded Memories

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 469Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=469

Chapter 62

Small Storage Elements
There are a few opportunities to store small amounts of data in the system.

Global Storage Registers

The PMC includes global storage registers. The persistent global storage registers maintain their
data value through a system reset, but not a power-on reset.

Battery-Backed RAM

The battery-backed RAM (BBRAM) is in the PMC and can be used to store AES keys.

Section XI: Memory
Chapter 62: Small Storage Elements

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 470Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=470

Section XII

I/O Peripheral Controllers
The I/O peripherals (IOP) are integrated into the PMC and LPD. This section includes chapters
for the following peripherals:

PMC I/O Peripherals

• GPIO Controller (one instance, two banks)

• I2C Controller (one instance)

LPD I/O Peripherals

• GPIO Controller (one instance, one bank)

• I2C Controller (two instances)

• CAN FD Controller (two instances)

• GEM Gigabit Ethernet MAC (two instances)

• SPI Controller (two instances)

• UART SBSA Controller (two instances)

• USB 2.0 Controller (one instance)

Section XII: I/O Peripheral Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 471Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=471

Chapter 63

CAN FD Controller
The control area network (CAN) is a computer network protocol and bus standard designed to
allow controllers and devices to communicate with each other. CAN is designed specifically for
automotive applications but is also used in other applications. The CAN flexible data-rate (CAN
FD) controller provides additional features with higher I/O clock frequencies and more buffering.

The controller is designed to the ISO 11898-1/2015 specification that includes backward
compatibility to the CAN 2.0 specification. There are two CAN FD controllers, and both are
located within the LPD IOP.

This chapter contains these sections:

• Features

• System Perspective

• Modes and States

• Configuration Sequence

• Message Transmission

• Message Reception

• Register Reference

• I/O Signal Reference

Features
The CAN FD controller features include the following:

Protocol

• Standard CAN 2.0 frames specified in ISO specification 11898-1:2015

• CAN FD protocol features

○ 64-byte frames

○ Flexible data rates up to 8 Mb/s

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 472Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=472

○ Normal data rates up to 1 Mb/s

Controller Features

• TX delay compensation of up to three data bits

• TX mailbox buffers, 32

• TX event buffer

• RX buffers, dual 64-messages deep with 32 ID filter mask pairs

• Priority message IDs, lowest ID transmitted first

• TX message cancellation

• Timestamp for TX and RX

• Separate error logging for fast data rates

Messaging Features

• Disable auto-retransmission (DAR) mode

• Disable protocol exception event mode

• Bus monitoring, snoop mode

• Sleep mode with wake-up interrupt

• Bus-off recovery

○ Auto-recovery

○ User-intervention auto-recovery

• Up to three data bit transmitter delay compensation

• Internal loopback mode

Comparison to Previous Generation Xilinx Devices
The CAN FD controller is different from the CAN controller in Zynq® UltraScale+™ MPSoCs. The
architecture, features, and programming model are new, including the flexible data rate
functionality.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 473Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=473

System Perspective
The main functions are divided into two independent layers as shown in the block diagram. The
object layer interfaces with the LPD APB switch. The transfer layer interfaces with the external
PHY. The CAN FD object layer provides a transmission and reception method to manage
message buffers.

Block Diagram
The controller is divided into the object layer and transfer layer. The object layer includes the
APB interface, programming registers with data ports, and the RX and TX buffers. The transfer
layer connects to the I/O signals routed to the LPD MIO device pins or the EMIO interface to the
PL.

Figure 85: CAN FD High-level Block Diagram

De
vi

ce
 B

ou
nd

ar
y

2

PL

Control
Registers

and
Dataports

32-bit
APB

LPD
APB Switch

LPD_LSBUS_CLK

CANFDx_REF_CLK

CANFDx_RST

LPD
MIO

CANFDx_IRQ

Protocol
Engine

Bitstream
Processor

Bit Timing
Logic

Acceptance
Filtering

RX

TXTX FIFO
Message ID

Transfer Data Buffers

Receive Buffers

EMIO
PHY

RX FIFO 0

RX FIFO 1

Event Buffer

Event Buffer

X23921-050221

Object Layer
The messaging functionality is divided into the following sections.

• Register module: This module allows for read and write access to the registers using the APB
programming interface.

• TX buffer management module: The TX buffer management module (TBMM) interfaces with
the protocol engine to provide the next buffer to transmit on the CAN bus. It manages the
host access to the TX RAM buffer.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 474Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=474

• RX buffer management module: The RX buffer management module (RBMM) interfaces with
the protocol engine to provide storage for message reception from the CAN bus. It manages
the host access to the RX RAM buffer.

Logical Link Layer
The messaging functionality is divided into these sections:

• Configuration Sequence

• Loopback Modes

Related Information

PS Interconnect Diagram

MAC Transfer Layer
The transfer layer provides these main functions:

• Initiation of the transmission process after recognizing bus idle (compliance with interframe
space)

○ Serialization of the frame

○ Bit stuffing

○ Arbitration and passing into receive mode in case of loss of arbitration

○ ACK check

○ Presentation of a serial bitstream to PHY for transmission

○ CRC sequence calculation including stuff bit count for FD frames

○ Bit rate switching

• Reception of a serial bitstream from the PHY

○ Deserialization and recompiling of the frame structure

○ Bit de-stuffing

○ Transmission of ACK

○ Bit rate switching

• Bit timing functions

• Error detection and signaling

• Recognition of an overload condition and reaction

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 475Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=475

System Interface
The CAN FD controller has a single 32-bit APB slave programming interface.

APB Programming Interface

The programming interface provides access to the configuration, control, and status registers, as
well as to data ports for the RX and TX message buffers. An overview of the controller registers
is shown in Register Reference.

Interface Clock

The CAN controller is clocked by the APB programming interface using the LPD_LSBUS_CLK.

System Signals
The system signals include clock, reset, interrupt, and error signals.

• Reference Clock input

• Controller Reset input

• System Interrupt output

• System Error output

Reference Clock

The LPD clock controller provides a reference clock to each controller:

• CAN0_REF_CLK reference clock (CAN0_REF_CTRL register)

• CAN1_REF_CLK reference clock (CAN1_REF_CTRL register)

Controller Reset

The controller has one reset state that is entered when the device, PS, or LPD is reset, or by an
individual reset to the controller from the LPD reset controller. The CANFD register set also
includes a local reset control bit, CANFD.SRR [SRST].

For more information, see Reset State.

System Interrupt

Each controller generates a level-sensitive system interrupt that is routed to the RPU and APU
GICs, and proxies as listed in the System Interrupts chapter.

• CANFD0: IRQ#52

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 476Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___can0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___can1_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=476

• CANFD1: IRQ#53

System Error

The APB programming interface generates an address decode error if it detects an access
violation.

I/O Interface
The I/O functionality includes the two-wire CAN signals. For more information, see I/O Signal
Reference. An internal loopback connection can be enabled for test and debug.

The controller I/O can be routed to one of several places:

• LPD MIO pins

• PMC MIO pins

• PL EMIO port signals

Programming Model
The CAN FD controller includes a memory-mapped APB programming interface for software:

• Control and status

• Transmit data

• Receive data

• Establish autonomous monitoring and responses

The controller includes several Modes and States.

Modes and States
The CAN modes and states include:

• Reset State

• Mode Table

• Mode Transition

• Configuration Mode

• Normal Mode

• Sleep Mode

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 477Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=477

• Snoop (Bus Monitoring) Mode

• Loopback Modes

• Protocol Exception Event State

• Bus-Off Recovery State

Reset State
The controller is reset from several sources:

• Local controller reset: CAN.SRR [SRST] bit

• Resets from the LPD reset controller

○ CANFD0_RESET (RST_CAN0 [RESET] bit)

○ CANFD1_RESET (RST_CAN1 [RESET] bit)

• POR and system reset comes from PMC register controls for the LPD, PS, and whole device

Each reset source has the same effect on the controller as summarized in the following table.

Table 130: CAN Reset Effects

Reset Name Reset Type
APB

Interface
and

Registers

Protocol
Engine

Buffers and
Acceptance

Filters

SW_Reset [SRST]
Software

Yes Yes NoRST_CAN0 [RESET]

POR or PS Hard

Note: Because the buffers and acceptance filters are not reset, the software needs to ensure that they are
programmed appropriately before operation.

Local CAN Reset Control

Write a 1 to the SW_Reset [SRST] bit (this bit is self-clearing).

CRL Reset Control

The CRL reset is not self-clearing. Write a 1 and then write a 0 to the RST_CAN0 [RESET] bit.
These can be individual back-to-back writes to the programming interface.

Mode Table
The control and status bits for the controller modes are listed in the following table. These relate
to the Mode Transition figure.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 478Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_can0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_can1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_can0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_can0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=478

Table 131: CAN Controller Modes

Controller Mode System
Reset1

Software Reset
Register (SRR) Mode Select Register, MSR Status Register, SR

Reset [bits] Control [bits]4 Status [bits]

SRS CEN LBACK SLEEP SNOOP CONFIG NORM SNOOP SLEEP LBACK BSFR PEE

Reset
1 x

x
x x x 1 0

0
0

0
0

0

0

1

Configuration

0

0

Normal5

1

0 0 0

0

1

Snoop5 0 0 1 1 1

Sleep 0 1 0 0 0 1

Loop back 1 0 0 0 0 0 1

BSFR2 0 x 0 x 0 0 0 1

PEE3 0 x x x x 0 0 0 1

Notes:
1. A hard system reset can be generated by the LPD reset controller using the CRL.RST_CANx [RESET] or one of multiple system-level resets.
2. The transition to bus-off state depends on the transmit error count value as per standard specification. The recovery from bus-off state depends on the MSR

[SBR] and [ABR] settings as per respective bit behavior descriptions. Bus-off recovery can be tracked through status bit [BSFR_CONFIG] bit and the ECR [REC]
field. Entry and exit from bus-off state can generate an interrupt.

3. The transition to protocol exception event state (PEE) depends on the MSR [DPEE] bit.The controller enters and exits the PEE state as per ISO standard
specification and this is reflected by the status bit SR [PEE_CONFIG. The entry into the PEE state can generate an interrupt.

4. An "x" indicates "don't care" for control bits and has no meaning for status bits.
5. The sample point range should be 50%-80% of bit time for reliable operation.

Mode Transition
The mode transitions are shown in the following figure. The transitions are primarily controlled
by the resets, Sw_Reset [CEN] bit, SRR register settings, and a hardware wake-up mechanism.

The mode transition conditions are shown in the Mode Table.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 479Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=479

Figure 86: CAN Mode Transition Diagram

Configuration

Reset

Normal

Loopback

Test and Debug

CRL.CANx_RST = 1
 OR
CANFD.Sw_Reset [SRST] = 1
 OR
CANFD.Sw_Reset [CEN] = 0

Snoop

Sleep

Note: If [CEN] = 1 after releasing reset, the
controller exits configuration mode and
enters normal mode after detecting 11
consecutive recessive bits on the CAN
bus.

Protocol
Exception Event

Bus-Off
Recovery
(BSFR)

X23127-112020

Configuration Mode
The configuration mode is normally entered following reset, but can also be entered from several
other modes including normal, snoop, sleep, and loopback. If the controller needs to move from
the BSFR or PEE state, a system reset is required.

Configuration Mode Characteristics

The CAN FD has the following configuration mode characteristics:

• Controller loses synchronization with the CAN bus and drives a constant recessive bit on TX
line.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 480Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=480

• Error Counter register (Error_Count) and Error Status register (Error_Status) are reset.

• ArbPhase_BitTiming) and ArbPhase_BaudRate registers can be modified.

• Set the APB_MISC_ISR [CONFIG] bit = 1.

• Controller does not receive or transmit any new messages.

• All configuration registers are accessible.

• If there are messages pending for transmission when the SW_Reset [CEN] bit is written 0, the
controller does not transmit any messages and:

○ TX messages are preserved unless canceled; message cancellation is allowed.

○ TX messages are transmitted when normal operation is resumed.

○ New TX messages can be added for transmission (provided the Mode_Select [SNOOP] is
not set = 1).

• If there are RX messages in the RX buffer when [CEN] is set = 0, they are preserved until host
reads them, but the controller does not receive new messages.

Interrupts

In configuration mode, the interrupt status might change.

• Interrupt Status register bits are cleared:

○ ARBLST

○ TXOK and RXOK

○ RXOFLW, RXOFLW_1

○ ERROR

○ BSOFF

○ SLP and WKUP

• Interrupt Status register bits are not cleared due to possible cancellation using:

○ TXTRS and TXCRS

Note: A system interrupt is generated if an interrupt bit is set = 1 in the APB_MISC_ISR register and the
corresponding bit in the APB_MISC_IER register = 1.

Exit Configuration Mode

The controller stays in configuration mode until the SW_Reset [CEN] bit is set = 1.

• After the [CEN] bit is set to 1, the controller waits for a sequence of 11 nominal recessive bits
before exiting configuration mode.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 481Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___error_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___error_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_bittiming.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_baudrate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=481

• Move the controller to normal, snoop, sleep, or loopback mode by setting one of the
Mode_Select [SNOOP], [SLEEP], and [LBACK] register bits.

Normal Mode
In normal mode, the controller transmits and receives messages per industry specifications
outlined in CAN FD Controller.

In normal mode, the controller does not store its own transmitted messages. The controller can
enter normal mode only when the snoop, sleep, and loopback modes are deselected.

Sleep Mode
The controller enters sleep mode from configuration or normal mode when the Mode_Select
[SLEEP] bit is set = 1, CAN bus is idle, and there are no pending transmission requests.

The controller enters configuration mode when any configuration condition is satisfied.

When the controller wakes up, it clears the Mode_Select [SLEEP] request bit and also clears the
corresponding status bit. The controller enters normal mode under the following wake-up
conditions:

• [SLEEP] is set = 0

• [SLEEP] bit is = 1, bus activity is detected

• New message are posted for transmission

Interrupt bits are set when the controller enters or wakes up from sleep mode.

Snoop (Bus Monitoring) Mode
Snoop mode is used for test and debug. When in snoop mode, the controller must only be
programmed to enter configuration mode or be held in reset. In snoop mode, these actions
occur:

• Controller transmits a recessive bitstream onto the CAN bus

• Controller does not participate in normal bus communication

• Controller receives messages that are transmitted by other CAN nodes but does not ACK

• RX messages are stored based on acceptance filtering

• Software can program acceptance filters to dynamically enable/disable and change criteria

• Error counters are disabled and cleared to 0; reads to error counter registers return to 0

RECOMMENDED: Xilinx recommends that snoop mode be programmed only after system or software
reset.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 482Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=482

Loopback Modes
There are two loopback types:

• Self loopback: TX output from a controller is connected to its own RX input

• Controller-to-controller loopback: connects CAN controller 0 to controller 1

Self Loopback

In self-loopback mode, the controller receives the messages that it transmits using an internal
circuit from its TX signal to its RX signal. The received messages are stored in receive buffers
based on an ID match result. The transmissions are acknowledged to itself by the receiver. The
controller also stores the received messages (based on an ID match result). In self-loopback
mode, the controller is disconnected from the MIO multiplexer and pins.

This mode is normally used for diagnostics. The loopback mode is selected using the CANFD
Mode_Select [LBACK] bit. The controller receives messages that it transmits. Received messages
are stored in receive buffers based on an ID match result. The controller also stores its own
transmitted messages (based on an ID match result).

The controller does not participate in normal bus communication and does not receive any
messages transmitted by other CAN nodes (external TX line is ignored). It drives a recessive
bitstream on the CAN bus (external TX line).

Controller-to-controller Loopback

The controller-to-controller loopback connection is selected using the MIO_Bank2_Loopback
[CAN0_LOOP_CAN1] control bit. When the [CAN0_LOOP_CAN1] is set = 1, these connections
are made:

• CAN0 TX output is connected to the CAN1 RX input

• CAN1 TX output is connected to the CAN0 RX input

Protocol Exception Event State
The controller enters the CAN FD protocol exception event (PEE) state if the controller receives
the "res" bit as recessive in the CAN FD frame (provided MSR [DPEE] bit is not set = 1). The
controller exits this state after detecting a sequence of 11 nominal recessive bits on the CAN
bus, and as per the protocol specification, the transmit and receive error count remains
unchanged in this state.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 483Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_loopback.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=483

Bus-Off Recovery State
The controller enters the bus-off state if the transmit error count reaches or exceeds its terminal
point. Recovery from bus-off states is governed by the auto recovery [ABR] or manual recovery
[SBR] bit setting in the Mode_Select register and is done according to the protocol specification.

Note: In the case of a protocol exception or bus-off event, any pending messages/frames for transmissions
must be canceled and re-queued for proper operation after recovering from these events.

Configuration Sequence
The following steps are for configuring the controller when it is powered on or after system or
software reset.

1. Choose the operating mode:

Note: The sample point position programming follows the industry standard.

• Normal—write 0s to the [LBACK], [SNOOP], and [SLEEP] bits in the MSR. Write required
value for [BRS] and [DAR] fields in the Mode_Select register.

• Sleep—write 1 to [SLEEP] bit and 0 to [LBACK] and [SNOOP]. Write required value for
[BRS] and [DAR].

• Loopback—write 1 to [LBACK] and 0 to [SLEEP] and [SNOOP] bits. Write required value
for [BRS].

• Snoop—write 1 to [SNOOP] bit and 0 to [LBACK] and [SLEEP].

2. Configure the Transfer Layer Configuration registers.

IMPORTANT! For proper operation, ensure that all CAN FD nodes in the network are programmed to
have the same arbitration phase bit rate, data phase bit rate, arbitration phase sample point position,
and data phase sample point position.

• Program the ArbPhase_BaudRate prescale register (nominal) and the ArbPhase_BitTiming
register (nominal) with the value calculated for the particular arbitration phase bit rate.

• Program the DataPhase_BaudRate and DataPhase_BitTiming registers with the value to
achieve desired data phase bit rate.

○ The DataPhase_BaudRate register also contains [TDC] control field.

Note: The bit rate configured for the data phase must be higher than or equal to the bit rate
configured for the arbitration phase. The Transfer Layer Configuration registers can be changed
only when the SW_Reset [CEN] bit is 0.

Note: For operation with ArbPhase_BaudRate [BRP] = 0 (prescalar value = 1), set both [BRP] for
nominal and data phase as 1 (register value = 0). Additionally, software needs to program the
Mode_Select register bit [11] as follows (equivalent to [BRP_1_EN]):

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 484Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_baudrate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_bittiming.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___dataphase_baudrate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___dataphase_bittiming.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_baudrate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=484

• Set bit [11] = 1 when [BRP] = 1

• Set bit [11] = 0 when [BRP] != 1

3. Configure the Acceptance Filter registers (AFR, AFMR, AFIR) to the following:

• Write a 0 to the UAF bit in the register corresponding to the Acceptance Filter Mask and
the ID register pair to be configured.

• Write the required mask information to the Acceptance Filter Mask register.

• Write the required ID information to the Acceptance Filter ID register.

• Write 1 to the UAF bit corresponding to the Acceptance Filter Mask and ID register pair.

• Repeat the steps for each Acceptance Filter Mask and ID register pair.

• To enable RX buffer 1, arrange the Filter Mask and ID register as per the requirement. The
[RXFP] field in the RX buffer Watermark register also needs to be set accordingly to a
value less than31d.

4. Program the Interrupt Enable registers as per requirements.

5. Enable the protocol controller by writing a 1 to SW_Reset [CEN]. After the occurrence of 11
consecutive recessive bits, the controller clears the Status [CONFIG] bit to 0 and sets other
appropriate mode status bit in the Status register.

RECOMMENDED: If the [CEN] bit is cleared during the controller operation, then reset the controller, too.

RECOMMENDED: The [LBACK], [SLEEP], and [SNOOP] bits should never be set to 1 at the same time.

Message Transmission
All messages written in the TX buffer should follow the required message format for ID, DLC, and
DW fields described earlier. Each [RRnn] bit in the TxBuff_Ready_Req register corresponds to a
message element in the TX buffer.

Software Actions

1. Poll the TxBuff_Ready_Req register to check current pending transmission requests.

2. If all of the register bits are set, a new transmission request can be added only if:

a. One or more buffer transmission requests are canceled, or

b. One or more buffer transmission completes

3. If one or more bits of the TxBuff_Ready_Req register are unset/clear, a new transmission
request can be added as follows:

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 485Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=485

a. Prepare one or more message elements in the TX buffers (by writing valid ID, DLC, and
DW fields of each message element of the respective TX buffer). If event logging is
required for this message element, set the [EFC] bit in one of the TxBuff_DLC_Msg_n
registers.

b. Enable interrupt generation as required.

c. Set corresponding TxBuff_Ready_Req register bits to enable buffer ready requests. The
host can enable many transmission requests in one register write.

d. Wait for interrupt (if enabled) or poll the TxBuff_Ready_Req register to gather the request
status.

4. The controller clears the TxBuff_Ready_Req register bit when a respective buffer request is
completed (either due to transmission, cancellation, or DAR mode transmission).

5. The host can read the TX event buffer to determine the message timestamps and the order
of transmissions.

Note: The APB_MISC_ISR [TXOK] bit is set after the core successfully transmits a message. The
APB_MISC_ISR [ARBLST] bit is set if the controller loses bus arbitration while transmitting a message.
The [ERROR] bit in the Intr_Status register is set if the message transmission encountered any errors.

Controller Actions

1. The controller determines the next highest priority buffer to be transmitted. If two buffers
have the same ID, the buffer with the lower index is selected.

2. If enabled, copies the ID and DLC fields to the TX event buffer and adds a message
timestamp and event type.

3. Clears the respective bit in the TxBuff_Ready_Req register when the transmission request is
served (either by successful transmission on the CAN bus, cancellation, or DAR-based
transmission).

4. If enabled through the TxBuff_Ready_Req_Intr_En (IETRS) or APB_MISC_IER (IER) registers,
then the APB_MISC_ISR [TXRRS] bit is set = 1 and an interrupt is generated.

Note: The controller accesses the message element space of a buffer in the TX buffer only if the respective
bit in the TxBuff_Ready_Req register is set.

Note: The software should respect the access rule to avoid memory collisions. That is, after the software
sets a buffer ready request through the TxBuff_Ready_Req register, the software should not read or write
the respective message element space until the respective [RRnn] bit is in a clear/unset state.

Note: The controller updates TX event FIFO status after clearing the respective bit. It is recommended
either to use the TX event FIFO watermark full interrupt or poll TX Event FIFO status register to process
the TX events.

TX events status may be useful for software to determine the order of TX buffers and get the
transmission timestamp for buffers. This is provided through a separate pipe (TX Event FIFO) so
it is de-linked with the individual buffer transmission in the TxBuff_Ready_Req. This separate
FIFO should allow software to do this post-processing in batches; asynchronously with respect to
individual buffer transmission.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 486Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_dlc_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req_intr_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=486

Cancellation
Each [CRnn] bit of the TX Buffer Cancel Request (Tx_Buff_Cancel_Req) register corresponds to a
message element in the TX buffer (and, consequently, corresponds to a TxBuff_Ready_Req
[RRnn] bit).

Software Actions

1. Poll the TxBuff_Ready_Req register (TRR) to check current pending transmission requests.

2. Poll the Tx_Buff_Cancel_Req register (TCR) to check current pending cancellation requests.

a. Transmit cancellation for a buffer (TXB_i) can be requested only if there is a
corresponding pending transmission request set in the TRR register.

b. If there is already a pending cancellation request for TXB_i, no action is required and the
host should wait (by poll/interrupt) until the core serves a cancellation request for TXB_i.

3. If the TXB_i buffer has a pending transmission request but no pending cancellation request,
then transmit cancellation can be requested as follows:

a. Enable interrupt generation as required.

b. Set the required TCR [CRnn] bit(s). The software can request the cancellation of multiple
buffers with one write to the TCR register.

c. Wait for the interrupt or poll the TCR register to determine the cancellation status.

4. The controller clears the bit in the TCR register when the respective buffer transmit
cancellation request is completed.

5. The controller also clears the corresponding bit in the TRR register when cancellation is
performed.

Controller Actions

1. The controller performs the cancellation of a buffer immediately except:

a. When the buffer is locked by the transfer layer for transmission on the CAN bus. In this
case, cancellation is performed at the end of the transmission irrespective of whether the
transmission is successful or not (arbitration loss or error).

b. When the core is performing a scheduling round to find out the next buffer for
transmission. In this case, cancellation is performed after the scheduling round is finished.

2. The controller clears the respective bits in the Tx_Buff_Cancel_Req and TxBuff_Ready_Req
registers when cancellation is done.

3. If enabled through the TxBuff_Ready_Req_Intr_En (IETRS) or APB_MISC_IER (IER) registers,
then the APB_MISC_ISR [TXRRS] bit is set = 1 (when the controller clears the bit in the
Tx_Buff_Cancel_Req register) and an interrupt is generated.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 487Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___tx_buff_cancel_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___tx_buff_cancel_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___tx_buff_cancel_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req_intr_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___tx_buff_cancel_req.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=487

Message Reception
Whenever a new message (that passes the required filtering) is stored into the RX buffer, the
controller updates the respective fill level field of the RxBuff_Status register and sets the
APB_MISC_ISR [RXOK] bit.

Software Actions

1. As per the requirement, program the RxBuff_Watermark register (WMR) to set full water
marks and the [RXFP] field (the WMR register can be set/changed only when [CEN] = 0).

2. If required, enable [RXOK] and [RX] Overflow interrupt generation.

3. The new message availability can be determined by polling the RxBuff_Status register (FSR)
or by a watermark full interrupts indication.

4. Read a new message (from RX Buffer 0 or RX Buffer 1) starting from its respective read index
location (given in the FSR register field).

5. After reading the message, write the FSR register by setting the respective [IRI] bit to 1. This
enables the core to increment the respective read index field by +1 and updates the
corresponding fill level in the FSR register. If the fill level is 0, setting the [IRI] bit has no
effect.

6. Repeat steps 3 through 5 until all messages are read from both RX Buffer 0 or RX Buffer 1.

Controller Actions

1. When a message is successfully received, the core writes the timestamp and matched filtered
index field of the received message element.

2. The controller increments the fill level of its respective RX Buffer in the RxBuff_Status
register (FSR) by 1 after every successful receive (without error and message passes filtering
scheme).

3. The fill level is also updated by the core after the host writes the [Bx_IRI] bit of the respective
RX buffer in the FSR register.

Acceptance Filters
Each acceptance filter has an acceptance filter mask register and an acceptance filter ID register.
There are 32 acceptance filters.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 488Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=488

RX Buffer Usages

Figure 87: Normal Operation (RX Buffer 0)

Incoming Message

Match = Yes

FPx FPiFP0 FP31

FPx = Filter Mask Pair (x = 0, 1, ...31)
FPi = Receive Filter Partition (RXFP)

RX Buffer 0 RX Buffer 1

X23567-112020

Figure 88: Normal Operation (RX Buffer 1)

FPi FPxFP0 FP31

Match = Yes

RX Buffer 0 RX Buffer 1

Incoming Message

X23568-112020

Figure 89: Message Drop When RX Buffer 0 Full and Match = Yes

Match = Yes

Dropped because
RX Buffer 0 is full

FPx FPiFP0 FP31

RX Buffer 0 = Full

RX Buffer
0

RX Buffer
1

Incoming Message

X23569-112020

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 489Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=489

Figure 90: Message Drop When RX Buffer 1 Full and Match = Yes

Match = Yes

Dropped because
RX Buffer 1 is full

FPi FPxFP0 FP31

RX
Message
Buffer 0

RX
Message
Buffer 1

Incoming Message

X23570-112020

Note: If all UAF bits are set to 0, the received messages are not stored in any RX buffer.

IMPORTANT! Ensure proper programming of the [IDE] bit for standard and extended frames in the Mask
register and ID register. If the [IDE] bit is set to 0, it is considered to be a standard frame ID check.
Consequently, if the standard ID bits of the incoming message match the respective bits of the filter ID
(after applying Mask register bits), the message is stored.

Disabled RX Buffer

Acceptance filtering is performed in this sequence:

1. The incoming identifier is masked with the bits in the acceptance filter mask register.

2. The AF_ID_Reg_n acceptance filter ID registers are also masked with the bits in the
AF_Mask_Reg_n acceptance filter mask register.

3. Both resulting values are compared.

4. If both these values are equal, the message is stored in the RX buffer 0.

5. Acceptance filtering is processed by each of the defined filters. If the incoming identifier
passes through any acceptance filter, the message is stored in the RX buffer 0.

Note: RX buffer-1 can be disabled (i.e., stop routing messages to RX buffer 1) by programming [RXFP] as
31d (in the RxBuff_Watermark register).

Enabled RX Buffer

In this case, the [RXFP] field (in the RxBuff_Watermark watermark register) along with the
Acceptance Filter (Control) register determines whether received messages are stored in RX
buffer 0 or in RX buffer 1. In this case, note that the [RXFP] field should be less than 31d.

1. The incoming identifier is masked with the bits in the Acceptance Filter Mask register.

2. The AF_ID_Reg_n acceptance filter ID register is also masked with the bits in the associated
AF_Mask_Reg_n register.

3. Both resulting values are compared.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 490Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_id_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_mask_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_id_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_mask_reg_n.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=490

4. If both these values are equal and the matched filter index is less than equal to the [RXFP]
field, the message is stored in RX buffer 0.

5. Otherwise, if both these values are equal and the matched filter index is greater than the
[RXFP] field, the message is stored in RX buffer 1.

Note: The ID match process is a sequential process. It starts from the lowest enabled filter and stops at first
match. Consequently, if an incoming message fulfills condition 4 but RX buffer 0 is full, the message is
dropped (irrespective of RX buffer 1 status) and RX buffer 0 overflow is indicated.

Similarly, if an incoming message fulfills condition 5 and RX buffer 1 is full, the message is
dropped (irrespective of the RX buffer 0 status) and RX buffer 1 overflow is indicated.

Note: If all of the [UAF] bits in the AF_Control are set to 0, the received messages are not stored in any RX
buffer.

Note: Filter pair registers are stored in the RAM. The host must ensure that each used filter pair is properly
initialized. Asserting a software reset or system reset does not clear these register contents.

Note: The host must initialize/update/change the filter pair only when the corresponding UAF is 0.

IMPORTANT! Ensure proper programming of the [IDE] bit in the TxBuff_ID_Msg_n register for standard
and extended frames in an AF_Mask_Reg_n acceptance filter mask and AF_ID_Reg_n acceptance filter ID
register. If the [IDE] bit in the mask register is set to 0, it is considered to be a standard frame ID check
only. Consequently, if the standard ID bits of the incoming message match with the respective bits of the
filter ID (after applying the mask register bits), the message is stored.

Register Reference
The controller is configured and data is accessed via its own register set (CANFD). The controller
is also controlled by system-level registers.

• CANFD Control and Status register table.

• CANFD Message Space Data register table.

• Platform control for the clock and reset are described in the Processing System Manager
section.

Control and Status
The CANFD control and status registers include:

• Status, mode, and configuration

• Errors, interrupts, and watermarks

The following table lists the CANFD Control and Status registers.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 491Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_id_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_mask_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_id_reg_n.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=491

Table 132: CANFD Control and Status Registers

Register Name Offset Type Description
SW_Reset 0x0000 Mix Software reset and enable control

Mode_Select 0x0004 RW Mode select

ArbPhase_BaudRate
ArbPhase_BitTiming

0x0008
0x000C RW Arbitration phase baud rate pre-scaler and

bit timing

Error_Count
Error_Status

0x0010

0x0014

R
WTC Error counter and status

Status 0x0018 R Bus, mode, error status

APB_MISC_ISR
APB_MISC_IER
APB_MISC_ICR

0x001C
0x0020
0x0024

R
RW
W

Interrupt status, enable, and clear

Timestamp 0x0028 R, W Timestamp clear and count

DataPhase_BaudRate
DataPhase_BitTiming

0x0088
0x008C RW Data phase baud rate prescalar and bit

timing

TxBuff_Ready_Req
TxBuff_Ready_Req_Intr_En

0x0090
0x0094

RWSO
RW

TX buffer ready request and interrupt
enable

Tx_Buff_Cancel_Req
TxBuff_Cancel_Req_Intr_En

0x0098
0x009C

RWSO
RW

TX buffer cancellation request and
interrupt enable

TxEvent_FIFO_Status
TxEvent_FIFO_Watermark

0x00A0
0x00A4

R, W
RW TX event buffer status and watermark

AF_Control 0x00E0 RW Acceptance filter enable

RxBuff_Status
RxBuff_Watermark

0x00E8
0x00EC

R, W
RW RX buffer status and watermark

Message Space Data
The message space includes:

• 32 TX buffers

• 32 RX ID filter-mask pairs

• 32 TX event buffers

• 64-deep message RX buffers

The following table provides CANFD message space register information.

Note: This memory space is implemented in RAM. After a reset, the contents are not cleared, but should be
considered invalid.

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 492Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___sw_reset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___mode_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_baudrate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___arbphase_bittiming.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___error_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___error_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___apb_misc_icr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___timestamp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___dataphase_baudrate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___dataphase_bittiming.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_ready_req_intr_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___tx_buff_cancel_req.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_cancel_req_intr_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txevent_fifo_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txevent_fifo_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff_watermark.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=492

Table 133: CANFD Message Space

Name Register
Count

Access
Type Description

32 TX Buffers - ID, DLC and 16 data words

TxBuff_ID_Msg_n
TxBuff_DLC_Msg_n
TxBuff_DW00_Msg_n

32
32

512

RW
RW
RW

IDs: TxBuff_ID_Msg_{0:31}, addr step = 0x48
DLCs: TxBuff_DLC_Msg_{0:31}, addr step = 0x48
Data: TxBuff_DW{0:15}_Msg_{0:31}, step = 0x48

32 RX Acceptance Filter - Mask and ID

AF_Mask_Reg_n
AF_ID_Reg_n

32
32

RW

RW
Masks: AF_Mask_Reg_{0:31}, addr step = 0x08
IDs: AF_ID_Reg_{0:31}, addr step = 0x08

32 TX Event FIFO - ID and Data Length Codes

TxEvent_ID_Reg_n
TxEvent_DLC_Reg_n

32
32

R
R

IDs: TxEvent_ID_Reg_{0:31}, addr step = 0x08
DLCs: TxEvent_DLC_Reg_{0:31}, addr step = 0x08

32 Message RX Buffer 0

RxBuff0_ID_Msg_n
RxBuff0_DLC_Msg_n
RxBuff0_DW00_Msg_n

64
64

1024

R
R
R

IDs: RxBuff0_ID_Msg_{0:63}, addr step = 0x49
DLCs: RxBuff0_ID_Msg_{0:63}, addr step = 0x48
Data: RxBuff0_DW{0:15}_Msg_{0:63}, step = 0x48

32 Message RX Buffer 1

RxBuff1_ID_Msg_n
RxBuff1_DLC_Msg_n
RxBuff1_DW00_Msg_n

64
64

1024

R
R
R

IDs: RxBuff1_ID_Msg_{0:63}, addr step = 0x49
DLCs: RxBuff1_ID_Msg_{0:63}, addr step = 0x48
Data: RxBuff1_DW{0:15}_Msg_{0:63}, step = 0x48

System-level Control Registers
There are several registers to control I/O routing, and the APB programming interface.

Table 134: CAN SLCR Registers

Description Register Bit Fields Offset
Address

Access
Type

Reference clock controls CRL CAN0_REF_CTRL
CRL CAN1_REF_CTRL

[SRCSEL], [DIVISOR],
and [CLKACT]

0x0138
0x013C RW

Software reset control CRL RST_CAN0
CRL RST_CAN1 [RESET] 0x0328

0x032C RW

PMC MIO pin multiplexing
routing

PMC_IOP_SLCR MIO_PIN_0 (0 to 51)
(see Input Buffer Control Registers
section)

[L0_SEL], [L1_SEL],
[L2_SEL], and [L3_SEL] 0x0000+ RW

LPD MIO pin multiplexing
routing

LPD_IOP_SLCR MIO_PIN_0
(see Input Buffer Control Registers
section)

[L0_SEL], [L1_SEL],
[L2_SEL], and [L3_SEL] 0x0000+ RW

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 493Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_id_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_dlc_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txbuff_dw00_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_mask_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___af_id_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txevent_id_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___txevent_dlc_reg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff0_id_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff0_dlc_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff0_dw00_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff1_id_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff1_dlc_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=canfd___rxbuff1_dw00_msg_n.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___can0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___can1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_can0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_can1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=493

Table 134: CAN SLCR Registers (cont'd)

Description Register Bit Fields Offset
Address

Access
Type

MIO bank select:
0: PMC pin bank
1: LPD pin bank

LPD_IOP_SLCR LPD_MIO_Sel [CAN0_SEL], and
[CAN1_SEL]

0x0410 RW

MIO loopback enable:
0: No loopback
1: CAN0 ↔ CAN1

LPD_IOP_SLCR MIO_Bank2_Loopback [CAN0_LOOP_CAN1] 0x200 RW

Programming interface
parity error:
0: no error
1: parity error

LPD_IOP_SLCR PARITY_ISR [perr_can0_apb], and
[perr_can1_apb]

0x0714 RW

I/O Signal Reference
CANFD I/O Signals
The CANFD controller I/O signals are routed to both the PMC and the LPD MIOs and the EMIO
interface to the PL.

Table 135: CANFD Controller MIO Signals

MIO
EMIO

Signal Name I/O PMC Pin MUX LPD Pin MUX MIO-at-a-
Glance Table

CAN0_RX
CAN1_RX Input

MIO-at-a-Glance

0

CAN0_TX
CAN1_TX Output 1

Section XII: I/O Peripheral Controllers
Chapter 63: CAN FD Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 494Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_loopback.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___parity_isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=494

Chapter 64

Gigabit Ethernet MAC
The gigabit Ethernet MAC (GEM) controller provides 10/100/1000 Mb/s interfacing (GbE) via an
RGMII, GMII, or MII interface. There are two individual controllers located in the LPD with its
DMA unit attached to the IOP AXI switch.

Each controller is operated independently and include a management data input/output (MDIO)
interface for its external PHY for use with the RGMII interface. The I/O options include:

• RGMII (v2.0) is routed to the PMC or LPD MIO pins for connection to an external PHY

• GMII and MII are routed to the PL where they can be mapped to GTs or optionally be
converted to other protocols using the PL logic

• Diagnostic internal loopback within each controller

Ethernet Specifications

The GEM controller implements several MAC layer specifications and time sensitive clauses:

• MAC layer

○ IEEE 802-2001

○ IEEE 802.3-2002

○ IEEE 802.3-2008

• Time sensitive network (TSN) clauses

○ IEEE 802.1AS Timing and Synchronization for Time-Sensitive Applications

○ IEEE 802.1Qav Credit-Based Shaper

○ IEEE 802.1Qaz Enhanced Transmission Selection

○ IEEE 802.1Qbv Enhancements for Scheduled Traffic

○ IEEE 802.1Qci Pre-Stream Filtering and Policing

• Additional implementation:

○ IEEE Std 1588 precision timestamp protocol

○ IEEE Std 802.1Q VLAN

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 495Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=495

This chapter contains these sections:

• Features

• System Perspective

• Modes and States

• Memory Packet Descriptors

• DMA AXI Master

• Transmit Dataflow

• MAC Transmitter

• Receive Dataflow

• MAC Receiver

• Precision Timestamp Unit

• MAC Pause Frames

• Checksum Hardware

• Register Reference

• I/O Signal Reference

Features
MAC Features

• 10/100 Mb/s full and half duplex

• 1000 Mb/s full duplex

• Priority (Q1) on transmit and receive frames

• Jumbo frames up to 10,240 bytes

• Promiscuous mode, broadcast mode

• Collision detection and enforcement

• Wake on LAN

DMA Features

• 44-bit physical to memory-mapped destinations, or 48-bit virtual address to SMMU

• Descriptor driven with scatter-gather

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 496Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=496

Common Features

• Automatic pad and cyclic redundancy check (CRC) generation on TX frames

• Automatic discard of RX frames with errors

• Programmable inter-packet gap (IPG) stretch

• Full-duplex flow control with recognition of incoming pause frames and hardware generation
of transmitted pause frames

• Address checking logic for four specific 48-bit addresses, four specific type ID values,
promiscuous mode, hash matching of unicast and multicast destination addresses

• VLAN tagging with recognition of incoming VLAN and priority tagged frames

• IPv4 and IPv6 transmit and receive IP, TCP, and UDP checksum offload

○ Checksum offload can be done in the IP instead of the software stack

• Partial store and forward option

• Precision timestamp protocol

• Time sensitive networking (TSN)

• Interrupts for TX/RX, error handling, and wake on LAN

PHY Features

• MDIO programming interface for clause 22 protocol

I/O Features

• Local I/O loopback from TXD to RXD within the controller

Comparison to Previous Generation Xilinx Devices
The Versal™ ACAP GEM controller is similar to the controller in the Zynq® UltraScale+™ MPSoC.

New Features

• Time sensitive network (TSN)

• New RXFIFO high and low-level watermarks use pause frames for RX flow control

• Large segment offload (LSO) WANs added

Removed Features

• PS SGMII via PS GTR (PCS internal to GEM)

• 1000 BASE-x physical coding sublayer (PCS)

• Ten-bit interface (TBI) to PL via EMIO

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 497Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=497

System Perspective
The system perspective includes:

• Block Diagram

• List of Functional Units

• System Interfaces

• System Signals

• I/O Interfaces

• Programming Model Overview

Block Diagram
The high-level block diagram is shown in the following figure.

Figure 91: GEM High-level Block Diagram

Up to 15

Controller

MAC
Transmitter

MAC
Receiver

External FIFO Interface

PL

RGMII
Adapter

MII/
GMII

PL

MDIO
Controller

PL_TSU_LB_CLK

MDIO

Control
and

Status
Registers

32-bit
APB

LPD IOP
Switch

LPD_IOPSW_CLK

64-bit
AXI

GEMx_CRL_REF_CLK

GEMx_RST

GEMx IRQ #88, 90

PMC/LPD
MIO

multiplexers

PHY

GEMx IRQ #89, 91

Misc.
Wakeup

DMA
AXI

Controller

Read FIFO

Write FIFO

GEM_TSU_REF_CLK

TX
Packet
Buffer
32 KB

PL

De
vi

ce
 B

ou
nd

ar
y

TSU,
MDIO

TSU

MIO_TSU_CLK

PS_TSU_PL_CLK

MDIO

2

TSU

MII/GMIIRX/TX
External FIFO Interface

Timestamp Counter
(GEM0 only)

RGMII

GEMx_EMIO_REF_CLK

LPD_IOP_SLCR.GEM_CLK_CTRL

0

1

X23026-050221

RX
Packet
Buffer
32 KB

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 498Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=498

Functional Units
The main components of the GEM controller are described in this section.

MAC Transmitter

The MAC transmitter takes data from the TX packed buffer, adds a preamble and, if necessary, a
pad and frame check sequence (FCS).

Both half-duplex and full-duplex Ethernet modes of operation are supported. When operating in
half-duplex mode, the MAC transmitter generates data according to the carrier sense multiple
access with collision detect (CSMA/CD) protocol. The start of transmission is deferred if carrier
sense (crs) is active. If a collision (col) occurs during transmission, a jam sequence is asserted and
the transmission is re-tried after a random back off. The crs and col have no effect in full-duplex
mode.

For more information, see MAC Transmitter.

MAC Receiver

The MAC receiver checks for valid preamble, FCS, alignment and length, and presents received
frames to the MAC address checking block. Packets are forwarded to the RX packet buffer for
the AXI DMA to access. Software can configure the GEM to receive jumbo frames up to 10,240
bytes. It can optionally strip FCS from the received frame prior to transfer to the RX packet
buffer. The address checker recognizes a configurable number of maskable source or destination
specific 48-bit addresses, can recognize four different specific type ID values, and contains a 64-
bit hash register for matching multicast and unicast addresses as required. It can recognize the
broadcast address of all ones, copy all frames and act on external address matching signals.

The MAC receiver can also reject all frames that are not VLAN tagged. The MAC receiver can
recognize wake-on-LAN (WOL) events. Address comparison against individual bits of specific
address register 1 can be masked by means of the specific address mask register. All other
specific address filters are byte maskable.

The MAC receiver supports offloading of IP, TCP, and UDP checksum calculations (both IPv4 and
IPv6 packet types supported), and can automatically discard frames with a bad checksum. The
MAC receiver can be set up to identify 802.1CB streams and automatically eliminate duplicate
frames. Statistics are provided to report counts of rogue and out-of-order frames, latent errors,
and timer reset events.

For more information, see MAC Receiver.

Statistics

There are many statistic and status registers that can be read by software using the programming
slave interface.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 499Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=499

• TX frames

• TX Ethernet traffic

• RX frames

• RX Ethernet traffic

System Interfaces
The GEM controller includes three system interfaces.

AXI Master DMA Interface

The DMA is a master on the LPD IOP AXI interconnect. It generate a 44 or 48-bit address and
64-bit wide data words. When the transaction is routed to the SMMU, then a 48-bit address is
used. Otherwise, only lower 44 bits are meaningful.

The DMA is controlled by a descriptor list. Packets are read from memory by the DMA and
forwarded to the TX packet buffer for the MAC transmitter using the TX descriptor list. Packets
are received from the RX packet buffer and written to system memory using the RX descriptor
list.

Interface Clock

The AXI master interface is clocked by the LPD IOP master switch.

APB Programming Interface

The programming interface provides the software access to the memory-mapped control, status,
and statistics registers. The registers are listed in Register Reference.

Interface Clock

The APB slave interface is clocked by the LPD_LSBUS_CLK associated with the LPD IOP switch.

PL External FIFO Interface

The MAC transmitter normally interfaces with the TX packet buffer and DMA. As an alternative,
the PL can interface directly with the MAC transmitter. Also, the PL can receive packets directly
from the MAC receiver, or receive them via the RX packet buffer. When the PL can be configured
to read and write the packets, it uses 8-bit datapaths, and several control and status signals.
When the external FIFO interface is selected, the PL manages the control, data, and status
signals for the memory side of the packet buffers.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 500Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=500

The descriptions of the data flows refer to the pathways between the MACs and the AXI DMA
accessing system memory. However, if selected, these data flows are to the external FIFO
interface instead of to the AXI DMA.

Interface Clock

The external FIFO interface is clocked by TX and RX clocks from the PL.

System Signals
System signals are divided into these sections:

• System Clocks

• Controller Reset

• System Interrupts

System Clocks

The GEM controller includes several types of clocks:

• Main reference clock

• Timestamp unit clock

• LPD IOP switch clock

The clocks are illustrated in the Block Diagram section.

Main Reference Clock

The GEMx_REF_CLK clocks from the LPD clock controller are programmed by the
LPD_IOP_SLCR GEM_Clk_Ctrl register.

• ○ GEM0_REF_CLK

○ GEM1_REF_CLK

Timestamp Unit Clock

The timestamp unit (TSU) clocking is more complicated; these are shown in the figure in the
Block Diagram section and explained in the Precision Timestamp Unit section.

LPD IOP Switch Clock

The APB programming interface and the AXI DMA controller interface are clocked by the
LPD_IOPSW_CLK clock. This clock is controlled by the LPD clock controller using the
CRL.LPD_IOPSW_CTRL register.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 501Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem_clk_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=501

Controller Reset

The GEM controllers are reset by a POR or system software reset, which are described in Resets.
In addition, each controller can be individually reset:

• CRL RST_GEM0 [RESET] register bit.

• CRL RST_GEM1 [RESET] register bit.

System Interrupts

Each GEM controller generates two types of system interrupts:

• Controller interrupts:

○ Receive and transmit frames completed

○ RX frame errors

○ APB address decode error

• RX wake-on-LAN system interrupt

All of the system interrupts are listed in IRQ System Interrupts.

• IRQ#88: GEM0 controller

• IRQ#89: GEM0 wakeup

• IRQ#90: GEM1 controller

• IRQ#91: GEM1 wakeup

I/O Interfaces
The controller provides I/O signals for two I/O interface paths:

• GMII/MII to the EMIO PL interface

• RGMII to the LPD MIO pins

GMII/MII Interface

The controller natively includes a GMII/MII interface that is routed to the EMIO PL interface
where it can be converted to another format or consumed as is. The interface is also routed to
the built-in RGMII adapter.

• EMIO - GMII/MII interface provides 10/100/1000 Mb/s bandwidth

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 502Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_gem0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_gem1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=502

RGMII Interface

The controller includes a GMII to RGMII adapter. The RGMII I/O interface is multiplexed through
the LPD MIO for connection to an external PHY. This interface supports the 10/100/1000 Mb/s
protocol. See the MIO - RGMII section.

MDIO to External PHY for RGMII

To support the external PHY for the RGMII interface, the controller includes a master
management data input/output (MDIO) interface. The MDIO interface includes clock, data, and
output enable signals that are routed from the controller to LPD MIO pins. See MDIO PHY
Interface section.

Internal Loopback

The controller has an internal loopback from the TXD to RXD signals in the GMII/MII controller.

• Ethernet loopback connecting TXD to RXD within a controller using the Network_Control
[loopback_local] regoster bit.

In MAC internal loopback mode, both transmit and receive clock are sourced from the
GEM_REF_CLK from the LPD clock controller.

IMPORTANT! Receive and transmit must be disabled when making the switch into and out of internal
loopback because the clocks provided might glitch while switching to the loopback reference clock.

I/O Block Diagram

The following figure includes the I/O interfaces and signals.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 503Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=503

Figure 92: GEM I/O Interface Block Diagram

De
vi

ce
 B

ou
nd

ar
y

12

MAC
Transmitter

MAC
Receiver

RGMII
Adapter

PL

PHY MDIO
Master

MDC clock
MDIO data

GEM_TSU_REF_CLK

Multiple pinout options

Pin 24
GEM_TSU_PMCMIO_CLK

Pin 50

Pin 25

Pin 51

TSU clk or GEMx_MDC

TSU clk or GEMx_MDIO

TSU clk or GEMx_MDC

TSU clk or GEMx_MDIO

PHY

External TSU
Clock

RX Loopback Clock

RGMII

MDIO

GMII/MII Clock

TX_CLK
TXD[3:0]
TX_CTL

RX_CLK
RXD[3:0]
RX_CTL

PMC or
LPD MIO

LPD MIO

PMC MIO

Gigabit
Ethernet

LPD Clock Controller

PMC_IOP_SCLR and
LPD_IOP_SLCR registers

LPD_IOP_SLCR.GEM_CLK_CTRL

GEM_TSU_PL_CLKO

GMII/MII Interface

GEM_TSU_LPDMIO_CLK

GEM_TSU_EMIO_CLK

Timestamp
Unit PL

MDC clk
TSU clk

GEM_TSU_RETIME_CLK

GEM_TSU_TIMEINC_CTRL

X23515-100920

Clocks

There are several clocks associated with the controller:

• Controller reference clock

• Timestamp unit clock

• External FIFO interface clock

• AXI master and APB slave interface clocks

Timestamp Unit Clock

The TSU clock can come from one of several sources:

• LPD clock controller, GEM_TSU_REF_CLK

• External source connected to an LPD MIO pin

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 504Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=504

• EMIO

Programming Model
Software accesses the GEM 32-bit registers to program the controller, manage the DMA, monitor
the FIFOs, collect statistics, manage the external PHY, provide address filtering and specific type
ID matching, control the precision time protocol (PTP), and generate TX pause frames.

The descriptor-driven DMA controller moves data packets between system memory and the
packet buffers. The descriptors provide several options including scatter-gather functionality. The
DMA connects to system memory through its 64-bit AXI bus master on the LPD IOP master
switch.

To transmit frames, software creates descriptors and data buffers in the system memory. The
data buffers are fetched by the DMA and written into the TX packet buffer. The packet buffers
are consumed by the MAC transmitter to generate Ethernet frames.

To receive frames, software programs the DMA RX descriptors to read packets put in the RX
packet buffer by the MAC receiver. The DMA takes packets from the buffer and writes memory
packets to system memory using the RX descriptors.

Summary of programming features:

• Memory mapped control registers

• Configuration

• Direct control

• Programmable DMA with descriptor words

• Autonomous monitoring and responses

Modes and States
The controller has several modes and options that can be enabled.

• GMII or MII on the PL EMIO interface

• RGMII interface on the LPD MIO pins

Note: The timestamp unit clock must be active for GEM to operate.

Diagnostics

The controller also has a diagnostic mode. See Controller Reset.

• Loopback

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 505Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=505

10/100/1000 Operating Modes
The GEM operating mode is controlled by [speed] and [gigabit_mode_enable] bits in the
Network_Config register as shown in the following table.

Table 136: GEM Operating Mode

Operating Mode
Network_Config

I/O Interface Options
[speed] [gigabit_mode_enable]

10 Mb/s 0 0 RGMII/GMII/MII

100 Mb/s 1 0 RGMII/GMII/MII

1000 Mb/s x 1 RGMII/GMII/MII

Memory Packet Descriptors
The memory packets are transferred between the controller and system memory using
descriptors. The descriptors are used by the packet buffer and the AXI DMA.

• Descriptor length

• Descriptor programming

Descriptor Length
The length of a descriptor entry depends on the interface (AXI or external FIFO interface) and if
the timestamp feature is enabled. Every buffer descriptor entry has the same number of words
for a given mode. This functionality applies to RX and TX descriptors.

Table 137: GEM Descriptor Length

Word Length Bit Length
64-bit Addressing

(AXI Master
Interface)

32-bit Addressing
(External FIFO

Interface)
Timestamp

Capture

2 words 64 ~ Yes ~

4 words 128 Yes ~ ~

4 words 128 ~ Yes Yes

6 words 192 Yes ~ Yes

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 506Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=506

DMA AXI Master
The DMA controller accesses system memory using a 44-bit address AXI master on the LPD IOP
switch. If the transaction is routed through the FPD SMMU, then 48 address bits are used. The
DMA controller processes descriptor tables in system memory to manage data between system
memory buffers and the RX and TX packet buffers. The descriptor tables include information for
the DMA to gather data from one or more memory locations in to one or more packet buffers for
the MAC transmitter to create Ethernet frames.

Packet Buffer DMA

The DMA uses separate transmit and receive descriptor lists. Each descriptor entry has
parameters that point to a memory location, specify the data buffer size, and indicate if the entry
is a start for the frame (SOF) or end of frame (EOF). Multiple descriptor entries pointing to
memory locations enable Ethernet packets to be broken up and scattered about the memory
space.

The DMA and packet buffers include the following advantages:

• 64-bit AXI data bus width

• Maximum line rate by storing multiple frames in the packet buffer

• Efficient use of the AXI interface with FIFOs and bursting

• Full and partial store with forward

• Transmit TCP/IP checksum offload

• Priority queuing

• When a collision on the line occurs during transmission, the packet is automatically reaccessed
directly from the packet buffer rather than having to re-fetch through the AXI interface

• Received error packets are automatically dropped before any of the packets are presented to
the AXI, reducing AXI activity

• Manual RX packet flush capabilities

• Optional RX packet flush when the AXI becomes bandwidth limited

AXI Coherency and Bufferability

The AXI transaction requests can be routed directly into the FPD main switch and then to system
memory via the NoC, or to system memory via the CCI for coherency and memory address
translation.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 507Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=507

Burst Transactions
The AXI master interface data width and word size is 64 bits. The burst size can be programmed
to 1, 4, 8, 16, or 256 words using DMA_Config [amba_burst_length] register bit.

The AXI DMA master always uses INCR type accesses. When performing data transfers, the
burst length used can be programmed using bits [4:0] of the DMA configuration register. Either
single or fixed length incrementing bursts up to a maximum of 256 are used as appropriate.

• 1xxxx: Attempt to use bursts of up to 16

• 01xxx: Attempt to use bursts of up to 8

• 001xx: Attempt to use bursts of up to 4

• 0001x: Use single word

• 00001: Use single word

• 00000: Attempt to use bursts of up to 256

Transaction Routing and Coherency
The AXI memory transactions have several attributes controlled by the LPD_IOP_SLCR register
set. The transactions can be coherent to the APU L2-cache by routing the transaction to the CCI
via the SMMU. The AXI coherency signals are programmed to request the caching policy. This
programming is used for both reads and writes:

• GEM0_Route [GEMx] routes the transactions through the CCI, which is required for
coherency to the APU L2-cache.

• GEM0_Coherent [GEMx_AXI_COH] defines the AxUSER signals for the caching policy used by
the CCI AXI-Lite connection.

The encoding of [GEMx_AXI_COH] bit field controls DMA AXI transaction coherency with
respect to the APU L2-Cache and transaction buffers on the interconnect.

When the transaction bypasses the CCI, the [GEMx_AXI_COH] is only used to define the
bufferability of the transaction. The coherency settings are ignored.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 508Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___dma_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_coherent.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=508

Transmit Dataflow
Packet Buffer TX Functionality
The software initiates the TX frames with some exceptions. In normal operation, the transmitter
packet buffer continuously requests data from the TXFIFO to keep the packet buffer full. The
transmitter packet buffer continues to attempt to fetch frame data from the DMA until the
packet buffer itself is full, it then attempts to maintain a full level. To accommodate the status and
statistics associated with each frame, three status words per packet are reserved at the end of
the packet data. This can be used for the flow of data and to generate interrupts.

Operations

If any errors occur on the AXI transaction while reading the transmit frame, the fetching of
packet data from system memory is halted. The MAC transmitter continues to fetch packet data,
thereby emptying the packet buffer, and allowing any good non-errored frames to be transmitted
successfully. When these frames are fully transmitted, the status/statistics for the errored frame
is updated and software is informed through an interrupt that an AXI error occurred. The error is
reported in the correct packet order.

The transmit packet buffer only attempts to read more frame data from the system memory
when space is available in the packet buffer memory. If space is not available, the AXI interface
must wait until the packet fetched by the MAC completes transmission and is subsequently
removed from the packet buffer memory.

When full store and forward mode is active, and a single frame is fetched that is too large for the
packet buffer memory, the frame is flushed and the DMA is halted with an error status. A
complete frame must be written into the packet buffer before transmission can begin, and
therefore the minimum packet buffer memory size should be chosen to satisfy the maximum
frame to be transmitted in the application.

When the complete transmit frame is written into the packet buffer memory, a trigger is sent
across to the MAC transmitter, which then begins reading the frame from the packet buffer
memory. Because the whole frame is present and stable in the packet buffer memory, an
underflow of the transmitter is not possible.

Half-duplex Mode

In half-duplex mode, the frame is kept in the packet buffer until notification is received from the
MAC that the frame data has either been successfully transmitted or can no longer be
retransmitted (too many retries in half-duplex mode). When this notification is received, the
frame is flushed from memory to make room for a new frame to be fetched from AXI system
memory.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 509Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=509

Full-duplex Mode

In full-duplex mode, the frame is removed from the packet buffer in real time. Other than
underflow, the only MAC related errors that can occur are due to collisions during half-duplex
transmissions. When a collision occurs, the frame still exists in the packet buffer memory, and
can be retried directly from there. Only when the MAC transmitter has failed to transmit after
sixteen attempts is the frame finally flushed from the packet buffer.

TX Packets
The TX buffers become packets that are sent through the TX packet buffer. The MAC transmitter
uses the descriptors, which provide the necessary information about and a pointer to the TX
buffers.

The maximum frame size is 1522 bytes by default and 10,240 bytes (with jumbo frame support)
bytes and the minimum frame size is 64 bytes.

In the transmit direction, the DMA (or FIFO interface) continues to provide TX packet data up to
a limit of 2048 packets. The interface monitors the TX buffer full condition to avoid overwrites.
The maximum useful size of the TX packet buffer is 32 KB.

The DMA uses the packet buffers to hold packets for both transmit and receive paths. While the
packet is in the buffer, the controller decides what to do with it. If it is corrupt or does not pass
the filters, it is discarded, and left unused in the buffer. This has several performance advantages:

• Retry collided TX frames: the MAC transmitter can re-read the packet directly from the buffer,
which saves system interconnect bandwidth (or FIFO interface activity)

• Process the transmit IP/TCP/UDP checksum generation offload

• Generate the checksum before determining the fate of the frame

TX Descriptor Entry Words
The following table includes details of the transmit buffer descriptor list.

Table 138: GEM TX Descriptor, Words 0 and 1

Bit Function
Word 0

31:0 Byte address of buffer.

Word 1

31 Used: must be zero for the controller to read data to the transmit buffer. After it is successfully
transmitted, the controller sets this bit to one for the first buffer of a frame. Software must clear this bit
before the buffer can be used again.

30 Wrap: marks last descriptor in the transmit buffer descriptor list. This can be set for any buffer within the
frame.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 510Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=510

Table 138: GEM TX Descriptor, Words 0 and 1 (cont'd)

Bit Function
29 Retry limit exceeded, transmit error detected.

28 Always set to 0.

27 Transmit frame corruption due to AXI error: set if an error occurs midway while reading through the
transmit frame from the AXI, including RESP errors, and buffers exhausted mid-frame. If the buffers run
out during transmission of a frame, then transmission stops, the FCS is incorrect, and tx_er is asserted.

26 Late collision, transmit error detected. Late collisions force this status bit to be set in gigabit mode.

25:24 Reserved.

23 For extended buffer descriptor mode. This bit indicates a timestamp is captured in the buffer descriptor.
Otherwise the bit is reserved.

22:20 Transmit IP/TCP/UDP checksum generation offload errors:
000b: No error.
001b: Packet is identified as VLAN type, but header is not fully complete, or has an error in it.
010b: Packet is identified as SNAP type, but header is not fully complete, or has an error in it.
011b: Packet is not of IP type, or IP packet was invalidly short, or IP is not of type IPv4/IPv6.
100b: The packet is not identified as VLAN, SNAP, or IP.
101b: Non-supported packet fragmentation occurred. For IPv4 packets, IP checksum is generated and
inserted.
110b: Packet type detected is not TCP or UDP. TCP/UDP checksum is therefore not generated. For IPv4
packets, the IP checksum is generated and inserted.
111b: A premature end of packet is detected and the TCP/UDP checksum cannot be generated.

19:17 Reserved.

16 No CRC to be appended by the MAC. When set this bit implies that the data in the buffers already contains
a valid CRC and no CRC or padding is appended to the current frame by the MAC.
This control bit must be set for the first buffer in a frame and is ignored for the subsequent buffers of a
frame. This bit must be clear when using the transmit IP/TCP/UDP checksum generation offload,
otherwise checksum generation and substitution does not occur.

15 Last buffer, this bit (when set) indicates that the last buffer in the current frame is reached.

14 Reserved.

13:0 Length of buffer.

Table 139: GEM TX Descriptor Word Summary

64-bit Addressing for
AXI DMA Interface

32-bit Addressing for
External FIFO Interface Field Description

Word 0 Word 0 31:0 Byte address of buffer

Word 1 Word 1 31:0 Miscellaneous fields

Word 2 - 31:0 Upper 32-bit address of the
data buffer

Word 3 Word 2 31:0 Not used

Word 4 Word 3 31:30
29:0

Timestamp seconds [1:0]
Timestamp, nanoseconds

Word 5
- 31:4

3:0
Unused
Timestamp seconds [5:2]

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 511Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=511

TX Descriptor Processing
Each transmit frame is stored in one or more memory buffers. Zero length memory buffers are
allowed. The maximum number of buffers permitted for each TX frame is 128. The size of the
descriptor entry is described in the Descriptor Length section. To transmit frames, the buffer
descriptors must be initialized by writing an appropriate byte address to bits [31:0] in the first
word of each descriptor list entry.

The second word of the TX descriptor is initialized with control information that indicates the
length of the frame, whether the MAC is to append CRC, and whether the buffer is the last
buffer in the frame.

After transmission, the status bits are written back to the second word of the first buffer along
with the used bit. Bit [31] is the used bit that, if transmission is to take place, must be zero when
the control word is read. It is written to one once the frame is transmitted. Bits [29:20] indicate
various transmit error conditions. Bit [30] is the wrap bit, which can be set for any buffer within a
frame. When no wrap bit is encountered, the queue pointer continues to increment.

The transmit-buffer queue base address register can only be updated while transmission is
disabled or halted. Otherwise, any attempted write is ignored. When transmission is halted, the
transmit-buffer queue pointer maintains its value. Consequently, when transmission is restarted,
the next descriptor read from the queue is from immediately after the last successfully
transmitted frame. While transmit is disabled, the Network_Control [enable_transmit] register bit
is set = 0, the transmit-buffer queue pointer resets to point to the address indicated by the
Tx_Q_Ptr start address register. Disabling receive does not have the same effect on the receive-
buffer queue pointer.

When the transmit queue is initialized, transmit is activated by writing a 1 to the
Network_Control [transmit_start] register bit. Transmit is halted when the used bit of the buffer
descriptor is read, a transmit error occurs, or by writing to the transmit halt bit of the network
control register.

Transmission is suspended if a pause frame is received while the Network_Config [pause_enable]
register bit is set = 1. Rewriting the start bit while transmission is active is allowed. The
[enable_transmit] bit is reset when the following occurs:

• Transmit is disabled.

• A buffer descriptor’s ownership bit set is read.

• The Network_Control [transmit_halt] register bit is written.

• There is a transmit error due to too many retries, late collision (gigabit mode only), or a
transmit under-run.

To start transmitting, write a 1 to the Network_Control [transmit_start] register bit.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 512Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_q_ptr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=512

Transmit halt does not take effect until any ongoing transmit finishes. The entire contents of the
frame are read into the transmit packet buffer memory, any retry attempt is replayed directly
from the packet buffer memory rather than re-fetching it through the AXI. If a used bit is read
mid-way through transmission of a multi-buffer frame, the bit is treated as a transmit error.
Transmission stops, tx_er is asserted, and the FCS is bad. If transmission stops due to a transmit
error or a used bit being read, transmission is restarted from the first buffer descriptor of the
frame being transmitted when the transmit start bit is rewritten.

MAC Transmitter
The MAC transmitter can operate in either half-duplex or full-duplex mode, and transmits frames
in accordance with the Ethernet IEEE Std 802.3. In half-duplex mode, the CSMA/CD protocol is
followed.

TX frame assembly starts by adding the preamble and the start frame delimiter. The packets are
taken from the TXFIFO.

For short packets, padding is added to take the frame length to 60 bytes. CRC is calculated using
an order 32-bit polynomial. This is inverted and appended to the end of the frame taking the
frame length to a minimum of 64 bytes. If the [No_CRC] descriptor bit is set =1 of the last buffer
descriptor of a TX frame, neither pad nor CRC are appended. The [No_CRC] bit can also be set
through the FIFO.

In full-duplex mode (at all data rates), frames are transmitted immediately. Back-to-back frames
are transmitted at least 96-bit times apart to check the inter-packet gap.

In half-duplex mode, the transmitter checks carrier sense. If asserted, the transmitter waits for a
signal to become inactive, and then starts transmission after the inter-packet gap of 96-bit times.

Collisions in Half-duplex Mode

If the collision signal is asserted during transmission, the transmitter transmits a jam sequence of
32 bits taken from the data register and then retries transmission after the backoff time has
elapsed. If the collision occurs during either the preamble or SFD, then these fields are completed
prior to generation of the jam sequence.

The backoff time is based on an XOR of the 10 least significant bits of the data coming from the
packet buffer and a 10-bit value from the pseudo-random number generator. The number of bits
that are actually used depends on the number of collisions seen. After the first collision, one bit is
used to determine the backoff time. After the second collision, two bits are used. This continues
up to a maximum of 10 bits for the 10th through 16th collision. When a frame transmits without
a collision, the number of bits used for a collision starts back at 1.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 513Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=513

After 16 collisions in a row, an error is indicated and no further TX attempts are made, which is in
accordance with the truncated binary exponential backoff algorithm.

In 10/100 Mb/s mode, both collisions and late collisions are treated identically (backoff and retry
are performed up to 16 times). When operating in 1000 Mb/s mode, late collisions are treated as
an exception and the transmission is aborted without a retry. This condition is reported in the
transmit buffer descriptor word [1] (late collision, bit [26]) and also in the transmit status register
(late collision, bit [7]).

An interrupt can also be generated (if enabled) when this exception occurs, and bit [5] in the
interrupt status register is set.

When bit [28] is set in the network configuration register, the IPG can be stretched beyond 96
bits depending on the length of the previously transmitted frame and the value written to the
stretch_ratio register. The least significant 8 bits of the stretch_ratio register multiply the
previous frame length (including preamble) and the next significant 8 bits (+1 so as not to get a
divide by zero) divide the frame length to generate the IPG.

IPG stretch only works in full-duplex mode and when bit [28] is set in the network configuration
register. The stretch_ratio register cannot be used to shrink the IPG below 96 bits.

TX Broadcast Frames
Broadcast frames are transmitted with a destination address of all 1s and used to communicate
with all nodes on a network.

TX Pause Frame
Automatic transmission of pause frames is supported through the transmit pause frame bits of
the network control register and from the external input signals tx_pause, tx_pause_zero, and
tx_pfc_sel. If either bit [11] or bit [12] of the network control register is written with a logic 1, or
if the input signal tx_pause is toggled when tx_pfc_sel is Low, an IEEE Std 802.3 pause frame is
transmitted providing full duplex is selected in the network configuration register and the
transmit unit is enabled in the network control register.

Pause frame transmission occurs immediately if transmit is inactive or if transmit is active
between the current frame and the next frame due to be transmitted.

Transmitted pause frames comprise of the following:

• A destination address of 01-80-C2-00-00-01.

• A source address taken from specific address register 1.

• A type ID of 88-08 (MAC control frame).

• A pause opcode of 00-01.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 514Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=514

• A pause quantum register.

• Fill of 00 to take the frame to the minimum frame length.

• A valid FCS.

The pause quantum used in the generated frame depends on the trigger source for the frame.

• If bit [11] is written with a one, the pause quantum is taken from the transmit pause quantum
register. The transmit pause quantum register resets to a value of 0xFFFF giving maximum
pause quantum as the default.

• If bit [12] is written with a one, the pause quantum is zero.

• If the tx_pause input is toggled, tx_pfc_sel is Low and the tx_pause_zero input is held Low until
the next toggle, the pause quantum is taken from the transmit pause quantum register.

• If the tx_pause input is toggled, tx_pfc_sel is Low and the tx_pause_zero input is held High
until the next toggle, the pause quantum is zero.

After transmission, a pause frame transmitted interrupt is generated (bit [14] of the interrupt
status register) and the only statistics register incremented is the pause frames transmitted
register. Pause frames can also be transmitted by the MAC using normal frame transmission
methods.

Quantum Time Base

The quantum value for transmitting a pause frame depends on the trigger source for the pause
frame.

The quantum value is either zero or takes its value from the GEM Tx_Pause_Quantum register.

• If bit [11] is written with a one, the pause quantum is taken from the Transmit Pause Quantum
register. The Transmit Pause Quantum register resets to a value of 0xFFFF giving maximum
pause quantum as the default.

• If bit [12] is written with a one, the pause quantum is zero.

• If the tx_pause input is toggled, tx_pfc_sel is Low and the tx_pause_zero input is held Low until
the next toggle, the pause quantum is taken from the Transmit Pause Quantum register.

• If the tx_pause input is toggled, tx_pfc_sel is Low and the tx_pause_zero input is held High
until the next toggle, the pause quantum is zero.

After transmission, a pause frame transmitted interrupt is generated (bit [14] of the Interrupt
Status register) and the only statistics register incremented is the Pause Frames Transmitted
register. Pause frames can also be transmitted by the MAC using normal frame transmission
methods.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 515Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_pause_quantum.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=515

Receive Dataflow
The MAC receiver divides the frames into one or more packets. Each packet includes status and
statistics.

RX data packets are routed through the packet buffer and then managed by the RX descriptors.

RX Packets
Packets Held in Packet Buffer

The RX packets are held in the packet buffer until the MAC receiver determines what to do with
it. If a packet is corrupt or does not pass the RX filter criteria, the packet is discarded. This has
several performance advantages:

• RX packets with errors can be discarded before propagating further, which saves system
interconnect bandwidth and the need for the device driver to discard them

• Process the IP/TCP/UDP checksum generation offload

○ Generate the checksum before determining the fate of the frame

Packet Buffer Overflow

The RX packet buffer can overflow with packets and generate an interrupt when data is received,
but there is not enough room to store it. An overflow also occurs if the limit of 2048 packets is
breached. The maximum usable size of the packet buffer is 32 KB.

RX Packet Flow Monitoring
Frames with errors are flushed from the packet buffer memory, good frames are pushed onto the
DMA AXI interface.

The packet buffer monitors the data flow from the MAC receiver to create packet pushes into
the packet buffer. At the end of the received frame, the status and statistics information are
stored along side the packet for use when the frame is read out.

Good Frame

The DMA only begins to fetch packets from the packet buffer when the status and statistics for
the Ethernet frame are available. If the frame has a good status, the three status and statistics
words of information are used to read the frame from the packet memory and written to system
memory by the DMA. After the last frame data is transferred to the packet buffer, the status and
statistics are updated to the controller's registers.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 516Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=516

Bad Frame

When programmed in full store and forward mode, if the frame has an error, the frame data is
immediately flushed from the packet buffer memory allowing subsequent frames to use the
newly opened space. The status and statistics for bad frames are written to the system buffer
and used to update the controller's status and statistics registers.

To accommodate the status and statistics associated with each frame, three words per packet are
reserved at the end of the packet data. When a packet is bad and is dropped, the status and
statistics is the only information stored for that packet.

The packet buffer can detect a full condition and an overflow condition can also be detected. If
this occurs, subsequent packets are dropped and an overflow interrupt is raised.

RX Descriptor Words
Received frames with optional FCS are written to receive buffers in system memory. The memory
start location for each receive buffer is stored in the receive buffer descriptor table at an address
location pointed to by the value in the receive-buffer queue pointer registers.

Each receive buffer start location is a word address. The start of the first memory buffer in a
frame can be offset by up to three bytes depending on the value written to bits [14] and [15] of
the network configuration register. If the start location of the AXI buffer is offset the available
length of the first AXI buffer is reduced by the corresponding number of bytes.

There are six descriptor words per entry to provide a 44 or 48-bit address for the DMA AXI
master interface, see Descriptor Length.

Table 140: GEM RX Descriptor, Word 0

Bit Description
31:3 Starting RX memory buffer address, bits [31:3]. Bits [47:32] are held in descriptor entry word 3.

2
Timestamp enable:
0: None
1: Valid timestamp

1
Wrap enable:
0: No wrap
1: Wrap

0
Data ownership:
0: The controller can write data to the RX buffer
1: The controller sets this bit to 1 once the frame leaves the RXFIFO (written to system memory)
Software must clear this bit to 0 before the buffer can be used again.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 517Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=517

Table 141: GEM RX Descriptor, Word 1

Field Description
31 Global all ones broadcast address detected.

30 Multicast hash match.

29 Unicast hash match.

28 I/O address match.

27 Specific type address register match found, bit [25] and [26] indicate the specific address register that
caused the match.

26:25 Address register match indicator:
00: Specific address register 1 match
01: Specific address register 2 match
10: Specific address register 3 match
11: Specific address register 4 match

If more than one specific address is matched, only one is indicated with priority 4 down to 1.

24 Indicates different information when the RX checksum offloading is enabled or disabled.
• When RX checksum offloading is disabled, bit [24] is cleared and the network configuration type ID
register match is found. Bit [22] and bit [23] indicates which type ID register caused the match.
• When RX checksum offloading is enabled, bit [24] is set in the network configuration.
0: Frame is not SNAP encoded and/or has a VLAN tag with the CFI bit set
1: Frame is SNAP encoded and has either no VLAN tag or a VLAN tag without the CFI bit set

23:22 Indicates different information when the RX checksum offloading is enabled or disabled.
• RX checksum offloading is disabled when the Network_Config [receive_checksum_offload_enable, 24]
register bit = 0. The encoded matches are:
00: Type ID register 1 match
01: Type ID register 2 match
10: Type ID register 3 match
11: Type ID register 4 match

If more than one specific type ID is matched, only one is indicated with priority 4 down to 1.
• RX checksum offloading is enabled when Network_Config [24] bit is set = 1.
00: Both the IP header checksum and the TCP/UDP checksum were not checked
01: The IP header checksum is checked and is correct. Both the TCP or UDP checksum were not checked
10: Both the IP header and TCP checksum were checked and were correct
11: Both the IP header and UDP checksum were checked and were correct

21 VLAN tag detected: type ID of 0x8100. For packets incorporating the stacked VLAN processing feature, this
bit is set if the second VLAN tag has a type ID of 0x8100.

20 Priority tag detected: type ID of 0x8100 and null VLAN identifier. For packets incorporating the stacked
VLAN processing feature, this bit is set if the second VLAN tag has a type ID of 0x8100 and a null VLAN
identifier.

19:17 VLAN priority: only valid if bit [21] is set.

16 Canonical format indicator (CFI) bit: only valid if bit [21] is set.

15 End of frame: when set, the buffer contains the end of a frame. If end of frame is not set, then the only
valid status bit is start of frame bit [14].

14 Start of frame: when set, the buffer contains the start of a frame. If both bits [15] and [14] are set, the
buffer contains a whole frame.

13
Indicates different information when the ignore FCS mode is enabled or disabled.
• This bit is zero if ignore FCS mode is disabled.
• When ignore FCS mode is enabled, bit [26] is set in the network configuration register.
The per-frame FCS status indicates the following:
0: Frame had good FCS
1: Frame had bad FCS and if the ignore FCS mode is enabled, the frame is copied to memory

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 518Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=518

Table 141: GEM RX Descriptor, Word 1 (cont'd)

Field Description
12:0 These bits represent the length of the received frame that could include FCS if the FCS discard mode is

enabled or disabled.
• FCS discard mode disabled: Bit [17] is cleared in the network configuration register. The least significant
12 bits for length of frame include FCS.
• FCS discard mode enabled: Bit [17] is set in the network configuration register. The least significant 12
bits for length of frame exclude FCS.

Table 142: GEM RX Descriptor Word Summary

Word Field Description
Word 0 31:0 Timestamp enable, wrap enable, ownership.

Word 1 31:0 Miscellaneous fields.

Word 2
15:0 Upper sixteen AXI address bits [47:32].

31:16 Not used.

Word 3 31:0 Not used.

Word 4
29:0 Timestamp, nanoseconds.

31:30 Timestamp, seconds, bits [1:0].

Word 5
3:0 Timestamp, seconds, bits [5:2].

31:4 Not used.

RX Descriptor Processing
The start location of the RX buffer descriptors must be written with the receive-buffer queue
base address before reception is enabled (receive enable in the network control register). After
reception is enabled, any writes to the receive-buffer queue base address register are ignored.

When read, it returns the current pointer position in the descriptor list, though this is only valid
and stable when receive is disabled.

If the filter block indicates that a frame should be copied to memory, the receive data DMA
operation starts writing data into the receive buffer. If an error occurs, the buffer is recovered.

An internal counter represents the receive-buffer queue pointer and it is not visible through the
CPU interface. The receive-buffer queue pointer increments by two words after using each
buffer. It re-initializes to the receive-buffer queue base address when any descriptor has its wrap
bit set.

As receive AXI buffers are used, the receive AXI buffer manager sets bit zero of the first word of
the descriptor to logic one, to indicate that the AXI buffer was used.

Software should search through the used bits in the AXI buffer descriptors to determine how
many frames are received by checking the start of frame and end of frame bits.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 519Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=519

By default, partial store and forward is not enabled; that is, the controller waits for the full packet
to be available before forwarding. If the DMA is configured in the packet buffer partial store and
forward mode, received frames are written out to the AHB/AXI buffers as soon as enough frame
data exists in the packet buffer, which means several full buffers are used before some error
conditions can be detected. If a receive error is detected, the receive buffer currently being
written is recovered. Previous buffers are not recovered. For example, when receiving frames
with CRC errors or excessive length, it is possible that a frame fragment might be stored in a
sequence of receive buffers. Software can detect these fragment by looking for start-of-frame bit
set in a buffer following a buffer with no-end-of frame bit set.

A properly working 10/100/1000 Ethernet system does not have excessive length frames or
frames greater than 128 bytes with CRC errors. When using a default value of 128 bytes for the
receive buffer, it is rare to find a frame fragment in a receive AXI buffer because collision
fragments are less than 128 bytes long.

Only good received frames are written out of the DMA and no fragments exist in the AXI buffers
due to MAC receiver errors. However, there is still the possibility of fragments due to DMA
errors. For example, when a used bit is read on the second buffer of a multi-buffer frame.

If bit zero of the receive buffer descriptor is already set when the receive buffer manager reads
the location of the receive AXI buffer, the buffer is already used and cannot be used again until
the software has processed the frame and cleared bit zero. In this case, the buffer not available
bit in the receive status register is set and an interrupt is triggered. The receive resource error
statistics register is also incremented.

There is an option to automatically discard received frames when no AXI buffer resource is
available. This option is controlled by the DMA_Config [force_discard_on_err] register bit. By
default, the received frames are not automatically discarded. When this feature is off, the
received packets remain stored in the packet buffer until an AXI buffer resource becomes
available. This can lead to an eventual packet buffer overflow occurs when packets continue to
be received because the [0, used] bit of the receive-buffer descriptor is still set.

After a used bit is read, the receive-buffer manager re-reads the location of the receive buffer
descriptor every time a new packet is received.

When the DMA is configured in the packet buffer full store and forward mode, a receive overrun
condition occurs when the receive packet buffer is full, or if an AXI error occurred.

For a receive overrun condition, the receive overrun interrupt is asserted and the buffer currently
being written is recovered. The next frame that is received whose address is recognized reuses
the buffer.

To force a flush of the packet from the receive packet buffer, write a 1 to the Network_Control
[flush_rx_pkt_pclk] register bit. This only occurs when the RX DMA is not currently writing
packet data out to the AXI (that is, it is in an IDLE state). If the RX DMA is active, a write to this
bit is ignored.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 520Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___dma_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=520

MAC Receiver
The MAC receiver checks incoming frames for a valid preamble, the frame check sequence (FCS),
alignment, and length. The receiver then processes the RX frames and writes packets into the RX
packet buffer with status that is to be read by the DMA controller. The MAC also stores the
frames destination address for use by the address checking unit.

If the RX frame is too long, a bad frame indication is sent to the RXFIFO. The receiver logic
ceases to send data to memory as soon as this condition occurs.

At end of frame reception, the MAC receiver indicates to the DMA controller whether the frame
is good or bad. The DMA controller recovers the RX buffer if the frame is bad.

RX Ethernet frames are normally stored with the FCS. The Tx frames can be stored without their
FCS by setting the Network_Config [fcs_remove] register bit = 1. The reported frame length field
is reduced by four bytes to reflect this operation.

The MAC receiver updates the status registers:

• Increment the alignment

• CRC (FCS)

• Short frame, long frame

• Jabber or receive symbol errors when any of these exception conditions occur

If the Network_Config [ignore_rx_fcs] register bit is set = 1, then errors are ignored and frames
with CRC errors are not discarded, though the frame check sequence errors statistic register is
still incremented.

Bit [13] of the receiver descriptor word [1] is updated to indicate the FCS validity for the
particular frame. This is useful for applications where individual frames with FCS errors must be
identified.

Received frames can be checked for length field error by setting the Network_Config
[length_field_error_frame_discard] = 1. In this case, the receiver compares a frame's measured
length with the length field (bytes 13 and 14) extracted from the frame. The frame is discarded if
the measured length is shorter. The RX frame length is checked for the range starting at 64 bytes.
The upper limit depends on register bit settings. The upper range is:

• 1,518 bytes (normally)

• 1,536 bytes (Network_Config [receive_1536_byte_frames] is set = 1)

• 10,240 bytes (Network_Config [jumbo_frames] is set = 1)

Each discarded frame increments the 10-bit RxFrames_Oversize_Count [count] statistics register
bit field.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 521Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_oversize_count.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=521

Filtering
When enabled, the MAC receiver filter determines which frames should be written to the
RXFIFO.

Filtering includes:

• State of the I/O matching signals

• Register programming:

○ Specific address

○ Specific type

○ Hash

• Destination address and type field of the field

If the Network_Config [en_half_duplex_rx, 25] is set = 0, a frame is not placed in the RXFIFO if
transmitting in half-duplex mode at the time a destination address is received.

Ethernet frames are transmitted a byte at a time, least significant bit first. The first six bytes (48
bits) of an Ethernet frame make up the destination address. The first bit of the destination
address (least significant bit of the first byte) defines the casting:

• 0: Unicast address

• 1: Multicast address

An address of all 1's is a special case of the multicast, broadcast address.

Address Filtering using Four Specific Addresses

The MAC receiver recognizes up to four specific addresses. Each specific address requires two
registers: Spec_Addr1_U (two bytes) and Spec_Addr1_L (four bytes). The address stored can be
specific, group, local, or universal.

When address filtering is enabled, the RX frame destination address is compared against up to
four specific addresses stored in registers. If a receive frame address matches an active specific
address, the frame is written to the RX packet buffer.

Address filtering is activated when the spec_add1_top register is written; therefore write, the
spec_add1_bottom register first. Filtering is deactivated by writing to the Spec_Addr1_L register
or by the GEM_RESET.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 522Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_l.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=522

Specific Type ID Filtering

Frame-specific type IDs are used by software to identify a particular stream of traffic. They can
be filtered using the specific ID match registers. Four ID registers are available. An ID match
register (e.g., Spec_ID1_Match) is enabled writing a 1 to the [enable_copy, 31] bit. When a frame
is received, the enabled ID matching results (up to 4) are OR'd together.

The contents of each specific type ID match register (e.g., Spec_ID1_Match) is compared against
the length/specific type ID of the frame being received (for example, bytes 13 and 14 in non-
VLAN and non-SNAP encapsulated frames) and written into the RxFIFO if a match is found. The
encoded spec ID match bits (word 1, bit [22] and bit [23]) in the receive buffer descriptor status
are set to indicate which specific type ID match register generated the match, if the receive
checksum offload is disabled. The reset state of the specific type ID match registers is zero and is
disabled.

Filtering Example

This example illustrates the use of the specific address and ID match registers for a MAC address
of 21:43:65:87:A9:CB. The sequence in the following table shows the beginning of an RX frame.
The byte order of transmission starts with the preamble, shown at the top of the table.

For a successful match to specific address 1 register, write the destination address.

Note: In this example, the address mask bits are all disabled (reset value).

• Write 8765_4321h to Spec_Addr1_L

• Write 0000_CBA9h to Spec_Addr1_U

For a successful match to the specific type ID1 match register, write the ID and enable the
register:

• Write 8000_4321h to the Spec_ID1_Match register.

Table 143: GEM Address and Type ID Filtering Example

Byte Type Example Value Description
Preamble 55

SFD D5 Start frame delimiter

DA (octet 0, LSB) 21

Destination address

DA (octet 1) 43

DA (octet 2) 65

DA (octet 3) 87

DA (octet 4) A9

DA (octet 5, MSB) CB

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 523Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_id1_match.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_id1_match.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_id1_match.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=523

Table 143: GEM Address and Type ID Filtering Example (cont'd)

Byte Type Example Value Description
SA (octet 0, LSB) xx

Address of transmitting device

SA (octet 1) xx

SA (octet 2) xx

SA (octet 3) xx

SA (octet 4) xx

SA (octet 5, MSB) xx

Specific Type ID (MSB) 43 Type ID match 1

Specific Type ID (LSB) 21

Hash Addressing
The RX hash matching is enabled separately for unicast and multicast frames:

• Enable unicast hash matching. Write a 1 to the Network_Config [unicast_hash_enable] register
bit.

• Enable multicast hash matching. Write a 1 to the Network_Config [multicast_hash_enable]
register bit.

The destination address is reduced to a 6-bit index using the following hash function. The hash
function is an XOR of every sixth bit of the destination address. If the hash_index points to a bit
set in the 64-bit hash address (defined by the hash_top and hash_bottom registers), a match is
detected.

Data bit 00 presents the least significant bit of the first byte (this is the multicast/unicast
indicator). Data bit 47 represents the most significant bit of the last byte.

Table 144: Ethernet Hash Indexes

Hash Index Data Bits Received, da[nn]
0 00 06 12 18 24 30 36 42

1 01 07 13 19 25 31 37 43

2 02 08 14 20 26 32 38 44

3 03 09 15 21 27 33 39 45

4 04 10 16 22 28 34 40 46

5 05 11 17 23 29 35 41 47

If the hash index points to a bit that is set in the hash register, the frame is matched according to
whether the frame is multicast or unicast.

A multicast match is signaled if:

• [multicast_hash_enable] = 1

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 524Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=524

• da[00] = 1

• Hash index points to a bit set in the hash register, hash_top and hash_bottom

A unicast match is signaled if:

• [unicast_hash_enable] = 1

• da[00] = 0

• Hash index points to a bit set in the hash register, hash_top and hash_bottom

To receive all multicast frames:

• Write 1's to the hash register

• Write 1 to [multicast_hash_enable]

Capture All Frames
The MAC receiver can capture all valid frames regardless of the address using the copy all frames
feature The promiscuous mode is enabled when network_config [copy_all_frames] is set = 1. In
this mode, all RX frames are copied into the RXFIFO except for the frames that are:

• Too long (over 1536 bytes)

• Too short (under 64 byes), or

• GMII's RX error (rx_er) signal assert during reception

If the RX frame includes an FCS error, the frame is only captured if the network_config
[ignore_rx_fcs, 26] bit is set = 1.

RX Broadcast Frames
When the MAC receiver detects a broadcast frame (address = 0xFFFF_FFFF_FFFF), the
receiver normally writes the frame to the RX packet buffer.

If network_config [no_broadcast] = 1, the broadcast frame is ignored and not written into the
packet buffer.

VLAN Support
The Ethernet encoded IEEE Std 802.1Q VLAN tag includes:

• 16-bit tag protocol identifier (TPID): 8100h.

• 16-bit tag control information (TCI): first three priority bits, then CFI bit, then 12 VID bits.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 525Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=525

The VLAN tag is inserted at the 13th byte of the frame adding an extra four bytes to the frame
length. To support these extra four bytes, the GEM can accept frame lengths up to 1,536 bytes
by setting the network_config [receive_1536_byte_frames, 8] bit = 1.

If the VLAN identifier (VID) is null (0000h), a priority-tagged frame is indicated.

The following bits in the RX buffer descriptor status Word [1] provide information about VLAN
tagged frames:

• Set bit [21] if the receive frame is VLAN tagged (specific type ID of 0x8100).

• Set bit [20] if receive frame is priority tagged (specific type ID of 0x8100 and null VID). If bits
[20] is set, bit [21] is also set.

• Set bits [19], [18], and [17] to priority if the bit [21] is set.

• Set bit [16] to CFI if bit [21] is set.

The controller can be configured to reject all frames except VLAN tagged frames by setting the
discard non-VLAN frames bit in the network configuration register.

Wake-on-LAN Support
The MAC receiver supports wake-on-LAN (WOL) by detecting these events on incoming RX
frames:

• Magic packets

• Address resolution protocol (ARP) requests to the device IP address

• Specific address 1 filter match

• Multicast hash filter match

The receiver must be enabled by writing a 1 to Network_Control [enable_receive]. These events
can be individually enabled using the gem.wol_register [wol_mask_x] bits.

Also, when WOL is detected, the gem.int_status [wol_interrupt] bit is set by the controller.

IMPORTANT! A receive buffer in the RXFIFO does not have to be available, but the descriptor must be
fetchable from memory when the wake-up event occurs. Alternately, the receive DMA queues can be
disabled by setting the GEM.receive_q_ptr [dma_rx_dis_q] bit = 1.

The wake-up interrupt is asserted for several reasons:

• An RX multicast filter event occurred

• An ARP request is generated

• Specific address 1 match even in the presence of a frame error

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 526Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=526

Magic Packet Events
For magic-packet events, the frame must be correctly formed and error free. A magic-packet
event is detected when all of the following are true.

• Magic-packet events are enabled through bit [16] of the wake-on-LAN register

• RX frame destination address matches the specific address 1 register

• RX frame is correctly formed with no errors

• RX frame contains at least 6 bytes of 0xFF for synchronization

• There are 16 repetitions of the contents of the specific address 1 register immediately
following the synchronization

Address Resolution Protocol
An ARP request event is detected when all of the following are true.

• ARP request events are enabled through bit [17] of the wake-on-LAN register

• Broadcasts are allowed by bit [5] in the network configuration register

• RX frame has a broadcast destination address (bytes 1 to 6)

• RX frame has a specific type ID field of 0x0806 (bytes 13 and 14)

• RX frame has an ARP operation field of 0x0001 (bytes 21 and 22)

• The least significant 16 bits of the frame's ARP target protocol address (bytes 41 and 42)
match the value programmed in bits[15:0] of the wake-on-LAN register

The decoding of the ARP fields adjusts automatically if a VLAN tag is detected within the frame.
The reserved value of 0x0000 for the wake-on-LAN target address value does not cause an ARP
request event, even if matched by the frame.

Specific Address 1 Filter Match
A specific address 1 filter match event occurs when all of the following are true.

• Specific address 1 events are enabled through bit [18] of the wake-on-LAN register

• RX frame destination address matches the value programmed in the specific address 1
registers

Multicast Hash Filter Match
Multicast filter match event occurs when all of the following are true.

• Multicast hash events are enabled through bit [19] of the wake-on-LAN register

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 527Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=527

• Multicast hash filtering is enabled through bit [6] of the network configuration register

• RX frame destination address matches against the multicast hash filter

• RX frame destination address is not a broadcast

Precision Timestamp Unit
The timestamp unit (TSU) supports the IEEE Std 1588 for precision time synchronization in local
area networks. The TSU works with the exchange of special precision time protocol (PTP) frames.
The PTP messages can be transported over IEEE Std 802.3/Ethernet, over Internet Protocol
Version 4, or over Internet Protocol Version 6 as described in the annex of IEEE Std P1588.D2.1.

Note: The TSU clock must be active for the GEM controller to operate regardless of whether the TSU is
used or not; the TSU clock impacts the transmit scheduler.

TSU Clock Sources

There are several sources for the TSU clock as shown in the GEM I/O Block Diagram. When the
TSU clock is sourced from the LPD clock controller, the clock frequency is controlled by the CRL
GEM_TSU_REF_CTRL register, see the Reference Clock Frequency Dividers and System-Level
Registers sections for more information on the TSU clock.

Synchronization of Master and Slave Clocks

The controller detects when the PTP event messages sync, delay_req, pdelay_req, and
pdelay_resp are transmitted and received. Synchronization between master and slave clocks is a
two stage process.

The offset between the master and slave clocks is corrected by the master sending a sync frame
to the slave with a follow-up frame containing the exact time the sync frame was sent. The GEM
controller assist modules on the master and slave side detect exactly when the sync frame was
sent by the master and received by the slave. The slave then corrects its clock to match the
master clock.

The transmission delay between the master and slave is corrected. The slave sends a delay
request frame to the master, which sends a delay response frame in reply. The controller assist
modules on the master and slave side detect exactly when the delay request frame was sent by
the slave and received by the master. The slave then has enough information to adjust its clock
to account for delay.

See the IEEE 1588 v1/v2 or 802.1AS standards for more detailed information on how the slave
software calculates the delay based on this information. When GEM is a PTP slave, its timer can
be adjusted with this delay. See the Timer Adjustment section below.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 528Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem_tsu_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=528

Sync and Delay_Req Messages

For TSU assist, it is necessary to timestamp when sync and delay_req messages are sent and
received. The timestamp is taken when the message timestamp point passes the clock timestamp
point. The message timestamp point is the SFD and the clock timestamp point is the MII. The
MAC samples the TSU timer value synchronous to MAC TX/TX clock domains at the MII/GMII
boundary.

The MAC inserts the timestamp into the transmitted PTP sync frames (if the one step sync
feature is enabled) for capture in the TSU_TIMER_MSB_SEC, TSU_TIMER_NSEC, TSU_TIME_SEC
registers, or to pass to the DMA to insert into TX or RX descriptors. For each of these, the SOF
event, which is captured in the tx_clk and rx_clk domains, respectively, is synchronized to the
tsu_clk domain, and the resulting signal is used to sample the TSU count value. This value is kept
stable for an entire frame, or specifically for at least 64 TX/RX clock cycles, because the
minimum frame size in Ethernet is 64 bytes and worst case is a transfer rate of 1 byte per cycle.
It is used as the source for all the various components within the GEM that require the
timestamp value. The IEEE Std 1588 specification refers to sync and delay_req messages as
event messages, as these require timestamping. Follow up, delay response, and management
messages do not require timestamping and are referred to as general messages.

Peer Delay Request and Response Messages

The IEEE Std 1588 version 2 defines two new PTP event messages that replace the delay
request/response messages. These are the peer delay request (pdelay_Req) and peer delay
response (pdelay_Resp) messages. These messages are used to calculate the delay on a link.
Nodes at both ends of a link send both types of frames (regardless of whether they contain a
master or slave clock). The pdelay_resp message contains the time where a pdelay_req was
received and is itself an event message. The time at which a pdelay_resp message is received is
returned in a pdelay_resp_follow_up message.

PTP Event Message Encapsulation

The controller recognizes four different encapsulations for PTP event messages:

• IEEE Std 1588 version 1 (UDP/IPv4 multicast)

• IEEE Std 1588 version 2 (UDP/IPv4 multicast)

• IEEE Std 1588 version 2 (UDP/IPv6 multicast)

• IEEE Std 1588 version 2 (Ethernet multicast)

Note: Only multicast packets are supported.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 529Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=529

Timer Adjustment

The TSU consists of a timer with seconds + nanoseconds + sub nanoseconds registers, increment
and adjust registers, and these are accessible through the APB programming interface. The initial
value of the timer is written through the tsu_timer_msb_sec, tsu_timer_sec, and tsu_timer_nsec
registers. The amount the timer increments by each clock cycle is set by the tsu_timer_incr and
tsu_timer_incr_sub_nsec registers. The timer can be adjusted by adding or subtracting an integral
number of nanoseconds in a one-off write to the tsu_timer_adjust register. Alternatively, the
tsu_timer_incr and tsu_timer_incr_sub_nsec can also be adjusted to tune a slave’s timer minutely
based on the delay. See the register descriptions for more information.

PTP Event Packet Timestamping

The TSU consists of a timer and registers to capture the time at which PTP event frames cross
the message timestamp point. These are accessible memory-mapped through the APB
programming interface. An interrupt is issued when a capture register is updated.

The MAC provides timestamp registers that capture the departure time (for transmit) or arrival
time (for receive) of PTP event packets (sync and delay request), and peer event packets (peer
delay request or peer delay response). Interrupts are optionally generated upon timestamp
capture.

MAC Pause Frames
The start of an IEEE Std 802.3 pause frame includes:

• Destination address: 0x0180_C200_0001

• Source Address: 6 bytes

• Type (MAC control frame): 0x8808

• Pause opcode: 0x0001

• Pause time: 2 bytes

The controller supports both a hardware controlled pause of the transmitter upon reception of a
pause frame and a hardware generated pause frame transmission.

TIP: See Clause 31, and Annex 31A and 31B of the IEEE Std 802.3 for a full description of pause
operation.

RX Pause Frames
Bit [13] of the network configuration register is the pause enable control for reception. If this bit
is set and a non-zero pause quantum frame is received, transmission pauses.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 530Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=530

If a valid pause frame is received, then the pause time register is updated with the new frame's
pause time regardless of whether a previous pause frame is active. An interrupt (either bit [12] or
bit [13] of the interrupt status register) is triggered when a pause frame is received, but only if
the interrupt is enabled (bit [12] and bit [13] of the interrupt mask register). Pause frames
received with non-zero quantum are indicated through the interrupt bit [12] of the interrupt
status register. Pause frames received with zero quantum are indicated on bit [13] of the
interrupt status register.

When the pause time register is loaded and the frame currently being transmitted is sent, no new
frames are transmitted until the pause time reaches zero. The loading of a new pause time, and
the pausing of transmission, only occurs when the controller is configured for full-duplex
operation. If the controller is configured for half-duplex there is no frame is defined as having a
destination address that matches either the address stored in specific address register 1 or if it
matches the reserved address of 0x0180C2000001. It must also have the MAC control frame
type ID of 0x8808 and have the pause opcode of 0x0001.

Pause frames that have FCS or other errors are treated as invalid and are discarded. IEEE Std
802.3 pause frames that are received after priority-based flow control (PFC) is negotiated are
also discarded. Valid pause frames received increment the pause frames received statistic
register. The pause time register decrements every 512-bit times once transmission has stopped.
For test purposes, the retry test bit can be set (bit [12] in the network configuration register)
which causes the pause time register to decrement every tx_clk cycle when transmission has
stopped.

The interrupt (bit [13] in the interrupt status register) is asserted whenever the pause time
register decrements to zero (assuming it was enabled by bit [13] in the interrupt mask register).
This interrupt is also set when a zero quantum pause frame is received.

PFC Priority-based Pause Frame
TIP: See the IEEE Std 802.1Qbb for a full description of priority-based pause operation.

The controller supports PFC priority-based pause transmission and reception. Before PFC pause
frames can be received, bit [16] of the network control register must be set. The start of a PFC
pause frame includes:

• Destination address: 0x0180C2000001

• Source address: 6 bytes

• Type (MAC control frame): 0x8808

• Pause opcode: 0x0101

• Priority enable vector: 2 bytes

• Pause times: 8 x 2 bytes

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 531Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=531

Pause Frame Reception

The ability to receive and decode priority-based pause frames is enabled by setting bit [16] of the
network control register. When this bit is set, the controller matches either classic IEEE Std 802.3
pause frames or PFC priority-based pause frames. After a priority-based pause frame is received
and matched, the controller only matches on priority-based pause frames (this is an IEEE Std
802.1Qbb requirement, known as PFC negotiation). After a priority-based pause is negotiated,
any received IEEE Std 802.3x format pause frames are not acted upon. The state of PFC
negotiation is identified using the output pfc_negotiate. If a valid priority-based pause frame is
received, then the controller decodes the frame and determines which, if any, of the eight
priorities are require to be paused. Up to eight pause time registers are then updated with the
eight pause times extracted from the frame, regardless of whether a previous pause operation is
active or not. When a pause frame is received, an interrupt is triggered in the APB_Misc_ISR
register (bits [12] or [13]), but only if the interrupt is enabled in the APB_Misc_IMR mask register
when the pause frame is receive.

Pause frames received with non-zero quantum are indicated through the ISR interrupt bit [12].
Pause frames received with zero quanta are indicated on ISR bit [13]. The state of the eight
pause time counters are indicated through the outputs rx_pfc_paused. These outputs remain
High for the duration of the pause time quanta. The loading of a new pause time only occurs
when the controller is configured for full-duplex operation.

If the controller is configured for half-duplex operation, the pause time counters are not loaded,
but the pause frame received interrupt is still triggered. A valid pause frame is defined as having a
destination address that matches either the address stored in specific address register 1 or if it
matches the reserved address of 0x0180C2000001. It must also have the MAC control frame
type ID of 0x8808 and have the pause opcode of 0x0101.

Pause frames that have FCS or other errors are treated as invalid and are discarded. Valid pause
frames received increment the pause frames received statistic register.

The pause time registers decrement every 512-bit times immediately following the PFC frame
reception. For test purposes, the retry test bit can be set (Network_Config register bit [12]).

After transmission, a pause frame transmitted interrupt is generated (ISR bit [14]) and the only
statistics register that is incremented is the pause frames transmitted register.

PFC pause frames can also be transmitted by the MAC using normal frame transmission
methods.

Disable Copy of Pause Frames
Receive pause frames are not captured in the RX buffer if network_config
[disable_copy_of_pause_frames, 23] is set = 1.

This setting overrides these conditions:

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 532Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___apb_misc_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=532

• [copy_all_frames] bit = 1

• Hash match is true, specific type ID match is true, destination address match is true

Checksum Hardware
The controller can be programmed to perform IP, TCP, and UDP checksum offloading in both
receive and transmit directions, enabled by setting bit [24] in the network configuration register
for receive, and bit [11] in the DMA configuration register for transmit.

IPv4 packets contain a 16-bit checksum field, which is the 16-bit 1's complement of the 1's
complement sum of all 16-bit words in the header. TCP and UDP packets contain a 16-bit
checksum field, which is the 16-bit 1's complement of the 1's complement sum of all 16-bit
words in the header, the data, and a conceptual IP pseudo header.

Calculating these checksums in software requires each byte of the packet to be processed.

For TCP and UDP a large amount of processing power can deter the process. Offloading the
checksum calculation to the GEM controller can result in significant performance improvements.

For IP, TCP, or UDP checksum offload to be useful, the operating system containing the protocol
stack must be aware that this offload is available for the GEM controller to either generate or
verify the checksum.

IMPORTANT! Checksum offload is not possible when partial store and forward is enabled.

Note: To enable the controller, compute the proper checksum needed by the system software to ensure
that the checksum fields are initialized to 0.

RX Checksum Offload
When receive checksum offloading is enabled, the IPv4 header checksum is checked per the IETF
Std RFC 791, where the packet meets the following criteria.

• If present, the VLAN header must be four octets long and the CFI bit must not be set

• Encapsulation must be IETF Std RFC 894 Ethernet type encoding or IETF Std RFC 1042 SNAP
encoding

• It is a IPv4 packet

• IP header is of a valid length

The controller also checks the TCP checksum per IETF Std RFC 793, or the UDP checksum per
IETF Std RFC 768, if the following criteria are met.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 533Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=533

• A IPv4 or IPv6 packet

• Good IP header checksum (if IPv4)

• No IP fragmentation

• A TCP or UDP packet

When an IP, TCP, or UDP frame is received, the receive buffer descriptor provides an indication if
the controller was able to verify the checksums. There is also an indication if the frame had LLC
SNAP encapsulation. These indication bits replace the specific type ID match indication bits
when receive checksum offload is enabled.

If any of the checksums are verified to be incorrect by the controller, the packet is discarded and
the appropriate statistics counter is incremented.

TX Checksum Offload
The transmitter checksum offload is only available when the full store and forward mode is
enabled. This is because the complete frame to be transmitted must be read into the packet
buffer memory before the checksum can be calculated and written back into the headers at the
beginning of the frame.

Transmitter checksum offload is enabled by setting bit [11] in the DMA configuration register.
When enabled, it monitors the frame as it is written into the transmitter packet buffer memory to
automatically detect the protocol of the frame. Protocol support is identical to the receiver
checksum offload.

For transmit checksum generation and substitution to occur, the protocol of the frame must be
recognized and the frame must be provided without the FCS field, by ensuring that bit [16] of the
transmit descriptor word [1] is clear. If the frame data already had the FCS field, it would be
corrupted by the substitution of the new checksum fields.

If these conditions are met, the transmit checksum offload engine calculates the IP, TCP, and
UDP checksums as appropriate. When the full packet is completely written into packet buffer
memory, the checksums are valid and the relevant status buffer locations are updated for the
new checksum fields as per standard IP/TCP and UDP packet structures.

If the transmitter checksum engine is prevented from generating the relevant checksums, bits
[22:20] of the transmitter DMA writeback status are updated to identify the reason for the error.
The frame is still transmitted, but without the checksum substitution. Typically the reason that
the substitution does not occur is that the protocol is not recognized.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 534Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=534

Register Reference
The GEM registers are divided into these groups:

• Control and Status (from GEM register set)

• Statistics (from GEM register set)

• System-Level Registers (from CRL and LPD_IOP_SLCR register sets)

• AXI Transaction Control

Control and Status
The GEM control registers are summarized in the following table.

Table 145: GEM Control and Status Registers

Register Name Access
Type Description

Controller and MAC Configuration

Network_Control
Network_Config
Network_Status

RW
RW
R

Network control for RX and TX MACs
Network configuration for MACs
Network status for PHY management MDIO, priority flow
control, LPI, and AXI

Pause_Time R Received pause quantum register

Tx_Pause_Quantum RW Transmit pause quantum register

PHY Management

PHY_Manage RW PHY maintenance

DMA and Buffer Descriptor Control

DMA_Config
Tx_Status
Tx_Q_Ptr
Tx_Q1_Ptr
Rx_Status
Rx_Q_Ptr
Rx_Q1_Ptr
DMA_Addr_Mask

RW
WTC
RW
RW

WTC
RW
R

RW

DMA configuration
TX path status
TX buffer data start address
TX buffer descriptor list address
RX path status
RX buffer data start address
RX buffer descriptor list address
RX DMA data buffer address mask

Interrupts

APB_Misc_ISR
APB_Misc_IER APB_Misc_IDR,
APB_Misc_IMR

WTC
W
R

Interrupt status, enable/disable, and mask

Miscellaneous

PBuf_Tx_CutThru, PBuf_Rx_CutThru RW
Partial store and forward is only applicable when using the DMA
configured in the SRAM-based packet buffer mode. It is not
available when using multi-buffer frames.
RX partial store and forward.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 535Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___network_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___pause_time.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_pause_quantum.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___phy_manage.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___dma_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_q_ptr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_q1_ptr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_q_ptr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_q1_ptr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___dma_addr_mask.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___apb_misc_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___apb_misc_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___apb_misc_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___apb_misc_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___pbuf_tx_cutthru.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___pbuf_rx_cutthru.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=535

Table 145: GEM Control and Status Registers (cont'd)

Register Name Access
Type Description

Jumbo_Max_Length RW Maximum jumbo frame size

Ext_FIFO_Interface RW Enable external FIFO interface

AXI_Pipeline RW AXI maximum pipeline

RSC_Control RW Used to enable receive side coalescing on queues 1-15

Intr_Moderation
Sys_WakeTime
Fatal_Intr_Select

RW
TX and RX moderation control
Pause transmission after wake
Fatal, non-fatal interrupt select

Lockup_Config
Lockup_Config3
RxMAC_Lockup_Time

RW
Lock-up detection and recovery configuration
DMA TX lock-up enable control
Receive MAC lock-up detection time

Rx_Watermark RW RXFIFO watermark levels for pause frames

Hash_L, Hash_U RW Hash register lower 31:0
Hash register upper 63:32

Address Filtering and ID Match

Spec_Addr1_L{1:4}
Spec_Addr1_U{1:4}
Mask_Addr1_L
Mask_Addr1_U
Spec_ID1_Match {1:4}

RW

Specific address lower 31:0
Specific address upper 47:32
Specific address mask bottom 31:0
Specific address mask top 47:32
Specific type ID match

Wake_On_Lan RW Wake on LAN

Stretch_Ratio RW Inter-packet gap stretch

Stacked_VLAN RW User defined VLAN, stacked

Tx_PFC_Pause RW Transmit PFC pause

Rx_PTP_Unicast
Tx_PTP_Unicast
TSU_Compare_nS
TSU_Compare_Sec_L
TSU_Compare_Sec_U

RW Timestamp control

TSU_PTP_Tx_Sec_U
TSU_PTP_Rx_Sec_U
TSU_Peer_Tx_Sec_U
TSU_Peer_Rx_Sec_U

R Timestamp status

Timestamp Unit, Precision Time Protocol

TSU_Timer_NSec
TSU_Adjust
TSU_Increment

RW IEEE Std 1588: second, nanosecond counter and adjustment,
increment

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 536Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___jumbo_max_length.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___ext_fifo_interface.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___axi_pipeline.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rsc_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___intr_moderation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___sys_waketime.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___fatal_intr_select.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___lockup_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___lockup_config3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxmac_lockup_time.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___hash_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_addr1_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___mask_addr1_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___mask_addr1_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___spec_id1_match.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___wake_on_lan.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___stretch_ratio.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___stacked_vlan.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_pfc_pause.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_ptp_unicast.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_ptp_unicast.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_compare_ns.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_compare_sec_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_compare_sec_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_ptp_tx_sec_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_ptp_rx_sec_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_peer_tx_sec_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_peer_rx_sec_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_timer_nsec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_adjust.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_increment.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=536

Table 145: GEM Control and Status Registers (cont'd)

Register Name Access
Type Description

TSU_Timer_SubnSec_L
tsu_timer_msb_sec
TSU_Timer_Sec
TSU_Strobe_Sec_U
TSU_Strobe_Sec_L
TSU_Strobe_nSec1

RW
RW
R
R
R

Timestamp timer control and strobe value

TSU_PTP_Tx_Sec
TSU_PTP_Tx_nSec
TSU_PTP_Rx_Sec
TSU_PTP_Rx_nSec
TSU_Peer_Tx_Sec
TSU_Peer_Tx_nSec
GEM.TSU_Peer_Rx_Sec
TSU_Peer_Rx_nSec

R IEEE Std 1588: TX and RX normal/peer second, nanosecond
counter

Low-Power Idle Control

RxLPI_Count
RxLPI_AccTime,
TxLPI_Count
TxLPI_AccTime

R
R
R
R

Transaction count and time

Design Configuration

IP_Config1 R Design configuration registers 1 to 12

Miscellaneous

CBS_Control
CBS_IdleQueue_A
CBS_IdleQueue_B

RW Credit-based shaping control

TxBuffer_Addr_U,
RxBuffer_Addr_U RW Descriptor queue base address

Tx_BD_Control
Rx_BD_Control RW Timestamp insertion mode

ScreenType1_reg0, ScreenType1_reg1
ScreenType1_reg2, ScreenType1_reg3,
ScreenType2_reg0, ScreenType2_reg1,
ScreenType2_reg2, ScreenType2_reg3

RW Screen 1 and 2 control

Tx_Sched_Ctrl
BW_Rate_Limit
TxQueue_SegAlloc

RW TX queue scheduling mode, bandwidth weighing, and space
allocation

Queue_ISR,
Queue_IER, Queue_IDR,
Queue_IMR

WTC
W
R

Queue 1 status and interrupt enable, disable, mask

ScreenType2_Enet_reg0,
ScreenType2_Enet_reg1,
ScreenType2_Enet_reg2,
ScreenType2_Enet_reg3

RW
RW Screen type 2 Ethernet type compare registers

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 537Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_timer_subnsec_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_timer_msb_sec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_timer_sec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_strobe_sec_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_strobe_sec_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_strobe_nsec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_ptp_tx_sec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_ptp_tx_nsec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_ptp_rx_sec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_ptp_rx_nsec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_peer_tx_sec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_peer_tx_nsec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tsu_peer_rx_nsec.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxlpi_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxlpi_acctime.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txlpi_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txlpi_acctime.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___ip_config1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___cbs_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___cbs_idlequeue_a.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___cbs_idlequeue_b.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txbuffer_addr_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxbuffer_addr_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_bd_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_bd_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype1_reg0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype1_reg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype1_reg2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype1_reg3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_reg0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_reg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_reg2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_reg3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___tx_sched_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___bw_rate_limit.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txqueue_segalloc.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___queue_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___queue_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___queue_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___queue_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_enet_reg0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_enet_reg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_enet_reg2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_enet_reg3.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=537

Table 145: GEM Control and Status Registers (cont'd)

Register Name Access
Type Description

ScreenComp0_wd0, ScreenComp0_wd1
ScreenComp1_wd0, ScreenComp1_wd1
ScreenComp2_wd0, ScreenComp2_wd1
ScreenComp3_wd0, ScreenComp3_wd1

RW Four screen type 2 compare functions (words 0 and 1)

EnST_StartTime_Q0, EnST_StartTime_Q1,
EnST_OnTime_Q0, EnST_OnTime_Q1,
EnST_OffTime_Q0, EnST_OffTime_Q1,
EnST_Control

RW Queue start, open, and close times, and enable, disable

Extended Stream Identification Functions

FRER_Timeout, FRER_RedTag
FRER_Control_1A, FRER_Control_1B,
FRER_Stats_1A, FRER_Stats_1B
Etc., for control/status 1 to 16

RW Timeout, control, and statistics

RxQueue0_Flush,
RxQueue1_Flush RW Queue flush

ScreenType2_RateLimit_reg0
ScreenType2_RateLimit_reg1 RW Maximum rate limit for screen 2

Notes:
1. The timer sync strobe registers are loaded with the value of the timer when the input signal

emio_enet{0:3}_tsu_inc_ctrl[1:0] = 00b. However, the timer sync strobe registers are updated only when
emio_enet{0:3}_tsu_inc_ctrl signal toggles between 11b and 00b.

Statistics
The statistics registers hold counts for various types of events associated with transmit and
receive operations. These registers, along with the status words stored in the receive buffer list,
enable software to generate network management statistics compatible with IEEE Std 802.3.
These registers are listed in the following table.

Table 146: GEM Statistics Registers

Register Name Offset Address Access
Type Description

TxFrame_Octet_L, TxFrame_Octet_U,
TxFrames_Count,
TxFrames_Broadcast_Count
TxFrames_Multicast_Count
TxFrames_Pause_Count
TxFrames_64B_Count, TxFrames_65B_Count
TxFrames_128B_Count, TxFrames_256B_Count
TxFrames_512B_Count, TxFrames_1024B_Count
TxFrames_1518B_Count

0x100, 0x104
0x108
0x10C
0x110
0x114
0x118, 0x11C
0x120, 0x124
0x128, 0x12C
0x130

R TX frames statistics

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 538Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp0_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp0_wd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp1_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp1_wd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp2_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp2_wd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp3_wd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screencomp3_wd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_starttime_q0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_starttime_q1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_ontime_q0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_ontime_q1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_offtime_q0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_offtime_q1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___enst_control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___frer_timeout.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___frer_redtag.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___frer_control_1a.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___frer_control_1b.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___frer_stats_1a.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___frer_stats_1b.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxqueue0_flush.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxqueue1_flush.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_ratelimit_reg0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___screentype2_ratelimit_reg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframe_octet_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframe_octet_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_broadcast_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_multicast_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_pause_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_64b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_65b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_128b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_256b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_512b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_1024b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_1518b_count.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=538

Table 146: GEM Statistics Registers (cont'd)

Register Name Offset Address Access
Type Description

TxFrames_Underrun_Count
Single_Collisions_Count,
Excessive_Collisions_Count,
Late_Collisions_Count

0x134
0x138
0x140
0x144

R TX statistics

Rx_Octet_Count_L, Rx_Octet_Count_U
RxFrames_Count,
RxFrames_Broadcast_Count
RxFrames_Multicast_Count,
RxFrames_Pause_Count,
RxFrames_64B_Count, RxFrames_65B_Count,
RxFrames_128B_Count, RxFrames_256B_Count,
RxFrames_512B_Count, RxFrames_1024B_Count
RxFrames_1519B_Count

0x150, 0x154
0x158
0x15C
0x160
0x164
0x168, 0x16C
0x170, 0x174
0x178, 0x17C
0x180

R RX frame statistics

RxFrames_Undersize_Count
RxFrames_Oversize_Count,
RxJabber_Count
RxFCS_Err_Count,RxLength_Err_Count,
RxSymbol_Err_Count,
RxAlignment_Err_Count
RxResource_Err_Count

0x184
0x188
0x18C
0x190, 0x194, 0x198
0x19C
0x1A0

R RX statistics

RxOverrun_Err_Count, RxHeader_Err_Count,
RxTCP_Checksum_Err_Count
RxUDP_Checksum_Err_Count,
RxDMA_Flush_Cnt

0x1A4, 0x1A8
0x1AC
0x1B0
0x1B4

R RX statistics

System-Level Registers
The controller includes registers from multiple system-level register sets:

• CRL to generate clocks and resets

• LPD_IOP_SLCR to control the routing for clocks

• PMC_IOP_SLCR to control the routing for clocks

Note: The GEM_TSU_CLK clock must be active whenever the GEM is used. If the timestamp unit is not
used, it still must be actively clocked.

Table 147: GEM System-Level Registers

Register Set Register Name Bit Field Description
Controller Clocks

CRL GEM0_REF_CTRL
GEM1_REF_CTRL

[SRC_SEL]
[DIVISOR]
[CLKACT]
[CLKACT_TX]
[CLKACT_RX]

Clock dividers to generate controller reference
clock; independent dividers for each controller.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 539Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___txframes_underrun_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___single_collisions_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___excessive_collisions_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___late_collisions_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_octet_count_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rx_octet_count_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_broadcast_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_multicast_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_pause_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_64b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_65b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_128b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_256b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_512b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_1024b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_1519b_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_undersize_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxframes_oversize_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxjabber_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxfcs_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxlength_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxsymbol_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxalignment_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxresource_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxoverrun_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxheader_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxtcp_checksum_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxudp_checksum_err_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=gem___rxdma_flush_cnt.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem1_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=539

Table 147: GEM System-Level Registers (cont'd)

Register Set Register Name Bit Field Description

LPD_IOP_SLCR GEM_Clk_Ctrl
[GEMx_REF_SRC_SEL] GEM ref clock source: clock divider or EMIO

[GEMx_RX_SRC_SEL] RX I/O clock select: MIO or EMIO.

TSU Clock

CRL GEM_TSU_REF_CTRL
[SRC_SEL]
[DIVISOR]
[CLKACT]

TSU reference clock. This clock is common to both
controllers.

LPD_IOP_SLCR GEM_Clk_Ctrl
[TSU_CLK_SEL] TSU clock select: reference clock or MIO pin (PMC

or LPD).

[TSU_CLK_LB_SEL] TSU clock loopback select: PS or PL.

TSU Clock Routing

PMC_IOP_SLCR MIO_PIN_50
MIO_PIN_51

[L0_SEL] Select routing through the MIO or, as default
EMIO.

LPD_IOP_SLCR

MIO_PIN_24
MIO_PIN_25

LPD_MIO_Sel [GEM0RGMII_SEL]
[GEM1RGMII_SEL] Select I/O between the PMC or LPD MIO.

GEM_Clk_Ctrl [GEM0_FIFO_CLK_SEL]
[GEM1_FIFO_CLK_SEL]

TX clock select for GMII/MII: normal clock or TX
clock loopback from PL.

Controller Resets

CRL RST_GEM0
RST_GEM1 [RESET] Controller reset: High to assert and hold the reset

signal.

AXI Host Transaction Attributes

LPD_IOP_SLCR

GEM0_Route
GEM1_Route

[GEM0]
[GEM1]

Select between direct access to memory or to FPD
SMMU and CCI

GEM0_Coherent
GEM1_Coherent

[GEM0_AXI_COH]
[GEM1_AXI_COH]

Define cache attributes for access via FPD SMMU
and CCI

GEM0_QoS
GEM1_QoS

[GEM0_QOS]
[GEM1_QOS]

Define quality of service attributes; typically best
effort (BE) is used

AXI Transaction Control
The AXI transactions generated by the DMA master can be configured for bufferability and
coherency.

Table 148: GEM AXI Transaction Control Registers

LPD Register Name Offset
Address

Access
Type Description

Coherency

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 540Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem_tsu_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_50.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_51.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_24.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_25.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_gem0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_gem1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_qos.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_qos.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=540

Table 148: GEM AXI Transaction Control Registers (cont'd)

LPD Register Name Offset
Address

Access
Type Description

GEM0_Coherent
GEM1_Coherent

0x0324
0x0344 RW Select cache coherency policy.

Routing

GEM0_Route
GEM1_Route

0x0328
0x0348 RW Enable transaction to be routed to CCI.

QoS

GEM0_QoS
GEM1_QoS

0x032C
0x034C RW Select QoS bit values

I/O Signal Reference
The GEM controller has several I/O interfaces and routing options:

• MIO - RGMII on PMC or LPD MIO pins

• EMIO - GMII/MII port interface signals

• MDIO PHY Interface on LPD MIO or PL EMIO

• Timestamp Unit Interface on LPD MIO or PL EMIO or LPD clock controller

MIO - RGMII
The RGMII signals are listed in the following table.

Table 149: GEM Controller RGMII Interface Signals

MIO

Signal Name I/O PMC MIO LPD MIO MIO-at-a-Glance
Table

GEM0_TX_CLK Output 26 0 0

GEM0_TXD[0:3] Output 27:30 1:4 1:4

GEM0_TX_CTRL Output 31 5 5

GEM0_RX_CLK Input 32 6 6

GEM0_RXD[0:3] Input 33:36 7:10 7:10

GEM0_RX_CTRL Input 37 11 11

GEM1_TX_CLK Output 38 12 0

GEM1_TXD[0:3] Output 39:42 13:16 1:4

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 541Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem0_qos.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___gem1_qos.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=541

Table 149: GEM Controller RGMII Interface Signals (cont'd)

MIO

Signal Name I/O PMC MIO LPD MIO MIO-at-a-Glance
Table

GEM1_TX_CTRL Output 43 17 5

GEM1_RX_CLK Input 44 18 6

GEM1_RXD[0:3] Input 45:48 19:22 7:10

GEM1_RX_CTRL Input 49 23 11

EMIO - GMII/MII
The I/O interface to the PL provides design flexibility for the interface protocol. The GMII/MII
signals on the EMIO interface to the PL can be used to implement interface standards on the PL
pins. This is shown in Block Diagram.

MDIO PHY Interface
The MDIO signals are available on the MIO pins or the EMIO port interface signals.

Table 150: GEM Controller MDIO Signals

MIO EMIO

Signal Name I/O
PMC MIO

Pin
LPD MIO

Pin
MIO-at-a-

Glance
Table

Signal Name I/O
A B C D

GEM0_MDIO_CLK
GEM1_MDIO_CLK Output 50 ~ 24 ~ 0 Output

GEM0_MDIO_DATA
GEM1_MDIO_DATA I/O 51 ~ 25 ~ 1 I/O

Timestamp Unit Interface
The timestamp unit (TSU) clock signal can be sourced from the LPD clock controller, an MIO pin,
or a EMIO port interface signal. The TSU clock is programmed using the registers listed in
System-Level Registers. There is one clock shared by both GEM controllers.

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 542Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=542

Table 151: GEM Timestamp Unit Interface

MIO EMIO

Signal Name I/O
PMC MIO Pin LPD MIO Pin MIO-at-a-

Glance Table
Signal
Name I/O

A B C D
GEM_TSU_CLK Input 50 51 24 25 0

COUNTER Output

~CTRL0 Input

CTRL1 Input

Section XII: I/O Peripheral Controllers
Chapter 64: Gigabit Ethernet MAC

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 543Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=543

Chapter 65

GPIO Controller
Two Controllers, Multiple Banks

The general purpose I/O (GPIO) is a collection of input/output signals available to software
applications. Each GPIO channel is independently and dynamically programmed as input, output,
or interrupt sensing mode.

Software applications can read all GPIO values within a bank using a single load instruction.
Software can write data to one or more GPIOs using a single store instruction on a half-bank
boundary. The channel architecture is shown in the Channel Block Diagram.

The two GPIO controllers have the same functionality. There are a total of 174 channels in two
controllers:

• PMC GPIO controller:

○ Two banks (26 channels each) to PMC MIO

○ Two banks (32 channels each) to PL EMIO

• LPD GPIO controller:

○ One bank (26 channels) to LPD MIO

○ One bank (32 channels) to PL EMIO

The GPIO channels are programmed via an APB slave programming interface; the Registers
section summarizes them.

The Input Programming Model section shows how to configure a GPIO as an input. The model
describes an input can generate a system interrupt.

The GPIO can be an output as described in the Output Programming Model chapter.

The I/O signal MIO muxing and EMIO port signals are listed in the GPIO I/O Signals section.

Features
Each GPIO channel can be dynamically programmed on an individual or bank basis.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 544Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=544

• Enable, bit or bank data write, output enable and direction controls

○ Enable 3-state output

○ Write output logic level

○ Direction control

• Programmable interrupts on individual GPIO basis

○ Raw status read and masked interrupt

○ Selectable sensitivity: Level-sensitive (High or Low) or edge-sensitive (rising, falling, or
both)

• Two methods to write output logic levels:

○ Full-bank write using the DATA_x registers

○ Maskable-bit write on half-bank basis using the MASK_DATA_x_{LWS, MWS} registers

• Simultaneous output switching is possible with one register write

• Input logic levels are read one bank at a time using the DATA_RO_x registers

Comparison to Previous Generation Xilinx Devices
The functionality of the GPIO controller is similar to previous devices. Both devices have the
same number of GPIO channels.

Zynq UltraScale+ MPSoC

In the Zynq® UltraScale+™ MPSoC, there is one controller with three MIO banks and three EMIO
banks.

• LPD GPIO controller with six banks

○ Three 26-channel banks to MIO (78 channels, total)

○ Three 32-channel banks to EMIO (96 channels, total)

Versal ACAP

In the Versal™ ACAP, there are two GPIO controllers.

• PMC GPIO controller with four banks

○ Two 26-channel banks to MIO (52 channels)

○ Two 32-channel banks to EMIO (64 channels)

• LPD GPIO controller with two banks

○ One 26-channel bank to MIO

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 545Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=545

○ One 32-channel bank to EMIO

There are also differences in the MIO buffer control registers. For more information, see the
GPIO programming model in Input Buffer Control Registers section.

System Perspective
The GPIO controllers are addressed as 32-bit slaves. One controller is connected to the PMC
APB switch. The other controller is attached to the LPD APB switch. The controller is clocked by
its APB interface clock. Each controller can generate an IRQ system interrupt signal.

The high-level block diagram is shown below. The I/O interface is described in GPIO I/O Signals
section.

Block Diagram
The MIO and EMIO banks for the two controllers are shown in the following figure. Not all banks
within a controller are implemented.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 546Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=546

Figure 93: High-level Block Diagram

Bank 0

PMC GPIO Controller

MIO Pins
0 to 25

Bank 1

Bank 3 EMIO to PL

Bank 0

LPD GPIO Controller

MIO Pins
0 to 25

Bank 3

26 channels

26 channels

32 channels

26 channels

Bank 4 EMIO to PL32 channels

PMC MIO Bank 0

PMC MIO Bank 1

LPD MIO Bank (PS)

PMC_GPIO_RST

PMC_GPIO_IRQ #154

LPD_LSBUS_CLK

LPD_GPIO_RST

APB interface from
PMC IOP Switch S

APB interface from
LPD IOP Switch S

PMC_LSBUS_CLK

LPD_GPIO_IRQ #45
EMIO to PL32 channels

PMC
PL
LPD

Power Domains

MIO Pins
26 to 51

X23483-042420

System Interface
The controller is programmed with a 32-bit APB slave programming interface.

System Signals
Resets

The controllers are reset by the following register bits:

• PMC_GPIO_RST is controlled by CRP RST_GPIO [RESET].

• LPD_GPIO_RST is controlled by the CRL RST_GPIO [RESET].

Clocks

The controllers are clocked by their APB interface clock using the following registers:

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 547Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_gpio.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_gpio.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=547

• PMC_LSBUS_CLK is controlled by CRP PMC_LSBUS_REF_CTRL

• LPD_LSBUS_CLK is controlled by CRL LPD_LSBUS_CTRL

Interrupts

Each controller accumulates an OR of all interrupt configured channels. If a input interrupt
channel detects an event, the signal is routed to the mask register and OR'd with others to
potentially assert a system interrupt signal. The system interrupt is routed to multiple
destinations. The signals are listed in the IRQ System Interrupts table and several several
interrupt controllers listed in the System Interrupt Controllers section. The system IRQ number
for each controller:

• LPD_GPIO IRQ#45

• PMC_GPIO IRQ#154

Errors

The controller detects APB address decode errors. When there is an access violation, the
controller can optionally generate a SLVERR response to the master and/or generate a system
error. There is no other event that can generate a system error.

I/O Interface
Each controller has multiple banks of GPIO channels routed to their local MIO multiplexers or to
their PL EMIO. There are three signals from each GPIO channel: input, output, and output
enable.

The functionality of a channel is programmed by the GPIO Registers section.

The PMC and LPD SLCR registers configure the MIO PSIO buffer. This includes input and output
characteristics, and tristate control. The SLCR registers can override the signaling from the GPIO
controller.

The port interface signals to the PL EMIO consist of an input, output, and output enable for each
channel.

MIO Banks

Each MIO bank:

• 26 channels, 26 pins

• Configurable IO buffer characteristics, routing (SLCR registers)

• Separate IO power rail

• Aligned with a GPIO bank

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 548Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmc_lsbus_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___lpd_lsbus_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=548

EMIO Banks

Each EMIO bank:

• 32 channels, 96 signals (input, output, enable)

• Aligned with a GPIO bank

The signals are listed in the GPIO I/O Signals section.

Programming Model
The GPIO controller includes a memory-mapped APB programming interface for software:

• Mode and status

• Output control

• Input state

• Interrupt configuration

The functionality of the registers is described in the GPIO Register Descriptions section.

Channel Block Diagram
The functionality of a GPIO channel is illustrated in the following figure.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 549Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=549

Figure 94: GPIO Channel Block Diagram

INT_MASK_x

INT_DIS_x

INT_EN_x

INT_STAT_x

INT_TYPE

INT_POLARITY

INT_ANY

DATA_RO

DATA

MASK_DATA_LSW

MASK_DATA_MSW

DIRM

OEN

Interrupt
Detection

Logic

Interrupt
State

Read

Clr
D Q

MIO/EMIO

IRQ # System
Interrupt

Write-1-to-clear

Input, Interrupt Input

Output

Output Enable

MIO
Device Pin

MIO Device I/O
Buffers and Pins

PL

Registers

EMIO
PMC MIO
LPD MIO

X22680-052220

Input Programming Model
In input mode, the pin voltage level is passed through a meta-stability protection circuit and
translated to a logic level. The pin logic level is readable using the DATA_RO registers or the
INT_STAT register.

In the latter case, the direction control must be set to 0 for the input from the I/O pad to be
passed through to the register. There are two APB address locations allocated to the pin: A read
only location for the dedicated path and a read/write location for the registered path. The pin
value can be read from either location in the input mode. The two paths produce different values
in the output mode with inactive output enable.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 550Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=550

Interrupt Programming Model
The interrupt detection logic monitors the GPIO input signal. The interrupt trigger can be a
positive edge, negative edge, either edge, Low-level or High-level. The trigger sensitivity is
programmed using the INT_TYPE, INT_POLARITY and INT_ANY registers.

If an interrupt is detected, the GPIO's INT_STAT state is set true by the interrupt detection logic.
If the INT_STAT state is enabled (unmasked), then the interrupt propagates through to a large OR
function. This function combines all interrupts for all GPIOs in all four banks to one output (IRQ
ID#52) to the interrupt controller. If the interrupt is disabled (masked), then the INT_STAT state
is maintained until cleared, but it does not propagate to the interrupt controller unless the
INT_EN is later written to disable the mask. As all GPIOs share the same interrupt, software must
consider both INT_MASK and INT_STAT to determine which GPIO is causing an interrupt.

The interrupt mask state is controlled by writing a 1 to the INT_EN and INT_DIS registers.
Writing a 1 to the INT_EN register disables the mask allowing an active interrupt to propagate to
the interrupt controller. Writing a 1 to the INT_DIS register enables the mask. The state of the
interrupt mask can be read using the INT_MASK register.

If the GPIO interrupt is edge sensitive, the INT state is latched by the detection logic. The INT
latch is cleared by writing a 1 to the INT_STAT register. For level-sensitive interrupts, the source
of the interrupt input to the GPIO must be cleared to clear the interrupt signal. Alternatively,
software can mask that input using the INT_DIS register.

The state of the interrupt signal going to the interrupt controller can be inferred by reading the
INT_STAT and INT_MASK registers. This interrupt signal is asserted if INT_STAT=1 and
INT_MASK=0.

GPIO bank control is summarized as follows:

• INT_MASK: This register is read-only and shows which bits are currently masked and which
are un-masked/enabled.

• INT_EN: Writing a 1 to any bit of this register enables/unmasks that signal for interrupts.
Reading from this register returns an unpredictable value.

• INT_DIS: Writing a 1 to any bit of this register masks that signal for interrupts. Reading from
this register returns an unpredictable value.

• INT_STAT: This registers shows if an interrupt event has occurred or not. Writing a 1 to a bit
in this register clears the interrupt status for that bit. Writing a 0 to a bit in this register is
ignored.

• INT_TYPE: This register controls whether the interrupt is edge sensitive or level sensitive.

• INT_POLARITY: This register controls whether the interrupt is active-Low or active High (or
falling-edge sensitive or rising-edge sensitive).

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 551Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=551

• INT_ON_ANY: If INT_TYPE is set to edge sensitive, then this register enables an interrupt
event on both rising and falling edges. This register is ignored if INT_TYPE is set to level
sensitive.

Table 152: GPIO Interrupt Trigger Settings

Type gpio.INT_TYPE_x gpio.INT_POLARITY_x gpio.INT_ANY_x
Rising edge-sensitive 1 1 0

Falling edge-sensitive 1 0 0

Both rising and falling edge-
sensitive 1 1 1

Level sensitive, asserted
High 0 x x

Level sensitive, asserted Low 0 1 x

Note: Register writes must be 32 bits.

Output Programming Model
In output mode, the output is driven by a register bit setting. The direction control and the
output enable must both be set = 1 for the register setting to appear as an output on the MIO
pin.

The direction control can be used to disable the input logic level from being recorded in the data
read only (DATA_n_RO) register.

The output enable can be used to control whether an output value is driven on the pin. The
actual I/O pad direction is the logical combination of both these signals. The output enable value
is ignored when the direction mode is set to input.

Registers
The two GPIO controllers have different registers sets: PMC_GPIO and LPD_GPIO. There are a
total of 174 channels.

• PMC GPIO controller

○ Registers 0, 1 control 52 MIO pins for 52 channels

○ Registers 3, 4 connect to 192 EMIO signals to 64 channels

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 552Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=552

• LPD GPIO controller

○ Register 0 controls 26 MIO pins for 26 channels

○ Register 3 connects to 96 EMIO signals for 32 channels

The register base address for each controller:

• PMC GPIO 0xF102_0000

• LPD GPIO 0xFF0B_0000

Table 153: GPIO Register Overview

PMC GPIO Controller PMC GPIO Controller

Access Type
PMC_GPIO Register Set Address

Offset

PMC_GPIO
Register Set

Address
Offset

Data Read and Write

MASK_DATA_0_LSW (0, 1, 3, 4)
MASK_DATA_0_MSW (0, 1, 3, 4)

0x000 ...
0x004 ...

MASK_DATA_0_LSW (0, 3)
MASK_DATA_0_MSW (0 ,3)

0x000, 0x018
0x004, 0x01C R/W, W

DATA_0 (0, 1, 3, 4) 0x040 ... DATA_0 (0, 3) 0x040, 0x04C R/W

DATA_0_RO (0, 1, 3, 4) 0x060 ... DATA_0_RO (0, 3) 0x060, 0x06C R

I/O Buffer Control

DIRM_0 (0, 1, 3, 4) 0x204 ... DIRM_0 (0, 3) 0x204, 0x2C4 R/W

OEN_0 (0, 1, 3, 4) 0x208 ... OEN_0 (0, 3) 0x208, 0x2C8 R/W

Interrupt Control

INT_MASK_0 (0, 1, 3, 4) 0x20C ... INT_MASK_0 (0, 3) 0x20C, 0x2CC R

INT_EN_0 (0, 1, 3, 4) 0x210 ... INT_EN_0 (0, 3) 0x210, 0x2D0 W

INT_DIS_0 (0, 1, 3, 4) 0x214 ... INT_DIS_0 (0, 3) 0x214, 0x2D4 W

INT_STAT_0 (0, 1, 3, 4) 0x218 ... INT_STAT_0 (0, 3) 0x218, 0x2D8 W1C

INT_TYPE_0 (0, 1, 3, 4) 0x21C … INT_TYPE_0 (0, 3) 0x21C, 0x2DC R/W

INT_POLARITY_0 (0, 1, 3, 4) 0x220 ... INT_POLARITY_0 (0, 3) 0x220, 0x2E0 R/W

INT_ANY_0 (0, 1, 3, 4) 0x224 ... INT_ANY_0 (0, 3) 0x224, 0x2E4 R/W

GPIO Register Descriptions
Data Read and Write

• DATA_RO, write-only:

For MIOs, this register always returns the state of the GPIO MIO pin. If the GPIO is configured
as an output, this normally reflects the value being driven on the output regardless of the
DIRM_x setting.

Note: If the MIO is not configured for this pin as a GPIO, the DATA_RO returns unpredictable results.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 553Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___mask_data_0_lsw.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___mask_data_0_msw.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___mask_data_0_lsw.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___mask_data_0_msw.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___data_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___data_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___data_0_ro.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___data_0_ro.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___dirm_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___dirm_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___oen_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___oen_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_mask_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_mask_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_en_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_en_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_dis_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_dis_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_stat_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_stat_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_type_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_type_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_polarity_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_polarity_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_gpio___int_any_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_gpio___int_any_0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=553

• DATA, read-write:

This register controls the value to be output when the GPIO signal is configured as an output.
All 32 bits of this register are written at one time. Reading from this register returns the
previous value written to either DATA or MASK_DATA_{LSW,MSW}, and does not return the
current value on the device pin.

• MASK_DATA_LSW:

This register enables more selective changes to the desired output value. Any combination of
up to 16 bits can be written. Those bits that are not written are unchanged and hold their
previous value. Reading from this register returns the previous value written to either DATA or
MASK_DATA_{LSW,MSW}; it does not return the current value on the device pin. This register
avoids the need for a read-modify-write sequence for unchanged bits.

• MASK_DATA_MSW:

This register is the same as MASK_DATA_LSW, except it controls the upper 16 channels of
the bank.

I/O Buffer Control

Software configures each GPIO as either an input, output, or interrupt input.

• DIRM

Direction mode controls whether the I/O pin is acting as an input or an output. Because the
input logic is always enabled, this effectively controls the output driver. When DIRM = 0, the
output driver is disabled.

• OEN

When the I/O is configured as an output, the OEN controls whether the output is enabled
(OEN = 1) or in tristate (OEN = 1).

Note: There are overriding tristate control registers in the PMC_IOP_SLCR and LPD_IOP_SLCR register
sets. If a bit in the MIO_MST_TRIn register is set = 1, the output buffer is put in a tristate mode
regardless of the state of the OEN signal state from the GPIO controller.

Interrupt Control

There are several interrupt control registers.

• INT_MASK masks the latched INT_STAT value. To generate an interrupt:

○ INT_MASK must = 0 (enable interrupt)

○ INT_STAT must = 1 (active interrupt)

• INT_EN is write-only. Write 1 to enable the interrupt; sets the INT_MASK bit = 0.

• INT_DIS is write-only. Write 1 to disable the interrupt; set the INT_MASK bit = 1.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 554Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=554

• INT_STAT indicates if an interrupt event occurred, latched before INT_MASK.

• INT_TYPE is programmed by software to set level (0) or edge (1) sensitivity.

• INT_POLARITY selects between active-Low/falling (0) and active-High/rising (1) sensitivity.

• INT_ANY selects single edge sensitivity defined by INT_POLARITY (0) or either edge event
(1).

GPIO I/O Signals
There are two types of GPIO banks:

• MIO pins

• PL EMIO port signals

Each I/O pin can be individually programmed. For example, the PMC MIO pin 0 is controlled by
the PMC MIO_PIN_0 register.

Each GPIO channel consists of data in, data out, and 3-state output control. For MIO, these
signals control the I/O buffer on the pin pad. For PL EMIO, all three signals connect between the
GPIO controller and the PL. The I/O buffer parameters are programmed on a per bank basis.

The LPD GPIO controller attaches to the LPD MIO.

Table 154: GPIO MIO Signals

MIO Pin Signals

GPIO Bank Signal Name I/O PMC MUX
Pin

PS MUX
Pin MIO-at-a-Glance

PMC Bank 0 PMC_GPIO[0:25] I/O 0:25 ~ 0:25

PMC Bank 1 PMC_GPIO[26:51] I/O 26:51 ~ 26:51

LPD Bank 0 LPD_GPIO[0:25] I/O ~ 0:25 0:25

Table 155: GPIO PL EMIO Signals

EMIO Port Signals
GPIO Bank Signal Name I/O

PMC Bank 3 [0:31]

Input_x I

Output_x O

Output_En_x O

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 555Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=555

Table 155: GPIO PL EMIO Signals (cont'd)

EMIO Port Signals
GPIO Bank Signal Name I/O

PMC Bank 4 [0:31]

Input_x I

Output_x O

Output_En_x O

LPD Bank 3 [0:31]

Input_x I

Output_x O

Output_En_x O

Assigned MIO Signals
Software Allocated Signals

The PMC_GPIO [12] channel is assigned to the reset for the OSPI flash memory device.

EMIO Signals
For each GPIO channel, there are three signals routed to the PL: input, output, and output
enable.

The register interface for the EMIO banks is the same as for the MIO banks. However, the EMIO
interface is simply wires between the PS and the PL, so there are a few differences:

• The inputs are wires from the PL and are unrelated to the output values or the OEN register.
They can be read from the DATA_RO register when DIRM is set to 0, making it an input.

• The output wires are not 3-state capable, so they are unaffected by OEN. The value to be
output is programmed using the DATA, MASK_DATA_LSW, and MASK_DATA_MSW registers.
DIRM must be set to 1, making it an output.

• The output enable wires are simply outputs from the PS. These are controlled by the
DIRM/OEN registers as follows: EMIOGPIOTN[x] = DIRM[x] & OEN[x].

The EMIO I/Os are not connected to the MIO I/Os in any way. The EMIO inputs cannot be
connected to the MIO outputs and the MIO inputs cannot be connected to the EMIO outputs.
Each bank is independent and can only be used as software observable/controllable signals.

Section XII: I/O Peripheral Controllers
Chapter 65: GPIO Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 556Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=556

Chapter 66

I2C Controller
The I2C controllers can function as a master or a slave in a multi-master design. They can operate
over a clock frequency range up to 400 kb/s. The controller supports multi-master mode for 7-bit
and extended 10-bit addressing. The controllers are compatible with the Inter-integrated Circuit
(IIC) specification.

In master mode, a transfer can only be initiated by software writing the slave address into the
address register. The software is notified of any available received data by a data interrupt or a
transfer complete interrupt. If the hold bit is set, the I/O interface holds the clock signal (SCL)
Low until after the data is transmitted to support slow software response. The master can be
programmed to use both normal addressing and extended addressing. The extended addressing
is only supported in master mode.

In slave monitor mode, the controller is set up as a master and continues to attempt a transfer to
a particular slave until the slave device responds with an ACK or until the timeout occurs.

The controller supports repeated start functionality. After the start condition, the master can
generate a repeated start. This is equivalent to a normal start and is usually followed by the slave
I2C address.

A common feature between master mode and slave mode is the timeout interrupt flag bit. If at
any point the SCL clock signal is held Low by the master or the accessed slave for more than the
period specified in the timeout register, the timeout interrupt bit is set. This can generate an
interrupt to the software to avoid stall conditions.

In slave mode, the controller responds to the external master device. A slave cannot initiate a
transfer over the I2C bus, only a master can initiate transfers. Both master and slave can transfer
data over the I2C bus, but that transfer is always controlled by the master.

There are multiple instances of the I2C controller. They are all similar in functionality.

• LPD_I2C0 in PS

• LPD_I2C1 in PS

• PMC_I2C in PMC

Note: There is also an I2C controller that is dedicated to the system monitor. This is described in the Versal
ACAP System Monitor Architecture Manual (AM006). The I/O interface for the SYSMON_I2C controller can
be accessed via the PMC or LPD MIO pins, or via EMIO interface.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 557Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=557

Features
The features of the I2C controllers include the following:

• Programmable bus data rates

○ Normal

○ Fast

• 16-byte FIFO

• Master mode

○ Transmit and receive with 8 or 10-bit addressing

○ Clock stretching by allowing hold for slow processor service

○ [TO] interrupt flag to avoid stall condition

○ Repeated start

○ Slave monitor mode

• Slave mode

○ Transmit and receive with 7-bit addressing

○ Fully programmable slave response address

○ [HOLD] bit helps to prevent the overflow condition

○ [TO] interrupt flag to avoid stall condition

○ Clock stretching helps to delay communication if data is not readily available

• Software driven controller

○ Status polling

○ Interrupt driven with programmability

Comparison to Previous Generation Xilinx Devices
The I2C controllers are similar to the controller in the Zynq® UltraScale+™ MPSoCs with the
addition of the following:

• Data_hold_control register is added to extend the SDA output hold time

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 558Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=558

System Perspective
Block Diagram
The three instances of I2C in the PMC and PS are shown in the following figure.

Figure 95: I2C System Block Diagram

I/O
Interface
Controller

IRQ# 155

Clocking

PMC/LPD MIO
Multiplexers

SDA, SCL

SDA
SCL

PL
EMIO

Device
Boundary

Pins
PMC_LSBUS_CLK

PMC_I2C_REF_CLK

PMC_I2C_RST

IRQ# 46, 47

LPD_LSBUS_CLK

LPD_I2Cx_REF_CLK

LPD_I2Cx_RST

PMC switch LPD switch

PMC I2C LPD I2C 0,1

APB
Interface

TX Data
Port

RX Data
Port

Control and Status
Registers

X23501-063020

System Interface
The I2C controller has a single 32-bit APB slave programming interface.

APB Programming Interface

The programming interface provides access to the configuration, control, and status registers, as
well as data ports for the RX and TX message buffers.

• LPD controllers are attached to the LPD IOP slave switch

• PMC controller is attached to the PMC IOP slave switch

An overview of the controller registers is shown in the Register Reference section.

APB Interface Clock

The APB interface clock is used by the control and status registers, and the glitch filter.

• PMC_LSBUS_CLK

• LPD_LSBUS_CLK (both controllers)

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 559Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=559

System Signals

Clocks

Each controller receives its own reference clock and the APB programming interface clock.

The clock programming is described in the Configure Clocks section.

Resets

The controller has one reset state that is entered when the device is locally reset by the
SW_Reset register, or by a software reset that includes the LPD, or a POR reset.

The reset control is described in the Reset Controller:

System Interrupt

Each I2C controller generates a system interrupt based events and programming of the I2C
interrupt mask register. The IRQ number are shown in Block Diagram. These IRQ numbers are
included in the device-level IRQ System Interrupts table. The I2C interrupt programming is
described in the Interrupts section.

I/O Interface

The options for routing the I2C two wire I/O interface include the LPD MIO pins, the PMC MIO
pins, and the PL EMIO. The options are shown in I2C I/O Interface section and in the device-
level MIO-at-a-Glance table.

Programming Model
The following sections describe how to program and use the I2C controller.

Programming Interface

The I2C controllers includes a simple memory-mapped APB programming interface for software:

• Control and status registers

• Transmit data register port

• Receive data register port

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 560Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=560

Reset Controller
The following register bits can be used to reset a I2C controller.

• LPD I2C0 reset is controlled by the CRL RST_LPD_I2C0 register

• LPD I2C1 reset is controlled by the CRL RST_LPD_I2C1 register

• PMC I2C reset is controlled by the PMC RST_I2C register

The [RESET] bits must be toggled by software:

• 0: Run mode

• 1: Reset state

Configure I/O Signals
The SCL and SDA signals can be routed to one of many sets of MIO pins or to the PL EMIO port
signal interface by default.

The signal for each MIO pin is routed using SLCR registers:

• MIO_PIN_0 through MIO_PIN_51

• MIO_PIN_0 through MIO_PIN_25

The IOP_SLCR.LPD_MIO_SEL [CANx] register bit selects between the PMC and LPD MIO pin
multiplexers.

If a MIO PIN register does not map an I2C I/O pin, then the signal is available as an EMIO port
interface signal. The SLCR registers also configure the MIO pin buffer input and output
characteristics. The I2C I/O signals are listed in I2C I/O Interface.

Configure Clocks
Clocks are generated by the PMC and LPD clock controllers. The clock generators are described
in System Perspective.

The I2C controller receives two clocks.

APB Programming Interface Clock

The APB programming interface is driven by the low-speed interconnect clock. Each register
includes the three fields [SRCSEL], [DIVISOR], and [CLKACT].

Control registers:

• PMC_I2C: PMC_LSBUS_CLK

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 561Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_lpd_i2c0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_lpd_i2c1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_i2c.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=561

• LPD_I2C{0, 1}: LPD_LSBUS_CLK

Reference Clock

The reference clock is used for the controller logic, registers, and memories. It is also an input to
the baud rate generator. Each I2C controller has its own reference clock that comes from the
PMC or LPD clock generator. Each register includes the three fields [SRCSEL], [DIVISOR], and
[CLKACT].

Clock control registers:

• PMC_I2C_REF_CLK controlled by the CRP I2C_REF_CTRL register

• LPD_I2C0_REF_CLK controlled by the CRL I2C0_REF_CTRL register

• LPD_I2C1_REF_CLK controlled by the CRL I2C1_REF_CTRL register

Interrupts
The Interrupt Status register (LPD_I2C.ISR) bits are sticky and masked by the Interrupt Mask
register, LPD_I2C.IMR. Non-masked interrupts are OR'd together to generate a system interrupt.

• LPD_I2C0 = IRQ#46

• LPD_I2C1 = IRQ#47

• PMC_I2C = IRQ#155

Transfer Complete

The COMP interrupt bit functionality depends on the interface mode and the interface activity.

Master Mode

In master write, this bit is always set when all the supplied data is successfully written to the
slave and the transfer is about to be terminated with a stop sequence. If the HOLD bit is set, the
COMP bit is also set as soon as the data is successfully written to the slave, but the transfer is
not terminated at this point. This allows for combined transfers to be performed even when FIFO
is implemented. If the host clears the HOLD bit instead of continuing the transfer, the COMP bit
is set again during the stop sequence generation.

In master read, this bit is set when all the requested data has been successfully read from a slave
and the transfer is to be terminated with a stop sequence.

If FIFO is implemented and hold bit is set, COMP bit is also set as soon as all data is successfully
received from the slave, but transfer is not terminated at this point. This allows for combined
transfers to be performed even when FIFO is implemented. If the host clears the HOLD bit
instead of continuing the transfer, COMP bit is set again during the stop sequence generation.

Slave Mode

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 562Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___i2c_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___i2c0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___i2c1_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=562

In slave receive, this bit is set whenever the master terminates the transfer by generating a stop
sequence. In slave transmit, this bit is set whenever all the data supplied by the host is
transmitted and the last byte is not acknowledged by the master, which terminates the transfer
with a stop sequence.

More Data

The DATA interrupt bit functionality depends on the direction of the data flow.

Master Write or Slave Transmitter

This bit is set whenever there are only two bytes left in the FIFO.

In slave transmitter mode, this bit is also set if the FIFO is emptied but the I2C master returned
ACK on the last byte transmitted by the slave.

Master Read or Slave Receiver

This bit is set whenever there are only two free locations in the FIFO.

Transfer not Acknowledged

The function of the NACK interrupt bit is dependent on the interface mode.

Master Mode

This bit is set whenever the accessed slave responds with a NACK during address or data byte
transfer.

Slave Mode

This bit is set if the controller is in slave transmitter mode when a master terminates the transfer
before all data supplied by the host is transmitted.

Timeout

Master of Slave Mode

The TO interrupt bit is set whenever the I2C_SCL clock signal is kept low for longer time than the
value that is specified by the LPD_I2C.Timeout register.

Monitor Slave Ready

These conditions are needed to set the SLV_RDY interrupt bit:

• Interface is in master mode

• The Control CSLVMON bit is set = 1

• The addressed slave returns an ACK

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 563Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=563

FIFO Receive Overflow

The RX_OVF interrupt bit applies to Master Read or Slave Receiver.

This bit is set whenever the FIFO is full and a new byte is received. The new byte is not
acknowledged and contents of the FIFO remains unchanged.

FIFO Transmit Overflow

The TX_OVF interrupt bit is set when software attempts to write to the I2C Data register more
times than the FIFO depth.

FIFO Receive Underflow

The RX_UNF interrupt bit is set when software attempts to read from the I2C Data register more
times than the value of the Transfer Size register plus one.

Arbitration Lost

The ARB_LOST interrupt bit is set if the master loses bus ownership during a transfer due to
ongoing arbitration.

Initiate Data Transfers
Transfers are achieved in polled mode or interrupt-driven mode. The limitation on data count
while performing a master read transfer is 255 bytes. The next sections show examples of read
and write transfer in master mode and an example in slave monitor mode.

Master Read Using Polled Method

1. Set the transfer direction as read and clear the FIFOs. Write 41h to the Control register.

2. Clear the interrupts. Read and write back the read value of the IRS status register.

3. Write the read data count to the transfer size register and hold bus, if required. Write the
read data count value to the Transfer_Size register. If the read data count is greater than the
FIFO depth, set Control [HOLD] = 1.

4. Write the slave address. Write the address to the Address register.

5. Wait for data to be received into the FIFO. Poll on Status [RXDV] = 1.

a. If Status [RXDV] = 0, and any of the following interrupts are set: Interrupt_Status [NACK],
Interrupt_Status [ARB_LOST], Interrupt_Status [RX_OVF], or Interrupt_Status [RX_UNF],
then stop the transfer and report the error, otherwise continue to poll on the Status
[RXDV].

b. If Status [RXDV] = 1, and if any of the following interrupts are set: Interrupt_Status
[NACK], Interrupt_Status [ARB_LOST], Interrupt_Status [RX_OVF], or Interrupt_Status
[RX_UNF], then stop the transfer and report the error. Otherwise, go to step 6.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 564Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=564

6. Read the data and update the count. Read the data from the FIFO until Status [RXDV] = 1.
Decrement the read data count and if it is less than or equal to the FIFO depth, clear the
Control [HOLD] register.

7. Check for the completion of transfer. If the total read count reaches zero, poll on
Interrupt_Status [COMP] = 1. Otherwise, continue from step 5.

Master Read Using Interrupt Method

1. Set the direction of the transfer as read and clear the FIFOs. Write 41h to the Control
register.

2. Clear the interrupts. Read and write back the read value to the Interrupt_Status register.

3. Enable the timeout, NACK, RX overflow, arbitration lost, DATA, and completion interrupts.
Write 22Fh to the I2C.IER register.

4. Write the read data count to the transfer size register and hold bus, if required. Write the
read data count value to the Transfer_Size register. If the read data count is greater than the
FIFO depth, set the Control [HOLD] register bit.

5. Write the slave address. Write the address to the Address register.

6. Wait for data to be received into the FIFO.

a. If the read data count is greater than the FIFO depth, wait for ISR [DATA] bit = 1. Read 14
bytes from the FIFO. Decrement the read data count by 14 and if it is less than or equal
to the FIFO depth, clear the Control [HOLD] register bit.

b. Otherwise, wait for ISR [COMP] bit = 1 and read the data from the FIFO based on the
read data count.

7. Check for the completion of the transfer. Check if the read count reaches zero. Otherwise,
repeat from step 6.

Master Write Using Interrupt Method

1. Set the direction of transfer as write and clear the FIFOs. Write 40h to the Control register.

2. Clear the interrupts. Read and write back the read value to the ISR status register.

3. Enable the timeout, NACK, TX overflow, arbitration lost, DATA, and completion interrupts.
Write 24Fh to the IER interrupt enable register.

4. Enable the bus hold logic. Set Control [HOLD] bit if the write data count is greater than the
FIFO depth.

5. Calculate the space available in the FIFO. Subtract the Transfer_Size register value from the
FIFO depth.

6. Fill the data into the FIFO. Write the data to the Data register based on the count obtained in
step 5.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 565Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=565

7. Fill the data into the FIFO. Write the data to the Data register based on the count obtained in
step 5.

8. Wait for the data to be sent. Check that the ISR [COMP] bit is set.

a. If writing further data, repeat steps 5, 6, and 8.

b. If there is no further data, set Control [HOLD] bit = 0.

9. Wait for the completion of transfer. Check that the ISR [COMP] register bit is set = 1.

Slave Monitor Mode

The slave monitor mode helps to monitor when the slave is in the busy state. The slave ready
interrupt occurs only when the slave is not busy. This process can only be performed in master
mode.

1. Select slave monitor mode and clear the FIFOs. Write 60h to the Control register.

2. Clear the interrupts. Read and write back the read value to the ISR status register.

3. Enable the interrupts. Set the IER [SLV_RDY] bit = 1.

4. Set the slave monitor delay. Write Fh to the Slave_Mon_Pause register.

5. Write the slave address. Write the address to the Address register.

6. Wait for the slave to be ready. Poll on ISR [SLV_RDY] status register bit until = 1.

Programming Sequences
The flow diagram for the I2C controller programming sequence is shown in the following two
figures.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 566Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=566

Figure 96: I2C Master Interrupt Example Flowchart

I2C MasterIntr

Initialize device
· reset (see I2C Reset)
· get_options

(see I2C Get Options)

Perform self test
(see I2C Self-Test)

Setup GIC interrupt system with I2C
master interrupt handler

(see GIC)

Set SCLK (100000)
(see I2C Set SCLK)

Fill the send buffer with random data

All bytes
transferred?

Wait until bus free
(see I2C Check Bus is Busy)

A

End

A

Send data on bus
(see I2C Master Send)

Wait until ISR indicates all
data bytes are transferred

Wait until bus free
(see I2C Check Bus is Busy)

Receive data from slave
(see I2C Master Receive)

Wait until ISR indicates all data bytes
are received

Verify data
Yes

No

X23505-110619

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 567Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=567

Figure 97: I2C Slave Polled Example Flowchart

I2C Polled Slave

Initialize device:
 Reset (see I2C Reset section)
 get_options (see I2C Get Options section)

Perform self test (see I2C Self-Test section)

Set up slave with address
(see I2C Setup Slave section)

Set SCLK (100000)
(see I2C Set SCLK section)

Fill the send buffer with random data

Send the buffer
(see I2C Slave Send Polled section)

Wait until the bus is free
(see I2C Check Bus is Busy section)

Receive the buffer
(see I2C Slave Receive Polled section)

A

A

Verify data

End

X23506-110619

Software Routines
Reset
Table 156: I2C Reset

Task Register Register Field Bits Operation
Abort Start

Save interrupt mask
register

IMR, 0x20 All 9:0 Read operation

Disable all interrupts IDR, 0x28 All 9:0 Write 2FFh

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 568Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=568

Table 156: I2C Reset (cont'd)

Task Register Register Field Bits Operation
Reset configuration
and clear FIFOs

Control, 0x00 All 15:0 Write 40h

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Restore interrupt state IER, 0x24 All 9:0 0x2FF and ~IMR

Abort End

Reset configuration Control, 0x00 All 15:0 Write 0h

Reset time out Time_Out, 0x1C All 7:0 Write FFh

Disable all interrupts IDR, 0x28 All 9:0 Write 2FFh

Get Options
Table 157: I2C Get Options

Task Register Register Field Bits Operation
Read control register Control, 0x00 All 15:0 Read operation

Check Bus is Busy
Table 158: I2C Check Bus is Busy

Task Register Register Field Bits Operation
Read bus active state Status, 0x04 BA 8 Read operation

If set bus is busy, else bus is free.

Transmit FIFO Fill
Table 159: I2C Transmit FIFO Fill

Task Register Register Field Bits Operation
Read transfer size
register

Transfer_Size, 0x14 Transfer_Size 7:0 Read operation

Calculate available bytes = FIFO DEPTH(16) – Transfer_Size.

Fill data register with the data until available bytes count is reached. See Send Byte.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 569Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=569

Send Byte
Table 160: I2C Send Byte

Task Register Register Field Bits Operation
Write byte into data
register

Data, 0x0C DATA 7:0 Write data

Reset Hardware
Table 161: I2C Reset Hardware

Task Register Register Field Bits Operation
Disable all interrupts IDR, 0x28 All 9:0 2FFh

Clear Interrupt Status

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Clear hold, master enable, and acknowledge bits.

Read control register Control, 0x00 All 15:0 Read operation

Clear bits Control, 0x00 CLR_FIFO, HOLD,
ACK_EN, MS

6, 4, 3, and 1 (~(0x0015) | 0x0040)
(hex)

Reset time out Time_Out, 0x1C All 7:0 FFh

Clear transfer size
register

Transfer_Size, 0x14 Transfer_Size 7:0 Write 00h

Clear status register

Read status register ISR, 0x04 All 8:0 Read operation

Write back status
register

ISR, 0x04 All 8:0 Read value

Reset configuration
register

Control, 0x00 All 15:0 Write 0000h

Setup Master
Table 162: I2C Setup Master

Task Register Register Field Bits Operation
Read control register Control, 0x00 All 15:0 Read operation

If [HOLD] is set = 1, then check if bus is busy (see Check Bus is Busy). If bus is busy, return.

Setup master Control, 0x00 CLR_FIFO, HOLD,
ACK_EN, NEA, MS

6, 4, 3, 2,

and 1 5Eh

For Receiver Role

Enable master receiver Control, 0x00 RW 0 1

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 570Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=570

Table 162: I2C Setup Master (cont'd)

Task Register Register Field Bits Operation
For Transmitter Role

Enable master
transmitter

Control, 0x00 RW 0 0

Disable all interrupts IDR, 0x28 All 9:0 2FFh

Master Send
Table 163: I2C Master Send

Task Register Register Field Bits Operation
Set repeated start if data is more than FIFO depth

Set hold bit Control, 0x00 HOLD 4 1

Setup master for transmitter role (see Setup Master).

Transmit FIFO full (see Transmit FIFO Fill).

Program transfer
address

Address, 0x08 ADD 9:00 Address

Enable interrupts IER, 0x24 ARB_LOST, NACK,
COMP

9, 2, and 0 205h

Master Receive
Table 164: I2C Master Receive

Task Register Register Field Bits Operation
Set repeated start if data is more than FIFO depth.

Set hold bit Control, 0x00 HOLD 4 1

Setup master for receiver role (see Setup Master).

Program transfer
address

Address, 0x08 ADD 9:00 Write address

Setup transfer size Transfer_Size, 0x14 Transfer_Size 7:00 Required transfer size

Enable interrupts IER, 0x24 ARB_LOST, RX_OVF,
NACK, COMP

9, 5, 2, and 1

0 227h

Master Send Polled
Table 165: I2C Master Send Polled

Task Register Register Field Bits Operation
Set repeated start if data is more than FIFO depth.

Set hold bit Control, 0x00 HOLD 4 1

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 571Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=571

Table 165: I2C Master Send Polled (cont'd)

Task Register Register Field Bits Operation
Setup master for transmitter role (see Setup Master).

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Transmit first FIFO full of data (see Transmit FIFO Fill).

Program transfer
address

Address, 0x08 ADD 9:0 Address

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Perform the following steps as long as no errors are reported by hardware from the status register read and total bytes
are sent.

Read status register Status, 0x04 All 8:0 Read operation

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Transmit first FIFO full of data (see Transmit FIFO Fill).

Check for transfer completion

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

If any error reported by hardware transfer failed.

Clear hold bit if not
repeated start
operation

Control, 0x00 HOLD 4 0

Master Receive Polled
Table 166: I2C Master Receive Polled

Task Register Register Field Bits Operation
Set repeated start if data is more than FIFO depth.

Set hold bit Control, 0x00 HOLD 4 1

Setup master for receiver role (see Setup Master).

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clears bits detected as
set

Transfer address Address, 0x08 ADD 9:0 Address

Program transfer size Transfer_Size, 0x14 Transfer_Size 7:0 Required transfer size

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Start Loop 1: perform the following steps as long as receiving bytes and no errors reported from hardware.

Read status register Status, 0x04 All 8:0 Read operation

Start Loop 2: perform the following steps as long as RXDV bit is non zero in SR.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 572Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=572

Table 166: I2C Master Receive Polled (cont'd)

Task Register Register Field Bits Operation
Clear repeat start if
receive byte count is
less than 14

Control, 0x00 HOLD 4 0

Receive byte Data, 0x0C DATA 7:0 Read operation

Read status register Status, 0x04 All 8:0 Read operation

End Loop 2

If receive byte count is >0 and bytes still need to be received.

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clears bits detected as
set

If receive byte count >
maximum transfer
size, then program
transfer size

Transfer_Size, 0x14 Transfer_Size 7:0 Maximum transfer size

Else program with
required transfer size

Transfer_Size, 0x14 Transfer_Size 7:0 Required transfer size

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

End Loop 1

Clear hold bit if not
repeated start
operation

Control, 0x00 HOLD 4 0

If any error reported by hardware transfer failed else transfer success.

Enable Slave Monitor
Table 167: I2C Enable Slave Monitor

Task Register Register Field Bits Operation
Clear transfer size
register

Transfer_Size, 0x14 Transfer_Size 7:0 0

Enable slave monitor
mode

Control, 0x00 MS | NEA| CLR_FIFO |
SLVMON

15:0 0066h

Enable slave monitor
interrupt

IER, 0x24 SLV_RDY 4 1

Initialize slave monitor
register

Slave_Mon_Pause,
0x18

Pause 3:0 Fh

Program transfer
address

Address, 0x08 ADD 9:0 Address

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 573Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=573

Disable Slave Monitor
Table 168: I2C Disable Slave Monitor

Task Register Register Field Bits Operation
Disable slave monitor
mode

Control, 0x00 SLVMON 5 0

Disable slave monitor
interrupt

IER, 0x24 SLV_RDY 4 0

Master Send Data
Table 169: I2C Master Send Data

Task Register Register Field Bits Operation
Transmit first FIFO full of data (see Transmit FIFO Fill).

Set repeated start bit if
requested

Control, 0x00 HOLD 4 1

Master Interrupt Handler
Table 170: I2C Master Interrupt Handler

Task Register Register Field Bits Operation
Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt status
register

ISR, 0x10 All 9:0 Clear bits detected as
set

Get the enabled interrupts IMR, 0x20 All 9:0 Read operation

ISR & IMR

Check if hold bit is set
(isHold)

Control, 0x00 HOLD 4 Read operation

If send operation && (ISR & [COMP])

Send data (see Master Send Data).

If receive operation && (ISR & [COMP]) || (ISR & [DATA).

Perform the following operations until receive data valid mask is set (loop-1 started).

Read status register Status, 0x04 All 8:0 Read operation

Clear hold bit if not needed Control, 0x00 HOLD 4 0

Receive byte Data, 0x0C DATA 7:0 Read operation

Loop-1 Ended

If receive byte count is >0 and bytes still need to be received.

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 574Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=574

Table 170: I2C Master Interrupt Handler (cont'd)

Task Register Register Field Bits Operation
Write back interrupt status
register

ISR, 0x10 All 9:0 Clear bits detected as
set

If receive byte count >
maximum transfer size then
setup transfer size

Transfer_Size,
0x14

Transfer_Size 7:0 Maximum transfer size

Else program with required
transfer size

Transfer_Size,
0x14

Transfer_Size 7:0 Required transfer size

Enable interrupts IER, 0x24 ARB_LOST, RX_OVF,
NACK, DATA, COMP

9, 5, 2, 1 and 0 227h

Clear hold bit if all
interrupts attended

Control, 0x00 HOLD 4 0

Clear hold bit if slave ready
interrupt is triggered

Control, 0x00 HOLD 4 0

Clear hold bit if any other
interrupts occurred (event
errors)

Control, 0x00 HOLD 4 0

Setup Slave
Table 171: I2C Setup Slave

Task Register Register Field Bits Operation
Clear ack_en, nea,
FIFO, and set master
in slave mode

CONTROL, 0x00 CLR_FIFO, ACK_EN,
NEA, MS

6, 3, 2, and 1 2Ch

Disable all interrupts IDR All 9:0 2FFh

Transfer address ADDR, 0x08 ADD 9:0 Address

Slave Send
Table 172: I2C Slave Send

Task Register Register Field Bits Operation
Enable interrupts IER, 0x24 TX_OVF, TO, NACK,

DATA, COMP
6, 3, 2, 1, and 0 4Fh

Slave Receive
Table 173: I2C Slave Receive

Task Register Register Field Bits Operation
Enable interrupts IER, 0x24 RX_UNF, RX_OVF, TO,

NACK, DATA, COMP
7, 5, 3, 2, 1, and 0 AFh

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 575Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=575

Slave Send Polled
Table 174: I2C Slave Send Polled

Task Register Register Field Bits Operation
Use RXRW bit in status register to wait master to start a read.

Read status register Status, 0x04 All 8:0 Read operation

Check the RXRW bit is set by reading status register continuously. If master tries to send data, it is an error.

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Send data as long as there is more data to send and there are no errors (see Send Byte).

Read status register Status, 0x04 All 8:0 Read operation

Wait for master to read the data out of the TX FIFO; [SR] & [TXDV] != 0 and there are no errors.

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

If master terminates the transfer before all data is sent, it is an error (interrupt status register and NACK).

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Slave Receive Polled
Table 175: I2C Slave Receive Polled

Task Register Register Field Bits Operation
Read status register Status, 0x04 All 8:0 Read operation

Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Read status register Status, 0x04 All 8:0 Read operation

Write back status
register

Status, 0x04 All 8:0 Write status

Read status register Status, 0x04 All 8:0 Read operation

Perform the following operations until all bytes received (Loop-1 started).

Perform the following operations as long as SR and RXDV = 0 (Loop-2 started).

Read status register Status, 0x04 All 8:0 Read operation

If (status register and (DATA | COMP) != 0) && (status register and RXDV ==0) && receive byte count >0) then it is a failure.

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Loop-2 ended

Perform the following operations until status register and RXDV!= 0 and receive byte count!=0 (Loop-3 started).

Receive byte Data, 0x0C DATA 7:0 Read operation

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 576Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=576

Table 175: I2C Slave Receive Polled (cont'd)

Task Register Register Field Bits Operation
Read status register Status, 0x04 All 8:0 Read operation

Loop-3 ended

Loop-1 ended

Receive Data
Table 176: I2C Receive Data

Task Register Register Field Bits Operation
Read status register Status, 0x04 All 8:0 Read operation

Until (status register and RXDV) && receive byte count !=0 (Loop -1 started).

Receive byte Data, 0x0C DATA 7:0 Read operation

Read status register Status, 0x04 All 8:0 Read operation

Loop-1 ended

Slave Interrupt Handler
Table 177: I2C Slave Interrupt Handler

Task Register Register Field Bits Operation
Read interrupt status
register

ISR, 0x10 All 9:0 Read operation

Write the status back to clear the interrupts so no events are missed while processing this interrupt.

Write back interrupt
status register

ISR, 0x10 All 9:0 Clear bits detected as
set

Get the enabled
interrupts (imr)

IMR, 0x20 All 9:0 Read operation

Use the mask register AND with the interrupt status register so disabled interrupts are not processed (~(imr) and
IntrStatusReg).
Data interrupt (if interrupt status register and data):
• Master wants to perform more data transfers.
• Check for completion of transfer; signal upper layer if done.
For sending transmit FIFO fill (see Transmit FIFO Fill).
Else receive slave data (see Slave Receive).

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 577Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=577

Set and Clear Options
Table 178: I2C Set and Clear Options

Task Control Register
Field (offset 0x00) Bits Set Option Clear Option

For 7-bit address
option

NEA 2 1 0

For 10-bit address
option

NEA 2 0 1

Slave monitor option SLVMON 5 1 0

For repeated start
option

HOLD 4 1 0

Set SCLK Frequency
Table 179: I2C Set SCLK Frequency

Task Register Register Field Bits Operation

Test for an active
transfer; read the
transfer size register

Transfer_Size, 0x14 Transfer_Size 7:0 Read operation

If the Transfer_Size register is not = 0, then stop here. If the device is currently transferring data,
the transfer must complete or be aborted before setting options.

Program the clock
divisor values

Control, 0x00 divisor_a
divisor_b

15:14
13:8 Write operation

I2C_SCLK frequency = I2C_REF_CLK frequency / (22 x (Div_a + 1) x (Div_b + 1)).

Get SCLK Frequency
I2C_SCLK frequency = I2C_REF_CLK frequency / (22 x (Div_a + 1) x (Div_b + 1)).

Table 180: I2C Get SCLK Frequency

Task Register Register Field Bits Operation

Read the divisor
values:
Div_a and
Div_b

Control divisor_a
divisor_b

15:14
13:8

Read operation

Self-Test
Table 181: I2C Self-Test

Task Register Register Field Bits Operation
All I2C registers should be in their default state.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 578Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_i2c___control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ps_i2c___control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=578

Table 181: I2C Self-Test (cont'd)

Task Register Register Field Bits Operation
Read control register
(CR)

Control, 0x00 All 15:0 Read operation

Read interrupt mask
register (imr)

IMR, 0x20 All 9:00 Read operation

If (CR != 0) OR if (IMR != 0x2FF), stop here.

Perform reset (see Reset Hardware).

Write test value (0x05)
into slave monitor
register

Slave_Mon_Pause,
0x18

Pause 3:0 5h

Read back slave
monitor register

Slave_Mon_Pause,
0x18

Pause 3:0 Read operation

Verify the value with the written value. If not the same, test failed; else passed.

Reset slave monitor
register

Slave_Mon_Pause,
0x18

Pause 3:0 0h

Register Reference
Register overview tables:

• I2C Registers

• SLCR I/O Interface Registers

• System-level Clock and Reset Registers

The registers are programmed by software through the APB slave interface.

Interrupt status and control registers detect events and monitor system state to generate system
interrupts.

I2C Registers
Each controller has a set of I2C registers. The PMC has a separate register set, PMC_I2C from
the LPD controllers, LPD_I2C. The controllers have identical functionality with separate memory-
mapped register base address locations:

• PMC_I2C base address is 0xF100_0000

• LPD_I2C0 base address is 0xFF02_0000

• LPD_I2C1 base address is 0xFF03_0000

The registers are listed in the following table.

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 579Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=579

Table 182: I2C Register Overview

Register Name Address
Offset

Access
Type Description

PMC_I2C.Control
LPD_I2C.Control

0x000 R/W I/O protocol, clock divider

PMC_I2C.Status
LPD_I2C.Status

0x004 Read data available

PMC_I2C.Address
PMC_I2C.Data
LPD_I2C.Address
LPD_I2C.Data

0x008

0x00C R/W Address; 7 or 10-bit field
8-bit data field

PMC_I2C.Transfer_Size
LPD_I2C.Transfer_Size

0x014 R/W 0 to 255 transfer size

PMC_I2C.Slave_mon_pause
LPD_I2C.Slave_mon_pause

0x018 R/W 0 to 7 pause interval

PMC_I2C.Timeout
LPD_I2C.Timeout

0x01C R/W 32 to 127 timeout interval

PMC_I2C.ISR
PMC_I2C.IMR
PMC_I2C.IER
PMC_I2C.IDR
LPD_I2C.ISR
LPD_I2C.IMR
LPD_I2C.IER
LPD_I2C.IDR

0x010
0x020
0x024
0x028

R, W1C
R
W
W

Interrupts: status is after mask. Enabled interrupts are OR'ed
together and generate a system interrupt.

PMC_I2C.Glitch_Filter
LPD_I2C.Glitch_Filter

0x02C R/W Glitch filter control

PMC_I2C.Data_Hold_Ctrl
LPD_I2C.Data_Hold_Ctrl

0x030 R/W Data hold control

SLCR I/O Interface Registers
The system-level registers are summarized in the following table. These registers are used to
route the two I/O signals to MIO device pins.

Table 183: I2C SLCR Registers

Register Name Address Access
Type Description

MIO_PIN_0 + 0xF106_0000 + RW
52 Registers:
PMC MIO pin 0 to
PMC MIO pin 51

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 580Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=580

Table 183: I2C SLCR Registers (cont'd)

Register Name Address Access
Type Description

MIO_PIN_0 + 0xFF08_0000 + RW
26 Registers:
LPD MIO pin 0 to
LPD MIO pin 25

System-level Clock and Reset Registers
The clock and reset control registers are summarized in the following table.

Table 184: I2C Clock and Reset Registers

Register Name Address Access Type Description Signal Name
PMC_I2C

I2C_REF_CTRL 0xF126_0130 RW Reference clock PMC_I2C_REF_CLK

RST_I2C 0xF126_0314 RW Controller reset PMC_I2C_RESET

LPD_I2C0

I2C0_REF_CTRL 0xFF5E_0140 RW Reference clock LPD_I2C0_REF_CLK

RST_LPD_I2C0 0xFF5E_0330 RW Controller reset LPD_I2C0_RESET

LPD_I2C1

I2C1_REF_CTRL 0xFF5E_0144 RW Reference clock LPD_I2C1_REF_CLK

RST_LPD_I2C1 0xFF5E_0334 RW Controller reset LPD_I2C1_RESET

I2C I/O Interface
The I2C controller I/O interface is routed to both the PMC and LPD MIOs, and the EMIO. The
MIO signals are shown in the MIO-at-a-Glance and all signals are detailed in the following table.

Table 185: I2C Controller I/O Signals

MIO EMIO Signals

Signal Name I/O PMC MIO
Pin

LPD MIO
Pin

MIO-at-
a-Glance

Table
Signal Name I/O

LPD I2C0 Controller

LPD_I2C0_SCL I/O
MIO-at-a-Glance

0

LPD_I2C0_SDA I/O 1

LPD I2C1 Controller

LPD_I2C1_SCL I/O
MIO-at-a-Glance

0

LPD_I2C1_SDA I/O 1

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 581Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___i2c_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_i2c.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___i2c0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_lpd_i2c0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___i2c1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_lpd_i2c1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=581

Table 185: I2C Controller I/O Signals (cont'd)

MIO EMIO Signals

Signal Name I/O PMC MIO
Pin

LPD MIO
Pin

MIO-at-
a-Glance

Table
Signal Name I/O

PMC I2C Controller

PMC_I2C_SCL I/O
MIO-at-a-Glance

0

PMC_I2C_SDA I/O 1

SYSMON I2C Controller

SYSMON_I2C_SCL I/O

MIO-at-a-Glance

0

SYSMON_I2C_SDA I/O 1

SYSMON_I2C_ALERT I/O 2

Section XII: I/O Peripheral Controllers
Chapter 66: I2C Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 582Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=582

Chapter 67

SPI Controller
The SPI bus controller enables communications with a variety of peripherals such as memories,
temperature sensors, pressure sensors, analog converters, real-time clocks, displays, and any SD
card with serial mode support. The SPI controller can function in master mode with multi-master
feature, slave mode, or loopback test mode.

There are two instances of the SPI controller. Both the controllers are identical and independent.
The SPI controllers are located in the LPD power domain of the PS.

The I/O interfacing options include the PMC and LPD MIO pins.

Software accesses the control and status registers via the APB slave programming interface on
the LPD IOP switch.

Features
The controller provides these features:

• Full-duplex operation offers simultaneous receive and transmit

• Four wire SPI bus: MISO, MOSI, SCLK, SS_b

• Master with multi-master feature, slave, and loopback modes

• Three slave selects in master mode with expansion to eight with external 3:8 decoder

• Multi-master environment: identifies an error condition if more than one master detected

• Control and status registers are accessible via the APB programming interface

• Data ports for RX and TX data mapped to the register set

• Buffered operations with separate RX and TX FIFOs

• Programmable master-mode clock frequencies

• Serial clock with programmable polarity

• Programmable transmission format

• FIFO level status read registers

• FIFO level interrupts with programmable RX and TX FIFO thresholds

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 583Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=583

Comparison to Previous Generation Xilinx Devices
The functionality of the SPI controllers in the Versal™ ACAP is the same as in the Zynq®

UltraScale+™ MPSoC.

System Perspective
The system perspective section includes:

• UART SBSA Block Diagram

• System Interface

• System Signals

• I/O Interface Overview

• Programming Model Overview

Block Diagram
The following figure shows the SPI high-level block diagram.

Figure 98: SPI High-Level Block Diagram

Baud rate Generator

De
vi

ce
 B

ou
nd

ar
y

SPIx_CS0_b

Up to 6

Protocol
Controller

SPIx_CS1_b
SPIx_CS2_b

SPIx_SCLK

SPIx_MOSI
SPIx_MISO

PL

MIO

PMC and LPD

Registers and
Data Ports

32-bit
APB

SPIx_REF_CLK
SPIx_RST

SPIx IRQ #48, 49

LPD_IOPSW_CLK

LPD IOP
Switch

RXFIFO
32 words

TXFIFO
32 words Transmitter

Receiver

EMIO

MIO Pin
Banks

X23781-050221

The controller includes several functional units:

• TX FIFO and transmitter datapath

• RXFIFO and receiver datapath

• Master and slave protocol units

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 584Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=584

System Interface
The SPI controller has a single 32-bit APB programming interface.

APB Programming Interface

The programming interface provides access to the configuration, control, and status registers. An
overview of the controller registers is shown in Register Reference.

Interface Clock

The controller is clocked by the APB programming interface. The interface is clocked by the
LPD_LSBUS_CLK clock.

System Signals
System signals:

• Reference Clock

• Controller Reset

Reference Clock

The controller receives its reference clock from the LPD clock controller:

• SPI0_REF_CLK

• SPI1_REF_CLK

The reference clock operates the controller, and for master mode, it provides an input to the
baud rate divider for the SPI_SCLK I/O output clock. Refer to Clocking for an explanation of all
the SPI clocks.

Controller Reset

The controller has a single reset state. The SPI_RESET signal is controlled by the LPD reset
controller. See the CRL RST_SPI0 register.

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 585Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_spi0.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=585

I/O Interface Overview
Master Mode SCLK

In master mode, the interface is clocked by the controller-generated SCLK that is derived from
the SPIx_REF_CLK using the baud rate divider. The divider is programmed using the Config
[BAUD_RATE_DIV] bit field. The range of the baud rate divider is from a minimum of 4 to a
maximum of 256 in binary steps (i.e., divide by 4, 8, 16, 32,... 256).

Master Mode Clock Requirement

The external device must synchronously drive the signal inputs to the SCLK output clock. The
clock frequency specifications are defined in the Versal ACAP data sheets.

Slave Mode SCLK

In slave mode, the external device generates the SCLK. The controller samples the input signals
and drives the MISO signal using the SCLK from the attached master. The input signals are
synchronized to the SPIx_REF_CLK and then interpreted by the protocol controller.

Programming Model Overview
The programming model is defined in the SPI register set, which includes control and status plus
TX and RX data ports.

The programming model can be divided into these sections:

• Configuration and mode control

• Master mode

• Slave mode

• Data Loopback Mode

Modes and States
The SPI controller operates in three modes:

• Master mode with multi-master feature

• Slave mode

• Data loopback mode

Note: There are clock ratio requirements for the SPI_REF_CLK and the APB programming interface clock.
The ratio depends on the operating mode and are defined in Clocking.

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 586Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=586

Master Mode
In master mode, the SPI I/O interface transmits data to a slave or initiates a transfer to receive
data from a slave. In this mode, the controller drives the serial clock and slave selects with an
option to provide a multi-master functionality. The serial clock is derived from the SPI_REF_CLK
from the LPD clock controller.

The SPI selects one slave device at a time using one of the three slave select lines. If more than
three slave devices need to be connected to the master, a 3-to-8 decoder can be added on the
MIO or EMIO interface. The multiplexer is enabled using the Config [PERI_SEL] bit.

The controller initiates messages using up to three individual slave select output signals that can
be externally expanded. The controller reads and writes to the slave devices by writing bytes to
the 32-bit read/write data port register.

Multi-master Functionality

For multi-master, the controller is programmed for master mode [MODE_SEL] and can initiate
transfers on any of the slave selects. When the software is ready to initiate a transfer, it enables
the controller using the [SPI_EN] bit. When the transaction is finished, the software disables the
controller. The controller cannot be selected by an external master when the controller is in
master mode.

When the multi-master feature is enabled, the controller’s output signals are 3-stated when the
controller is not active. The controller detects another master on the bus by monitoring the
open-drain slave select signal (active-Low). The detection mechanism is enabled by the
[Modefail_gen_en]. When the controller detects another master:

• Tristates the I/O outputs

• Sets the ISR [MODE_FAIL] interrupt status bit to indicate the fault

• Clears the Enable [SPI_EN] control bit

The [MODE_FAIL] interrupt enables the software to abort the transfer, reset the controller, and
resend the transfer.

Slave Mode
In slave mode, the controller receives the serial I/O clock from the master device and uses the
SPI_REF_CLK to synchronize data capture in the controller.

The slave mode includes a programmable start detection mechanism when the controller is
enabled while the slave select (SS) signal is asserted. The read and write FIFOs provide buffering
between the SPI I/O interface and the software servicing the controller via the APB slave
interface. The FIFOs are used for both slave and master I/O modes.

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 587Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___enable.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=587

Data Loopback Mode
For data loopback, the I/O signals of the two controllers are connected together: the clock, slave
select, MISO, and MOSI signals from one controller are connected to the other controller’s clock,
slave, MISO, and MOSI signals, respectively. This connection is internal to the controller and does
not use any MIO pins.

The loopback mode is selected by setting the MIO_Bank2_Loopback [SPI0_LOOP_SPI1] bit = 1.

Clocking
There are three clocks associated with a SPI controller:

• SPI_REF_CLK reference clock

• LPD_LSBUS_CLK for the programming interface, APB

• I/O SCLK on SPI bus

Reference Clock

Each controller is provided a SPI_REF_CLK from the LPD clock controller. This clock is used by
the majority of the controller logic. Reference clocks are programmed by the LPD clock controller
using the CRL.LPD_SPI0_REF_CTRL and CRL.LPD_SPI_REF_CTRL registers.

I/O SCLK Clock

The I/O SCLK is generated by dividing down the SPI_REF_CLK using the SPI.CONTROL
[BAUD_DIV] bit field. The divide-down ratio options include /4, /8, /16, …, /256.

APB Programming Interface Clock

The controller is also clocked by the LPD_LSBUS_CLK for the APB programming interface; this
clock is common to all LPD controllers on the IOP switch and is controlled by the
LPD_LSBUS_CTRL register.

Ratio Requirements for Reference and APB Clocks

There is a minimum clock frequency ration between the SPI_REF_CLK and LPD_LSBUS_CLK. The
ration depends on the operating mode:

• Master mode clock ratio: 4:1, minimum

• Slave mode clock ration 2:1, minimum

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 588Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_bank2_loopback.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___lpd_lsbus_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=588

Functional Diagram
The following figure shows the SPI controller functional block diagram. There is also a higher-
level system Block Diagram.

Figure 99: SPI Functional Diagram

Tx FIFO

MISO

Transmit

Rx FIFO

Master
Control

Slave
Control

Receive

Slave
Sync

CS2_b

CS0_b

MOSI

Interrupt:
IRQ#48 for SPI0
IRQ#49 for SPI1 Interrupt

Control

32-bit APB
Programming

Interface

MOSI MISO

SCLK

Master
Mode

Control and
Status

Registers

Slave
Mode

PMC and
LPD MIO

Multiplexers

CS1_b
CS0_b

SCLK

SCLK

CS0_b
CS1_b
CS2_b

MISO
MOSIRe

gi
st

er
s

an
d

Da
ta

 P
or

ts

Pins

s

X23467-071020

FIFOs
The RX and TX FIFOs are each 128-bytes deep. Software reads and writes these FIFOs using the
data port registers RX_data and TX_data.

RXFIFO

If the controller hardware attempts to push data into a full RXFIFO, the data is lost and the sticky
overflow interrupt flag is set. No data is added to a full RXFIFO. Software writes a 1 to the
interrupt to clear the ISR [RX_OVERFLOW] bit.

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 589Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=589

TXFIFO

If software attempts to write data into a full TXFIFO, the write is ignored. No data is added to a
full TXFIFO. The ISR [TX_FIFO_full] bit is asserted until the TXFIFO is read and the TXFIFO is no
longer full. If the TXFIFO overflows, the sticky [RX_OVERFLOW] bit is set = 1.

Data Transfer
The SPI controller follows a specific series of operations to initiate and control the data transfers
on the SPI bus. This section details the data transfer handshake mechanisms.

Data Transfer

The SCLK clock and MOSI signals are under control of the master. Data to be transmitted is
written into the TXFIFO by software using register writes and then unloaded for transmission by
the controller hardware in a manual or automatic start sequence. Data is driven onto the master
output (MOSI) data pin. Transmission is continuous while there is data in the TXFIFO. Data is
received serially on the MISO data pin and is loaded eight bits at a time into the RXFIFO.
Software reads the RXFIFO using register reads. For every n bytes written to the TXFIFO, there
are n bytes stored in RXFIFO that must be read by software before starting the next transfer.

Auto/Manual Slave Select and Start

Data transfers on the I/O interface can be manually started using software or automatically
started by the controller hardware. Also, the slave select assertion/deassertion can be controlled
by the hardware or the software.

• Manual slave select

Software selects the manual slave select method by setting the Config [Manual_CS] bit = 1. In
this mode, software must explicitly control the slave select assertion/deassertion. When the
[Manual_CS] bit = 0, the controller hardware automatically asserts the slave select during a
data transfer.

• Automatic slave select

Software selects the auto slave select method by programming the [Manual_CS] bit = 0. The
SPI controller asserts/deasserts the slave select for each transfer of TXFIFO content on to the
MOSI signal. Software writes data to the TXFIFO and the controller asserts the slave select
automatically, transmits the data in the TXFIFO, and then deasserts the slave select. The slave
select gets deasserted after all the data in the TXFIFO is transmitted. This is the end of the
transfer. Software ensures the following in automatic slave select mode.

○ Software continuously fills the TXFIFO with the data bytes to be transmitted, without the
TXFIFO becoming empty, to maintain an asserted slave select

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 590Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=590

○ Software continuously reads data bytes received in the RXFIFO to avoid overflow

Software uses the TXFIFO and RXFIFO threshold levels to avoid FIFO under- and over-flows.
The TXFIFO’s not-full condition is flagged when the number of bytes in TXFIFO is less than the
TXFIFO threshold level. The RXFIFO full condition is flagged when the number of bytes in
RXFIFO is equal to 128.

Manual Start

This section describes how to start data transfers in manual mode.

Enable

Software selects the manual transfer method by setting the Config [Man_start_en] bit = 1. In this
mode, software must explicitly start the data transfer using the manual start command
mechanism. When the [Man_start_en] bit = 0, the controller hardware automatically starts the
data transfer when there is data available in the TXFIFO.

Command

Software starts a manual transfer by writing a 1 to the [Man_start_com] bit. When the software
writes the 1, the controller hardware starts the data transfer and transfers all the data bytes
present in the TXFIFO. The [Man_start_com] bit is self-clearing. Writing a 1 to this bit is ignored
if [Man_start_en] = 0. Writing a 0 to [Man_start_com] has no effect, regardless of mode.

Clocking

The slave select input pin must be driven synchronously with respect to the SCLK input. The
controller operates in the SPI_REF_CLK clock domain. The input signals are synchronized and
analyzed in the SPI_REF_CLK domain.

Word Detection

The start of a word is detected in the SPI_REF_CLK clock domain.

• Detection when controller is enabled: if the controller is enabled (from a disabled state) at a time
when the slave select is active-Low, the controller ignores the data and waits for the SCLK to
be inactive (a word boundary) before capturing data. The controller counts SCLK inactivity in
the SPI_REF_CLK domain. A new word is assumed when the SCLK idle count reaches the
value programmed into the SPI.SLV_IDLE [Slave_Idle_count] bit field.

• Detection when slave select is asserted: with the controller enabled and slave select is detected
as High (inactive), the controller assumes the start of the word occurs on the next active edge
of SCLK after slave select transitions active-Low.

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 591Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=591

Start Condition

The start condition must be held active for at least four SPI_REF_CLK cycles to be detected. If
slave mode is enabled at a time when the master is very close to starting a data transfer, there is
a small probability that false synchronization will occur, causing packet corruption. This issue is
avoided by ensuring any of the following:

• External master does not initiate a data transfer until at least ten SPI_REF_CLK cycles are
complete after slave mode is enabled,

• Slave mode is enabled before the attached master is enabled, or

• Slave select input signal is not active when the slave is enabled.

Register Reference
SPI controller and system-level registers:

• Controller Registers

• System Level Registers

Controller Registers
The SPI register set is summarized in the following table.

Table 186: SPI Controller Register Set Overview

Register Name Offset Address Access Description
Config 0x000 R/W Controller configuration.

ISR
IER
IDR
IMR

0x004
0x008
0x00C
0x010

WTC
W
W
W

Interrupts; status is after the mask.

Enable 0x014 R/W Controller enable.

Delay 0x018 R/W Master mode only. Extends bus timing related to
the SPIx_CS_b output.

TxData
RxData

0x01C
0x020

W
R TX and RX FIFO data ports.

SlaveIdle 0x024 R/W Slave mode only. SCLK idle count for hardware to
measure to detect a transaction start.

TxThresh RxThresh 0x028
0x02C

R/W
R/W

Defines the fill level for TX FIFO not full and RX
FIFO not empty.

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 592Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___enable.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___delay.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___txdata.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___rxdata.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___slaveidle.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___txthresh.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=spi___rxthresh.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=592

System Level Registers
The system level registers include the CRL clock and reset, and I/O routing SLCR registers.

• SPI0_REF_CTRL (reference clock)

• SPI1_REF_CTRL (reference clock)

• RST_SPI0 (reset)

• RST_SPI1 (reset)

I/O Interface
The SPI controller I/O interface is routed to both the PMC and LPD MIOs, and the EMIO. The
MIO signals are shown in the MIO-at-a-Glance and all signals are detailed in the following table.
The I/O signals are shown in the Functional Diagram.

Table 187: SPI Controller I/O Signals

MIO

Signal Name I/O PMC MIO Pin LPD MIO Pin MIO-at-a-Glance
Table

Master and Slave Signals

SPI0_SCLK
SPI1_SCLK I/O

MIO-at-a-Glance

5

SPI0_MISO
SPI1_MISO I/O 1

SPI0_MOSI
SPI1_MOSI I/O 0

SPI0_CS0_b
SPI1_CS0_b I/O 2

Master-only Signals

SPI0_CS1_b
SPI1_CS1_b O

MIO-at-a-Glance

3

SPI0_CS2_b
SPI1_CS2_b O 4

Section XII: I/O Peripheral Controllers
Chapter 67: SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 593Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___spi0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___spi1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_spi0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_spi1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=593

Chapter 68

UART SBSA Controller
The UART controller is a full-duplex asynchronous receiver and transmitter that supports a wide
range of programmable baud rates. The server-based system applications (SBSA) functionality is
defined by the Arm® architecture.

There are two UART controllers, and they are located in the LPD IOP.

The UART performs the following:

• Serial-to-parallel conversion on data received from a peripheral device

• Parallel-to-serial conversion on data transmitted to a peripheral device

The software performs reads and writes of data and control/status information via the APB slave
interface. The transmit and receive register ports are buffered with internal RX and TX FIFOs
with up to 32B of storage.

The UART includes a programmable baud rate generator that generates a common transmit and
receive clock from the UARTX_REF_CLK.

The maximum baud rates in different modes are as follows:

• 921600 bps, in UART mode

• 460800 bps, in IrDA mode

• 115200 bps, in low-power IrDA mode

Features
• 32 deep ×8-bit wide transmit FIFO

• 32 deep ×12-bit wide receive FIFO

• Standard asynchronous communication bits (start, stop and parity)

• Independent interrupt masking:

○ Transmit and receive FIFOs

○ Receive timeout, modem status, and error condition

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 594Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=594

• False start bit detection

• Line break generation and detection

• Modem control functions CTS, DCD, DSR, RTS, DTR, and RI

Programmable Parameters

• Programmable hardware flow control

• Fully-programmable serial interface characteristics

○ 5, 6, 7, or 8-bit data

○ Even, odd, stick, or no-parity bit generation and detection

○ 1 or 2 stop bit generation

○ Baud rate generator; DC up to UARTx_REF_CLK/16

• Communication baud rate, integer, and fractional parts

• FIFO enable (32 deep) or disable (1 deep)

• FIFO trigger levels selectable between 1/8, 1/4, 1/2, 3/4, and 7/8

Modem Operation

The UART can be used to support the data terminal equipment (DTE) and the data
communication equipment (DCE) modes of operation.

Comparison to Previous Generation Xilinx Devices
The UART is based on Arm IP r1p5-00rel1. It includes enhancements for the server-based system
applications, SBSA, defined by the Arm® architecture. Additional changes include the RTS and
CTS flow control signals available on the MIO pins and IrDA mode. The UART controller in Zynq®

UltraScale+™ MPSoC is based on Cadence IP.

System Perspective
Block Diagram
The high-level block diagram for the UART controller is shown in the following figure.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 595Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=595

Figure 100: UART Controller High-level Block Diagram

APB
Slave

Interface

APB

UART
Control and

Status Registers

Interrupts
UARTx_IRQ #50, 51

Optional
Divide by 8

UARTx_REF_CLK

TXFIFO

RXFIFO

Transmitter

Receiver
Mode
Switch MIO

EMIO

EMIO
DSR, DCD, RI, DTR

TxD

RxD

Baud Rate
Generator

CTS, RTSUARTx_RST

X23882-050221

Functional Units

System Interface
The single APB programming interface provides access to the read/write control and status
registers, and the transmit and receive FIFOs. An APB interface, connected to the IOP slave
switch 32-bit APB bus is used for all controller configuration, control, and data transfer
operations.

System Signals

Reference Clock

The controller and I/O interface are driven by the reference clock UARTx_REF_CTRL. The
controller's interconnect also requires an APB interface clock, LPD_LSBUS_CLK. Both of these
clocks always come from the PS clock subsystem. The UARTx_REF_CLK can be derived from any
of the PLLs as described in Clocks.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 596Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=596

Controller Reset

A single active-Low reset is used by the controller. The UART controller is reset by configuring
the registers RST_UART0 [RESET] and RST_UART1 [RESET].

Modes and States
UART Mode

The operation and baud rate values are controlled by the line control register, UART
UART.LCR_H, and the baud rate divisor registers

• Integer baud rate register, UART BAUD_INTEGER

• Fractional baud rate register, UART BAUD_FRACT

The UART generates individual, maskable interrupts:

• Receiver (including timeout)

• Transmitter

• Modem status

• Error conditions

The interrupts are OR'd together to generate the system interrupt: IRQ #50 for UART0 and
IRQ51 for UART1.

When a framing, parity, or break error occurs during reception, the appropriate error bit is set.
When an overrun condition occurs, the overrun register bit is set immediately and FIFO data is
prevented from being overwritten.

The FIFOs can be programmed to be 1-byte deep providing a conventional double-buffered
UART interface.

The modem status input signals Clear To Send (CTS), Data Carrier Detect (DCD), Data Set Ready
(DSR), and Ring Indicator (RI) are supported. The output modem control lines, Request To Send
(RTS), and Data Terminal Ready (DTR) are also supported.

Hardware flow control feature uses the UARTx_CTS_b input and the UARTx_RTS_b output to
automatically control the serial data flow.

IrDA Mode

The serial infrared (SIR) controller contains an IrDA SIR ENDEC. The SIR ENDEC can be enabled
for serial communication through nSIROUT and SIRIN.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 597Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_uart0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_uart1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___baud_integer.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___baud_fract.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=597

When the SIR ENDEC is enabled, the UARTx_TXD line is held in the passive state (High logic
level) and transitions of the modem status, or the UARTx_RXD line have no effect. The SIR
ENDEC can receive and transmit, but it is half-duplex only, so it cannot receive while
transmitting, or transmit while receiving.

The IrDA SIR physical layer specifies a minimum 10 ms delay between transmission and
reception.

UART Functionality
Block Diagram
The UART functional description is illustrated in the following figure.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 598Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=598

Figure 101: UART Functional Block Diagram

APB
interface and

register
block

32x8
trasmit

FIFO

32x12
receive

FIFO

Transmitter

Receiver

MO/EMIO

FIFO status and interrupt
generation

Baud rate
generator

Baud rate divisor

UART_REF_CLK

Reference clock
FIFO
flags

Transmit
FIFO

status

Receive
FIFO

status

Control and status

Baud16

txd[7:0] rxd[11:0]

Read data[11:0]

Write data[7:0]

APB Interface

UART 0, 1 Interrupt DSR,DCD,RI,DTR,CTS,RTS

UARTTXD

nSIROUT

UARTRXD

SIRIN

IRQ # 50, 51

X23807-063020

Baud Rate Generator

The baud rate generator contains free-running counters that generate the internal ×16 clocks,
Baud16 and IrLPBaud16. Baud16 provides timing information for UART transmit and receive
control. Baud16 is a stream of pulses with a width of one UARTx_REF_CLK clock period and a
frequency of 16 times the baud rate. IrLPBaud16 provides timing information to generate the
pulse width of the IrDA encoded transmit bit stream when in low-power IrDA mode.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 599Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=599

Transmit FIFO

The transmit FIFO is an 8-bit wide and 32 location deep FIFO memory buffer. Data written
across the APB interface is stored in the FIFO until read out by the transmit logic. The transmit
FIFO can be disabled to act like a one-byte holding register.

Receive FIFO

The receive FIFO is a 12-bit wide and 32 location deep FIFO memory buffer. Received data and
corresponding error bits are stored in the receive FIFO by the receive logic until read out by the
CPU across the APB interface. The receive FIFO can be disabled to act like a one-byte holding
register.

Transmit Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.
The control logic outputs the serial bitstream beginning with a start bit, data bits with the Least
Significant Bit (LSB) first, followed by the parity bit, and then the stop bits according to the
programmed configuration in the control registers.

Receive Logic

The receive logic performs serial-to-parallel conversion on the received bitstream after a valid
start pulse has been detected. Overrun, parity, frame error checking, and line break detection are
also performed, and their status accompanies the data that is written to the receive FIFO.

Interrupts

Individual maskable active-High interrupts are generated by the UART. A system interrupt output
is generated as an OR function of the individual interrupt requests.

Operation
The following descriptions are for one instance of UART and the same applies to other instances.

The control data is written to the UART Line Control register, UART LINE_CTRL.

LINE_CTRL defines the:

• Transmission parameters

• Word length

• Buffer mode

• Number of transmitted stop bits

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 600Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___line_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=600

• Parity mode

• Break generation

BAUD_INTEGER defines the integer baud rate divider.

BAUD_FRACT defines the fractional baud rate divider.

Data Transmission and Reception

Data received or transmitted is stored in two 32-byte FIFOs. The receive FIFO has an extra four
bits per character for status information.

Transmission

During transmission, data is written into the transmit FIFO. When the UART is enabled, it causes
a data frame to start transmitting with the parameters indicated in the Line Control register,
UART LINE_CTRL. Data continues to be transmitted until there is no data left in the transmit
FIFO. The BUSY signal goes High as soon as data is written to the transmit FIFO (that is, the
FIFO is non-empty) and remains asserted High while data is being transmitted. BUSY is negated
only when the transmit FIFO is empty, and the last character has been transmitted from the shift
register, including the stop bits.

Reception

When the receiver is idle (UARTRXD continuously 1, in the marking state) and a Low is detected
on the data input (a start bit has been received), the receive counter, with the clock enabled by
Baud16, begins running and data is sampled on the eighth cycle of that counter in UART mode,
or the fourth cycle of the counter in SIR mode to allow for the shorter logic 0 pulses (half way
through a bit period).

The start bit is valid if UARTRXD is still Low on the eighth cycle of Baud16, otherwise a false
start bit is detected and it is ignored. When a valid start bit is detected, successive data bits are
sampled on every 16th cycle of Baud16 (that is, one bit period later according to the
programmed length of the data characters. The parity bit is then checked if parity mode was
enabled.

A valid stop bit is confirmed if UARTRXD is High, otherwise a framing error has occurred. When
a full word is received, the data is stored in the receive FIFO, with any error bits associated with
that word.

Error Bits

Three error bits are stored in bits [10:8] of the receive FIFO and are associated with a particular
character. There is an additional error that indicates an overrun error and this is stored in bit 11
of the receive FIFO.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 601Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___line_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=601

Overrun Bit

The overrun bit is not associated with the character in the receive FIFO. The overrun error is set
when the FIFO is full, and the next character is completely received in the shift register. The data
in the shift register is overwritten, but it is not written into the FIFO. When an empty location is
available in the receive FIFO, and another character is received, the state of the overrun bit is
copied into the receive FIFO along with the received character. The overrun state is then cleared.
The following table lists the bit functions of the receive FIFO.

Table 188: Receive FIFO Bit Functions

FIFO bit Function
11 Overrun indicator

10 Break error

9 Parity error

8 Framing error

7:0 Received data

System and Diagnostic Loopback Testing

Loopback testing is done for data by setting the loopback enable bit to 1 in CTRL [LBE]. Data
transmitted on UARTx_TXD output signal is received on the UARTx_RXD input signal of the same
controller.

Baud Rate Divider
The baud rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.
This is used by the baud rate generator to determine the bit period. The fractional baud rate
divider enables the use of any clock with a frequency >3.6864 MHz to act as UARTx_REF_CLK,
while it is still possible to generate all the standard baud rates.

The 16-bit integer is written to the Integer Baud Rate bit field, UARTx.BAUD_INTEGER [DIVINT].
The 6-bit fractional part is written to the Fractional Baud Rate bit field, UARTx.BAUD_FRACT
[DIVFRAC]. The baud rate divisor has the following relationship to UARTx_REF_CLK:

Baud Rate Divisor = UARTx_REF_CLK/(16× Baud Rate) = [DIVINT] . [DIVFRAC]

Figure 102: Baud Rate Divisor

The 6-bit number (m) can be calculated by taking the fractional part of the required baud rate
divisor and multiplying it by 64 (that is, 2^[DIVFRAC]) and adding 0.5 to account for rounding
errors:

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 602Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=602

m = integer ([BAUD_FRACT] × 2^n + 0.5)

An internal clock enable signal, Baud16, is generated, and is a stream of one UARTx_REF_CLK
wide pulses with an average frequency of 16 times the required baud rate. This signal is then
divided by 16 to give the transmit clock. A low number in the baud rate divisor gives a short bit
period, and a high number in the baud rate divisor gives a long bit period.

Baud Rate Clock

The frequency selected for UARTx_REF_CLK must accommodate the required range of baud
rates:

• FUART _REF _CLK ≥ 16×baud _rate(max)

• FUART _REF _CLK ≤ 16×65535×baud _rate(max)

For example, for a range of baud rates from 110 baud to 460800 baud the UARTx_REF_CLK
frequency must be between 7.3728 MHz to 115.34 MHz. The frequency of UARTx_REF_CLK
must also be within the required error limits for all baud rates to be used. There is also a
constraint on the ratio of clock frequencies for LPD_LSBUS_CLK to UARTx_REF_CLK. The
frequency of UARTx_REF_CLK must be no more than 5/3 times faster than the frequency of
LPD_LSBUS_CLK:

•
FUART _REF _CLK ≤ 5

3×FLPD_LSBUS_CLK

For example, in UART mode, to generate 921600 baud when UARTx_REF_CLK is 14.7456 MHz,
LPD_LSBUS_CLK must be greater than or equal to 8.85276 MHz. This ensures that the UART
has sufficient time to write the received data to the receive FIFO.

Character Frame
The following figure shows the character frame.

Figure 103: UART Character Frame

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 603Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=603

Hardware Flow Control
The hardware flow control feature is fully selectable. This feature enables the control of the serial
data flow by using the UARTX_CTS_b output and UARTX_RTS_b input signals.

The following figure shows communication between two devices using the hardware flow
control.

Figure 104: Hardware Flow Control Between Two Similar Devices

RX FIFO
and flow
control

nUARTRTS

UART1

TX FIFO
and flow
control

RX FIFO
and flow
control

UART2

TX FIFO
and flow
control

nUARTCTS

nUARTRTS

nUARTCTS

X24162-071420

When the RTS flow control is enabled, UARTX_RTS_b is asserted until the receive FIFO is filled
up to the programmed watermark level. When the CTS flow control is enabled, the transmitter
can only transmit data when UARTX_CTS_b is asserted.

The hardware flow control is selectable using the [RTSEn] and [CTSEn] bits in the Control
register, UART CTRL. The following table lists the bit settings used to enable RTS and CTS flow
control both simultaneously and independently.

Table 189: Control Bits to Enable and Disable Hardware Flow Control

CTSEn RTSEn Description
1 1 Both RTS and CTS flow control enabled

1 0 Only CTS flow control enabled

0 1 Only RTS flow control enabled

0 0 Both RTS and CTS flow control disabled

Note: When RTS flow control is enabled, the software cannot use the [RTSEn] bit in the Control
register,UART CTRL to control the status of UARTX_RTS_b.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 604Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=604

RTS Flow Control

The RTS flow control logic is linked to the programmable receive FIFO watermark levels. When
RTS flow control is enabled, the UARTx_RTS_b is asserted until the receive FIFO is filled up to the
watermark level. When the receive FIFO watermark level is reached, the UARTx_RTS_b signal is
deasserted, indicating that there is no more room to receive any more data. The transmission of
data is expected to cease after the current character has been transmitted.

The UARTx_RTS_b signal is reasserted when data has been read out of the receive FIFO so that it
is filled to less than the watermark level. If RTS flow control is disabled and the UART is still
enabled, then data is received until the receive FIFO is full, or no more data is transmitted to it.

CTS Flow Control

When the CTS flow control is enabled, the transmitter checks the UARTx_CTS_b signal before
transmitting the next byte. When the UARTx_CTS_b signal is asserted, it transmits the byte;
otherwise, the transmission does not occur.

The data continues to be transmitted while UARTx_CTS_b is asserted, and the transmit FIFO is
not empty. When the transmit FIFO is empty and the UARTx_CTS_b signal is asserted no data is
transmitted.

When the UARTx_CTS_b signal is deasserted and CTS flow control is enabled, the current
character transmission is completed before stopping. When the CTS flow control is disabled and
the UART is enabled, the data continues to be transmitted until the transmit FIFO is empty.

IrDA Functionality
The IrDA SIR ENDEC comprises:

• IrDA SIR transmit encoder

• IrDA SIR receive decoder

Block Diagram
The IrDA SIR ENDEC block diagram is shown in the following figure.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 605Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=605

Figure 105: IrDA SIR ENDEC Block Diagram

UART
core

OR

SIR
transmit
encoder

SIR
receive
decoder

UARTTXD

nSIROUT

SIRIN

UARTRXD

1

0

TXD

SIREN

RXD

X24307-073020

Transmit Encoder
The SIR transmit encoder modulates the non return-to-zero (NRZ) transmit bit stream output
from the UART. The IrDA SIR physical layer specifies the use of a return to zero, inverted (RZI)
modulation scheme that represents logic 0 as an infrared light pulse. The modulated output pulse
stream is transmitted to an external output driver and infrared light emitting diode (LED).

The frequency of IrLPBaud16 is set up by writing the appropriate divisor value to the IrDA Low
Power Counter register, UART.IR_LOWPR.

The active-Low encoder output is normally Low for the marking state (no light pulse). The
encoder outputs a high pulse to generate an infrared light pulse representing a logic 0 or spacing
state.

Receive Decoder
The SIR receive decoder demodulates the return-to-zero bitstream from the infrared detector
and outputs the received NRZ serial bitstream to the UART received data input. The decoder
input is normally High (marking state) in the idle state. The transmit encoder output has the
opposite polarity to the decoder input.

A start bit is detected when the decoder input is Low.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 606Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=606

Note: To prevent the UART from responding to glitches on the received data input then it ignores SIRIN
pulses that are less than:

• 3/16 of Baud16, in IrDA mode

• 3/16 of IrLPBaud16, in low-power IrDA mode

Data Modulation
The following figure shows the IrDA data modulation.

Figure 106: UART IrDA 3/16 Data Modulation

Interrupts
Eleven maskable interrupts are generated in the UART. These are combined to produce one
system interrupt that is the OR of the individual outputs. Interrupts can be enabled or disabled
individually by changing the mask bits in the interrupt mask set/clear register, INTR_IMSC.
Setting the appropriate mask bit High enables the interrupt.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 607Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_imsc.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=607

Flow Control Interrupts
The modem status interrupt is asserted if any of the modem status signals (UARTx_CTS_b,
DCD_b, DSR_b, and RI_b) change. It is cleared by writing a 1 to the corresponding bits in the
Interrupt Clear register, INTR_CLR, depending on the modem status signals that generated the
interrupt.

Change State Interrupt
The transmit interrupt changes state when one of the following events occurs:

• If the FIFOs are enabled and the transmit FIFO is equal to or lower than the programmed
trigger level, the transmit interrupt is asserted High. The transmit interrupt is cleared by
writing data to the transmit FIFO until it becomes greater than the trigger level, or by clearing
the interrupt.

• If the FIFOs are disabled (have a depth of one location) and there is no data present in the
transmitters single location, the transmit interrupt is asserted High. It is cleared by performing
a single write to the transmit FIFO, or by clearing the interrupt.

• To update the transmit FIFO, write data to the transmit FIFO, either prior to enabling the
UART and the interrupts, or after enabling the UART and interrupts.

Note: The transmit interrupt is based on a transition through a level, rather than on the level itself. When
the interrupt and the UART is enabled before any data is written to the transmit FIFO the interrupt is not
set. The interrupt is only set, after written data leaves the single location of the transmit FIFO and it
becomes empty.

Timeout Interrupt
The receive timeout interrupt is asserted when the receive FIFO is not empty and no more data
is received during a 32-bit period. The receive timeout interrupt is cleared either when the FIFO
becomes empty through reading all the data (or by reading the holding register), or when a 1 is
written to the corresponding bit of the Interrupt Clear register, INTR_CLR.

Error Interrupt
The error interrupt is asserted when an error occurs in the reception of data by the UART. The
interrupt can be caused by a number of different error conditions:

• Framing

• Parity

• Break

• Overrun

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 608Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_clr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_clr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=608

The cause of the interrupt can be determined by reading the Raw Interrupt Status register,
INTR_RIS or the Masked Interrupt Status register, INTR_MIS. It can be cleared by writing to the
relevant bits of the Interrupt Clear register, INTR_CLR (bits 7 to 10 are the error clear bits).

Registers
UART Registers
The UART controller core registers are listed in the following table. The base address for each
UART register module:

• UART0: 0xFF00_0000

• UART1: 0xFF01_0000

Table 190: UART Controller Registers

Register Name Offset
Address Type Description

Data Ports

DATA 0x000 RW Read/write data port

Miscellaneous Control

CTRL 0x030 RW Configuration and control

BAUD_INTEGER
BAUD_FRACT

0x024
0x028

RW BAUD rate integer and fractional divider

LINE_CTRL 0x02C RW Line control

IR_LOWPWR 0x020 RW Low power counter divisor

Status/Clear and Flags

ERR_STAT_CLR
FLAG

0x004
0x018

RW
R Interface flags

Interrupts

INTR_IMSC
INTR_RIS
INTR_MIS
INTR_CLR

0x038
0x03C
0x040
0x044

RW
R
R
W

Read/write interrupt mask
Raw interrupt status
Masked interrupt status
Clear interrupt status

FIFO Interrupt Levels

FIFO_LEVEL 0x034 RW RX and TX FIFO interrupt trigger levels

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 609Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_ris.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_mis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_clr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___data.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___baud_integer.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___baud_fract.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___line_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___ir_lowpwr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___err_stat_clr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___flag.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_imsc.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_ris.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_mis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___intr_clr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=uart___fifo_level.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=609

SLCR Registers
The UART system-level control registers (SLCR) are listed in the following table. The base address
for the SLCR registers:

• LPD_IOP_SLCR register module is 0xFF08_0000.

• PMC_IOP_SLCR register module is 0xF106_0000 (for PMC MIO).

Table 191: UART System-Level Clock and Reset Registers

Register Name Bit
Field Offset Address Access

Type Description

LPD_IOP_SLCR APB Programming Interface Access Error Interrupt

PARITY_ISR
PARITY_IMR
PARITY_IER
PARITY_IDR

[perr_u
art0_ap
b]
[perr_u
art1_ap
b]

0x0714+
W1C, R

R
W
W

Parity error detected on APB
programming interface write data

LPD_IOP_SLCR MIO Select

LPD_MIO_Sel
[UART0_
SEL]
[UART1_
SEL]

0x0410 RW Select between PMC and LPD MIO
muxes

LPD_IOP_SLCR MIO Pin Routing

MIO_PIN_0
etc.
MIO_PIN_25

[L0_SEL}
[L1_SEL]
[L2_SEL]
[L3_SEL]

0x000+ RW LPD mux MIO routing

PMC_IOP_SLCR MIO Pin Routing

MIO_PIN_0
etc.
MIO_PIN_51

[L0_SEL}
[L1_SEL]
[L2_SEL]
[L3_Sel]

0x000+ RW PMC mux MIO routing

Clock and Reset Registers
The UART reference clock and core reset are controlled by the CRL register module. The base
address for the CRL register module is 0xFF5E_0000.

Table 192: UART Clock and Reset Registers

Register Module and Name Offset
Address

Access
Type Description

Reference Clock

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 610Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___parity_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___parity_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___parity_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___parity_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___lpd_mio_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___mio_pin_25.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___mio_pin_51.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=610

Table 192: UART Clock and Reset Registers (cont'd)

Register Module and Name Offset
Address

Access
Type Description

CRL UART0_REF_CTRL
CRL UART1_REF_CTRL

0x0128
0x012C

RW Reference clock control from LPD clock
controller

Controller Reset

CRL RST_UART0
CRL RST_UART1

0x0318
0x031C

RW Controller reset from LPD reset controller

UART I/O Signals
The UART controller I/O signals are routed to both the PMC and LPD MIOs, and the EMIO. Each
set of I/O signals can be located on one of six sections of pins as shown in MIO-at-a-Glance. The
CTS_b and RTS_b signals are available on the MIO or EMIO. The UART flow control signals are
available on EMIO.

Table 193: UART Controller I/O Signals

MIO EMIO

Signal Name I/O PMC MIO
Pin

LPD MIO
Pin

MIO-at-
a-Glance

Table
Signal Name I/O

UART0_RXD
UART1_RXD I

MIO-at-a-Glance1

0 I

UART0_TXD
UART1_TXD O 1 O

UART0_CTS_b
UART1_CTS_b I 2

CTS_b
I

UART0_RTS_b
UART1_RTS_b O 3

RTS_b
O

Not available on MIO

DCD_b O

DSR_b I

RI_b I

DTR_b I

SIRIN O

SIROUT_b I

Notes:
1. The RXD, TXD, CTS_b, and RTS_b signals are routed to the MIO as a group. The groups are shown in the MIO-

at-a-Glance. Unused signals (e.g., CTS_b and RTS_b) do not need to be routed through the MIO.

Section XII: I/O Peripheral Controllers
Chapter 68: UART SBSA Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 611Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___uart0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___uart1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_uart0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_uart1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=611

Chapter 69

USB 2.0 Controller
The controller is compliant with the USB 2.0 specification to support high, full, and low-speed
modes in all configurations. It can be configured as a host, a device, or in on-the-go (OTG).

In host mode, the controller is compatible with the Intel extensible host controller interface
(xHCI) specification. In device mode, it supports up to 12 endpoints (6 in and 6 out). The
controller's I/O uses an 8-bit universal low peripheral interface (ULPI) to connect the Versal™
device to an external PHY via the PMC MIO pins. The controller operates at 20 MHz using the
USB_REF_CLK from the LPD clock controller. The ULPI interface is clocked at 60 MHz by the
PHY. The controller provides transfer rates up to 480 Mb/s for high-speed mode. The 32-bit AXI
slave programming interface is accessed by system software to control the modes. The
programming interface provides access to the USB_2_REGS controller and USB_2_XHCI core
register sets. The AXI slave is attached to the LPD IOP slave switch.

The 64-bit AXI master interface is used by the DMA unit to read descriptor tables and access
data buffers. The AXI master is attached to the LPD IOP master switch. The controller includes a
single dual-port RAM to store RX FIFO data, TX FIFO data, and to cache descriptors. The AXI
master port and the protocol layers access the RAMs using the buffer management unit. The
RAM provides buffering of transaction data between the ULPI interface and system memory. The
host controller is a schedule driven environment for data transfers of periodic (interrupt and
isochronous) and asynchronous (control and bulk) types.

Device mode includes a simple pair of descriptors to respond to USB data transfers in a timely
manner between the software and the USB. The transfer descriptors of the host schedules and
device endpoints control the DMA engine to move data between the 64-bit AXI master system
bus interface and the RX and TX data FIFOs in RAM that respond in real time to the USB. The
controller makes strategic use of software for tasks that do not require time-critical responses.
This reduces the amount of hardware logic. At the same time, the controller includes hardware
assistance logic to enable the controller to respond quickly to USB events and simplify the
software.

The controller includes the hibernation and low-power modes.

Features
The USB controller includes these features:

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 612Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=612

• Host, device, and dual-role device options

• Power management features: hibernation mode

• DMA master with 44/48-bit addressing and 64-bit data

• 12 endpoints (six out and six in)

• Compatible with xHCI standard 1.1

• 32-bit AXI programming interface

• ULPI interface routed to PMC MIO pins

Comparison to Previous Generation Xilinx Devices
The USB controller in the Versal™ ACAP is based on newer Synopsys IP and is implemented as
USB 2.0. The Zynq UltraScale+ MPSoC included a USB 3.0 controller based on older Synopsys IP.

In device mode, the Zynq UltraScale+ MPSoC USB 2.0 controller can be used as the primary boot
mode. In Versal™ ACAP, primary boot mode is not supported. Software can configure the USB
controller as a secondary boot device.

System Perspective
High-Level Block Diagram
The USB controller block diagram is shown in the following figure.

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 613Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=613

Figure 107: USB Controller Block Diagram

13

Core
Controller

ULPI
Control

and
Status

Registers

32-bit
AXI

LPD_LSBUS_CLK

64-bit
AXI

USB_REF_CLK

PMC USB_RST

USB IRQ #54 to 57

PMC MIO
Mux

PHY

USB IRQ #58

Transfers
Core

DMA
AXI

Master

RX FIFO

TX FIFO TX

PL

RX

De
vi

ce
 B

ou
nd

ar
y

LPD Slave
Switch

PL_USB_HUB_OVERCUR

PL_USB_VBUS_CTRL

PS_USB_PME

IOP_SW_CLK

LPD IOP
Master
Switch

USB_SUSPEND_CLK

LPD USB_RST

USB WAKEUP REQ

USB RESET REQ

Power
Management

Unit
(PMU)

X24165-050221

System Interfaces
• AXI slave programming interface

• AXI DMA master interface for descriptor read and data read/write accesses

AXI Slave Programming Interface

The USB register module is accessed by software using the 32-bit AXI slave programming
interface attached to the LPD IOP slave switch.

AXI DMA Master

The DMA AXI transaction includes several attributes for coherency and QoS. These are
controlled by the following registers:

• USB_Route for coherency

• USB_QoS for quality of service (QoS)

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 614Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_qos.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=614

• USB_SMID for system management ID (SMID)

When the DMA transaction is routed to the CCI, it first passes through the TBU0 of the SMMU.
This translation unit is also used by the SMMU TCU for translation table lookups.

Note: This datapath will impose a bandwidth load to the CCI and FPD interconnect. In very high traffic
loads through TBU0, a deadlock situation can occur. To ensure this does not happen, do not route DMA
transactions through the CCI.

System Signals
System signals include:

• Clocks

• Controller Resets

• System Interrupts

• System Error Signal

Clocks

The USB controller includes several clocks from the system.

• USB_REF_CLK from LPD clock controller

• LPD_IOU_REF_CLK for the interconnect interfaces

The USB_REF_CLK is used by the controller and the ULPI interface.

Controller Resets

The controller has three reset domains.

• Controller wrapper

• Controller core

• External ULPI PHY

Reset Matrix

The controller receives one reset input from the SoC and several local register-controlled resets.
These are summarized in the following table.

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 615Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_smid.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=615

Table 194: USB Reset Matrix

Description Register Control
Controller
Wrapper Controller Core External ULPI

PHY1

USB_RESET USB_CORE_RST USB_ULPI_RST
Controller reset CRL.RST_USB [RESET] Yes Yes Yes

Core soft reset USB_XHCI.GCTL [CORESOFTRESET] Yes Yes Yes

Internal logic USB_XHCI.USB_CMD [HCRST] Yes Yes Yes

Core soft reset USB_XHCI.DCTL [CSFTRST] Yes Yes Yes

Light host reset USB_XHCI.USB_CMD [LHCRST] ~ Yes ~

Notes:
1. The USB_ULPI_RST signal can be masked using the USB2_CSR.PHY_RESET_MASK register.

System Interrupts

The USB controller includes four transfer system interrupts and one core system interrupt:

• IRQ# 54 to 57 for transfers (USB_2_XHCI)

• IRQ#58 for OTG (USB_2_CSR)

• IRQ# 106 for PME

These are listed with the other system interrupts in the IRQ System Interrupts table.

XCHI Interrupts

Four transfer interrupts:

• Bulk transfer

• Isochronous transfer

• Controller interrupt

• Control transfer

Control and Status Registers Interrupt

The interrupt is sourced from several register controls:

• ISR register:

○ [addr_dec_err] for APB programming interface address decode error

○ [host_sys_err] for host system error

• GSTS register:

○ [CURMOD], [BUSERRADDRVLD]

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 616Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gsts.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=616

○ [CRSTimeout]

○ [Device], [Host], [ADP], [BC], and [SSIC]

○ [CBELT]

Power Management Interrupt

The USB power management interrupt (PME) is generated by power management unit in the
PMC power domain. This system interrupt is assigned to IRQ# 106.

System Error Signal

The APB interface includes an address decode error detector. If an error is detected a system
error is generated and the APB programming interface can optionally assert the SLVERR error
signal back to the source and assert the address decode error interrupt.

I/O Interface
The I/O interface implements ULPI. These signals are routed to the PMC MIO. The signals are
listed in USB I/O Signals.

ULPI PHY

The controller interfaces to the external ULPI PHY via 12 MIO pins: 8 data I/Os, direction input,
control input, clock input, and a stop output.

The PHY is external to the device and is reset by the USB_ULPI_RST output signal. The reset
output signal can be masked using the USB_2_CSR.PHY_RESET_MASK register.

GPIO

A LPD GPIO signal can be used to reset the external PHY.

Port Indicator and Power Signals via PL EMIO

The USB port indicator outputs, power select output, and power fault input signals are normally
routed through the EMIO to the PL SelectIO pins that connect to the external board logic.

Power
The USB2 controller resides in the LPD.

The power management control and ULPI interface reside in the PMC.

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 617Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=617

Programming Model
The controller has two sets of registers.

• USB_2_CSR control and status

• USB_2_XHCI

The controller uses system memory for transaction and descriptor data structures. The system
memory usage includes:

• TX data buffers

• RX data buffers

• Descriptor tables

Host Mode Functional Anomaly

In a rare condition in which the device issues an erroneous DATA0 toggle status response to the
host, the USB host does not handle erroneous DATA0 toggle status response and is then unable
to complete further commands to the device. The Xilinx® handler manages this by indicating an
error when unable to complete commands. A host reset might be required to recover the system.

Device Mode Functional Anomaly

The USB device might not wake from l1_suspend in ULPI mode when HIRD < 3. Ensure that
HIRD >= 3. The Xilinx handler is aware of this to avoid the anomaly.

Programming Interface

The controller includes a 32-bit AXI slave interface to program the USB2_CSR and USB2_XHCI
register sets.

Host Mode Data Structures
To operate the USB controller, a set of data structures are defined by the xHCI specification. The
application software gives information to the xHCI driver that takes care of the programming and
interaction with the data structures. The data structures are used to communicate control, status,
and data between the xHCI stack (software) and the USB controller.

Context Data Structures

The USB context data structures are described in the following table. The PAGESIZE is 4 KB.

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 618Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=618

Table 195: USB 2.0 Context Data Structures

Context Data
Structure

Maximum
Size (bytes) Boundary Byte

Alignment Description

Device context 2048 PAGESIZE 64 Slot context and endpoint contexts (up to 32).
An array of device contexts is prepared and
maintained by the xHCI embedded RAM and
software. This array contains a maximum of 256
device contexts. The first entry (slot ID = 0) in
the device context base address array is used by
the xHCI scratchpad mechanism.

Slot context 64 PAGESIZE 32 Information that applies to a device as a whole.
The slot context data structure of a device
context is also referred to as an output slot
context.

Endpoint context 64 PAGESIZE 32 Information that applies to a specific endpoint

Stream context 16 PAGESIZE 16 Specific stream associated with an endpoint.

Input context 132 PAGESIZE 64 Endpoints and the operations to be performed
on those endpoints by the address device,
configure endpoint, and evaluate context
commands.

Input control
context

64 PAGESIZE 64 Device context data structures are affected by a
command and the operations to be performed
on those contexts

Port bandwidth
context

#ports * 4 PAGESIZE 32 Provides software with the percentage of
periodic bandwidth available on each root hub
port, at the speed indicated by the device speed
field of the get port bandwidth command.
Software allocates the context data structure
and the xHCI updates the context data
structure during the execution of a get port
bandwidth command.

Ring Data Structures

The USB ring data structures are defined in the following table.

Table 196: Ring Data Structures

Context Data
Structure

Maximum
Size (KB)

Boundary
(KB)

Byte
Alignment Description

Transfer ring
segments

64 64 16 A transfer request block (TRB) ring is an array of
TRB structures, that are used by the xHCI as a
circular queue to communicate with the host.
Transfer rings provide data transport to and
from USB devices. There is a 1:1 mapping
between transfer rings and USB pipes. They are
defined by an endpoint context data structure
contained in a device context, or the stream
context array pointed to by the endpoint
context.

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 619Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=619

Table 196: Ring Data Structures (cont'd)

Context Data
Structure

Maximum
Size (KB)

Boundary
(KB)

Byte
Alignment Description

Command ring
segments

64 64 64 The command ring provides system software
the ability to issue commands to enumerate
USB devices, configure the xHCI to support
those devices, and coordinate virtualization
features. The command ring is managed by the
command ring control register that resides in
the operational registers.

Event ring
segments

64 64 64 The event ring provides the xHCI with a means
of reporting to system software: data transfer
and command completion status, root hub port
status changes, and other xHCI related events.
An event ring is defined by the event ring
segment table base address, segment table
size, and dequeue pointer registers which
reside in the run time registers.

Event ring
segment table

512 None 64 Table of event ring segments.

Scratchpad buffers PAGESIZE PAGESIZE PAGESIZE A scratchpad buffer is allocated from system
memory for storing internal state.

Register Reference
The register sets that affect the USB controller include:

• USB_2_CSR register set

• USB_2_XHCI register set

• System-level registers

○ CRL (reference clocks and resets)

○ CRP

○ LPD_IOP_SLCR (system-level controls; AXI transaction attributes and routing)

○ LPD_IOP_SECURE_SLCR

○ LPD_IOP_SLCR

○ Miscellaneous system interrupt, QoS registers

• USB_2_XHCI registers

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 620Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=620

Controller Registers
The USB_2_CSR registers provide general control and status, transaction controls, and manages
APB and host system error interrupts. The registers are located at base address 0xFF9D_0000
and are summarized in the following table.

Table 197: USB 2.0 Control and Status Registers

Register Name Offset Address Access Type Description
PHY_Reset_En 0x01C RW PHY reset output mask

Port_Cfg 0x034 RW Device characteristics

Jitter_Adjust 0x038 RW High-speed jitter adjustment

Int_Endian 0x040 RW Set = 0; little endian

APB_Ctrl 0x060 RW APB slave error enable

ISR
IMR
IER
IDR

0x064
0x068
0x06C
0x070

W1C
R
W
W

APB address decode and host system error
interrupts

XHCI Registers
The USB_2_XHCI registers provide functionality for the xHCI specification. The base address for
these registers is 0xFE20_0000 and they are summarized in the following table.

Table 198: USB_2_XHCI Register Address Map

Description
Offset Address Range

Detailed Register Table
Start End

xHCI capabilties, offsets, operations 0x0_0000 0x0_0058

Ports, run time, host interrupter, event ring,
doorbells 0x0_0420 0x0_05E0

Miscellaneous control, status, capabilities 0x0_08E0 0x0_09C0

Miscellaneous configuration, control, and user 0x0_C100 0x0_C19C

ULPI PHY 0x0_C200 0x0_C280

FIFOs 0x0_C300 0x0_C388

Event buffer 0x0_C400 0x0_C43C

DMA 0x0_C600 0x0_C630

Device CSRs 0x0_C700 0x0_C720

Device endpoints 0x0_C800 0x0_C8BC

Device interrupt moderation 0x0_CA00 0x0_CA0C

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 621Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___phy_reset_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___port_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___jitter_adjust.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___int_endian.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___apb_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_csr___idr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=621

Host Capabilities, Offset, and Operations Registers

The USB host capabilities, offset, and operations registers are located in the USB_2_XHCI
register set at base address 0xFE20_0000. They are summarized in the following table.

• CONFIG register

This register is in the AUX power well. It is only reset by the platform during a cold reset or in
response to a host controller reset (HCRST).

Table 199: USB Host Capabilities, Offsets, and Operations Registers

Register Name Offset Address Access Type Description
CAPLENGTH 0x0000 R Length capability

HCSPARAMS1
HCSPARAMS2
HCSPARAMS3

0x0004
0x0008
0x000C

R Host controller structural parameters

HCCPARAMS1
HCCPARAMS2

0x0010
0x001C R Host controller capability parameters

DBOFF 0x0014 R Doorbell offset

RTSOFF 0x0018 R Run time offset

USBCMD 0x0020 RW USB command

USBSTS 0x0024 R, W1C USB status

PAGESIZE 0x0028 R Page size

DNCTRL 0x0034 RW Device notification

CRCR_LO
CRCR_HI

0x0038
0x003C RW, R

DCBAAP_LO
DCBAAP_HI

0x0050
0x0054 RW Device context BAAP

CONFIG 0x0058 RW Configure

Port Status, Control, Host Interrupter, Event Ring, and Doorbell
Registers

The USB port status, control, host interrupter, event ring, doorbell registers are located in the
USB_2_XHCI register set at base address 0xFE20_0000. They are summarized in the following
table.

• PORTPMSC_20 register

This register is in the AUX power well. It is only reset by platform hardware during a cold reset
or in response to a host controller reset (HCRST).

• IMOD_0, 1, 2, 3 register

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 622Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___caplength.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___hcsparams1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___hcsparams2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___hcsparams3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___hccparams1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___hccparams2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dboff.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___rtsoff.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___usbcmd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___usbsts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___pagesize.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dnctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___crcr_lo.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___crcr_hi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dcbaap_lo.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dcbaap_hi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=622

Software can use this register to pace (or even out) the delivery of interrupts to the host CPU.
This register provides an inter-interrupt delay between interrupts asserted by the xHCI,
regardless of USB traffic conditions. To independently validate configuration settings, software
can use the algorithms recommended by the xHCI specification to convert the inter-interrupt
interval value to the common interrupts/sec performance metric.

Table 200: Port Status, Control, Host Interrupter, Event Ring, Doorbell Registers

Register Name Offset Address Access Type Description
PORTSC_20 0x00420 RW, R, W1C Port status and control

PORTHLPMC_20 0x0042C RW LPM hardware control

MFINDEX 0x00440 Read Microframe index

IMAN_0 to 3 0x00460 incr RW, W1C Interrupter management

IMOD_0 to 3 0x00464 incr RW Interrupter moderation

ERSTSZ_0 to 3 0x00468 incr RW Event ring segment table size

ERSTBA_LO_0 to 3
ERSTBA_HI_0 to 3

0x00470 incr
0x00474 incr RW

ERDP_LO_0 to 3
ERDP_HI_0 to 3

0x00478 incr
0x0047C incr RW

DB0 DB{1 to 63} 0x004E0 incr RW Doorbells

Miscellaneous Control, Status, and Capabilities Registers

The USB miscellaneous control, status, and capabilities registers are located in the USB_2_XHCI
register set at base address 0xFE20_0000. They are summarized in the following table.

Table 201: USB Miscellaneous Control, Status, and Capabilities Registers

Register Name Offset Address Access Type Description
USBLEGSUP 0x08E0 RW, R Legacy support

USBLEGCTLSTS 0x08E4 W1C, R System management interrupts (SMI)

IMPL_USB2_DW0 0x08F0 R Capabilities, revision

IMPL_USB2_DW1 0x08F4 R Name string

IMPL_USB2_DW2 0x08F8 R Hub, miscellaneous capabilities

IMPL_USB2_DW3 0x08FC R Protocol slot (0h)

Miscellaneous Configuration, Control, and User Registers

The USB miscellaneous configuration, control, and user registers are summarized in the following
table.

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 623Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___portsc_20.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___porthlpmc_20.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___mfindex.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___iman_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___imod_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___erstsz_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___erstba_lo_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___erstba_hi_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___erdp_lo_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___erdp_hi_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___db0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___usblegsup.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___usblegctlsts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___impl_usb2_dw0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___impl_usb2_dw1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___impl_usb2_dw2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___impl_usb2_dw3.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=623

Table 202: USB 2.0 Miscellaneous Configuration, Control, and User Registers

Register Name Offset Address Access
Type Description

GSBUSCFG0
GSBUSCFG1

0x0_C100
0x0_C104

RW Bus configuration

GCTL 0x0_C110 RW Common control

GSTS 0x0_C118 R Status

GUCTL1 GUCTL2 0x0_C11C
0x0_C19C RW User controls

GSNPSID 0x0_C120 Read only ID register

GGPIO 0x0_C124 Mixed General purpose I/O

GUID 0x0_C128 Read/Write User ID

GUCTL 0x0_C12C Read/Write Global user control

GBUSERRADDRLO
GBUSERRADDRHI

0x0_C130
0x0_C134 R Bus address error

GHWPARAMS0 to
GHWPARAMS7

0x0_C140 to
0x0_C15C

R Implementation parameters

GDBGFIFOSPACE 0x0_C160 RW, R Queue/FIFO space available

ULPI PHY

GUSB2PHYCFG 0x0_C200 Mixed ULPI PHY configuration

GUSB2PHYACC_ULPI 0x0_C280 RW, R ULPI PHY vendor control

RX/TX FIFO Depths

GTXFIFOSIZ0
GTXFIFOSIZ1
GTXFIFOSIZ2

0x0_C300
0x0_C304
0x0_C308

RW RXFIFO 0, 1, 2 depths

GRXFIFOSIZ0
GRXFIFOSIZ1
GRXFIFOSIZ2

0x0_C380
0x0_C384
0x0_C388

RW TXFIFO 0, 1, 2 depths

Event

GEVNTADRLO_0
GEVNTADRLO_2
GEVNTADRLO_3

0x0_C400
0x0_C410
0x0_C420
0x0_C430

RW

GEVNTADRHI_0
GEVNTADRHI_1
GEVNTADRHI_2
GEVNTADRHI_3

0x0_C404
0x0_C414
0x0_C424
0x0_C434

RW

GEVNTSIZ_0
GEVNTSIZ_1
GEVNTSIZ_2
GEVNTSIZ_3

0x0_C408
0x0_C418
0x0_C428
0x0_C438

RW

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 624Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gsbuscfg0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gsbuscfg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gctl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gsts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___guctl1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___guctl2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gsnpsid.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___ggpio.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___guid.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___guctl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gbuserraddrlo.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gbuserraddrhi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___ghwparams0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___ghwparams7.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gdbgfifospace.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gusb2phycfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gusb2phyacc_ulpi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gtxfifosiz0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gtxfifosiz1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gtxfifosiz2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___grxfifosiz0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___grxfifosiz1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___grxfifosiz2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrlo_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrlo_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrlo_3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrhi_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrhi_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrhi_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntadrhi_3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntsiz_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntsiz_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntsiz_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntsiz_3.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=624

Table 202: USB 2.0 Miscellaneous Configuration, Control, and User Registers (cont'd)

Register Name Offset Address Access
Type Description

GEVNTCOUNT_0
GEVNTCOUNT_1
GEVNTCOUNT_2
GEVNTCOUNT_3

0x0_C40C
0x0_C41C
0x0_C42C
0x0_C43C

RW

Host Controls

GHWPARAMS8 0x0_C600 R Implementation parameters

GTXFIFOPRIDEV 0x0_C610 RW Device TXFIFO DMA priority

GTXFIFOPRIHST 0x0_C618 RW Host TXFIFO DMA priority

GRXFIFOPRIHST 0x0_C61C RW Host RXFIFO DMA priority

GDMAHLRATIO 0x0_C624 RW Host FIFO DMA high-low priority ratio

GFLADJ 0x0_C630 RW Frame length adjustment

Device and Command Registers

The device and command registers are summarized in the following table.

Table 203: USB 2.0 Device and Command Registers

Register Name Offset Address Access
Type Description

Device Registers

DCFG 0x0_C700 RW Device configuration

DCTL 0x0_C704 RW, W Device control

DEVTEN 0x0_C708 RW, R Device event enable

DSTS 0x0_C70C R, WTC Device status

DGCMDPAR 0x0_C710 RW Device generic command parameter

DGCMD 0x0_C714 RW, R Device generic command

DALEPENA 0x0_C720 RW Device active USB endpoint enable

Command Registers

DEPCMDPAR2_0
DEPCMDPAR2_1 (1 to 11)

0x0_C800
0x0_C810 incr RW Physical endpoint parameter, reg 2

DEPCMDPAR1_0
DEPCMDPAR1_1 (1 to 11)

0x0_C804
0x0_C814 incr RW Physical endpoint parameter, reg 1

DEPCMDPAR0_0
DEPCMDPAR2_1 (1 to 11)

0x0_C808
0x0_C818 incr RW Physical endpoint parameter, reg 0

DEPCMD_0
DEPCMD_1 (1 to 11)

0x0_C80C
0x0_C81C incr RW Physical endpoint command

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 625Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntcount_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntcount_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntcount_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gevntcount_3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___ghwparams8.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gtxfifopridev.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gtxfifoprihst.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___grxfifoprihst.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gdmahlratio.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___gfladj.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dcfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dctl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___devten.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dsts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dgcmdpar.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dgcmd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___dalepena.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmdpar2_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmdpar2_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmdpar1_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmdpar1_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmdpar0_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmdpar2_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmd_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=usb2_xhci___depcmd_1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=625

System-Level Registers
The USB controller is included two clock and reset register modules (CRL and CRP). The
controller is located in the LPD, but the PHY controller interface is in the PMC.

• LPD_IOP_SLCR at 0xFF08_0000.

• PMC_IOP_SLCR at 0xF106_0000

LPD System-Level Registers

The LPD_IOP_SLCR registers associated with the controller are listed in the table

Table 204: LPD_IOP_SLCR Registers for USB

Register Name Address Access
Type Description

USB_Route 0xFF08_0428 RW Select direct path or CCI path to memory

USB_QoS 0xFF08_042C RW Define QoS bit values

USB_SMID 0xFF08_0430 RW Select one SMID bit [0] value

PMC System-Level Registers

The PMC_IOP_SLCR registers associated with the controller are listed in the table

Table 205: PMC_IOP_SLCR Registers for USB

Register Name Address Access
Type Description

USB_PwrState 0xF106_0600 R Power state of the core

Clock and Reset Registers
The USB reference clock and core reset are controlled by the CRL register module. The base
address for the CRL register module is 0xFF5E_0000.

Table 206: Clock and Reset Registers for USB

Register Name Offset Address Access
Type Description

Reference Clock

USB_2_REF_CTRL 0x0124 RW Reference clock control from LPD clock
controller

Controller Reset

RST_USB_2 0x0314 RW Controller reset from LPD reset controller

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 626Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_qos.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr___usb_smid.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___usb_pwrstate.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___usb_2_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_usb_2.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=626

USB I/O Signals
ULPI I/O Signals
The USB 2.0 controller is attached to an external PHY via the PMC MIO. The MIO interface
signals are shown with all other I/O's in MIO-at-a-Glance and detailed in the following table.

The USB controller is located in the LPD, but the ULPI I/O signals are routed to the PMC MIO.

Table 207: USB 2.0 Controller ULPI I/O Interface

MIO
Signal Name I/O PMC MIO Pin MIO-at-a-Glance Table

USB_ULPI_RST Output 13 12

USB_ULPI_DATA[0]
USB_ULPI_DATA[1]
USB_ULPI_DATA[2]
USB_ULPI_DATA[3]

I/O
14
15
16
17

4
5
6
7

USB_ULPI_CLK Input 18 0

USB_ULPI_DATA[4]
USB_ULPI_DATA[5]
USB_ULPI_DATA[6]
USB_ULPI_DATA[7]

I/O
19
20
21
22

8
9

10
11

USB_ULPI_DIR Input 23 1

USB_ULPI_STP Output 24 2

USB_ULPI_NXT Input 25 3

Port Indicator, Fault, and Power Select Signals
The following table lists the USB port indicator and power signals on the EMIO.

Table 208: USB Port Indicator and Power Signals on EMIO

Port Signals
EMIO Signals Default Input Value

to ControllerName I/O
Port indicator EMIOUSB{0,1}PORTINDCTL{0,1} O ~

Power fault EMIOUSB{0,1}VBUSPWRFAULT I 0

Power select EMIOUSB{0,1}VBUSPWRSELECT O ~

Section XII: I/O Peripheral Controllers
Chapter 69: USB 2.0 Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 627Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=627

Section XIII

Flash Memory Controllers
This section includes these chapters:

• Octal SPI Controller

• Quad SPI Controller

• SD/eMMC Controllers

The three flash memory controllers are located in the PMC. Their I/O signals are routed to device
pins via the PMC MIO multiplexer. Only the SD/eMMC controller I/O signals can be routed to
the PL EMIO, but this route requires the LPD to be powered-up.

Each of the flash memories can be a primary boot device on PMC MIO as described in Boot
Modes.

OSPI and QSPI Restriction

The OSPI and QSPI are mutually exclusive; only one of the controllers can be used in a system.
The selection is done using PMC_IOP_SLCR registers. Program the
PMC_IOP_SLCR.MIO_PIN_[0:12] registers to defined the I/O pin connections for these
controllers.

Section XIII: Flash Memory Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 628Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=628

Chapter 70

Octal SPI Controller
The octal SPI (OSPI) controller can access one or two flash devices using several different
methods. The controller is located with the other flash memory controllers in the PMC. The I/O
interface is routed to the PMC MIO pin bank 0. OSPI is commonly used as a boot device; see
Octal SPI Boot Mode. The controller provides multiple ways to read and write the flash memory:

• STIG/PIO read/write (software triggered instruction generator)

• Direct read/write with address remap

• Non-DMA indirect read/write via AXI slave interface

• DMA indirect read using AXI master interface

STIG/PIO access enables software to read and write 64-bit flash memory data via the APB
programming interface.

Direct access allows software to read/write flash memory within a 512 MB memory block
starting at 0xC000_0000. This window is mapped to the flash device memory space. This
enables software to perform normal reads and writes within this memory-mapped window.
Processor software cannot execute code directly from the controller; execute-in-place is not
supported.

In DMA mode, data is autonomously read from the flash memory and written to system memory
via the TXFIFO. The DMA master is on the PMC main AXI switch.

Software sends commands to the controller using the flash command control register. Commands
include configuration, SPI commands (opcode, address, mode, dummy), and single byte reads and
writes.

The controller also includes a programmable polling features to read the flash device status and
report when a certain value is received. The polling feature also includes an expiration timeout.

The interface works with up to two flash devices that are connected to the PMC MIO mux and
pin bank 0. The signals are listed in OSPI I/O Interface. The I/O signals are not available on the
LPD MIO pins or as PL EMIO port signals.

Software accesses the OSPI register module via the 32-bit APB programming interface. All of the
OSPI related registers are listed in the Register Reference.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 629Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=629

Features
The OSPI features include:

• Interface to one or two devices

• DLL for accurate I/O clocking at high speed

• DDR and SDR I/O

Boot Device
The OSPI controller can be used as a boot device. For more information, see Octal SPI Boot
Mode.

Nomenclature
The OSPI controller uses slightly different nomenclature for some terms as noted in the following
table.

Table 209: OSPI Nomenclature

Functionality Common Nomenclature OSPI Chapter Nomenclature
Processor addressable flash memory Linear access mode Direct mode

Data clocking on positive and negative
clock edges

Double data rate (DDR) Double data rate (DDR)
Dual transfer rate (DTR) 1

Notes:
1. Both the DDR and DTR terms are used in the OSPI chapter. The DTR term is used when referring to the Micron flash

memory devices.

Comparison to Previous Generation Xilinx Devices
The OSPI controller is new to Xilinx® devices.

System Perspective
The OSPI is located in the PMC IOP. The controller includes several system interfaces, signals
and an I/O interface routed to the PMC MIO pins.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 630Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=630

Block Diagram
The high-level block diagram is shown in the following figure. The location of the OSPI is shown
in the PMC Interconnect.

Figure 108: OSPI High-level Block Diagram

Control
and

Status
Registers

Flash
Controller

OSPI_IO[0:7]

OSPI_RST_b

32-bit
APB

PMC
IOP
Switch

32-bit
AXI

OSPI_REF_CLK

OSPI_RST

OSPI IRQ#156

OSPI_CLK

PMC
MIO

De
vi

ce
 B

ou
nd

ar
y

8

OSPI_CSx_b
2

Up to 13

S

PMC_IRO_CLK
DMA Controller

SRC DMA
from Flash

Memory

MDST DMA
to System
Memory

M

32-bit
AXI

S, AHB

OSPI_DSDLL

Control and Status

PMC_GPIO [12]

AXI Slave Interface

Bu
ff

er

Bu
ff

er

Control DMA Peripheral
Interface

SRAM I/F

DMA_Flash
Interface

DMA
Regs

S

From PMC GPIO controller (used for boot and Xilinx software drivers)

M

M

S

X22629-050221

Functional Units
The main components of the OSPI controller are introduced in this section.

Flash Controller

The flash controller has several modes. Each mode represents a different way for the controller
to interface with the flash memory device. See Access Modes.

DMA Controller

The DMA controller is a one-way path to access memory in the flash device and write it to
system memory via the 32-bit AXI master interface. The DMA is buffered and supports 64-byte
burst transactions on the AXI interface to the PMC IOP switch. See DMA Programming Model
for the SRC DMA that fetches data from the flash device and the DST DMA that writes the data
to system memory.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 631Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=631

Control and Status Registers

The OSPI control and status registers provide access to the DMA and flash controller. In addition
to the OSPI registers, there are system-level registers associated with the OSPI controller. See
Register Reference for more information.

System Interfaces
The controller has three system interfaces attached to the PMC IOP switch.

AXI Master DMA Interface

The AXI master DMA interface enables the controller to burst data from the flash device to
system memory in DMA access mode. For more information, see DMA Programming Model.

AXI Slave Interface

The AXI slave interface enables software to read and write flash memory data. The interface is
used in several controller operating modes.

• Direct access mode

• Indirect mode non-DMA

APB Slave Programming Interface

The APB programming interface enables software to access the memory mapped control and
status registers. These are listed in Register Reference.

System Signals
System signals include:

• Clocks

• Controller Reset

• System Interrupt

• System Error

Clocks

The controller receives three clocks from the PMC clock controller. These clocks are programmed
by the CRP register module.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 632Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=632

IOP Switch Interface Clocks

The APB programming interface is clocked by the IOP_LSBUS_CLK clock. The AXI DMA
interface is clocked by the IOP_IRO_CLK clock. These clocks are shared with other functional
units.

Reference Clock

The controller logic itself is clocked by the QSPI reference clock, which includes the DLL for the
I/O clock. The reference clock is generated by the PMC clock controller using the CRP register
set.

• OSPI_REF_CLK controlled by the CRP OSPI_REF_CTRL register

Controller Reset

The controller has two resets. The controller reset, OSPI_RESET, comes from the PMC reset
controller. This signal asserts when software writes to the RST_OSPI register or by any one of a
number of system-level resets described in the Resets chapter.

The controller also has a separate PHY reset for the DLL. This is controlled by the PHY_Config
register.

Asserting Reset

Resets should only be asserted when the controller is inactive, [IDLE] = 1. Doing so at other
times produces unknown results.

Reset Condition

The following states are set by the controller reset:

• Transactions on the I/O interface are abruptly terminated (must be avoided, check [IDLE] to
confirm the I/O is quiescent)

• Pending requests from the software are canceled

• All registers are set to their reset value

System Interrupt

OSPI has one system interrupt signal, IRQ#156. The system interrupt can be asserted by any one
of the three interrupt status registers contained with the OSPI registers set.

• Controller interrupt register:

○ IRQ_Status, status is after the mask

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 633Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___ospi_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ospi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___phy_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___irq_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=633

• DMA source interrupt register:

○ DMA_SRC_ISR, status is before the mask

• DMA destination interrupt register:

○ DMA_DST_ISR

The system interrupt is routed to several places as described in System Interrupts.

System Error

The APB programming interface can generate an address decode error if it detects a software
access violation. The error signal is routed to the system error accumulator for processing as
described in System Errors.

I/O Interface
The I/O signals are routed to the PMC MIO. The 8-bit data bus is supported with two chip
selects. The signals are shown in OSPI I/O Interface.

I/O Wiring Diagrams

The I/O wiring connections for boot modes are shown in Octal SPI Boot Mode.

Programming Model
The OSPI has several ways to access flash memory. These modes and their controls are all done
using the OSPI register module. The registers are summarized in Register Reference. All modes
and controls are done via the OSPI register set. The modes are introduced in Access Modes.

Access Modes
There are several access modes:

• Software triggered instruction generation (STIG read/write)

• Direct read/write mode

• Non-DMA indirect read/write mode

• DMA indirect read mode

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 634Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=634

Memory Access Modes
There are several flash memory access modes. Only one mode is available at a time.

• STIG/PIO software triggered instruction generator and programmed I/O

• Direct mode read/write via AXI slave interface

• Software non-DMA indirect read/write via AXI slave interface

• DMA indirect read via AXI master interface

Flash Memory Access Modes Table

Each operating mode uses the system interfaces differently as summarized in the following table.
The methods to access the OSPI controls and data differ depending on the operating mode. The
features that apply for each mode are identified in the following table.

Table 210: OSPI Flash Memory Access Modes

Entity STIG Direct
Mode

Indirect Mode
Non-DMA With DMA

Interfaces

AXI system slave ~ Data Data ~

AXI system master ~ ~ ~ Data

APB programming Control and data Control Control Control

Internal DMA peripheral ~ ~ Data

Hardware Features

Address remap ~ Yes ~ ~

Data write protection ~ Yes ~ ~

DMA ~ ~ ~ Yes

Memory accessFlash Memory Accesses RW RW RW R

Data transfer size per command Up to 8 bytes, or "read
memory" up to 128 bytes

Reads up to device size
Writes based on device command

The programmed I/O must not be attempted when there is DMA activity.

STIG, Programmed I/O

Software can trigger individual flash instructions using register reads and writes.

Direct Mode

Memory-mapped direct mode generates flash data transfers.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 635Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=635

Non-DMA Indirect

The controller can be programmed to read or write a block of data using register read/write
operations. For reads, the controller prefetches data in preparation for the software read. For
writes, it buffers data for the flash memory.

DMA Indirect

The DMA unit operations are performed by SRC DMA interfaces to the controller's DMA flash
interface to read the flash memory via the controller's buffer and the DST DMA to write data to
the system memory via the AXI master interface on the PMC IOP switch. The DMA peripheral
interface decodes requests from the SRC DMA to read flash memory data.

Polling Feature
The OSPI flash auto-polling feature operates in all access modes. Polling is controlled by the
expiration and flash status registers.

• Poll_Expire cycle count to polling expiration

• Poll_Status with dummy cycle count

Start-up Sequences
Controller Reset

After reset, the controller is disabled and can be configured as needed.

There are several ways to reset the controller. These are described in the Controller Reset section
of this chapter.

Controller Enable

The controller enable/disable function is used by software for several purposes.

Idle Status Bit

After a flash memory access has been initiated, software must wait for it to be completed before
another access is initiated. The [IDLE] status bit is asserted after the controller has finished
performing the flash memory access. In direct access mode, software does not need to check the
idle status between successive accesses.

• Initiate a new access mode (e.g., from direct to DMA mode)

• Set up polling of the flash memory status during flash write transactions when
Indirect_Write_Ctrl [wr_queued] bit is set. In this case, the software waits for queued write to
finish.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 636Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___poll_expire.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___poll_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_write_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=636

For read transactions, there is no need to wait for the flash status.

DMA Programming Model
The DMA reads from the flash memory and writes to system memory; a flash memory read-only
operation.

The DMA controllers are divided between the SRC DMA for data reads from the flash memory
and the DST DMA for data writes to addressable system memory via the PMC IOP AXI switch.

DMA Features
The DMA includes the following features:

• Separate read channel (SRC) and write channel (DST)

• Simple DMA, no scatter-gather

• DST connects to 32-bit AXI to PMC IOP interconnect

• 128-word FIFO

• SRC DMA reads from flash memory controller when space is available in FIFO

• DST DMA writes data when data is available in the FIFO

• DMA start address is 4-byte aligned

• DMA transfer length is in 4-byte words

• DST DMA INCR burst type

• Timeout mechanisms for SRC and DST DMA

• Automatic DST DMA hardware management for 4 KB boundary crossing

• Configurable AXI AxUSER bits for coherency and QoS

Programming Steps
This section provides the steps for configuring the DMA controller. Be sure to follow the
guidance provided in the Configuration Restrictions section.

1. Configure the I/O interface.

2. Configure the DMA controller:

a. Program the DMA_DST_ADDR_L and DMA_DST_ADDR_H registers with the destination
address in main memory; must be word aligned.

b. Program the DMA_SRC_ADDR register to be the same as the Indirect_Trig_Addr register.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 637Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_addr_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_trig_addr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=637

c. Program the DMA_DST_Size with the number of words to be transferred (word aligned).
This should be the same as the Indirect_Read_Num register.

d. Program the DMA_DST_CTRL_1 and DMA_DST_CTRL_2 register as required.

3. Start the indirect read in flash memory I/O controller by setting Indirect_Read_Ctrl [start] = 1.
Wait until the DMA_DST_ISR [DONE] bit is set to check if the AXI command transfer has
completed before accessing the data transferred to memory.

Source DMA
The SRC DMA generates an address to the flash controller via its interface to read data from the
flash memory device.

The SRC DMA writes the data from flash device to the DMA buffer. The DST DMA then writes
the data in the buffer to system memory. Single transactions are four bytes and burst
transactions are always 64 bytes.

Control Settings

The SRC DMA settings are shown in the following table.

Table 211: OSPI Source DMA Control Settings

Register Address
Offset Write Value Description

DMA_Config 0x0020 0000_0602h
Transfer size: four bytes for single AXI transfer
and 64 bytes for AXI burst transfer. The DMA
does not support any other transfer sizes.

Indirect_Read_Watermark 0x0064 0000_0000h To indicate data availability as and when
sufficient data is available in the buffer.

Indirect_Trig_Addr 0x0080 0000_0006h The SRC DMA can execute only a fixed burst of
64-bytes.

SRAM_Partition_Config 0x0018 0000_00FEh Allocate the 1 KB buffer for SRC DMA read
operations.

Source DMA Interrupts

The SRC DMA interrupts in the DMA_SRC_ISR register are summarized in the following table.
These interrupts are not used during normal operation, but can provide information for test and
debug.

Table 212: OSPI Source DMA Interrupts

Interrupt Bit Description
[MEM_DONE] 0 The DMA has completed current command of all reads of the flash memory

[DONE] 1 DMA has completed a command

[AXI_RDERR] 2 Error reading data from flash controller

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 638Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_size.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_num.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_ctrl_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_ctrl_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_trig_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___sram_partition_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=638

Table 212: OSPI Source DMA Interrupts (cont'd)

Interrupt Bit Description
[TIMEOUT_STRM] 3 Timeout counter 1 expired; flash controller is stalled

[TIMEOUT_MEM] 4 Timeout counter 2 expired; DMA is stalled

[THRESH_HIT] 5 FIFO watermark hit

[INVALID_APB] 6 APB programming interface address decode error

Destination DMA
The DST DMA generates an address to the system memory via its 32-bit AXI master interface to
write data from the flash memory device that is in the DMA buffer to system memory.

Destination DMA Interrupts

The DST DMA interrupts in the DMA_DST_ISR register are summarized in the following table.
The status bits show the raw (before the mask) interrupt event. Each interrupt is cleared by
writing a 1 to the bit (W1C).

Table 213: OSPI DST DMA Interrupts

Interrupt Bit Description
[DONE] 1 DMA is done and all data is sent; BRESP received

[AXI_BRESP_ERR] 2 DMA write generated a BRESP error on AXI

[TIMEOUT_STRM] 3 Timeout counter 2 expired; data from SRC DMA stalled

[TIMEOUT_MEM] 4 Timeout counter 1 expired; AXI interface stalled

[THRESH_HIT] 5 FIFO reached threshold limit

[INVALID_APB] 6 APB programming interface address decode error

[FIFO_OVERFLOW] 7 FIFO overflow detected

Configuration Restrictions
• In addition to the above registers, the AHB_Indirect_Addr register must be programmed so

there is not a 4 KB boundary crossing between the value programmed and the value + 63.

• The Indirect_Read_Num register should be programmed so that the number of bytes read is
word-aligned. Bits 1 and 0 should always be programmed to 0 for this register.

• Program the DMA_TOP and then trigger the indirect read transfer using IND_READ_CTRL
[start].

• For direct transfers, all the AXI transactions must be aligned.

• For direct write transfers, only the following WSTRB are supported.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 639Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___ahb_indirect_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_num.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=639

AxSIZE WSTRB values supported
2’b10 4’b1111

2’b01 4’b1100, 4’b0011
2’b00 4’b0001, 4’b0010, 4’b0100, 4’b1000

• Program the OSPI_AXI_Sel register with 3h to enable direct mode and AXI slave interface.

• STIG mode supports only 1-1/0-1/0 (command- address-data) and 8-8/0-8/0 commands.

• STIG mode does not support 1-8-8 and 1-1-8 commands.

• Only one indirect mode operation can be triggered at a time. The next indirect operation can
be triggered after the first indirect operation is complete.

Architecture

The AHB interface is used to transfer data, either in a memory mapped direct fashion, or in an
indirect fashion where the controller is set up via configuration registers to silently perform some
requested operation, signaling its completion via interrupts or status registers.

For indirect operations, data is transferred between system memory and flash memory via an
internal SRAM. Interrupts or status registers are used to identify the specific times at which this
SRAM should be accessed using user programmable configuration registers.

The DMA peripheral bus optimizes data transfers to the flash memory and PHY during indirect
transfers.

DMA Controller Implementation

The SRC and DST DMA controller has the same programming model as the CSU DMA in the
Zynq® UltraScale+™ MPSoC.

The data read from the flash memory by the SRC DMA is put in a buffer for the DST DMA to
access and write out to system memory using the controller's AXI master interface.

Interrupts
There are several interrupt register sets:

• Controller Interrupts

• Source DMA Interrupts

• Destination DMA Interrupts

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 640Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_axi_sel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=640

Controller Interrupts
The controller interrupts are latched into the OPSI.IRQ_Status register. The source for each
interrupt is indicated in the following table.

Table 214: OSPI Flash Controller Interrupts

Interrupt Bit

Interrupt Source

Description
STIG Direct

Indirect
Non-
DMA

Indirect
DMA Polling

IND_OP_DONE 2 ~ ~ Yes Yes ~ Indirect operation
complete

WPROT_ATTEMPT 4 Yes Write protect access
attempted

ILLEGAL_ACCESS_DET 5
Illegal AHB slave
interface access
attempted

IND_RD_SRAM_FULL 12 ~ Yes Indirect read
partition overflow

POLL_EXP 13 ~ ~ ~ ~ Yes Polling time period
counter expired

STIG_REQ_RDY 14 Yes ~ ~ ~ ~

Register Reference
The OSPI registers are divided into several overview tables:

• OSPI Controller Registers

• OSPI SRC DMA Registers

• OSPI DST DMA Registers

• System-Level Registers: from PMC_IOP_SLCR register set

OSPI Controller Registers
The OSPI flash memory I/O controller registers are listed in the following table. The base address
for these registers is 0xF101_0000.

Table 215: OSPI Flash Memory I/O Controller Register Overview

Register Name Address Offset Access
Type Description

Config 0x0000 RW Controller configuration

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 641Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___config.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=641

Table 215: OSPI Flash Memory I/O Controller Register Overview (cont'd)

Register Name Address Offset Access
Type Description

Read_Instr_Config
Write_Instr_Config

0x0004
0x0008 RW Device read and write instruction configurations

Device_Delay 0x000C RW I/O timing delay

Read_Data_Capture 0x0010 RW Read data capture

Device_Size_Cfg 0x0014 RW Device size configuration

SRAM_Partition_Config 0x0018 RW SRAM partition configuration

AHB_Indirect_Addr 0x001C RW Indirect AHB address

DMA_Config 0x0020 RW DMA peripheral configuration

Remap_Addr 0x0024 RW Remap address

Mode_Bit_Config 0x0028 RW Mode bit configuration

SRAM_Fill 0x002C R SRAM fill

Write_Completion_Ctrl 0x0038 RW Write completion control

Poll_Expire 0x003C RW Polling expiration

IRQ_Status
IRQ_Enable

0x0040
0x0044

WTC
RW

Interrupt status
Interrupt enable

WProt_Lower
WProt_Upper

0x0050
0x0054

RW
Write protection starting block:
* Lower boundary
* Uupper boundary

WProt_Ctrl 0x0058 RW Write protection control

Indirect_Read_Ctrl
Indirect_Read_Watermark
Indirect_Read_Start
Indirect_Read_Num

0x0060
0x0064
0x0068
0x006C

R, W, WTC
RW
RW
RW

Indirect read transfer control
Indirect read transfer watermark
Indirect read transfer start address
Indirect read transfer number (in bytes)

Indirect_Write_Ctrl
Indirect_Write_Watermark
Indirect_Write_Start_Addr
Indirect_Write_Num
Indirect_Trig_Addr

0x0070
0x0074
0x0078
0x007C
0x0080

R, W
WTC
RW
RW
RW

Indirect write transfer control
Indirect write transfer watermark
Indirect write transfer start address
Indirect write transfer number bytes
Indirect trigger address range

Flash_Cmd_Ctrl 0x008C R, W, RW Flash command control memory

Flash_Cmd_Ctrl 0x0090 R, W, RW Flash command control

Flash_Cmd_Addr 0x0094 RW Flash command address

Flash_Read_L
Flash_Read_U

0x00A0
0x00A4

R Flash command read data, lower and upper

Flash_Write_L
Flash_Write_U 0x00A8 0x00AC RW Flash command write data, lower and upper

Poll_Status 0x00B0 R Polling flash status

PHY_Config 0x00B4 W, RW PHY configuration

PHY_Master_Ctrl 0x00B8 RW PHY DLL master control

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 642Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___read_instr_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___write_instr_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___device_delay.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___read_data_capture.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___device_size_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___sram_partition_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___ahb_indirect_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___remap_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___mode_bit_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___sram_fill.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___poll_expire.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___irq_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___irq_enable.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___wprot_lower.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___wprot_upper.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___wprot_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_start.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_read_num.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_write_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_write_watermark.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_write_start_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_write_num.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___indirect_trig_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_cmd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_cmd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_cmd_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_read_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_read_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_write_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___flash_write_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___poll_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___phy_config.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___phy_master_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=642

Table 215: OSPI Flash Memory I/O Controller Register Overview (cont'd)

Register Name Address Offset Access
Type Description

DLL_Observe_L
DLL_Observe_U

0x00BC
0x00C0

R DLL observable, lower and upper

Opcode_Ext_L
Opcode_Ext_U

0x00E0
0x00E4

RW Opcode extension, lower and upper

SAFETY_CHK 0x1FF8 RW Safety check register

OSPI SRC DMA Registers
The DMA controller registers are listed in the following table. The base address for these
registers is 0xF101_0000.

Table 216: SRC DMA Register Overview

Register Name Address
Offset Access Type Description

DMA_SRC_ADDR 0x1000 RW Source DMA read address

DMA_SRC_Status 0x1008 R, WTC Source DMA read status

DMA_SRC_CTRL
DMA_SRC_CTRL2

0x100C
0x1024

RW Source DMA read control Reg 1 and 2

DMA_SRC_ISR
DMA_SRC_IER
DMA_SRC_IDR
DMA_SRC_IMR

0x1014
0x1018
0x101C
0x1020

WTC
W
W
R

Source DMA read interrupt status, enable,
disable, and mask

OSPI DST DMA Registers
The DMA controller registers are listed in the following table. The base address for these
registers is 0xF101_0000.

Table 217: OSPI SRC DMA Register Overview

Register Name Address
Offset Access Type Description

DMA_DST_ADDR_L
DMA_DST_ADDR_H

0x1800
0x1828 RW

Destination DMA address to system
memory, 32 LSBs
Destination DMA address to system
memory, 17 LSBs

DMA_DST_Size 0x1804 RW Destination DMA write payload size

DMA_DST_Sts 0x1808 R, WTC Destination DMA status

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 643Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dll_observe_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dll_observe_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___opcode_ext_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___opcode_ext_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___safety_chk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_addr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_ctrl2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_src_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_addr_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_addr_h.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_size.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_sts.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=643

Table 217: OSPI SRC DMA Register Overview (cont'd)

Register Name Address
Offset Access Type Description

DMA_DST_CTRL_1
DMA_DST_CTRL_2

0x180C
0x1824

RW Destination DMA control reg 1 and 2

DMA_DST_ISR
DMA_DST_IER
DMA_DST_IDR
DMA_DST_IMR

0x1814
0x1818
0x181C
0x1820

WTC
W
W
R

Destination DMA write interrupt status,
enable, disable, and mask

System-Level Registers
The PMC_IOP_SLCR related registers are listed in the following table.

Table 218: OSPI-related Registers in the PMC_IOP_SLCR Register Set

Register Name Description

OSPI_AXI_Sel
Select the AXI interface to OSPI:
0: OSPI DMA mode. AXI interface is driven by OSPI DMA
1: OSPI Linear mode. AXI interface is driven by the interconnect.

OSPI_Coherent Define transaction coherency and bufferability policy

OSPI_Route Route through FPD CCI (for APU L2-cache coherency) or bypass it (non-
coherent)

OSPI_QoS QoS traffic type

OSPI I/O Interface
The OSPI controller I/O signals are only available on the PMC MIO. The interface is not available
on the LPD MIO or the PL EMIO interface.

I/O Signal Table
The I/O signals are shown in MIO-at-a-Glance and detailed in the following table.

Two devices can be attached to the I/O interface. The OSPI_CS0_b and OSPI_CS1_b are used for
the stacked device configuration. For non-stacked configurations, use OSPI_CS0_b.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 644Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_ctrl_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_ctrl_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=ospi___dma_dst_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_axi_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___ospi_qos.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=644

Table 219: OSPI Controller I/O Signals

MIO
Description

Signal Name I/O PMC MIO
Pin

MIO-at-a-
Glance Table

OSPI_CLK Output 0 0 Clock output

OSPI_IO[0]
OSPI_IO[1]
OSPI_IO[2]
OSPI_IO[3]
OSPI_IO[4]

I/O

1
2
3
4
5

1
2
3
4
5

I/O signals

OSPI_DS Input 6 6 Read data strobe

OSPI_IO[5]
OSPI_IO[6]
OSPI_IO[7]

I/O
7
8
9

7
8
9

I/O signals

OSPI_CS0_b Output 10 10 Chip select 0, active-Low

OSPI_CS1_b Output 11 11 Chip select 1, active-Low1

OSPI_RST_b Output 12 12 PMC GPIO controller output used for reset2

Notes:
1. When one device is connected, it can be connected to CS0_b or CS1_b.
2. The OSPI boot process and the Xilinx software drivers use an output signal from the PMC GPIO Controller (bank 0,

channel 12) to reset the flash device.

Section XIII: Flash Memory Controllers
Chapter 70: Octal SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 645Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=645

Chapter 71

Quad SPI Controller
The quad SPI (QSPI) controller can access one or two flash devices using several different
methods. The controller is located with the other flash memory controllers in the PMC. The I/O
interface is routed to the PMC MIO pin bank 0 and can drive one or two devices. QSPI is
commonly used as a boot device, see Quad SPI Boot Mode. The controller provides multiple
ways to read and write flash memory:

• SPI accesses

• Programmed I/O (PIO) protocol

• DMA indirect read using AXI master interface

SPI accesses enables software to control the bus protocol and read/write memory data via the
APB programming interface.

Linear addressing is not supported. Processor software also cannot execute code directly from
the controller; execute-in-place is not supported.

For DMA, data is autonomously read from the flash memory and written to system memory via
the TXFIFO. The DMA master is on the PMC main AXI switch. The DMA includes a TXFIFO.

Software sends commands to the controller using the flash command register. The commands are
buffered in the command FIFO. Commands include configuration, SPI commands (opcode,
address, mode, dummy), and single byte reads and writes.

The controller also includes a programmable polling features to read the flash device status and
report when a certain value is received.

The interface works with up to two flash devices. The I/O interface is routed to the PMC MIO
multiplexer, bank 0. The I/O signals are not available on the LPD MIO pins or the PL EMIO port
signal interface.

The data signals are divided between upper and lower signals; four data bits each with a clock
and a chip select. The two-device implementation can be stacked with a 4-bit I/O interface, or
connected in parallel with an 8-bit interface for higher performance.

Software accesses the QSPI register module via the 32-bit APB programming interface. All of the
QSPI related registers are listed in the Register Reference.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 646Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=646

Features
Interconnect

• 32-bit APB slave programming interface

• AXI master interface for DMA controller writes to system memory

I/O Configurations

The controller can interface with one or two flash memory devices. Basic connections include:

• 4 and 8-bit I/O signals

○ Single device with a x4 data bus width

○ Dual device, stacked configuration with a x4 data bus width

○ Dual device, parallel configuration with a x8 data bus width

Flash Memory Addressing

• 128 Mb and larger devices

• 16 MB addressing per device (32 MB for two devices)

Power Domain

The QSPI controller is in the PMC power domain.

Comparison to Previous Generation Xilinx Devices
The QSPI controller is similar to the Zynq® UltraScale+™ MPSoC except for the following:

• Legacy mode (LQSPI) including linear addressing is not supported

• DMA unit added with enhanced AXI interface control for coherency, buffer-ability, and quality
of service

System Perspective
The controller is located in the PMC on the IOP interconnect switch and has the following
interfaces and signals.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 647Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=647

• 32-bit APB slave programming interface

○ Memory mapped, programming registers

○ Control, status, and interrupt registers

○ FIFO data ports

• AXI master interface for DMA controller writes to system memory

○ 44-bit physical address with data bursts transfers

○ AxCACHE bit settings for coherency and bufferability

• QSPI_REF_CLK input for controller logic

• QSPI_RESET reset input

• Flash device interface

○ 4 and 8-bit I/O signals

○ QSPI_CLK clock, chip select, and loopback clock

The QSPI controller can be a primary boot device. For more information, see Quad SPI Boot
Mode.

Block Diagram
The I/O interface is routed to the PMC MIO bank 0 pins. The I/O pins are listed in MIO Signal
Tables. The PMC MIO bank is shown in MIO-at-a-Glance.

The high-level block diagram is shown in the following figure.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 648Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=648

Figure 109: QSPI High-level Block Diagram

Control and
Status

Registers

and

Ports for
Command and

PIO TX/RX

Timing

RXFIFO
64 words

TXFIFO
64 words

Command
FIFO

32 words

Command
Generator

RX
Controller

Polling

Q
SP

I
Pr

ot
oc

ol

Baud rate
Generator

QSPIx_IO

QSPI_LPBK_CLK

32-bit
APBSwitch

32-bit
AXI

TX

RX

QSPI_REF_CLK
QSPI_RST

QSPI IRQ #157

QSPIx_CLK

PMC MIO

De
vi

ce
 B

ou
nd

ar
y

8

QSPIx_CS_b
2

upto 13

PIO (RX)

PIO (TX)

2
Write Data

FIFO
128 words

AXI Bus Master
Interface

PMC_IRO_CLK

TX
Controller

DMA Controller

QSPI0 is lower
QSPI1 is upper

QSPI_REF_CLK

Switch

PMC_LSBUS_CLK

X23020-050221

Functional Units
The high-level block diagram includes several major functional units.

TXFIFO and RXFIFO

The controller has a 64-word TXFIFO for sending content to the I/O interface and a 64-word
RXFIFO for receiving data from the I/O interface. Use the QSPI.TXD register data port to write
data to the TXFIFO and the RXD register data port to read data from the RXFIFO.

Command FIFO

Software writes 20-bit command words to QSPI.GEN_FIFO to configure and initiate transactions
on the I/O interface. The command generator initiates transactions that are driven by the
command fields. The controller transmits data written to the TXFIFO and receives data read from
the RXFIFO.

Polling

The controller can repeatedly read the status of a the flash device looking for a specific pattern.
This can be used to monitor the status of a flash device operation or other purpose.

DMA Controller

The DMA controller is used to move large blocks of data from the flash device to system
memory. This is a master, write-only DMA controller on the AXI bus interface. It can only be used
to read data from the flash device and write the data to system memory.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 649Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=649

Interfaces

The controller has two system interfaces and a single I/O interface.

32-bit APB Slave Programming Interface

• Memory mapped, programming registers

• Control, status, and interrupt registers

• FIFO data ports

AXI Master Interface for DMA Controller Memory Writes

• 44-bit physical address with 32-word data bursts

• AxCACHE defines coherency and buffer-ability of the transaction

Flash Memory I/O Interface

• 4 and 8-bit data I/O (one or two devices)

• Chip select

• QSPI_CLK clock

• Loopback clock

System Interfaces
The DMA is a burst-enabled, 32-bit AXI master on the PMC IOP interconnect. There are several
PMC_IOP_SLCR registers available to control the AxCACHE and AxUSER transaction parameters.

The AXI write transactions include three options:

• Coherent or non-coherent with the FPD CCI

• Buffer-ability in the system

• Quality of service (QoS) settings

Coherent and Bufferable Transactions

The AXI coherency and bufferable transaction attribute can be programmed using the
QSPI_AXI_COH register. If hardware coherency with the APU L2 cache is needed, the
transaction must be routed through the FPU CCI using the QSPI_Route register. If coherency is
not enabled, the FPD CCI can be bypassed for higher performance.

Note: In most applications, coherency is managed by software. The hardware coherency through the CCI
slows down the DMA transfers and can severely impact the performance of the APU.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 650Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___qspi_route.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=650

QoS

There are three classes of QoS transactions, which are explained in Quality of Service. Normally,
the best effort class is chosen. The class selection is controlled by the
QSPI_IOP_INTERCONNECT_QOS register.

System Signals
The system signals connected to the QSPI controller include:

• Clocks

• Controller Resets

• System Interrupt

• System Error

The controller connects to several signals coming from and going to the system.

Clocks

The controller receives three clocks from the PMC clock controller. These clocks are programmed
by the CRP register module.

IOP Switch Interface Clocks

The APB programming interface is clocked by the IOP_LSBUS_CLK clock. The AXI DMA
interface is clocked by the IOP_IRO_CLK clock. These clocks are shared with other functional
units.

Reference Clock

The controller logic itself is clocked by the QSPI reference clock.

• QSPI_REF_CLK controlled by the CRP QSPI_REF_CTRL register

Controller Resets

Other resets are used to clear separate parts of the controller under software control by writing
to the QSPI.FIFO_CTRL register. The QSPI-specific resets include:

• [RST_GEN_FIFO]

• [RST_TX_FIFO]

• [RST_RX_FIFO]

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 651Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___qspi_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=651

System Interrupt

The QSPI register module OR's the individual controller interrupts and generates a single system
interrupt, IRQ #157.

System Error

The APB programming interface generates an address decode error if it detects an access
violation. This is OR'd together with the APB address decode errors from other PMC blocks to
create the PMC APB error in the PMC_GLOBAL.PMC_ERR2_ISR [0] register bit.

I/O Interface
The I/O interface is only available on the PMC MIO pins.

I/O Wiring Diagrams

The I/O wiring connections are shown in Wiring Diagrams. The diagrams for boot modes are
shown in Quad SPI Boot Mode.

I/O Signals

The QSPI I/O signals are listed in the table in the MIO Signal Tables.

Programming Model
The controller is managed by the QSPI register module. This include memory-mapped control
and status registers. The DMA has a simple programming model that is controlled by QSPI
registers.

Modes and States
Operating Modes

The controller operate modes include:

• Low-level protocol

• Programmed I/O (PIO) protocol

• DMA read flash, write system memory

• Read data polling

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 652Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=652

Start-up
The normal bring up process:

• Establish the QSPI_REF_CLK (PMC clock controller)

• Release the reset

• Set the baud-rate divisor (QSPI divider)

• Configure the controller

• Enable interrupts

• Set PIO or DMA mode

• Enable the controller

• Issue controller command

• PIO operating mode

○ Read/write data via TX/RXFIFOs

○ Issue controller commands

○ Monitor FIFOs in interrupt handler

• DMA operating mode

○ Configure and launch the DMA transfer

- Program DMA controller

- Program interrupts

- Send SPI command to flash device using controller commands sent to the command
FIFO

- Initiate DMA transfer

○ Wait for the DMA done interrupt [DONE] to be generated

Reset
The QSPI registers are reset by a POR or by the PMC reset controller using the RST_QSPI
register.

A controller reset is required when:

• The QSPI_REF_CLK clock frequency is changed. The clock control is described in System
Perspective.

• When both the baud-rate divisor and the I/O device mode is changed. For example, a reset is
required before changing from a single, or stacked device mode with a baud rate setting of 4
and then switching to the dual-parallel mode with a baud rate of 2.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 653Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=653

PIO Mode
For PIO mode operation, follow these steps.

1. Select the generic quad SPI controller by writing a 1 to the generic_qspi_sel register bit.

2. Set the mode_en bits = 2'b00 of the GQSPI_Cfg register.

3. Check to make sure that the generic FIFO is not full and then write the data into the generic
FIFO using a read or write command request on the APB interface.

4. Write the TX data into the TXFIFO when there is a write transfer over the APB interface.

5. When there is a write request, the generic quad SPI controller sends the command, address,
dummies from the generic FIFO and sends write data from the TXFIFO.

6. When there is a read request, the generic quad SPI controller sends the command, address,
dummies from the generic FIFO and sends read data into the RXFIFO.

7. Read requests are issued from the APB interface to receive the RX data.

When two flash devices are connected in stacked mode, the generic quad SPI controller checks
for the data bus select field of the generic FIFO and sends the requests accordingly.

DMA Mode
For DMA mode operation, follow these steps.

1. Select the generic mode by writing a 1 to the QSPI.GEN_SEL register bit.

2. Write the command, address, dummies in the generic FIFO using the read request.

3. The generic quad SPI controller sends the command as programmed in the generic FIFO and
reads the data into the RXFIFO.

4. The DMA controller issues DMA requests using the AXI master interface and sends the
RXFIFO data.

I/O Functionality
The flash device I/O interface has three configurations. The configurations are controlled by the
command word written to the GEN_FIFO data port.

For timing, see the Versal ACAP data sheets.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 654Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_cfg.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=654

Configurations
The I/O interface configurations are summarized in the following table. For more information, see
Quad SPI Boot Mode topics.

Table 220: Quad-SPI I/O Configurations

I/O Type Device Count Chip Selects Data Signals
Single 4-bit 1 Either1 Up to 4

Dual stacked 2 Either1 Up to 4

Dual parallel 2 Both2 8

Notes:
1. In the first case, either chip select can be used.
2. QSPI0_CS_b is associated with lower four data bits. QSPI1_CS_b is associated with upper four

data bits.

Clocking
The QSPI_SCLK clock signal for the flash device I/O interface comes from the QSPI baud-rate
generator. The baud-rate generator takes in the QSPI_REF_CLK clock and divides it down using
the QSPI.CFG [BAUD_RATE_DIV] field to generate QSPI_SCLK.

The QSPI_REF_CLK clock frequency must be 2x the QSPI_SCLK I/O device clock frequency for
higher than 37.5 MHz clocking.

SCLK I/O Loopback Clock

The QSPI_LPBK_CLK is generated from the QSPI_SCLK and routed through the output buffer to
a PMC MIO pin and returned back through the pin's input buffer to the controller for I/O delay
compensation for greater timing accuracy. The I/O loopback clock signal is only used for I/O
clocking >37.5 MHz. When the QSPI_SCLK device clock frequency is >37.5 MHz, the
QSPI_LPBK_CLK must be routed to PMC MIO [6] and must be left unconnected on the PCB.

Clock Tap Control Settings
The three clock frequency ranges are shown in the following table.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 655Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=655

Table 221: QSPI Clock Tap Delay Settings

Control
QSPI_CLK Frequency Range

Register Bit Field
≤ 37.5 MHz >37.5 to 100

MHz
>100 to 150

MHz

Data tap delay unit bypass Bypass
(1)

Bypass
(1)

Enable
(0)

PMC_IOP_SLCR.IOP_TAPDLY_BYPASS
[LQSPI_RX]
0: Enabled, use tap delay
1: Bypass

Clock loopback pin enable Disable
(0)

Enable
(1)

Enable
(1)

LPBK_DLY_ADJ [USE_LPBK]1

0: Disable
1: Enable

Data tap delay settings 00, 000 00, 000 01, 000 LPBK_DLY_ADJ [DLY1], [DLY0]

Data delay enable Disable (0) Enable
(1)

Disable
(0) DATA_DLY_ADJ [USE_DATA_DLY]

Data delay adjustment 000 000 000 DATA_DLY_ADJ [DATA_DLY_ADJ]

Notes:
1. If loopback is enabled, the QSPI_LPBK_CLK signal pin must be routed through the PMC MIO pin 6 and left unconnected

on the PCB.
2. The data delay enable bit is not used when the clock lookback pin is disabled, [USE_LPBK] = 0. However, the data delay

enable bit is normally written = 0 when loopback is not used.

I/O Striping Function

Striping Programming Examples

The following table lists QSPI striping examples.

Table 222: QSPI Striping Examples

[imm_data] [data_xfer] [stripe] [transmit] [receive] [bus_select]
TX Data: to Both Flash Devices

EBh 0 0 1 0 11

TX Data: even Bytes to QSPI0, Odd Bytes to QSPI1
64h 1 1 1 0 11

TX Data: to Both Flash Devices (not common, but possible)
64h 1 0 1 0 11

RX Data: Note: [stripe] = 0 is N/A when [receive] = 1
64h 1 X1 0 1 11

Note: [Stripe] = 0 is not applicable when [receive] = 1.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 656Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=656

Striping with Odd Byte Count

The generic QSPI controller transfers the data using the programmed data length in the
immediate_data field. When the data length bytes are odd, to send the last data byte, the lower
data bus is active for extra byte time than the upper data bus. For example, when the
immediate_data field is 5 bytes and the stripe option is used, the bytes 0, 2, and 4 (total of 3
bytes) are sent/received on the lower data bus and 1, 3 (total 2 bytes) are sent/received on the
upper data bus. The SCLK of the lower and upper are toggled accordingly.

Command Words
Controller commands are buffered in the command FIFO and are processed in order. The
commands are used in all operating modes.

Word Format
The word format is designed to closely manage the flow of RX and TX data. Receive data is
always via the RXFIFO. Transmit data can be written via the 32-bit TXFIFO or the 8-bit
immediate data field in the command word.

Software writes the controller commands to the Cmd_FIFO_Data register. They are buffered in
the 32-word deep command FIFO. The command word fields are described in the following
table.

Table 223: Controller Command Word Format

Field Name Bits Description

[IMM_DATA] 7:0 Multipurpose field for data or byte count

[DATA_XFER] 8

Select [IMM_DATA] field usage:
0: Immediate write data RXFIFO
1: Data byte count in the format defined by [EXP]; write data is sent
via the TXD data port

Note: Read data is always received via the RXD data port (RXFIFO).

[EXP] 9
Select byte count calculation method:
0: Absolute count is in [IMM_DATA] field (maximum of 256 bytes)
1: Exponential count is calculated as byte transfer count = 2 ^
[IMM_DATA]

[MODE] 11:10
00: Reserved, do not use
01: 1-bit data I/O
10: 2-bit data I/O
11: 4-bit data I/O

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 657Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___cmd_fifo_data.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=657

Table 223: Controller Command Word Format (cont'd)

Field Name Bits Description

[CS_LOWER] 12
Lower chip select control:
0: Deassert
1: Assert

[CS_UPPER] 13
Upper chip select control:
0: Deassert
1: Assert

[BUS_SEL] 15:14

Data bus enables for clocking:
00: No bus
01: Lower bus only
10: Upper bus only
11: Both buses
Bus width depends on [MODE]

[TX] 16
Transmit data enable:
0: Disable
1: Send data (immediate or via TXFIFO)

[RX] 17
Receive data enable:
0: Disable
1: Receive data (via RXFIFO)

[STRIPE] 18
Data stripe enable:
0: Disable (same data appears on upper and lower buses)
1: Enable (data is striped across lower and upper buses)

[POLL] 19
RX data polling enable
0: Disable
1: Enable

Programming
The overall programming guideline is shown in the Programming Flowchart. This is followed by
several programming models:

• PIO Mode Programming Model

• DMA Programming Model

• Polling Programming Model

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 658Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=658

Programming Flowchart
Figure 110: QSPI Programming Flowchart

START

Perform Abort
Clear and disable interrupts
Clear FIFO
Switch I/O mode and clear RxFIFO
Disable GQSPI

If interrupt
based?

Setup interrupt
system

Set options
Manual start
Set prescaler to 8
Select flash (slave select line, BUS)

Select GQSPI

Perform Reset
Set default configuration
Set default DMA mode
Set manual start
Set little endian
Disable poll time out
Set hold time out
Clear prescaler
Set CPOL CPHA to zero
Allow high frequencies
Reset thresholds
DMA INIT

Read ID
Prepare flash message (READ_ID)
Perform transfer
Validate flash message

Data Transfers
Prepare write command message
Perform transfer
Prepare status command message
Perform transfer

End

Transfer

Enable GQSPI
Select slave
Push messages into FIFO

If interrupt
based?

Enable interrupts
Rest of messages Transfer inside ISR

Poll for status
Transfer next message

End of Transfer

ISR

Check status
Clear interrupts
Check for error
If TX done

Fill next message into TXFIFO
If RX done

Read RXFIFO into buffer
If no more messages

Disable interrupts
Disable device
Indicate completion

End

Yes

No

No

Yes

X24044-053120

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 659Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=659

DMA Data Transfer Length Examples
The length of a data transfer is defined by one or more command words. Each command word
includes a byte count. There are two ways to define the byte count. The method is defined by
[EXPONENT]:

• 0: Byte count is in [imm_data]. Range is 0 to 128 (80h) bytes.

• 1: Exponent byte count = 2^[imm_data]. Range is 2, 4, 8, 16, and to megabytes.

Programming Examples

There are four data transfer length examples. Set [data_transfer] = 1.

Table 224: QSPI Data Transfer Length
Examples

Byte Count [imm_data] [exponent]
64 Byte Transfer

40h 0

128 Byte Transfer
80h 0

1000 Byte Transfer - Option 1
09h 1
08h 1
E8h 0

1000 Byte Transfer - Option 2
08h 1
08h 1
08h 1
E8h 0

1 GB Transfer
1Eh 1

PIO Mode Programming Model
In the programmed I/O (PIO) mode, the software interacts closely with the flash device protocol
to read and write data. The device commands and data are written to the APB registers. The
memory writes are sent to the flash device via the generic TXFIFO. Data from the flash device is
read from the RXFIFO by reading the RXD register. The controller automatically fills the RXFIFO
as data is read. Commands are used to set up data transfers. The RX and TXFIFOs are managed
using the QSPI interrupts.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 660Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=660

There are two options in the PIO mode to write the SPI command and transfer the data.

The first option is to send multiple controller commands to the command FIFO. The controller
command includes an immediate 8-bit field that includes the SPI command and write data. For
reads, the controller returns the byte data to the RXFIFO.

The other PIO access option is to initiate a transfer with a controller command and then write
the SPI command and data content to the TXFIFO. In this case, the controller takes the content
of the TXFIFO to send the SPI command and write data to the flash device. The read case is
similar, except the data from the flash memory device is written to the RXFIFO by the controller.
Software is expected to read data from the RXFIFO.

DMA Programming Model
The DMA mode reads data from the flash device and writes the data to system memory.

The main memory address is defined by [ADDRESS]. The DMA writes data for a length of [SIZE].
After software starts a DMA transfer, the software normally waits for an interrupt.

DMA Mode

Software sets up the DMA transfer and interrupt. It sends a controller command to initiate the
transfer. To define the SPI command (for opcode, address, etc), the software writes multiple
controller commands using the immediate field.

Polling Programming Model
The controller polling mode is used to repeatedly read a byte from the flash device and compare
it to an expected 8-bit value. This mode is often used for status checking. The polling operation is
configured by the QSPI.POLL_CFG register. When the data matches the value in [POLL_DATA]
with the [MASK_EN] field applied, the data byte is written into the RXFIFO. This event can be
programmed to generate an interrupt.

When two flash devices are used, the controller does not execute the next command until the
data from both flash devices matches the value of the [POLL_DATA] with the [MASK_EN] field
applied.

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 661Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=661

Status Checking Use Case

The polling operation is useful when checking the status of a flash device. For example, when a
page program is issued to a flash device, the software itself can poll the status to check when the
write is completed. This software polling requires multiple read requests from the flash device's
status register. The polling operation autonomously reads the data and checks for the expected
value independent of software.

Polling Timeout

The polling operation also includes a timeout feature. The timeout operation is configured by the
POLL_TIMEOUT register and enabled by the CFG [EN_POLL_TIMEOUT] bit.

If the timeout occurs, the ISR [Poll_Time_Expire] interrupt bit is set to 1 if this interrupt is not
masked. This interrupt bit asserts the QSPI system interrupt.

Register Reference
QSPI Registers
There are two register overview tables for the QSPI.

• QSPI register overview

• PMC_IOP_SLCR and CRP related registers for QSPI system control, clocking, and reset.

The QSPI registers are listed in the following table. The base address for these registers is
0xF103_0000.

Table 225: QSPI Register Set

Function Register Name Address
Offset

Access
Type Description

I/O signals Rx_Clk_Dly 0x03C R/W RX clock delay bypass enable

DMA DMA_Dst_Addr_L
DMA_Dst_Addr_U

0x800

0x828
W

DMA destination memory address, low

DMA destination memory address, high

DMA DMA_Dst_Size 0x804 W DMA transfer size with start feature

DMA DMA_Dst_Status 0x808 R/WTC DMA status

DMA DMA_Dst_Ctrl 0x80C R/W DMA control reg 1

Commands DMA_Dst_Ctrl2 0x824 R/W DMA control reg 2

DMA interrupts
DMA_Dst_ISR
DMA_Dst_IMR
DMA_Dst_IER
DMA_Dst_IDR

0x814
0x820
0x818
0x81C

R
W
W
R

DMA interrupt status
DMA interrupt mask
DMA interrupt enable
DMA interrupt disable

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 662Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___rx_clk_dly.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_addr_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_addr_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_size.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_ctrl2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___dma_dst_idr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=662

Table 225: QSPI Register Set (cont'd)

Function Register Name Address
Offset

Access
Type Description

Configuration GQSPI_Cfg 0x100 Mixed Configuration

Configuration GQSPI_En 0x114 RW Controller enable

Data flow Tx_Data 0x11C W Transmit data word

Data flow Rx_Data 0x120 R Receive data word

Write protect GPIO_WProt 0x130 RW GPIO write protect

I/O signals LPBK_Dly_Adj 0x138 RW Loopback clock delay adjustment

Commands Cmd_FIFO_Data 0x140 W Word port for FIFO command

Controller mode Mode 0x144 RW Controller mode set

FIFO control GQSPI_FIFO_Ctrl 0x14C W TX/RX FIFO control, generic I/O mode

PIO interrupts
GQSPI_ISR
GQSPI_IMR
GQSPI_IER
GQSPI_IDR

0x104

0x110

0x108

0x10C

R/WTC
W
W
R

Polling status and RX/TXFIFO interrupt
states
Interrupt mask
Interrupt enables
Interrupt disable

Data flow Tx_Thresh 0x128 RW TXFIFO threshold level

Data flow Rx_Thresh 0x12C RW RXFIFO threshold level

Controller
commands GQSPI_GF_Thresh 0x150 RW FIFO threshold level

Polling GQSPI_Poll_Cfg 0x154 RW Poll configuration

Polling GQSPI_Poll_TO 0x158 RW Polling timeout

QSPI I/O Interface
The QSPI has several I/O wiring and boot options. The wiring options are shown in the following
figure. This is followed by two tables that describe the I/O signals. The boot options are listed in
Boot Modes.

These I/O configurations are supported by the programmed I/O access and DMA read modes.

Wiring Diagrams
There are five I/O interfacing options for the flash device:

• A: Single 4-bit device on lower interface (a boot mode)

• B: Single 4-bit device on upper interface

• C: Dual-stacked 4-bit on lower clocks and data (a boot mode)

• D: Dual-stacked 4-bit on upper clocks and data

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 663Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___tx_data.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___rx_data.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gpio_wprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___lpbk_dly_adj.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___cmd_fifo_data.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___mode.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_fifo_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___tx_thresh.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___rx_thresh.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_gf_thresh.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_poll_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=qspi___gqspi_poll_to.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=663

• E: Dual-parallel 8-bit (a boot mode)

For boot modes, see Quad SPI Boot Mode.

Figure 111: QSPI I/O Interface Connection Diagrams

4-bit
Flash

Device

QSPI Lower

4-bit
Flash

Device

4-bit
Flash

Device

NC
NC

NC

QSPI Upper

4-bit
Flash

Device

NC
NC

NC

QSPI Lower

QSPI Upper

A: Single Device, Lower

C: Dual-Stacked Devices, Lower

4-bit
Flash

Device

QSPI Lower

QSPI Upper

4-bit
Flash

Device

QSPI0_CLK
QSPI0_CS_b

QSPI0_IO[0:3]

QSPI1_CLK
QSPI1_CS_b

QSPI1_IO[0:3]

QSPI0_CS_b

QSPI Lower

QSPI Upper

QSPI0_CLK
QSPI0_CS_b

QSPI0_IO[0:3]

QSPI1_CLK
QSPI1_CS_b

QSPI1_IO[0:3]

QSPI1_CLK
QSPI1_CS_b

QSPI1_IO[0:3]

QSPI0_CLK
QSPI0_CS_b

QSPI0_IO[0:3]

B: Single Device, Upper

D: Dual-Stacked Devices, Upper

E: 8-Bit Dual-Parallel

4-bit
Flash

Device

QSPI Lower

QSPI1_CLK

QSPI Upper

4-bit
Flash

Device

QSPI0_CLK
QSPI0_CS_b

QSPI0_IO[0:3]

QSPI1_CS_b

QSPI1_CS_b

QSPI1_IO[0:3]

X23782-031221

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 664Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=664

MIO Signal Tables
The I/O interface is only available on the PMC MIO pins. The interface is not available on the
LPD MIO pins or the PL EMIO interface.

The QSPI controller signals are listed in the following tables. The interface includes lower and
upper controls, QSPI0 and QSPI1, respectively. The controller always drives the interface clock
signal as an output.

Table 226: Quad SPI Flash Interface I/O Signals

Versal ACAP Signal
Name

Flash Interface Protocols
1-bit 2-bit 4-bit

I/O Name I/O Name I/O Name
QSPIx_CLK O CLK O CLK O CLK

QSPIx_CS_b O CS_b O CS_b O CS_b

QSPIx_IO[0] O MOSI I/O IO[0] I/O IO[0]

QSPIx_IO[1] I MISO I/O IO[1] I/O IO[1]

QSPIx_IO[2] O WP_b O WP_b I/O IO[2]

QSPIx_IO[3] O HOLD_b O HOLD_b I/O IO[3]

QSPI_LPBK_CLK Enable for clock frequencies >37.5 MHz; it is a no connect on the PCB.

MIO Configuration Table

The five MIO connection options are shown in Wiring Diagrams and are listed in the following
table.

Note: The loopback clock signal is routed from the controller through the output buffer to the pin and
returned back through the pin's input buffer to the controller for I/O delay compensation. The loopback
clock signal is used by both QSPIx_CLK outputs via a clock gating circuit.

Table 227: Quad SPI I/O Signals

Signal Name PMC MIO
Pin

MIO-at-
a-Glance

Table

Device Interface Options
Single Dual-Stacked Dual-Parallel

Lower
Only

Upper
Only

Lower for
both

devices

Upper for
both

devices
8-bit data

A B D E E
Lower Interface

QSPI0_CLK 0 0 CLK ~ CLK ~ CLK

QSPI0_CS_b 5 5 CS_b ~ CS_b CS_b CS_b

QSPI0_IO[0] 4 4 IO[0] ~ IO[0] ~ IO[0]

QSPI0_IO[1] 1 1 IO[1] ~ IO[1] ~ IO[1]

QSPI0_IO[2] 2 2 IO[2] ~ IO[2] ~ IO[2]

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 665Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=665

Table 227: Quad SPI I/O Signals (cont'd)

Signal Name PMC MIO
Pin

MIO-at-
a-Glance

Table

Device Interface Options
Single Dual-Stacked Dual-Parallel

Lower
Only

Upper
Only

Lower for
both

devices

Upper for
both

devices
8-bit data

A B D E E
QSPI0_IO[3] 3 3 IO[3] ~ IO[3] ~ IO[3]

Upper Interface

QSPI1_CLK 12 12 ~ CLK ~ CLK CLK

QSPI1_CS_b 7 7 ~ CS_b CS_b CS_b CS_b

QSPI1_IO[0] 8 8 ~ IO[0] ~ IO[0] IO[4]

QSPI1_IO[1] 9 9 ~ IO[1] ~ IO[1] IO[5]

QSPI1_IO[2] 10 10 ~ IO[2] ~ IO[2] IO[6]

QSPI1_IO[3] 11 11 ~ IO[3] ~ IO[3] IO[7]

Loopback Clock Output

QSPI_LPBK_CLK 6 6 For clock frequencies >37.5 MHz

Section XIII: Flash Memory Controllers
Chapter 71: Quad SPI Controller

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 666Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=666

Chapter 72

SD/eMMC Controllers
The two SD/eMMC controllers have the same features and are operated independently. The
controller communicates with SDIO devices, SD memory cards, and eMMC cards and devices
with up to eight data signals.

The controller includes an AXI slave for its programming interface and an I/O data port. The
controller also includes an AXI master interface for the controller's DMA.

The SD/eMMC I/O interface is routed through the PMC MIO or the EMIO. The I/O interface is
not available through the LPD MIO.

Compatibility

The controller is compatible with the following specifications:

• SD host controller standard specification version 3.00

• SD memory card specification version 3.01

• SD memory card security specification version 1.01

• SDIO card specification version 2.0, 3.0

• eMMC specification version 4.51

Boot Device

The controller has three SD boot modes and one eMMC boot mode. Boot mode pins [3:0]:

• 0110: eMMC1 with 8-bit 1.8V interface

• 0011: SD0 using 3.0 protocol with 4-bit interface

• 0101: SD1 using 2.0 protocol with 4-bit interface

• 1110: SD1 using 3.0 protocol with 4-bit interface

For more information, see Boot Modes.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 667Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=667

Features
The controller key features are listed in the following sections.

SD/SDIO Mode

• 1- and 4-bit data

• Operating mode maximum clock rates

○ Standard, default speed mode at 25 MHz

○ High-speed mode at 50 MHz

○ SDR12 at 25 MHz

○ SDR25 at 50 MHz

○ SDR50 at 100 MHz

○ SDR104 at 200 MHz, up to 800 Mb/s data rate

○ DDR50 mode at 50 MHz

• Variable-length data transfers

• Cyclic redundancy check CRC7 for command and CRC16 for data integrity

• Performs read wait control, suspend/resume operation SDIO card

• Card detection (insertion/removal) and write protect input signals

• Designed to work with I/O cards, read-only cards, and read/write cards

• Read wait control, suspend/resume operation

• Control signals for external voltage level shifter

eMMC Mode

The eMMC I/O interface includes data widths up to 8 bits with a clock frequency of up to 200
MHz.

• 1-bit, 4-bit, and 8-bit data

• Operating mode with maximum clock rate:

○ Legacy MMC speed mode at 25 MHz

○ High-speed SDR and DDR modes at 50 MHz

○ HS200 mode at 200 MHz for up to 1600 Mb/s data rate

• Cyclic redundancy check CRC7 for command and CRC16 for data integrity.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 668Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=668

Primary Boot Device

The SD/eMMC controllers can be used as a boot device in both SD and eMMC modes.

Power Domain

The SD/eMMC controllers are in the PMC power domain.

Comparison to Previous Generation Xilinx Devices
The SD/eMMC controller is similar in the Zynq® UltraScale+™ MPSoC devices.

Improvements and changes:

• Enhanced DLL with new programming model

• DLL is used for all frequencies above 25 MHz

• Separate SD 0 and 1 register sets for the DLL TAP delays

• Maximum frequency with external level shifter bumped from 19 to 20 MHz

• Tuning count default value changed from 32 to 40

• SD_REF_CLK divider set = 0 results in a divide by 1

System Perspective
Block Diagram
The SD/eMMC block diagram is shown in the following figure.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 669Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=669

Figure 112: SD/eMMC High-level Block Diagram

Clock Dividers,
DLL, Enables,

and Multiplexers

De
vi

ce
 B

ou
nd

ar
y

up to 13

PMC Power Domain

PL

PMC
IOP Switch

PMC_IRO_CLK

32-bit
AXI

SDx_REF_CLK

SDx_RST

SDx_WAKEUP IRQs 159, 161

PMC
MIO

SDMA and
ADMA

Controllers

Read FIFO

AXI Bus
Master

Interface

Write FIFO

Block
Buffer

SDx IRQs 158, 160

SD_DLL_REF_CLK

TX
Interface

RX
Interface

Controller and
Interface Clocks

Register
Control

Command
Control

I/O Clocking
- DLL
- RX Tap Delay

I/O
Interface

Card Detect, Write Protect

Voltage Level Shifter Control

2

4

32-bit
AXI

X23029-061321

Functional Units
PIO Controller

In PIO mode, the software can access the SD data port register through the AXI slave interface.
This is the PIO method in which the host software driver transfers data using the buffer data port
register. Only single transfers are allowed (no burst support). Also, only one outstanding read/
write transaction is allowed.

PIO SDMA Controller

In SDMA mode, the controller interacts with the registers set and starts the DMA engine for
commands with a data transfer. The controller maintains the block transfer counts for PIO
operation.

The programming model is explained in SDMA Programming Model.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 670Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=670

Descriptor ADMA Mode

ADMA includes a descriptor-based architecture with scatter-gather capabilities. Software creates
descriptor tables in system memory that are processed in the ADMA mode.

The programming model is explained in ADMA Programming Model.

Note: The ADMA unit can also be referred to as ADMA2.

ADMA Controller

The DMA controller supports both SDMA and ADMA modes. The DMA controller uses the
master AXI interface to transfer data between the block buffer and the system memory. The
controller also uses this interface to access descriptor tables in system memory. The DMA
controller also implements a host transaction generator to control the host master interface.

The DMA memory transactions can be routed to the FPD CCI for cache coherency with the APU
or a non-coherent path including a NoC port to access system memory or AXI routing to the
OCM.

System Interfaces
The host controller interfaces to the system bus using the AXI master and slave interface.

AXI Slave Interface for Programmed I/O

The AXI slave programming interface provides software with access to the read/write memory
mapped registers for control and status. It also provides port accesses for programmed I/O
commands, reads, and writes. All accesses are single 32-bit read/write transactions.

AXI Master Interface for DMA Transfers

The 32-bit AXI master is used by the SDMA for simple programmed I/O access and the ADMA
for autonomous read and write memory transactions using descriptor tables with scatter-gather
capabilities.

System Signals
System signals connected to the SD/eMMC controller include:

• Clocks

• Controller Reset

• System Interrupts

• System Errors

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 671Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=671

Clocks

There are three clock from the system:

• SDx_REF_CLK for each controller

• SD_DLL_REF_CLK driving a DLL in each controller

• AXI bus interface clock

The SD clocks are described in Clock Functionality.

Controller Reset

The controller can be reset from the PMC reset controller or by writing to the controller's
software reset register. The PMC reset affects the entire controller and sets all registers to their
reset default state.

The attached eMMC card can be reset using the powercontrol [emmc_hwreset] register bit.

System Interrupts

Each controller generates two system interrupts. The IRQ numbers refer to controllers 0 and 1,
respectively.

• Wake-up interrupt (IRQ# 158 and 160)

• Controller interrupt managed by three sets of register controls (IRQ# 159 and 161)

○ Normal interrupts, see the NORM_INTR_STS register

○ DMA interrupts, see the ADMA_ERR_STS register

○ Error interrupts, see the ERR_INTR_STS register

The enabled controller interrupts are OR'd together and assert the SD/eMMCx system interrupt.
The wake-up interrupt is separate from the controller interrupts. All system interrupts are listed
in IRQ System Interrupts.

System Errors

The APB programming interface generates an address decode error if it detects an access
violation. The system errors are listed in PMC Error Status Accumulator Registers.

I/O Interface
The controller provides I/O signals for SDIO and eMMC interfacing. These interface signals are
routed to the PMC MIO pins.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 672Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___norm_intr_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___adma_err_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___err_intr_sts.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=672

Configurations

• SD and SDIO

• eMMC

MIO Interface

Each I/O interface is routed separately through the PMC MIO or the PL EMIO. The interface is
not available through the LPD MIO. The SD I/O interface signals includes 1 and 4-bit data with
card detect, and write protect. The interface also includes signals to control an optional external
voltage level shifter for interfacing to the devices at 3.3V and switching to 1.8V for higher speed,
SD 3.0 functionality.

The I/O interface signals are listed in SD I/O Signals.

I/O Wiring Diagrams

The I/O wiring connections for boot modes are shown in SD Boot Modes.

Modes and States
Speed Modes
The SD card speed modes are listed in the following table.

Table 228: SD Card Speed Modes

Speed Mode1 Data
Rate

Clock
Edge

I/O
Width

Frequency
(MHz)

Clock
Source

Max.
MB/s

SD Card
Voltage MIO/EMIO

Default speed2 Single Falling 1, 4 25 DIV_CLK 12.53 3.3V MIO, EMIO

High speed Single Rising 1, 4 50 DLL Clock 254 3.3V MIO

SDR-12 Single Rising 4 25 DIV_CLK 12.5 1.8V MIO, EMIO

SDR-25 Single Rising 4 50 DLL Clock 25 1.8V MIO

DDR-50 Double Both 4 50 DLL Clock 50 1.8V MIO

SDR-50 Single Rising 4 100 DLL Clock 50 1.8V MIO

SDR-104 Single Rising 4 200 DLL Clock 100 1.8V MIO

Notes:
1. SD line selection is based on SD 2.0 or 3.0 mode.
2. When using an external voltage level shifter, the maximum frequency is 20 MHz.
3. Throughput is reduced to 3.125 MB/s in 1-bit mode.
4. Throughput is reduced to 6.25 MB/s in 1-bit mode.

The MMC and eMMC speed modes are listed in the following table.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 673Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=673

Table 229: MMC and eMMC Speed Modes

Speed Mode Data
Rate

Clock
Edge

I/O
Width

Frequency
(MHz)

Clock
Source

Max.
MB/s 3

SD Card
Interface
Voltage

MIO/EMIO

Legacy MMC
speed1, 2 Single Falling 1, 4, 8 25 DIV_CLK 25 1.8, 3.3V MIO, EMIO

HS-SDR Single Rising 4, 8 50 DLL Clock 50 1.8, 3.3V MIO

HS-DDR Double Both 4, 8 50 DLL Clock 100 1.8, 3.3V MIO

HS-200 Single Rising 4, 8 200 DLL Clock 200 1.8V MIO

Notes:
1. Legacy MMC speed relates to default MMC speed.
2. The default eMMC boots in legacy MMC speed mode only. Software driver can switch to the high-speed modes for

higher throughput.
3. Throughput is based on an 8-bit I/O interface width.

States
The controller has several states:

• Reset

• Configuration

• Normal

• Sleep

Main Functionality
The main functional units include:

• Command Controller

• Transmit Control Unit

• Receive Control Unit

• Timeout Control

• Data Transfer Block Buffer

The I/O interface units are described in I/O Functionality.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 674Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=674

Command Controller
The SD command control generates the command sequence on the CMD line of the SD interface
for every new command programmed by the software. The command control controller also
implements the response reception and checking the validity of the response. It uses the
response type field to determine the length of the response and the presence of the CRC7 field.
The response is received on the receive clock, which is either the looped back clock or the tuned
clock. After the response is received, the contents of the response (start bit, command index,
CRC7, end bit) are verified and the response status is written to registers, setting various status
bits. The controller also implements a timeout check on the response reception to make sure that
the response is received within the defined time (5 or 64 clocks based on command type). The
received response is stored into the appropriate bit position in the response register. The SD
command controller generates controls to the SD transmit control and SD receive control based
on the transfer direction. The SD command controller also generates an auto command
(AutoCMD12 or AutoCMD23) when enabled.

Transmit Control Unit
The transmit control unit is used for writing transfers to transfer data to the card. After the
command is issued, the controller waits for a block of data to be available in the block buffer and
transfers the data onto the SD DAT lines. Based on the configuration of data lines (1-bit, 4-bit, or
8-bit), the data from the block buffer is appropriately routed. The CRC16 is individually
calculated on a per-lane basis and is attached at the end of block transfer before the END bit. In
DDR operation, the transmit control unit implements a separate CRC16 for each edge of the
clock. At the end of block transfer, it waits for the CRC response on the DAT0 line and reports
the result of the CRC check to the register set. The controller also checks for a write busy
indication (DAT0 line) before transferring the next block of data. A timeout check is implemented
to ensure that the write busy is asserted no more than the required limit.

Receive Control Unit
The receive control unit is used for read transfers for receiving data from the card. After the
command is issued, the controller waits for the block of data to be received from the card. Based
on the configuration of data lines (1-bit, 4-bit, or 8-bit), the data from the SD interface is
assembled into bytes and eventually into a 32-bit word before it is written into the block buffer.
The CRC16 is individually calculated on a per-lane basis and is checked against the received
CRC16 at the end of block transfer before the END bit. In DDR operation, the receive control
unit implements a separate CRC16 checker for each edge of the clock. The data is received on
the receive clock. This receive clock is either the looped back clock (SD_CLK from the IO_BUF) or
the tuned clock using delayed-lock loop (DLL) or delay (DLY) elements. A timeout check is
implemented to ensure that the gap between the block is no larger than the required limit.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 675Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=675

Timeout Control
The SD timeout control unit implements the timeout check between block transfers. It uses the
contents of the timeout control register to implement timeout between blocks.

The timeout control operates under the control of the transmit control and receive control units
(based on direction). When a timeout is detected, the event is reported to the transmit control or
receive control units.

Data Transfer Block Buffer
The transfer buffer is dual-ported between the DMA units attached to the AXI and read and
write I/O interfaces. Transfers are broken down into a data block size. The minimum size is 512
bytes and the maximum is 2 KB. For maximum performance, the buffer must be twice the
maximum block size being transferred to enable pipelining.

During a write transaction from the system memory to the TX interface, data is stored in the
transfer buffer. When a block of data is written into the buffer (done), the TX interface then
sends it out onto the I/O interface. The DMA controller can continue to fetch additional blocks
of data if the transfer buffer has space. During a read transaction from the RX interface to system
memory, data is stored in the transfer buffer.

The data stored from the RX interface is not committed until the CRC checking is performed.
When an RX block of data is available in the transfer buffer, the SDMA or ADMA transfers this
data to system memory via the AXI master interface. Meanwhile, the RX interface can receive
the next block of data, provided there is space available in the transfer buffer (the block memory
size is less than half the available transfer buffer memory size for RX transactions).

• Issue a read wait command to the I/O interface (if supported by the external device)

• Stop the SDx_CLK signal

I/O Functionality
The SD interface controller maps the internal signals to the external SD interface and vice versa.
Based on the bus width (1, 4, or 8) the internal signals are driven out appropriately.

In the case of a default speed (DS) mode, the outputs are driven on the negative edge of the
SD_CLK.

The inputs are latched on the RX_CLK (looped back or tuned clock) and output to the receive
control unit for further processing.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 676Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=676

Card Detect
The controller monitors the SDx_CD_b input signal to detect when a card is inserted or removed.

Debouncing logic is included on this input to filter false transitions. Insertion and removal events
that are detected on the card detect signal are posted in the interrupt status register.

• Card detection uses the SD host control register card detect signal bit as the selection bit

• If the SD control register card detection bit = 1, the card is inserted during boot time or an
eMMC

• If the SD control register card detection bit = 0, the SD slot interface is used to identify the
insertion and removal of the card using the MIO pin

Voltage Level Shifter Interface
The external voltage level shifter is for interfacing to SD cards. The SD I/O signals are routed
through one of the two PMC MIO banks (0 or 1). The I/O voltage for the entire 26 pin MIO bank
is from one set of power pins. They are usually supplied with 1.8 or 2.5V. For SD 3.0 boot and
other applications, an external voltage level shifter is needed to enable the controller to initially
interface at 3.3V at the card and then a lower voltage for high-speed transfers.

The wiring diagram for an SD card connected to a voltage level shifter is shown in the following
figure. This example shows the PMC MIO bank 0 and is powered by the VCCO_500 power pins.
PMC MIO bank 1 is powered by the VCCO_501 power pins.

Note: The SDx_DIR0 and SDx_DIR1 direction signals might not be required for all devices. Verify with
device vendor.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 677Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=677

Figure 113: External Voltage Level Shifter Wiring

SDx_DATA

SDx_SEL

4
SDx_CLK

Voltage Level
Shifter

PMC MIO
Bank 0 or 1 VCCO_500 or

VCC0_501

SDx_CMD

SD
Controller

SDx_CD_b

SDx_WP

DATA[0:3]

CLK

CMD

SDx_DIR_CMD
SDx_DIRx

2

Card Detect

Write Protect

SD
Card

VCC

Control

Voltage

Signal
Paths

Versal ACAP

SDx_BUSPWR Bus Power

X23051-080620

Boot Sequence Example

After the boot up, the SEL pin is used to switch from 3.3V to 1.8V to operate at the highest
speed modes of the SD cards. The SEL pin is automatically driven by the controller if configured
in SD3.0.

The voltage translation function is implemented by an external voltage level translator.

Clock Functionality
The controller supports a wide range of I/O clock frequencies including 400 kHz discovery and
the popular 25, 50, 100, and 200 MHz frequencies. The controller always drives the I/O interface
clock, SCLK.

The controller receives two reference and one system interface clock from the PMC clock
controller:

• DIV_CLK from the SDx_REF_CLK reference clock

• DLL clocks from the SD_DLL_REF_CLK reference clock

• System interfaces clock from PMC_LSBUS_CLK

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 678Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=678

The SDx_REF_CLK and SD_DLL_REF_CLK clock generators, explained in Reference Clock
Frequency Dividers, should be sourced from the same PLL.

I/O Interface Clocks

The controller output clock (SDx_SCLK) has two source clock trees DIV_CLK and DLL clocks. The
controller logic is always clocked by DIV_CLK from 10-bit divider and SDx_REF_CLK reference
clock. The I/O interface clock source depends on the I/O clock frequency:

• <= 25 MHz uses DIV_CLK

• > 25 MHz uses DLL clocks derived from the SD_DLL_REF_CLK

The clock architecture is shown in the I/O Clock Block Diagram.

DIV_CLK

The DIV_CLK is generated from a simple 10-bit clock divider that is driven by SDx_REF_CLK and
programmed by the SDIO.clockcontrol register.

DLL Clocks

The DLL clocks are generated by the DLL that is driven by SD_DLL_REF_CLK and programmed
by the registers shown in DLL Clocks Programming Model.

System Interface Clock

There are two AXI interfaces, they are both clocked by PMC_AXI_CLK from the PMC_IRO_CLK.

• AXI 32-bit slave interface for data and control register programming

• AXI 32-bit master interface for DMA

I/O Clock Block Diagram
The clock routing paths and selection mechanisms are shown in the following figure. There are
two controllers (the figure shows one controller). The controllers have separate SDx_REF_CLK
clocks, but share a single SD_DLL_REF_CLK.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 679Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=679

Figure 114: SD I/O Clock Block Diagram

De
vi

ce
 B

ou
nd

ar
y

TX
Interface

SDx_REF_CLK Divide by
1, 2, 4, 8, ...

SDx.clockcontrol [15:8]

Enable

Enable

SDx.itapdlysel [itapdlysel]

SDx.otapdlysel [otapdlysel]

SD_CLK

DLL_IO_CLK

DLL_TX_CLK

DLL_RX_CLK

RX
Interface

TX_CLK

RX_CLK

10-bit Divider

PS DONE

SD_DLL_REF_CLK

DIV_CLK Command Controller

Block Buffer

Three divide maps are used
to provide 50, 100 and 200
MHz clocks

0

1

SCLK > 25 MHz

0

1

0

1

SelectPL

SDx.clockcontrol [7,6] [15:8]

SCLK > 25 MHz

SCLK >25 MHz

PMC_IOP_SLCR.SDx_DLL_DIV_MAP

RX DLL
Taps

TX DLL
Taps

SCLK

Auto
Tuning

DLL

8-bit
Divider

Bit select

Feedback

PMC MIO

High Freq.

SDx.clockcontrol [clkctrl_sdclkena]

SDx.clockcontrol
[clkctrl_intclkena]

X23030-050320

Clock Controls
The registers to control the clock frequency and tap delays are shown in the following table.
These controls are also shown in the I/O Clock Block Diagram.

Table 230: Clock Programming Registers

SDIO Register Field Bits <= 25 MHz > 25 MHz Description and
Usage

DIV_CLK Controls

CLK_CTRL

[SDClkFreqDiv_U]
[SDClkFreqDiv_L]

[7:6]
[15:8]

1 1 Clock frequency divider

[Internal_Clk_En] [0] 1 1 Divider or DLL clock and
TX output enable

[SD_Clk_En] [2] 1 0 Divider or DLL output
enable

DLL Clock Controls

CLK_CTRL [SDClkFreqDiv_L] [15:8] ~ 1 Clock frequency divider

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 680Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___clk_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=680

Table 230: Clock Programming Registers (cont'd)

SDIO Register Field Bits <= 25 MHz > 25 MHz Description and
Usage

OTAP_DLY [sel] [5:0] ~ 2 Output tap delay select

ITAP_DLY [sel] [7:0] ~ 2 Input tap delay select

Notes:
1. Set these bits based on the required frequency of the SDx_REF_CLK and SDx_CLK. For frequencies above 25 MHz, the

SDx_REF_CLK is set to 200 MHz. See DIV_CLK Programming Model.
2. These values are used to manually tune the DLL clock phases RX. See DLL Clocks Programming Model.

DLL Presets

Software can use the DLL presets to automatically switch the DLL output frequency. There are
three DLL presets. They are programmed using the SDx_DLL_DIV_MAP0 register. Software
programs the SD_DLL_REF_CLK output frequency to 1200 MHz.

Table 231: SD DLL Div Map Register Examples

I/O Frequency Preset
DIV_MAP register

Divide By
Field Value

200 MHz

0 [DIV_0] 0Ch 6

1 [DIV_1] 18h 12

2 [DIV_2] 30h 24

100 MHz
0 [DIV_0] 18h 12

1 [DIV_1] 30h 24

50 MHz 0 [DIV_0] 30h 24

30 MHz 0 [DIV_0] 50h 40

DIV_CLK Programming Model
The clock frequency divider on the SDx_REF_CLK is controlled by the SDIO.clockcontrol
[clkctrl_sdclkfreqsel] and [clkctrl_sdclkfreqsel_upperbits] bit fields. The DIV_CLK control signals
are shown in table in Clock Controls.

Controller Start-up

During start-up, the controller and I/O operate at 400 kHz using the DIV_CLK. This is
accomplished by setting SDx_REF_CLK to 200 MHz and the clock divider fields to 100h (divide
by 512). After the software has determined the capabilities of the SD/eMMC device, it
reprograms the clock divider to generate the DIV_CLK to match the desired I/O frequency. If this
frequency is over 25 MHz, the software needs to program the DLL,the SD_DLL_REF_CLK and
configure the controller. After the DLL has locked, the SCLK output and the RX/TX interface
clocking switch over to the DLL clock outputs.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 681Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___otap_dly.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___itap_dly.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=681

DIV_CLK Frequency Table

The divider for DIV_CLK is controlled by the SDIOx.clockcontrol register.

Table 232: SD/eMMC DIV_CLK Clock Frequency Settings

SDx_CLK
Frequency (MHz)

SDx_REF_CLK
Frequency (MHz)

Clock Control Register
[clkctrl_

sdclkfreqsel] Divider Value (decimal)

25.00

200

4 8

20.00 5 10

16.67 6 12

25.00

100

2 4

16.67 3 6

12.50 4 8

10.00 5 10

25.00

50

1 2

12.50 2 4

8.30 3 6

6.25 4 8

5.00 5 10

12.50

25

1 2

6.125 2 4

4.12 3 6

3.12 4 8

2.50 5 10

DLL Clocks Programming Model

Programming Sequence

Select the DLL tap using these steps:

1. Disable SD clock. Write 0 to the SDIO.clockcontrol [clkctrl_sdclkena], bit2.

2. Program new output tap value. Write to the SDIO.otapdlysel [otapdlysel] field.

3. Program new input tap value using the SDIO.itapdly register:

a. Disable clock output. Write 1 to the [itapchgwin] bit.

b. Write new input tap value. Write 1 to [itapdlyena] and tap value to [itapdlysel].

c. Enable clock output. Write 0 to the [itapchgwin] bit.

4. Wait for the SD clock to stabilize. Read SDIO.clockcontrol [sdhcclkgen_intclkstable_dsync]
until it is = 1.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 682Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=682

5. Enable the SD clock. Write 1 to [clkctrl_sdclkena].

Note: In auto-tune mode, the tuning logic might wait for the SDIO.clockcontrol
[sdhcclkgen_intclkstable_dsync, 1] each time before issuing the read tuning command to the SD card.

I/O Clocks
The I/O timing has several modes depending on the interface mode and the clock frequency.

The TX interface has two clock modes:

• AXI and APB Isolation

• TX Clocking > 25 MHz using DLL clocking with 180-tap unit

The RX interface has two clock modes:

• 25 MHz Clocking with SCLK clock looped back

• RX Clocking >25 MHz using DLL clocking with 180-tap unit

SCLK Clock Edge
The SCLK clock edge that is used to drive and latch data. The clock edges are defined by the
controller mode. The active clock edge for each mode is listed in the tables in Speed Modes.

RX/TX Tuning Methods
The tuning methods are shown in the following table.

Table 233: Tuning Methods

Controller
Mode Speed Mode Clock Rate

(MHz)
Tuning Method

DLL RX Taps

SD

Default speed 25 ~

High speed 50 Manual

SDR-12 25 ~

SDR-25 50 Manual

DDR-50 50 Manual

SDR-50 100 Auto-tuning

SDR-104 200 Auto-tuning

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 683Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=683

Table 233: Tuning Methods (cont'd)

Controller
Mode Speed Mode Clock Rate

(MHz)
Tuning Method

DLL RX Taps

eMMC

Legacy MMC 25 ~

HS-SDR 50 Manual

HS-DDR 50 Manual

HS-200 200 Auto-tuning

Auto Tuning Note

During auto-tuning, one of the following must occur before sending any command sequence
including CMD19, CMD21, or any other command sequence:

• SDx.clockcontrol [sdhcclkgen_intclkstable_dsync] (bit 1) reads = 1

• PMC_IOP_SLCR.SDx_DLL_CTRL [SDx_DLL_PSDONE] reads = 1

The maximum number of tap delays in DLL mode (phases of the clock) is 180, but the useful
number of tap delays is reduced as the clock frequency goes up.

25 MHz Clocking
At <= 25 MHz, the RX interface is clocked by a clock signal that is looped back from the SCLK
output pad. The SCLK output is driven by the DIV_CLK.

The TX interface is clocked by the TX_CLK, which is multiplexed from the DIV_CLK derived from
the 10-bit counter. The clock edge timing is fixed and cannot be adjusted.

The clock structure is shown in I/O Clock Block Diagram. The frequency control is explained in
DIV_CLK Programming Model.

TX Clocking > 25 MHz
For clock frequencies greater than 25 MHz, the DLL generates the DLL_IO_CLK for the I/O SCLK
output and the DLL_TX_CLK for the TX interface to drive the command and data output signals.

• DLL_IO_CLK to the SCLK clock output pad

• DLL_TX_CLK to the TX interface for clocking-out the command and data output pads

The DLL_TX_CLK does not affect the SCLK output.

The timing of the DLL_TX_CLK relative to the DLL_IO_CLK is adjusted using a 180-tap unit. The
TX tap for DLL_TX_CLK is selected by the SDIO.sd0_otapdlysel [otapdlysel] bit field. The clock
frequency determines the number of useful taps.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 684Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=684

• 200 MHz: 8 taps

• 100 MHz: 15 taps

• 50 MHz: 30 taps

• 33 MHz: 45 taps

Example programming values are shown in DLL Programming Example.

RX Clocking >25 MHz
For clock frequencies greater than 25 MHz, the DLL generates the DLL_IO_CLK for the I/O SCLK
output and the DLL_RX_CLK for the RX interface to latch the data input signals. Two separate,
asynchronous clocks:

• DLL_IO_CLK to the I/O SCLK clock output pad

• DLL_RX_CLK to the RX interface for latching the data inputs

The DLL_RX_CLK does not affect the SCLK output.

The timing of the DLL_RX_CLK relative to the DLL_IO_CLK is adjusted using a 180-tap unit. The
RX tap is selected by the SDIO.sd0_itapdlysel [itapdlysel] bit field. The clock frequency
determines the number of useful taps.

• 200 MHz: 30 taps

• 100 MHz: 60 taps

• 50 MHz: 120 taps

• 33 MHz: 180 taps

Example programming values are shown in DLL Programming Example.

DLL Programming Example
The example clock divider and tap settings assume the following:

• SDx_REF_CLK is set to 200 MHz

• SD_DLL_REF_CLK is set to 1200 MHz

Clock Divider

The clock divider is programmed using two fields in the SDIO.clockcontrol register. For the DLL,
the reference frequency must be set to 1200 MHz.

• [clkctrl_sdclkfreqsel] shown Clock Controls

• [clkctrl_sdclkfreqsel_upperbits] set = 0

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 685Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=685

TX DLL Tap Setting

The TX DLL tap settings depend on the controller mode, but are independent of the controller
and the MIO path. The TX DLL tap is selected using the SDIO.otapdlysel [otapdlysel] bit field.

RX DLL Tap Setting

The RX DLL tap settings depend on the controller mode, the controller number, the MIO path,
and board layout. The RX DLL tap is selected using the SDIO.itapdlysel [itapdlysel] bit field.

The following table shows example settings for manual tuning, which should be useful as a
starting point.

Table 234: SD/eMMC DLL Setting Example

Controller Mode Clk_Divid
er

Frequency
(MHz)

RX DLL Tap Value
TX DLL Tap

Setting
SD/eMMC 0 SD/eMMC 1

MIO
Bank 0

MIO
Bank 1

MIO
Bank 0

MIO
Bank 1

SD 50 12 100 14h 13h 13h 14h 03h

SD DDR 24 50 14h 14h 14h 14h 03h

SD HSD 24 50 17h 17h 17h 17h 04h

eMMC DDR 24 50 14h 14h 14h 14h 05h

eMMC HSD 24 50 17h 17h 17h 17h 05h

RX Tap Programming Note

To avoid clock glitches from propagating to the external device, shut off the clock while
programming the RX tap unit. Use the SDIO.ITAPDLY [itapchgwin] bit to gate the clock:

• Turn off the clock and set [itapchgwin] bit = 1

• Program the RX tap value

• Turn on the clock and set [itapchgwin] bit = 0

SD Commands
The registers to generate SD commands are listed in the following table.

Table 235: SD Commands

Register SDMA Command ADMA Command CPU Data Transfer Non DAT Transfer
SDMA system address,
argument 2 Yes/No No/Auto CMD23 No/Auto CMD23 No/No

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 686Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=686

Table 235: SD Commands (cont'd)

Register SDMA Command ADMA Command CPU Data Transfer Non DAT Transfer
Block size Yes Yes Yes No (protected)

Block count Yes Yes Yes No (protected)

Argument 2 Yes Yes Yes No (protected)

Transfer mode Yes Yes Yes No (protected)

Command Yes Yes Yes Yes

The table shows register settings for three transactions: SDMA generated transactions, ADMA
generated transactions, and CPU data transfers and non-DAT transfers. When initiating
transactions, the host driver programs these registers sequentially from 000h to 00Fh. The
beginning register offset is calculated based on the type of transaction. The last written offset is
always 00Fh because writing to the upper byte of the command register triggers the issuance of
the SD command.

The command number is selected using command [cmdindex].

Table 236: SD Controller Commands

Command Description Response Related Registers

CMD17 Single block read blocksize [xfer_blocksize]

CMD18 Multi-block read

CMD24 Single block write

CMD25 Multi-block write

CMD38

CMD52 command_datapresent

CMD53 I/O read/write extended

CMD55

Auto CMD6

Auto CMD12 xfermode_autocmdena
[errorintrsts_autocmderror]

Auto CMD23
sdmasysaddrlo
[sdma_sysaddress]
xfermode_autocmdena
[errorintrsts_autocmderror]

Auto CMD41

Auto CMD42

Auto CMD51

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 687Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=687

SD Command Response Registers
The SD command response includes a 2-bit response type field and a 128-bit command response
field.

Response Types

The response types are listed in the following table.

Table 237: SD Command Response Types

Response Type Index Check Enable CRC Check Enable Name of Response
00 0 0 No response

01 0 1 R2

10
0 0 R3 and R4

1 1 R1, R5, R6, and R7

11 1 1 R1b, R5b

Response Field Usages

The response bits are a concatenation of several registers. The response bit definitions are listed
in the following table.

Table 238: SD Command Response Bit Definitions

Response Name Description Response Field
Registers

32-bit Name 16-bit Name1

R1 (normal)
R1b (normal) Card status

[39:8]

CMD_Resp0 Cmd_Response0
Cmd_Response1

R1b (Auto CMD12) Card status
CMD_Resp3 Cmd_Response6

Cmd_Response7R1 (Auto CMD23) Card status

R2 CID or CSD [127:8]
CMD_Resp0
CMD_Resp1
CMD_Resp2
CMD_Resp3

Cmd_Response0
Cmd_Response1
Cmd_Response2
Cmd_Response3
Cmd_Response4
Cmd_Response5
Cmd_Response6
Cmd_Response7

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 688Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=688

Table 238: SD Command Response Bit Definitions (cont'd)

Response Name Description Response Field
Registers

32-bit Name 16-bit Name1

R3 OCR for
memory

[39:8] CMD_Resp0 Cmd_Response0
Cmd_Response1

R4 OCR for I/O,
etc.

R5, R5b SDIO
response

R6
Publish new
RCA [31:16],
etc.

Notes:
1. The register reference manual defines eight 16-bit response registers. The standalone software defines four 32-bit

registers.

PIO Data Port Programming Model
Software can read and write data to and from the transfer buffer using the register data ports
SD.reg_dataport using 32-bit read/write transactions.

SDMA Programming Model
In SDMA mode, the controller interacts with the registers set and starts the DMA engine for
commands with a data transfer. The controller maintains the block transfer counts for PIO
operation.

The controller interacts with the registers set and starts the DMA engine when a command with
data transfer is involved. The DMA controller interfaces to the host (AXI) master interface to
generate memory transfers. The DMA controller also interfaces with the block buffer to store/
fetch block data.

SDMA is used for programmed I/O mode. The SDMA maintains the block transfer counts for PIO
operations.

The DMA memory transactions can be routed to the FPD CCI for cache coherency with the APU
L2 cache or a non-coherent path including a NoC port to access system memory or AXI routing
to the OCM. Software selects the AXI transaction using
PMC_IOP_SLCR.SDx_IOP_INTERCONNECT_ROUTE [SDx].

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 689Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=689

ADMA Programming Model
ADMA includes a descriptor-based architecture with scatter-gather capabilities. Software creates
descriptor tables in system memory that are processed in the ADMA mode.

Software Routines
• SD configuration

• SD clock frequency change

• SD card initialize

• SD CMD transfer

• SD set block size

• Setup ADMA descriptor table

• SD read polled

• SD write polled

• SD select card

• eMMC card initialize

• SD get bus width

• SD change bus width

• SD change bus speed

• SD change clock frequency

• SD send pull-up command

• Get eMMC EXT CSD

• Resetting the DLL

• Manual tuning

Register Reference
The register set implements the SD host controller specification (version 3.00). The host
controller register set also implements the data port registers for the programmed I/O (PIO)
mode transfers.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 690Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=690

The register set provides the control signals to the rest of the controller, monitors the status
signals to set the interrupt status bits, and eventually generates interrupt signal.

The registers are programmed by the software through the AXI slave interface. Interrupt status
and control registers detect events and monitor system state to generate system interrupts. Each
controller can generate a wake-up interrupt or an OR of several interrupts in the interrupt status
register.

The SD/eMMC controller registers are in the SDIO register sets:

• SD0 base address is 0xF104_0000

• SD1 base address is 0xF105_0000

The DLL, timing, and system-related configuration registers are in the PMC_IOP_SLCR set:

• Base address is 0xF106_0000

These registers are accessed with single 32-bit read/write transactions to the APB programming
interface. The registers are summarized in the SD/eMMC controller register overview and SD/
eMMC PMC_SLCR register overview tables in the following sections.

SDIO Registers
The following table lists the SD/eMMC controller registers in the SDIO register set.

Table 239: SD/eMMC Controller Registers

Register Name Offset
Address Type Description

Generate SD Card Commands

SDMA_ADDR_L
SDMA_ADDR_H 0x000, 0x002 RW

Dual-use, bits [15:0] for SDMA address or auto
CMD23 argument 2
Dual-use, bits [31:16] for SDMA address or auto
CMD23 argument 2

BLK_SIZE 0x004 RW Configure the number of bytes in a data block

BLOCK_COUNT 0x006 RW Data block size and DMA/CRC enable

ARGUMENT1_L
ARGUMENT1_U

0x008
0x00A RW Lower bits [15:0] of CMD argument

Higher bits of SD command argument

TRANSFER_MODE 0x00C RW Control the operations of data transfers

CMD 0x00E RW Controller commands

SD Card Response

RESP0_L 0x010 R SD command response 0

Data Port

DATA_PORT 0x020 RW Read/write the block buffer

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 691Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___sdma_addr_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___sdma_addr_h.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___blk_size.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___block_count.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___argument1_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___argument1_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___transfer_mode.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___cmd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___resp0_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___data_port.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=691

Table 239: SD/eMMC Controller Registers (cont'd)

Register Name Offset
Address Type Description

Configuration and Control

PRESENT_STATE 0x024 R Current status of signals and states

HOST_CTRL1 0x028 RW
Program DMA modes, LED control, data
transfer width, high-speed enable, card detect
test level, and signal selection

POWER_CTRL 0x029 RW Program SD bus power and voltage level

BLOCK_GAP_CTRL 0x02A Mixed Program block gap request, read wait control,
and interrupt at block gap

WAKE_UP_CTRL 0x02B RW Program wake-up functionality

CLK_CTRL 0x02C Mixed Clock frequency control and state

TIMEOUT_CTRL 0x02E RW Data timeout counter value

SW_RST 0x02F
Clear on

Write
CLRONWR

Program software reset for data, command,
and for all

Normal and Error Interrupts

NORM_INTR_STS
NORM_INTR_EN
NORM_INTR_SIG_EN

0x030
0x034
0x038

WTC, R
RW, R
RW, R

Normal interrupt status
Normal interrupt status enable
Normal interrupt status signal output enable

ERR_INTR_STS
ERR_INTR_EN
ERR_INTR_SIG_EN

0x032
0x036
0x03A

WTC
RW

RW, R

Error interrupt status
Error interrupt status enable
Error interrupt status signal output enable

AUTO_CMD12_ERR_STS 0x03C R Indicate CMD12 response error of auto CMD12
and CMD23 response error of auto CMD 23

HOST_CTRL2 0x03E Mixed
Program UHS select mode, UHS select mode,
driver strength select, execute tuning, sampling
clock select,asynchronous interrupt enable, and
preset value enable

Controller Capabilities

CAPS 0x040 R Implementation definitions

Force Event

FE_AUTO_CMD12_EIS
FE_ERR_INTR_STS

0x050
0x052

W
R, W

Port to write to the auto CMD Error Status
register
Port to write to the Error Status register

ADMA

ADMA_ERR_STS 0x054 R
When the ADMA error interrupt occurs, this
register holds the ADMA state in the ADMA
error states field and the ADMA system address
holds the address around the error descriptor

ADMA_ADDR_0
ADMA_ADDR_1
ADMA_ADDR_2
ADMA_ADDR_48

0x058, 0x05A
0x05C, 0x05E RW

ADMA system address [15:2], word aligned
ADMA system address [31:16]
ADMA system address [47:32]
ADMA system address [48], context

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 692Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___present_state.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___host_ctrl1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___power_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___block_gap_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___wake_up_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___timeout_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___sw_rst.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___norm_intr_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___norm_intr_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___norm_intr_sig_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___err_intr_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___err_intr_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___err_intr_sig_en.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___auto_cmd12_err_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___host_ctrl2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___caps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___fe_auto_cmd12_eis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___fe_err_intr_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___adma_err_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___adma_addr_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___adma_addr_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___adma_addr_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___adma_addr_48.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=692

Table 239: SD/eMMC Controller Registers (cont'd)

Register Name Offset
Address Type Description

Preset Values

PRE_VAL_0
PRE_VAL_1
PRE_VAL_2

0x060
0x062
0x064

R
Read the SDCLK frequency select value, clock
generator select value, driver strength select
value.

Miscellaneous

BOOT_TIMEOUT_CNT 0x070 RW Program the boot timeout value counter

SLOT_INTR_STS 0x0FC R Read the interrupt signal for each slot

VERSION 0x0FE R Controller version

SLCR Registers
The SD_eMMC peripherals are further configured by several registers in the PMC_IOP_SLCR
register set.

Table 240: SDIO Registers in the PMC SLCR Register Set

Register Name
Access
Type DescriptionSD_eMMC

Controller 0
SD_eMMC

Controller 1
Clock and Control

SD0_Clk_Ctrl SD1_Clk_Ctrl RW SD feedback clock routing

SD0_Ctrl SD1_Ctrl RW Controller mode: SD or eMMC

SD0_Cfg_Reg1
SD0_Cfg_Reg2
SD0_Cfg_Reg3

SD1_Cfg_Reg1
SD1_Cfg_Reg2
SD1_Cfg_Reg3

RW Configuration registers

Presets

SD0_Init_Preset
SD0_DSP_Preset
SD0_HSPD_Preset
SD0_SDR12_Preset
SD0_SDR25_Preset
SD0_SDR50_Preset
SD0_SDR104_Preset
SD0_DDR50_Preset

SD1_Init_Preset
SD1_DSP_Preset
SD1_HSPD_Preset
SD1_SDR12_Preset
SD1_SDR25_Preset
SD1_SDR50_Preset
SD1_SDR104_Preset
SD1_DDR50_Preset

RW

Initialization for SD:
Init preset
Default speed
High speed
SDR12
SDR25
SDR50
SDR104
DDR50

Miscellaneous Registers

SD0_MaxCurr_1p8
SD0_MaxCurr_3p0
SD0_MaxCurr_3p3

SD1_MaxCurr_1p8
SD1_MaxCurr_3p0
SD1_MaxCurr_3p3

RW Maximum current: 1.8, 3.0, and 3.3V

SD0_DLL_Ctrl SD1_DLL_Ctrl Mixed SD DLL status

SD0_CD_Ctrl SD1_CD_Ctrl RW SD card detect

SD0_Rx_Tuning_Sel SD1_Rx_Tuning_Sel R DLL RX clocking

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 693Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___pre_val_0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___pre_val_1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___pre_val_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___boot_timeout_cnt.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___slot_intr_sts.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=sd_emmc___version.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___pmc_iop_slcr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_cfg_reg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_cfg_reg2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_cfg_reg3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_cfg_reg1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_cfg_reg2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_cfg_reg3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_init_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_dsp_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_hspd_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_sdr12_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_sdr25_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_sdr50_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_sdr104_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_ddr50_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_init_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_dsp_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_hspd_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_sdr12_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_sdr25_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_sdr50_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_sdr104_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_ddr50_preset.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_maxcurr_1p8.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_maxcurr_3p0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_maxcurr_3p3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_maxcurr_1p8.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_maxcurr_3p0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_maxcurr_3p3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_dll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_dll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_cd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_cd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_rx_tuning_sel.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_rx_tuning_sel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=693

Table 240: SDIO Registers in the PMC SLCR Register Set (cont'd)

Register Name
Access
Type DescriptionSD_eMMC

Controller 0
SD_eMMC

Controller 1

SD0_DLL_DivMap0 SD1_DLL_DivMap0 RW DLL divider mapping

SD0_Coherent
SD0_Route
SD0_QoS

SD1_Coherent
SD1_Route
SD1_QoS

RW AXI master transaction: coherency, route to CCI, and QoS

System Clock and Reset Registers
The resets and reference clock frequencies for the controllers are controlled by the CRP registers.
The base address is 0xF126_0000.

Table 241: SD/eMMC PMC CRP Registers for SD Overview

Register Name
Offset Address Access

Type Description
SD/eMMC 0 SD/eMMC 1

SD/eMMC Reference Clock

SDIO0_REF_CTRL
SDIO1_REF_CTRL

0x0124 0x0128 RW Set reference clock frequency. Write protected.

SD/eMMC DLL Reference Clock

SDIO_DLL_REF_CTRL 0x0160 RW Set DLL reference clock frequency. Write
protected.

I/O Signals
SD I/O Signals
The SD controller I/O interfaces are routed to the PMC MIO pins and the EMIO. They are not
available on the LPD MIO pins. When the EMIO interface is used, the LPD must be powered up.

The I/O signals are summarized in the following table and shown in MIO-at-a-Glance. The I/O
group options must be assigned together. The free options can be assigned to either pin option.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 694Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_dll_divmap0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_dll_divmap0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd0_qos.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_coherent.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_route.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr___sd1_qos.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___sdio0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___sdio1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___sdio_dll_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=694

Table 242: SD Controller MIO Signals

MIO EMIO

Signal Name
I/O

PMC MIO Pin MIO-at-
a-Glance

Table
Signal Name I/OSD 0 SD 1

SD 2.0 SD 3.0 eMMC A B C D
A, B, C, D Group Options:

SD0_CLK
SD1_CLK

eMMC0_CLK
eMMC1_CLK O 18 38 0 26 2

SD0_CMD
SD1_CMD

eMMC0_CMD
eMMC1_CMD I/O 23 40 3 29 3

SD0_DATA[0]
SD1_DATA[0]

eMMC0_DATA[0]
eMMC1_DATA[0] I/O 13 41 4 30 4

SD0_DATA[1]
SD1_DATA[1]

eMMC0_DATA[1]
eMMC1_DATA[1] I/O 14 42 5 31 5

SD0_DATA[2]
SD1_DATA[2]

eMMC0_DATA[2]
eMMC1_DATA[2] I/O 15 43 6 32 6

SD0_DATA[3]
SD1_DATA[3]

eMMC0_DATA[3]
eMMC1_DATA[3] I/O 16 44 7 3 7

~ SD0_SEL
SD1_SEL

eMMC0_DATA[4]
eMMC1_DATA[4] I/O 19 45 8 34 8

~ SD0_DIR_CMD
SD1_DIR_CMD

eMMC0_DATA[5]
eMMC1_DATA[5] I/O 20 46 9 35 9

~ SD0_DIR01

SD1_DIR0
eMMC0_DATA[6]
eMMC1_DATA[6] I/O 21 47 10 36 10

~ SD0_DIR11

SD1_DIR1
eMMC0_DATA[7]
eMMC1_DATA[7] I/O 22 48 11 27 11

Free Option Signals2

SD0_DETECT3

SD1_DETECT ~ I 24 39 2 28 1

SD0_WP
SD1_WP ~ I 25 37 1 50 0

SD0_BUSPWR
SD1_BUSPWR

eMMC0_RST
eMMC1_RST O 17 49 12 51 12

Notes:
1. The DIR0 signal controls the direction of the DATA[0] signal and DIR1 signal controls the direction of the DATA[1:3]

signals for the external voltage level shifters.
2. The free option signals are essentially DC and do not necessarily need to be in the same group as the I/O signals.
3. The SDx_DETECT signal is separate from the traditional SDx_DATA[3] signal.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 695Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=695

Signaling Protocol
Default Speed Clock Edge

In the case of a default speed (DS) mode, the outputs are driven on the negative edge of the
SD_CLK.

Section XIII: Flash Memory Controllers
Chapter 72: SD/eMMC Controllers

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 696Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=696

Section XIV

Clocks, Resets, and Power
This section includes these chapters:

• Clocks

• Clock Monitor

• Resets

• Power

Section XIV: Clocks, Resets, and Power

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 697Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=697

Chapter 73

Clocks
There are many clocks in the Versal™ ACAP for clocking logic and I/O. This chapter describes the
clocks that are mainly used by the PMC and PS. Other clocks are described in other documents.

PMC and PS Clocks

The clocks associated with the PMC and PS are described in the following sections:

• The Clock Distribution Diagram shows the major internal clocks for the PMC and PS (LPD and
FPD)

• Three PMC Source Clocks originate in the PMC:

○ REF_CLK (reference clock input device pin)

○ PMC_IRO_CLK (PMC internal ring oscillator)

○ RTC (real-time clock)

• Five programmable PLL Clock Generators: two in PMC, one in LPD, FPD, and CPM

• Dozens of programmable Reference Clock Frequency Dividers are used to generate clocks for
various blocks in the system

CPM

The clocks for the CPM are described in the Versal ACAP CPM CCIX Architecture Manual (AM016).

NoC, AI Engine, and DDR Memory Controller Clocks

The PMC includes four programmable clock dividers with outputs routed to the PL for general
purpose usage. The PMC also includes programmable clock divider outputs for the NoC, AI
engine, and DDR memory controllers.

PL Clocks

The PL includes its own clock arrays that are programmed when blocks are instantiated. The PL
also includes programmable clock modules can be driven by clocks from input pins and other
sources.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 698Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=698

I/O Transceiver Clocks

There are local PLLs in the XPIO banks (for the PL, XPHY, and DDRMC) and the gigabit
transceivers (GT). These high-speed I/Os use PLL clocks for precision I/O timing. These I/O
buffers and transceivers are introduced in the Device I/O Connectivity chapter of the Section II:
Hardware Architecture section. The I/O transceiver clocks are described in their associated
documents:

• GTY and GTYP transceiver PLLs: Versal ACAP GTY and GTYP Transceivers Architecture Manual
(AM002)

• XPIO bank XPLLs: Versal ACAP SelectIO Resources Architecture Manual (AM010)

Clock Register Modules

The individual clock controls are managed by the PLM firmware. The firmware writes to the clock
and reset register modules.

• CRP: device-level and individual PMC block clock control registers

• CRL: subsystem and individual LPD block clock control registers

• CRF: subsystem and individual FPD block clock control registers

• CPMx_CRX: individual CPM block clock control registers

Clock Distribution Diagram
The PLL and reference clocks are shown in the following figure.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 699Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___crp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___crl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___crf.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=699

Figure 115: PMC and PS Clock Distribution Diagram

Device REF_CLK
Clock Input Pin

PMC

RTC_CLK

PMC_IRO_CLK

PPLL_CLK

NPLL_CLK

Clock Dividers

PLLs

QSPI_REF_CLK

OSPI_REF_CLK

SD0_REF_CLK

SD1_REF_CLK

PMC_I2C_REF_CLK

SD_DLL_REF_CLK

PMC_LSBUS_CLK

NPI_REF_CLK

EFUSE_REF_CLK

SYSMON_REF_CLK

CFU_REF_CLK

USB_SUSPEND_REF_CLK
RCU

PPU

RAM Stream

PMC AXI

Internal Ring Oscillator

Real-Time Clock

RPLL_CLK

APLL_CLK

RPLL_TO_XPD_CLK

PL_PMC_ALT_REF_CLK

FPD_TOPSW_CLK

APU_REF_CLK

DBG_TRACE_CLK

DBG_FPD_CLK

To FPD clock dividers

From PPLL_TO_XPD_CLK

From NPLL_TO_XPD_CLK

LPD_TOPSW_CLK

LPD_LSBUS_CLK

From PPLL_TO_XPD_CLK

From NPLL_TO_XPD_CLK

From RPLL_TO_XPD_CLK:

RPU_REF_CLK

LPD_IOPSW_CLK

GEM0_REF_CLK
GEM1_REF_CLK

GEM_TSU_CLKUSB_REF_CLK

CAN1_REF_CLK

LPD_I2C0_REF_CLK
LPD_I2C1_REF_CLK

TS_REF_CLK

DBG_LPD_CLK

UART0_REF_CLK
UART1_REF_CLK

SPI0_REF_CLK

CAN0_REF_CLK

SPI1_REF_CLK

PSM_REF_CLK

CPM_TOPSW_CLK

DBG_TS_CLK

PL0_REF_CLK

PL1_REF_CLK

PL2_REF_CLK

PL3_REF_CLK

PL Fabric

Low-Power Domain

Full-Power Domain

PL Fabric

PL_LPD_ALT_REF_CLKPL Fabric

PL_FPD_ALT_REF_CLKPL Fabric

AXI_TIMEOUT_REF_CLK

HSM0_REF_CLK

HSM1_REF_CLK

PPLL_TO_XPD_CLK

NPLL_TO_XPD_CLK

FPD_LSBUS_CLK

AI Engine

DDR MC

NoC

Crystal

Clk Out

Clk Out

Clk Out

Clk Out

To LPD
clock dividers

To FPD
clock dividers

PMC
PL
LPD
FPD

Power Domains

PLL

PLL

RTC

BBRAM

PMC_IRO_CLK/4 or
REF_CLK

PMC_IRO_CLK/4

PMC_IRO_CLK/2 or
NPI_REF_CLK

PMC_IRO_CLK/4

includes OCM, XRAM

PL_PMC_IRO_CLKPMC_IRO_CLK

X23003-060821

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 700Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=700

Cross-Domain Clock Routing Consideration
When using clocks from another power domain, consider power management software that can
turn off a power domain.

Note: In the Vivado CIPS wizard, the auto-select mode restricts some clocks from being routed across a
power domain. For example, the LPD and FPD divider clock outputs are not routed to the PMC power
domain because power management software might turn off the FPD or both the LPD and FPD.

The power states are described in Power.

Clock Frequency Considerations
The clock frequency considerations are included in the following sections:

• Minimum and Maximum Frequencies

• Interconnect Clock Restrictions

• I/O Peripheral Clock Restrictions

• Flash Controller Clock Restrictions

Minimum and Maximum Frequencies
Minimum and Maximum Clock Frequencies

The minimum and maximum clock frequencies are listed in the Versal AI Core Series Data Sheet:
DC and AC Switching Characteristics (DS957). The specification depends on the device and the
speed grade. The data sheet lists the frequencies for I/O and internal clock signals.

Interconnect Clock Restrictions
The interconnect includes AXI, APB, and NPI.

PS AXI Interconnect Switch Clocks

The LPD_TOPSW_CLK clock frequency must always be set higher than the LPD_LSBUS_CLK
clock frequency.

RECOMMENDED: Xilinx recommends that the LPD_TOPSW_CLK clock frequency is at least 1.5 times
faster than the LPD_LSBUS_CLK.

The FPD_TOPSW_CLK clock frequency must always be set higher than the FPD_LSBUS_CLK
clock frequency.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 701Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=701

RECOMMENDED: Xilinx recommends that the FPD_TOPSW_CLK clock frequency is at least 1.5 times
faster than the FPD_LSBUS_CLK.

Note: The LSBUS_CLK is used for the APB programming interfaces in the LPD and FPD.

NPI Reference Clock

The NPI_REF_CLK is used to clock several blocks.

• NPI programming interfaces to the NPI register modules

• GTs in the PL

Because the NPI_REF_CLK is used by the GTs in the PL, its frequency must be set accurately to
300 MHz.

Note: The NPI_REF_CLK specification is in the Versal AI Core Series Data Sheet: DC and AC Switching
Characteristics (DS957).

I/O Peripheral Clock Restrictions
The following table lists the I/O peripheral clock frequency restrictions.

Table 243: I/O Peripheral Clock Frequency Restrictions

Description Comments and Link
CAN FD

CAN_REF_CLK
Must be less than the LPD_LSBUS_CLK

Should be 160 MHz +/- 0.25%

GEM Ethernet

GEM_TX
Should be 125 MHz ±100ppm. This is governed by the 802.3 Ethernet
specification and might limit the maximum operational frequency of
the PLL selected.

SPI Controller

SPI_REF_CLK SPI_REF_CLK ≥ 2 * LPD_LSBUS_CLK. See SPI Clocking section.

UART Controller

UART_REF_CLK There is a restricting shown in the Baud Rate Divider section.

USB 2.0 Controller

USB_REF_CLK

Flash Controller Clock Restrictions

The flash memory controller clock frequency restrictions are listed in the following table.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 702Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=702

Quad-SPI (see Clocking)

QSPI_REF_CLK

Dual parallel, non-manual [IOP] mode:
QSPI_REF_CLK < 2.33 * PMC_IRO_CLK

Single quad, non-manual [IOP] mode:
QSPI_REF_CLK < 5 * PMC_IRO_CLK

Dual quad, non-manual [IOP] mode:
QSPI_REF_CLK < 10.33 * PMC_IRO_CLK

Manual mode [IOP] when CPOL=1 and CPHA=1:
QSPI_REF_CLK ≥ PMC_IRO_CLK
Note: this restriction does not apply when CPOL=0 and CPHA=0

QSPI_IO_CLK QSPI I/O clock to reference clock requirement:
QSPI_IO_CLK ≤ 2 * QSPI_REF_CLK

Octal-SPI

OSPI_IO_CLK

PHY [DLL] mode:
OSPI_IO_CLK = OSPI_REF_CLK

Non-PHY [DLL] mode:
OSPI_IO_CLK * 4 ≤ OSPI_REF_CLK

SDIO

SD_DLL_REF_CLK and
SDx_REF_CLK

DLL mode:
SD_DLL_REF_CLK ≥ 6 * SDx_REF_CLK
(minimum DLL divider is 6)

SD_DLL_REF_CLK
SD0_REF_CLK and
SD1_REF_CLK

DLL mode: source these clocks from the same PLL

PMC Source Clocks
The PMC has three source clocks:

• REF_CLK device pin input

• PMC_IRO_CLK, an internal ring oscillator (IRO) (aka SysOsc)

• Real-time clock (RTC) driven by an external crystal

REF_CLK Device Pin input

The REF_CLK is typically driven by a 33 MHz external LVCMOS clock signal and is used to drive
the five PLL clock generators in the PMC, LPD, FPD, and CPM.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 703Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=703

PMC_IRO_CLK Oscillator

The PMC_IRO_CLK is internal to the device and is generated by a self-starting internal ring
oscillator (IRO). This clock is used within the PMC for the RCU and PPU processors, their AXI
interconnect, and the security module. The IRO frequency is trimmed to the specification defined
in the Versal ACAP data sheets.

Crystal-driven RTC

The RTC is driven by an external 32.768 kHz crystal. The clock is consumed within the RTC time
keeper. The RTC provides a calibrated time reference based on the attached clock crystal. The
clock can be calibrated for greater accuracy. When the device is powered down, the RTC is
operated by the battery. The RTC is described in Real-Time Clock.

Summary of Primary Clock Sources and Their Destinations

The primary clock sources are listed in the table.

Table 245: Primary Clock Sources and Usages

Clock Name Usages
REF_CLK device pin PLL clock generators in PMC, LPD, FPD, and CPM

PMC_IRO_CLK oscillator PMC-only: processors, interconnect, and security module

RTC_CLK crystal RTC and battery-backed RAM within the PMC

PLL Clock Generators
The PMC, PS, and CPM PLLs all have similar functionality and programming models.

The five PLLs are:

• PMC:

○ PMC PLL (PPLL)

○ NoC PLL (NPLL)

• PS:

○ LPD PLL (RPLL)

○ FPD PLL (APLL)

• CPM PLL (CPLL)

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 704Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=704

Features
The PLLs have similar features and programming models as previous product generations.

Block Diagram
The architecture of the PLL clock generator is shown in the following figure. There are multiple
generators in the system.

Figure 116: PLL Clock Generator

PLL Freq
Multiplier

[PRE_SRC]
22:20

[BYPASS]
3

PLL
Clock Output

(xPLL_CLK)

Divide by
1, 2, 4, or 8

Note: See [bitfield] in the
xPLL_CTRL registers.

[CLKOUTDIV]
17:16

[POST_SRC]
26:24

[FBDIV]
15:8

0

1

[RESET]
bit 0

PL Fabric
PL_xxx_ALT_REF_CLK

from PL

REF_CLK
Input Pin

Clk_Out

Multiplier Divider

VCO freq.

5 PLLs in:
PMC, LPD, and FPD

X23005-042620

Reference Clock Frequency Dividers
There are many clock frequency dividers in the PMC, LPD, FPD, and CPM that provide a
reference clock for each block or group of blocks. See the Clock Distribution Diagram for an
overview.

The PMC, PS, and CPM clock dividers all have similar programming models. The CRx clock
registers select the PLL source clock, define the 10-bit divider value, and enable the divider clock
output. The clock divider register sets include:

• PMC clocks: CRP register set

• LPD clocks: CRL register set

• FPD clocks: CRF register set

• CPM clocks: CRCPM register set

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 705Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=705

Features
The reference clock generators have a multiplexer to select the source clock, a 10-bit divider, and
a glitch-free output enable.

Block Diagram
All clock frequency dividers have the same functionality and programming model. The basic
design is shown in the following figure.

Note: The PLL source clock choices shown are not always available.

Figure 117: Clock Frequency Divider Block Diagram

PPLL_CLK
NPLL_CLK
RPLL_CLK
APLL_CLK

10-bit
Programmable

Divider

[SRCSEL]
[1:0]

[DIVISOR0]
[17:8]

Reference Clock
Output

[CLKACT]
[25]

Glitch-free
Clock Gate

Glitch-free
MUX

X23004-070920

Registers
PLL clock generators:

• Clock Generators

Clock dividers:

• PMC Reference Clocks

• LPD Reference Clocks

• FPD Reference Clocks

Clock Generators
The PLL clock generator registers are included in four sets of registers: PMC, LPD, FPD, and
CPM. The controller names and register sets are listed in the following table.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 706Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=706

Table 246: PLL Clock Generator Control Registers

PLL Clock
Output
Name

Power
Domain

Registers

PLL Clock Input Options
Control Register Configuration Register PLL Status Fields

Fields: [RESET], [BYPASS],
[FBDIV], [CLKOUTDIV],
[PRE_SRC], [POST_SRC]

Fields: [RES], [CP], [LFHF],
[LOCK_CNT], [LOCK_DLY]

Fields: [xPLL_LOCK],
[xPLL_STABLE]

PPLL_CLK
PMC

PMCPLL_CTRL PMCPLL_CFG
PLL_STATUS REF_CLK

PL_PMC_ALT_REF_CLKNPLL_CLK NOCPLL_CTRL NOCPLL_CFG

RPLL_CLK LPD RPLL_CTRL RPLL_CFG PLL_STATUS REF_CLK
PL_LPD_ALT_REF_CLK

APLL_CLK FPD APLL_CTRL APLL_CFG APLL_STATUS REF_CLK
PL_FPD_ALT_REF_CLK

CPLL_CLK PL CPLL_CTRL CPLL_CFG CPLL_STATUS REF_CLK

PMC Reference Clocks
The control registers are used to select an input from a PLL clock generator, or other source, and
divide down its frequency. The PMC reference clocks are listed in the following tables. All control
registers are in the CRP register set.

Table 247: PMC IOP Reference Clock Registers

Reference Clock
Clocks

CRP Control Register
Output Name Divider Input Options

PMC I2C controller PMC_I2C_REF_CLK

PPLL_CLK, NPLL_CLK

I2C_REF_CTRL

QSPI controller QSPI_REF_CLK QSPI_REF_CTRL

OSPI controller OSPI_REF_CLK OSPI_REF_CTRL

SD delay-lock loop SD_DLL_REF_CLK CRP.SD_DLL_REF_CTRL

SD_eMMC 0 controller SD0_REF_CLK SDIO0_REF_CTRL

SD_eMMC 1 controller SD1_REF_CLK SDIO1_REF_CTRL

USB 2.0 controller located in
the LPD USB_SUSPEND_CLK PMC_IRO_CLK/4 USB_SUSPEND_CTRL

Table 248: PMC System Reference Clock Registers

Reference Clock
Clocks

Control Register
Output Name Divider Input Options

High-speed clock for the AI
Engine and DDR memory
controllers1

HSM0_REF_CLK

PPLL_CLK, NPLL_CLK

HSM0_REF_CTRL

HSM1_REF_CLK HSM1_REF_CTRL

General purpose reference
clock routed to the PL fabric

PL0_REF_CLK PMC_PL0_REF_CTRL

PL1_REF_CLK PMC_PL1_REF_CTRL

PL2_REF_CLK PMC_PL2_REF_CTRL

PL3_REF_CLK PMC_PL3_REF_CTRL

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 707Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmcpll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmcpll_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pll_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___nocpll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___nocpll_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rpll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rpll_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___pll_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___apll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___apll_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___apll_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=cpm4_crx___cpll_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=cpm4_crx___cpll_cfg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=cpm4_crx___cpll_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___i2c_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___qspi_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___ospi_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___sdio0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___sdio1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___usb_suspend_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___hsm0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___hsm1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmc_pl0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmc_pl1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmc_pl2_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmc_pl3_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=707

Table 248: PMC System Reference Clock Registers (cont'd)

Reference Clock
Clocks

Control Register
Output Name Divider Input Options

Divided-down PPLL_CLK
routed the clock controllers
in the LPD and FPD power
domains

PPLL_TO_XPD_CLK PPLL_CLK PPLL_TO_XPD_CTRL

Divided-down NPLL_CLK
routed the clock controllers
in the LPD and FPD power
domains

NPLL_TO_XPD_CLK NPLL_CLK NPLL_TO_XPD_CTRL

Notes:
1. The design tools assign the HSM0_REF_CLK to the AI Engine and HSM1_REF_CLK to the DDR memory controllers.

Table 249: PMC Miscellaneous Reference Clock Control Registers

Description
Clocks

Control Register
Output Name Divider Input Options

APB programming interfaces PMC_LSBUS_CLK

PPLL_CLK, NPLL_CLK

PMC_LSBUS_REF_CTRL

NPI programming interfaces NPI_REF_CLK NPI_REF_CTRL

Configuration frames unit CFU_REF_CLK CFU_REF_CTRL

AXI interconnect timeout
block AXI_TIMEOUT_CLK PMC_IRO_CLK/4 SWITCH_TIMEOUT_CTRL

eFUSE controller EFUSE_REF_CLK PMC_IRO_CLK/4, REF_CLK EFUSE_REF_CTRL

System Monitor (SYSMON) SYSMON_REF_CLK PMC_IRO_CLK/2,
NPI_REF_CLK SYSMON_REF_CTRL

LPD Reference Clocks
The LPD reference clocks are listed alphabetically in the following table.

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 708Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___ppll_to_xpd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___npll_to_xpd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___pmc_lsbus_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___npi_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___cfu_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___switch_timeout_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___efuse_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___sysmon_ref_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=708

Table 250: LPD IOP Reference Clock Registers

Description
Clocks

CRL Control Registers
Output Name Divider Input Options

CAN 0 controller CAN0_REF_CLK

RPLL_CLK, PPLL_TO_XPD_CLK,
NPLL_TO_XPD_CLK

CAN0_REF_CTRL

CAN 1 controller CAN1_REF_CLK CAN1_REF_CTRL

GEM 0 controller GEM0_REF_CLK GEM0_REF_CTRL

GEM 1 controller GEM1_REF_CLK GEM1_REF_CTRL

GEM timestamp clock GEM_TSU_CLK GEM_TSU_REF_CTRL

LPD I2C 0 controller LPD_I2C0_REF_CLK I2C0_REF_CTRL

LPD I2C 1 controller LPD_I2C1_REF_CLK I2C1_REF_CTRL

SPI 0 controller SPI0_REF_CLK SPI0_REF_CTRL

SPI 1 controller SPI1_REF_CLK SPI1_REF_CTRL

UART 0 controller UART0_REF_CLK UART0_REF_CTRL

UART 1 controller UART1_REF_CLK UART1_REF_CTRL

USB 2.0 controller USB_2_REF_CLK USB_2_REF_CTRL

Table 251: LPD Miscellaneous Reference Clock Registers

Description
Clocks

Control Register
Output Name Divider Input Options

System counter (SCNTR) SCNTR_TS_CLK

RPLL_CLK
PPLL_TO_XPD_CLK
NPLL_TO_XPD_CLK

TIMESTAMP_REF_CTRL

CPM AXI interconnect CPM_TOPSW_CLK CPM_TOPSW_REF_CTRL

RPU: TCM, GIC, OCM, and
Interconnect CPU_R5F_CLK RPU_OCM_XRAM_CTRL

LPD CoreSight™ components
except the TSU.
Includes: ROM, GPR, CTI,
funnel

DBG_LPD_CLK DBG_LPD_CTRL

CoreSight timestamp
generator DBG_TS_CLK

RPLL_CLK
PPLL_TO_XPD_CLK
NPLL_TO_XPD_CLK

DBG_TSTMP_CTRL

AXI/AHB interconnect switch LPD_IOP_SW_CLK LPD_IOPSW_CTRL

LPD APB programming
interfaces LPD_LSBUS_CLK LPD_LSBUS_CTRL

LPD AXI main switch LPD_TOPSW_CLK LPD_TOP_SWITCH_CTRL

PS manager processor PSM_REF_CLK PSM_REF_CTRL

Divided-down RPLL_CLK
routed to the clock
controllers in the FPD power
domains

RPLL_TO_XPD_CLK RPLL_CLK RPLL_TO_XPD_CTRL

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 709Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___can0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___can1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___gem_tsu_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___i2c0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___i2c1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___spi0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___spi1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___uart0_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___uart1_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___usb_2_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___timestamp_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___cpm_topsw_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rpu_ocm_xram_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___dbg_lpd_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___dbg_tstmp_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___lpd_iopsw_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___lpd_lsbus_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___lpd_top_switch_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___psm_ref_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rpll_to_xpd_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=709

FPD Reference Clocks
FPD Clock Divider Control Registers

The FPD clock dividers are controlled by registers in the CRF register set. The FPD reference
clock control registers are listed in the following table.

Table 252: FPD Reference Clock Control Registers

Description
Clocks

Control Register
Output Name Divider Input Options

APU: CPUs, L2-cache, debug
logic, controls
CoreSight components:
ELA500, funnel, ETF, CTI

APU_REF_CLK

APLL_CLK RPLL_TO_XPD_CLK
PPLL_TO_XPD_CLK
NPLL_TO_XPD_CLK

APU_CLK_CTRL

Trace port for CoreSight
debug data flow DBG_TRACE_CLK DBG_TRACE_CLK_CTRL

FPD CoreSight debug
components DBG_FPD_CLK DBG_FPD_CLK_CTRL

FPD APB programming
interfaces FPD_LSBUS_CLK FPD_LSBUS_CLK_CTRL

FPD AXI main switch FPD_TOPSW_CLK FPD_TOPSW_CLK_CTRL

Section XIV: Clocks, Resets, and Power
Chapter 73: Clocks

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 710Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___apu_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___dbg_trace_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___dbg_fpd_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___fpd_lsbus_clk_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___fpd_topsw_clk_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=710

Chapter 74

Clock Monitor
The clock monitor (ClkMon) includes eight independent channels to detect when a clock is out of
its expected frequency range. The ClkMon does this by counting the number of clock cycles from
the monitored clock that occur during a known base time period. A channel asserts an interrupt if
the number of clock cycles detected during a base time period is more than the upper threshold
count, or less than the lower threshold count. The ClkMon is located in the PMC.

The length of the base time period is programmed by selecting a reference clock and defining the
number of clock periods to use. The base clock source is selectable, REF_CLK or PMC_IRO_CLK.
The base time period is typically 100 to 10,000 clock cycles long, depending on the application
and which clocks source is used. A longer base time period results in higher accuracy, but the
monitoring time period is longer.

A channel monitors one of 16 clocks located in the PMC, LPD, or FPD, as listed in Monitored
Clocks. During the base time period, the ClkMon channel counts the clock cycles of the
monitored clock. The channel can be started to capture the clocks in one time period or sample
the clock over and over again. At the end of a time period, the monitored clock cycle count is
compared with the upper and lower threshold registers. If the number of clock cycles is out of
range, an interrupt is generated.

Base Time Period
The base time period is programmed by selecting the reference clock and the number of clock
periods to include in the time base. The registers for channel 0 are:

• Select base clock: CLKMON0_CTRL [BASECLK_SEL]

• Program cycles per base time period: CLKMON0_BASE [CLK_CYCLES]

The REF_CLK is typically 33 MHz, but can be higher or lower. The PMC_IRO_CLK is typically 320
MHz but can bumped to 400 MHz with faster speed grades. These are independent clocks. The
frequency range for REF_CLK and the trimmed frequency of the PMC_IRO_CLK are listed in the
DC/AC data sheet (see the Versal ACAP data sheets.)

Section XIV: Clocks, Resets, and Power
Chapter 74: Clock Monitor

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 711Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=711

Figure 118: ClkMon Base Time Period

REF_CLK or
PMC_IRO_CLK
Base clock

Monitored
Clock

Base Time Period

Controller counts the number of clocks and
compares it to the threshold values

X24299-072920

Calculate Threshold Counts
The settings for the threshold NCLKMON_THRESH registers depends on the following parameters:

• Frequency of the base clock, FBASE_CLK

• Number of base clocks programmed for the base time period, NBASE_CLK_CYCLES

• Frequency threshold of the monitored clock, FMON_CLK

A threshold setting can be calculated using the following equation:

N CLKMON _THRESH = N BASE _CLK _CYCLES× F MON _CLK
FBASE _CLK

Example

In this example, the following is assumed:

• REF_CLK is used with a 33 MHz clock frequency

• CLKMON0_BASE [CLK_CYCLES] is set = 10000

• Desired lower threshold frequency for the APU clock is 1000 MHz

Because the APU clock is divided by 4 before being presented to the ClkMon channel (see table
in Monitored Clocks), the FMON_CLK is actually 250 MHz.

From the equation, the clock threshold is 1_27EDh (75,757d). Bound the accuracy using ClkMon
0 by programming the CLKMON0_THRESH_L and CRP.CLKMON0_THRESH_H registers.

Section XIV: Clocks, Resets, and Power
Chapter 74: Clock Monitor

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 712Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon0_thresh_l.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=712

The sampling time is approximately 303 mS.

Monitored Clocks
A monitored clock is selected by the CRP.CHKR0_CTRL [MONCLK_SEL] bit field. The ClkMon
monitored clocks are listed in the following table.

Table 253: ClkMon Monitored Clocks

[MONCLK_SEL] Clock Source Notes
LPD Clocks
0000 RPU_REF_CLK
0001 LPD_TOPSW_CLK
0010 LPD_LSBUS_CLK
0011 LPD_SWDT_CORE_CLK After ref clock source multiplexer
0100 LPD_DMA_CORE_CLK After ref clock source multiplexer
0101 PSM_REF_CLK

FPD Clocks
0110 APU0_CORE_CLK At the core (divided by 4)
0111 APU1_CORE_CLK At the core (divided by 4)
1000 FPD_TOPSW_CLK
1001 FPD_LSBUS_CLK
1010 FPD_SWDT_CORE_CLK After ref clock source multiplexer

PMC Clocks
1011 PMC_IRO_CLK
1100 PMC_LSBUS_CLK
1101 NOC_REF_CLK NoC interconnect (divided by 4)
1110 NPI_REF_CLK
1111 REF_CLK pin

Interrupts
The ClkMon generates two types of interrupts for each channel for a total of 16 status interrupt
bits in the CLKMON_ISR register:

• Out of range error [RANGEx_ERR]

• Internal counter overflow [CNTRx_ERR]

Section XIV: Clocks, Resets, and Power
Chapter 74: Clock Monitor

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 713Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon_isr.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=713

The status register reflects the raw status state. It is masked by the CLKMON_IMR register. The
mask register bits are set and cleared by the interrupt disable and enable registers, respectively.

Monitored Clock Out of Range Error

If the clock frequency exceeds or falls below the limits of the threshold register settings, then the
monitor clock out of range interrupt is generated.

Internal Counter Overflow Error

An internal register counts the number of clocks detected during the base time period. This is
compared against the threshold register settings.

If the internal counter overflows, the counter overflow error interrupt bit is set. When this
occurs, the base time period needs to be reduced, which can be done by entering a smaller
CLKMON0_BASE register value, or using the faster PMC_IRO_CLK as a base clock reference.

Register Reference
The ClkMon registers include a set of interrupts registers and four registers for each of the 8
channels.

The ClkMon registers are included in the CRP register module. The base address for the CRP
registers is 0xF126_0000. The offset addresses for ClkMon are listed in the table.

Note: The ClkMon includes eight channels with four registers each. Channel 0 is at offset 0x0260, channel
1 at 0x0270, etc.

Table 254: ClkMon Registers

Register Name Number of
Registers

Offset
Address

Access
Type Description

CLKMON_ISR
CLKMON_IMR
CLKMON_IER
CLKMON_IDR

4 0x0240+
W1C

R
W
W

ClkMon interrupt registers for
out of range and internal
counter overflow

CLKMON0_THRESH_U (0 to 7) 8 0x0260+ RW Upper threshold count

CLKMON0_THRESH_L (0 to 7) 8 0x0264+ RW Lower threshold count

CLKMON0_BASE (0 to 7) 8 0x0268+ RW Number of base reference
clocks in base time period

CLKMON0_CTRL (0 to 7) 8 0x026C+ RW
Select reference and monitor
clocks, start sample, status idle
state

Section XIV: Clocks, Resets, and Power
Chapter 74: Clock Monitor

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 714Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon0_base.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon_imr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon_ier.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon_idr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon0_thresh_u.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon0_thresh_l.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon0_base.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___clkmon0_ctrl.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=714

Chapter 75

Resets
Resets can be described as three groups.

• Device-level resets controlled by hardware and software

• Subsystem resets controlled by software

• Individual block resets controlled by software

The device-level resets include major subsystems that include the LPD and FPD, the NoC
interconnect, and other integrated hardware. The device-level resets are generated by the
POR_B input pin, the EAM, and the firmware in the PLM and PSM.

The subsystems are affected by the device-level resets and the individual block resets are
affected by device and subsystem resets.

Reset Register Modules

The individual reset controls are managed by the PLM and PSM firmware. The firmware writes to
the clock and reset register modules.

• CRP: device-level and individual PMC block reset control registers

• CRL: subsystem and individual LPD block reset control registers

• CRF: individual FPD block reset control registers

• CPMx_CRX: individual CPM block reset control registers

Device-level Resets

There are two device-level resets.

• POR: reset and clear almost everything

• SRST: reset and clear most functionality

The POR and SRST distinction applies to device level resets and the Persistent Registers.

The device-level resets are generated by hardware reset circuitry, the POR_B device pin, the
reset signals from a error accumulator module (EAM), the JTAG controller, and the software
written PMC registers.

• External POR

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 715Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___crp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___crl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=mod___crf.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=715

• Internal POR

The external POR is controlled by the POR_B device input pin. When the POR_B pin transitions
from Low to High, the device starts from the External POR reset state.

The hardware monitors the voltage state of the three PMC power supplies. These must be within
their operating range before releasing POR_B. During operation, if one of the power supplies falls
below a voltage threshold, then an External POR is generated within the device.

The internal POR can be generated by the PMC error accumulator module (EAM) and by writes
to the CRP register module.

The device-level resets are recorded in the RESET_REASON register.

Subsystem Resets

The major reset controls allow software to reset large parts of the LPD and FPD. These are
explained in Subsystem Resets section.

Debug Resets

The debug resets are summarized in the Debug Resets section.

Programmers Reset Service Requests

The system software can request that subsystems and some individual blocks be reset. This is
done by writing to the PMC and PSM global register sets. This is explained in Reset Service
Requests section.

Comparison to Previous Generation Xilinx
Devices

The Versal™ device PMC reset structure is expanded to include more device-level controls with
features to support new packaging technologies.

The Versal ACAP has just one dedicated reset pin, POR_B. This pin asserts the external power-on
reset, External_POR. The Versal device does not include the Zynq® UltraScale+™ MPSoC
PS_SRST_B reset pin.

The programming model includes device-level system resets for the reset controllers that are
similar to the Zynq UltraScale+ MPSoC.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 716Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___reset_reason.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=716

System Perspective
The PMC includes system-level reset functionality. This includes hardware circuits, the EAM, and
the CRP register set. The LPD, FPD, and CPM have simpler reset controllers that service the
individual processors, interconnect, memories, and peripherals. These functional units are
introduced in this section and are shown in the Reset Circuitry, EAM, and JTAG TAP Controller.

PMC Hardware Reset Circuitry

The PMC hardware reset circuitry receives input from the POR_B pin and the PMC critical power
supplies to generate the external POR.

PMC Error Accumulator Module

The PMC error accumulator module (EAM) receives system errors from many parts of the
system. The EAM can turn these errors into an internal POR or system reset (SRST). There are
approximate 50 system error signals routed to the PMC_GLOBAL PMC_ERR1_STATUS and
PMC_ERR2_STATUS registers. System errors only reset the mask registers. A POR resets both
the mask and status registers.

PMC Reset Controller

The PMC reset controller drives both the device-level resets and the individual PMC block resets.
The controller is shown in the Reset Circuitry, EAM, and JTAG TAP Controller section. Also, see
the table in the Device-Level Resets section.

Miscellaneous Reset Controllers

The other reset controllers are simpler. They are used to reset individual blocks in their respective
power domain.

Reset Source Figures
The reset sources are illustrated in the following sections:

• Reset Circuitry, EAM, and JTAG TAP Controller

• PMC Reset Controller

• Individual Reset Controllers

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 717Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err2_status.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=717

Reset Circuitry, EAM, and JTAG TAP Controller

The system-level resets are generated by the reset hardware circuitry, PMC system error
accumulator module (EAM), the JTAG TAP controller, and the PMC reset controller. These are
illustrated in the following figure.

Figure 119: PMC Reset Circuitry, EAM and JTAG TAP Controller Reset Sources

Hardware
Reset

Circuitry
VCC_PMC okay

POR_B pin

VCCAUX_PMC okay

BOOT_MODE
pins 4

EAM_PMC_POR

EAM_PMC_SRST

PMC Error
Accumulator

Module (EAM)

System Errors

Sample
BOOT_MODE
pins

VCCO_503 okay

External_POR

PMC Hardware

APB Programming
Interface

PMC Error Accumulator Module

PMC_GLOBAL
Register Module

CRP.BOOT_MODE_POR
register

JTAG TAP Controller

JTAG_PMC_SRSTInstruction: SYS_RST
Register: SYSTEM_RESET

Internal_POR

External_POR

PMC Reset
ControllerJTAG Interface

Device and
Subsystem

Resets

(see the PMC
Reset Controller

figure)
PMC Block

Resets

X24749-052521

PMC Reset Controller

The PMC reset controller includes hardware logic and registers from the CRP register set. The
PMC reset controller is shown in the following figure.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 718Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=718

Figure 120: PMC Reset Controller

SYS_RST_{1, 2, 3} SoC endpoint system resets are
unmasked by NPI PCSR
registers

APB
Programming

Interface

External_POR

JTAG_PMC_RST

EAM_PMC_SRST

EAM_PMC_POR

PS_POR
PS_SRST

NONPS_POR
NONPS_SRST

LPD and FPD destinations

NoC, NPI, SoC, and PL
Subsystems

CRP
Register
Module

xxx_RST
Individual block resets in the PMC

Misc Debug Resets See Debug Resets
section.

PL_RST_{0, 1, 2, 3} PL fabric (active-High bit, active-Low signal)

PMC Reset Controller

Internal_POR
PMC_PMC_POR

External_POR
EAM_PMC_POR

System Reset (SRST)JTAG_PMC_SRST

Internal_POR
EAM_PMC_SRST

PMC_SRST

Reset
Controller

X25375-061721

Individual Reset Controllers

There are several reset controllers in the system. A high-level diagram is shown below. The reset
details include:

• PMC Reset Controller figure and PMC Block Resets table

• LPD Block Resets table

• FPD Block Resets table

• CPM, there is a reset controller for the CPM4, and CPM5 implementations

Note: The XRAM memory is reset by the LPD reset controller using the CRL.RST_XRAM register.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 719Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_xram.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=719

Figure 121: LPD, FPD, and CPM Reset Controllers

APB Programming
Interface

Individual Block Resets:
Processors, Interconnect,

Memories, Peripherals, and
Controllers

xxx_RESETCRL (LPD)
CRF (FPD)
CPM4_CRX (CPM4)
CPM5_CRX (CPM5)

LPD, FPD, and CPM
Miscellaneous Reset Controllers

SRST
Internal_POR
External_POR

Misc Debug Resets See Debug Resets section.

Register
Modules

X25367-061721

Programming Model
The resets are managed by the PLM and PSM firmware. The PLM firmware manages the power
and resets at the device level and for the PMC, NoC, DDRMC, and integrated hardware
subsystems. The PSM manages the power and resets of the PS, which includes the LPD and FPD.

System software can request that domains and blocks be reset or powered down by writing to
the PMC and PSM global registers. See Reset Service Requests.

The cause of device-level resets is recorded in the CRP RESET_REASON register.

Reset Assertion Considerations
Reset operations are driven by power management, system failures, and other situations. When a
reset request is made, the PLM and PSM firmware can respond with a hard reset or a soft reset.
A soft reset can gracefully close down a subsystem for power management needs.

Quiescent Components

Prior to asserting a reset, the PLM and PSM firmware can attempt to put the affected logic into a
quiescent state by using the isolation functionality in the ingress or egress ports of the
interconnect switches. The functionality of these ports is described in the Switch Architecture
section.

Reset Service Requests
Software can write to the PMC and PSM global registers to request a reset of a block in the PMC,
LPD, or FPD. The reset service request registers are listed in the following table.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 720Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___reset_reason.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=720

Table 255: Reset Service Request Registers

Register Name Access Type Description Notes
PMC Global Reset Service Requests

PMC_GLOBAL
REQ_SWRST_TRIG W

Requests for:
PS only,
LPD (includes FPD),
FPD,
PLPS reset service requests

Handled by PLM firmware

PSM Global Reset Service Requests

PSM_GLOBAL
REQ_SWRST_TRIG W

PS reset service requests;
requests for power up/down,
isolation, software reset,
wake-up and power control:
APU 0, APU 1, MPCore, L2
cache,
RPU,
GEM 0, GEM 1, USB 2.0,
IOP,
PS only,
LPD, FPD

Handled by PSM firmware

Reset Reason Register
The RESET_REASON register latches the cause of the previous system-level reset. All register
bits are read and write 1 to clear (R, WTC).

The reset reason register is only reset by an external POR and is write-protected by the CRP
WPROT register.

Resets Overview
PS Reset

The PS can be reset by the PLM or suddenly by a signal from the system error accumulator
module (EAM). For more information, see System Errors. When the PS is reset, the error that
caused the reset is preserved.

• PMC and PSM error accumulator module (EAM) registers

• Reset Reason register, RESET_REASON register

Individual Block Resets

The individual block resets are driven by register bits to generate module and block software
resets. These are described in Reset Reference for Individual Blocks.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 721Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___req_swrst_trig.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___reset_reason.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___wprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___reset_reason.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=721

Device-Level Resets
The device-level reset sources are listed in the following table. The table includes the source of
the reset, its effects on the hardware, and activity in the reset reason register as described in the
Reset Reason Register section.

Table 256: Device-Level Reset Sources

Reset Source Notes Reset Reason
Register

POR - External

External POR_B device pin
Critical power supplies

• Resets all logic and registers
• Boot mode pins are sampled
• Causes the external POR boot
process in RCU BootROM code

[external_por]

POR - Internal Device-Level

EAM_PMC_POR Device-level POR reset; see System
Errors [err_por]

CRP RST_PS [PMC_POR] Device-level POR reset [sw_por]

POR - Internal Subsystem-Level

CRP register RST_PS [PS_POR] PS POR reset -

CRP register RST_PS [PL_POR] LPD POR reset -

CRL register RST_FPD [POR] FPD POR reset -

CRP register RST_NONPS [NOC_POR] NoC and SoC POR reset -

SRST - System Resets

System error accumulator module (EAM):
• EAM_SRST

Device-level system reset; see System
Errors [err_sys]

JTAG TAP register, instruction:
• SYSTEM_RESET

CRP register RST_PS [PMC_SRST] Device-level system reset [sw_sys]

CRP register RST_PS [PS_SRST] LPD and FPD system reset -

CRL register RST_FPD [SRST] FPD system reset -

CRP register RST_PS [PL_SRST] PL system reset -

CRP register RST_NONPS [NOC_RESET] NoC system reset -

CRP register RST_NONPS [NPI_RESET] NPI system reset -

Debug Resets

Miscellaneous See Debug Resets [dap_sys]

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 722Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_fpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_fpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=722

Subsystem Resets
The subsystem resets are shown in the following table.

Table 257: Subsystem Resets

Description Reset Name Power Domain Register Bit Control
CRP RST_DBG register

All CoreSight components
inside of the PMC and PS

[RESET]

Debug port controller DPC_RESET PMC [DPC]

CRL RST_CPU_R5 register

RPU MPCore, and debug logic RPU_POR_RESET LPD [RESET_POR_RPU]

TCMs, GIC, and 2x1 switch RPU_AMBA_RESET LPD [RESET_AMBA]

RPU CPUs RPU_CPU0_RESET
RPU_CPU1_RESET

LPD [RESET_RPU1]
[RESET_RPU0]

Debug Resets
The CoreSight™ debug functionality is spread across all the power domains. The PLM is aware of
the states of the power domains and is responsible for the appropriate distribution of the debug
reset.

The debug reset is passed to all CoreSight components within the PMC, LPD, FPD, and CPM
through PMC reset register bits. The debug port controller (DPC) is reset by a register in the TAP
controller, which is accessed through the PMC interconnect.

At the device level, this reset also applies to the high-speed debug port (HSDP) through the
RST_DBG_LPD [RST_HSDP] bit. If the soft Aurora is implemented in the PL, a PMC GPO bit can
be used to reset the logic. The PL debug components are separated from mission IPs and are
placed on a separate reset. The DDR memory controller, NoC interconnect, and AI Engine resets
are controlled through four NPI controls, which allows the partitioning of the resources into
groups and associates each group with a specific reset category.

The debug logic includes the DPC in the PMC and the CoreSight logic that extends into the PMC,
PS, PL, and other parts of the device. The debug resets are summarized in the following table.

Table 258: Debug Resets

Description Reset Name Power Domain Register Bit
Control Notes

CRP RST_DBG register

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 723Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_dbg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_cpu_r5.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_dbg_lpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_dbg.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=723

Table 258: Debug Resets (cont'd)

Description Reset Name Power Domain Register Bit
Control Notes

All CoreSight
components inside of
the PMC and PS

CORESIGHT_RESET PMC, LPD, and FPD [RESET] Includes logic affected
by the: CRL
CRL.RST_DBG_LPD
[1:0] and CRF
CRF.RST_DBG_FPD [0]
register bits.
Does not reset the
DPC in the PMC.

Debug port controller DPC_RESET PMC [DPC] PMC DPC logic.

CRL RST_DBG_LPD register

LPD CoreSight and all
FPD debug
components

PS_DEBUG_RESET LPD and FPD [RESET]

DPC Aurora and DMA
control

DPC_LPD_RESET LPD [RESET_HSDP] LPD portions of Aurora
and the DPC DMA
controllers (not the
RAM).

RPU debug logic RPU_DBG0_RESET
RPU_DBG1_RESET

LPD [RPU_DBG0_RESET]
[RPU_DBG1_RESET]

Includes RPU debug
logic, breakpoint, and
watchpoint.

POR_B Reset
The PMC start-up begins with the release of the POR_B reset pin. The reset pin must be held
asserted for at least the TPORB time after the critical power supplies have reached their operating
level. This is defined to be 10 μs in the Versal Prime Series Data Sheet: DC and AC Switching
Characteristics (DS956) and the Versal AI Core Series Data Sheet: DC and AC Switching
Characteristics (DS957).

Power Supplies Required

The minimum power supplies required for boot depends on the boot device selected by the boot
mode pins. For JTAG boot, these three power supplies are required:

• VCC_PMC

• VCCAUX_PMC

• VCCO_503 I/O (see PMC Dedicated Pins)

These three power supplies must be maintained to keep the device from generating an external
POR.

When a boot device is selected on an MIO bank, the bank power supply must also be valid:

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 724Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_dbg_lpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds956-versal-prime.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=724

• VCCO_500 or VCCO_501 (PMC MIO pin banks 0 and 1)

The four power supplies are sufficient to boot from a device and load a PLM firmware image into
the PPU processor.

Note: The VCC_BATT power supply is normally always On, but it is not required to operate the system.
VCC_BATT is used by the BBRAM to maintain its memory and to run the RTC when the VCCAUX_PMC
power supply is off.

Additional Power Supplies

All power supplies are listed in the Power Pins section. Some power domains require other power
domains to be on as well. The dependencies of one power domain on another power domain are
described in the Power chapter.

Alternate Boot Mode Selection

The release of the POR causes the hardware to capture the state of the boot mode pins and
store the value in the BOOT_MODE_POR register and the BOOT_MODE_USER [Boot_Mode] bit
field. The BOOT_MODE_USER register enables software to select a different boot mode by
setting the [use_alt] bit to 1 and writing the 4-bit boot mode code into the [alt_boot_mode] field.

Boot Sequencing

There are four stages of the system boot process. These are described in the Overview chapter in
the Section III: Platform Boot, Control, and Status section.

For the initial phases, the PMC hardware checks are performed and the RCU is released to
execute the BootROM. The primary task of the RCU is to fetch the boot header from the boot
device. This header provides important boot information about the start-up.

After the RCU has performed its housekeeping duties, it sets up the boot interface and initializes
the required registers. The RCU then loads the platform loader and manager (PLM) firmware into
the PPU RAM memory and releases the PPU processor from reset. Next, the PPU begins to
execute the PLM firmware that reads the program device image from the boot source.

Flowchart
The start-up process is shown in the figure.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 725Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___boot_mode_por.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___boot_mode_user.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=725

Figure 122: PMC Start-up Flowchart

POR_B
Reset
State

Latch mode pins
Cache eFUSEs

Run PMC scan clear (eFUSE option)
Run BIST (eFUSE option)

POR_B is Held Low

Release RCU from reset to execute BootROM

POR_B released; required power supplies valid

Release PPU to execute PLM loaded in PPU RAM

Configure and enable the device for an operating system

Launch application software with backing of the PLM
operating environment

Initialize and configure the PMC for the boot process

Phase 2

Phase 1

Phase 3

Phase 4

System Operation

System Startup Phases

X24082-061221

System Integrity Monitoring
The device has several monitoring resources that can reset all or part of the device.

• Power Supply Dropout (hardware)

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 726Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=726

• System Errors (error accumulator module, EAM)

• System Monitoring Software (RCU, PLM and PSM)

Power Supply Dropout
Power supplies are measured by the PMC reset circuitry and the PMC system monitor
(PMC_SYSMON).

PMC Reset Circuitry

If one of the three required power supplies for boot goes down, the PMC reset circuitry asserts
the external POR signal.

PMC SYMON Monitoring

The PMC includes a voltage and temperature system monitoring unit (SYSMON).

System Errors
A system error can generate an internal POR reset. See System Errors.

System Monitoring Software
• RCU includes system monitoring ROM-based code

• PLM firmware

• PSM firmware

Reset Reference for Individual Blocks
The individual block reset reference tables are divided into these sections:

• PMC Block Resets

• LPD Block Resets

• FPD Block Resets

• NPI Block Resets

• SoC Endpoint Resets

• NoC Resets

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 727Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=727

PMC Block Resets
The PMC resets for the processors, memory, DMA and other system functional units are
summarized in the following table.

Note: All reset register control bits are active-High. A "1" means the reset is asserted.

Table 259: PMC Block Resets

Functional Unit Reset Name Reset Register Control Notes
Processor

RCU RCU_RST

PPU PPU_RST

PMC RAM PPU_RAM_RST

Peripheral

PMC DMA controller PMC_DMA_RST RST_PDMA [RESET0]
RST_PDMA [RESET1]

SBI boot interface unit SBI_RST RST_SBI [RESET]

System Monitor PMC_SYSMON_RST RST_DBG [RESET]
RST_DBG [DPC]

Resets the SYSMON
controller including register
settings and the sequencer
configuration.

Note: The eFUSE values are
unaffected.

I/O Peripheral

GPIO PMC_GPIO_RST RST_GPIO [RESET]

PMC_I2C PMC_I2C_RST

Flash Memory Controllers

QSPI controller QSPI_RST RST_QSPI [RESET]

OSPI controller OSPI_RST RST_OSPI [RESET]

SD_eMMC0 controller SD0_RST RST_SDIO0 [RESET]

SD_eMMC1 controller SD1_RST RST_SDIO1 [RESET]

LPD Block Resets
The controller resets are summarized in the following table.

Table 260: LPD Block Resets

Block Reset Name Register Control
LPD I/O Peripherals

GPIO controller LPD_GPIO_RESET CRL CRL.RST_GPIO
[RESET]

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 728Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_pdma.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_pdma.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_sbi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_dbg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_dbg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_gpio.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_qspi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ospi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_sdio0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_sdio1.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=728

Table 260: LPD Block Resets (cont'd)

Block Reset Name Register Control
I2C 0 controller LPD_I2C0_RESET CRL CRL.RST_ I2C

[RESET]

I2C 1 controller LPD_I2C1_RESET CRL CRL.RST_ I2C
[RESET]

USB 2.0 PHY Reset
Control

USB 2.0 controller USB2_RESET CRP CRP.RST_USB
[PHY_RST] This resets the PHY in

the PMC power
domain.
The USB controller is
located in the LPD.

LPD Resets

The global LPD resets are included in the PS resets. The application software can request resets
to the LPD blocks using the PSM Global Registers. The PSM firmware can control interconnect
traffic to halt new transactions and allow any active traffic to finish if possible. If traffic stalls, this
can be detected by the transaction timeout feature on each interconnect egress port.

RPU MPCore Resets

There are several reset controls resets within the RPU MPCore. For example, cores can
individually be reset.

FPD Block Resets
There are several reset controls resets within the APU MPCores, the PL to PS interfaces, FPD
debug logic, and peripherals. Blocks can individually be reset as listed in the following table.

The reset registers for the FPD blocks are normally accessed by the PSM. Prior to asserting a
reset, the PLM might put the affected logic into a quiescent state. The application software can
request that one or more FPD blocks be reset using the PSM Global Registers. The PSM firmware
can control interconnect traffic to halt new transactions and allow any active traffic to finish, if
possible. If traffic stalls, this can be detected by the transaction timeout feature on the
interconnect egress ports.

Table 261: Individual FPD Block Resets

Functional Unit Reset Name CRF Registers Notes
APU MPCore

APU0 and APU1 cores APU_RST RST_APU Register [APU0], [APU1]

APU_DUAL_CSR register module

APU GIC unit

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 729Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_apu.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=729

Table 261: Individual FPD Block Resets (cont'd)

Functional Unit Reset Name CRF Registers Notes
APU GIC x11 register modules APU_GIC_RST [APU_GIC]

APU L2 cache APU_L2_RST [APU_L2]

APU0 and APU1 power status RST_APU [APU0_PWRON]
[APU1_PWRON]

PL to PS Interfaces

PL_ACELITE_FPD
PL_AXI_FPD PL_AFI_APB [Sw_Reset]

CoreSight Debug Logic

FPD CoreSight debug logic RST_DBG_FPD [RESET]

Peripherals

FPD system watchdog timer RST_FPD_SWDT [RESET]

PL Resets
There are four general purpose PL reset signals from the PMC controlled by the CRP RST_PL
register:

• [RESET0]

• [RESET1]

• [RESET2]

• [RESET3]

The register bits are defined as active-High; set the bit = 1 to assert a reset in the PL fabric. The
design tools see this reset assertion as an active-Low signal.

These resets are general purpose from the PMC CRP register module to the PL fabric. The uses
of these resets are defined by the customer PL design.

SoC Endpoint Resets
There are three SoC endpoint system-level resets (SYS_RST) routed to the NPI register modules
in the SoC where one or more of these resets can be enabled (unmasked) to reset the associated
block. The SYS_RST reset signals are controlled by three bits in the CRP.RST_NONPS register as
shown in the following table. Each NPI-based PCSR register set includes a register with three
mask bits for the three SYS_RST reset signals from the PMC reset controller.

Note: These resets do not have an effect on the CRP.RESET_REASON register.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 730Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_apu.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_int_csr___pl_afi_apb.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_dbg_fpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_fpd_swdt.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_pl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=730

Table 262: SoC Endpoint Reset Register Controls

Reset Signal Name CRP.RST_NONPS Bit
Name Description

SYS_RST_1 [SYS_RST_1] System reset 1 bused to NPI register modules

SYS_RST_2 [SYS_RST_2] System reset 2 bused to NPI register modules

SYS_RST_3 [SYS_RST_3] System reset 2 bused to NPI register modules

NPI Block Resets
The NoC, NPI, DDRMC, and SoC resets are listed in the following table.

Table 263: NoC, NPI, DDRMC, and SoC Resets

Description Reset Type Source Notes
NPI programming interface POR RST_NONPS [NOC_POR, bit 5]

SRST RST_NONPS [NPI_RESET, bit 4]

NoC Resets
The NoC resets are listed in the following table.

Table 264: NoC Resets

Description Reset Type Source Notes
NoC interconnect POR RST_NONPS [NOC_POR, bit 5]

SRST RST_NONPS [NOC_RESET, bit 6]

Persistent Registers
Persistent registers provide control and status that are only reset by an internal or external POR
as noted in the following tables.

• PMC and PSM Processor Global and Local registers

• TrustZone Control

• LPD and FPD Power Control and Status

• PMC and PS Clock and Reset Control

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 731Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=731

• Miscellaneous Persistent Control Registers

Global and Local
The persistent global and local registers are summarized in the following table.

Table 265: Persistent Global and Local Registers

Register Offset
Address

Reset
Type Description

PMC_GLOBAL Register Module

PMC_MULTI_BOOT 0x0004 POR Multi-boot address offset.

PERS_GLOB_GEN_STORAGE0
PERS_GLOB_GEN_STORAGE1
PERS_GLOB_GEN_STORAGE2
PERS_GLOB_GEN_STORAGE3
PERS_GLOB_GEN_STORAGE4

0x0050+ External
POR PMC persistent global read/write registers; 32 bits each.

PMC_GSW_ERR 0x0064 External
POR General software error log for use by the PLM firmware.

REQ_PWRUP_ISR
REQ_PWRDWN_ISR
REQ_ISO_ISR
REQ_SWRST_ISR

0x0110
0x0210
0x0310
0x0410

POR Power-up, down, ISO, and software request interrupt
status.

PMC_ERR1_STATUS
PMC_ERR2_STATUS

0x20000
0x20004

External
POR System error accumulator module (EAM) status.

PMC_LOCAL Register Module

PERS_PMC_LCL_STORAGE0
PERS_PMC_LCL_STORAGE1
PERS_PMC_LCL_STORAGE2
PERS_PMC_LCL_STORAGE3
PERS_PMC_LCL_STORAGE4

0x0064+ POR PMC persistent local storage, 32 bits each.

PMC_BOOT_ERR 0x2000 External
POR BootROM error code and flags.

PSM_GLOBAL Register Module

PS_SW_ERR
PSM_BOOT_SERV_ERR

0x0020
0x0024

POR Read-write registers for use by the PSM firmware.

PERS_GLOB_GEN_STORAGE0
PERS_GLOB_GEN_STORAGE1
PERS_GLOB_GEN_STORAGE2
PERS_GLOB_GEN_STORAGE3
PERS_GLOB_GEN_STORAGE4
PERS_GLOB_GEN_STORAGE5
PERS_GLOB_GEN_STORAGE6
PERS_GLOB_GEN_STORAGE7

0x0050+ External
POR PSM persistent global storage; 32 bits each.

PWR_STATE
AUX_PWR_STATE

0x0100
0x0104

POR PS power island state.
PS memory and retention state.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 732Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_multi_boot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pers_glob_gen_storage4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_gsw_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrup_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_pwrdwn_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_iso_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___req_swrst_isr.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err1_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_global___pmc_err2_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_local___pers_pmc_lcl_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_local___pers_pmc_lcl_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_local___pers_pmc_lcl_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_local___pers_pmc_lcl_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_local___pers_pmc_lcl_storage4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_local___pmc_boot_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___ps_sw_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___psm_boot_serv_err.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage5.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage6.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pers_glob_gen_storage7.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___pwr_state.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_global___aux_pwr_state.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=732

TrustZone Control
The persistent TrustZone control registers are summarized in the following table.

Table 266: Persistent TrustZone Control Registers

Register Offset
Address

Reset
Type Description

PMC_IOP_SLCR_SECURE TrustZone Control Registers

IOP_AXI_WPRTCN_SD0
IOP_AXI_RPRTCN_SD0
IOP_AXI_WPRTCN_SD1
IOP_AXI_RPRTCN_SD1

0x0000
0x0004
0x0010
0x0014

POR
DMA transaction security settings:
SD_eMMC0 AXI write, AXI read
SD_eMMC1 AXI write, AXI read

IOP_AXI_WPRTCN_QSPI
IOP_AXI_WPRTCN_OSPI

0x0020
0x0030

POR Flash DMA transaction security settings:
QSPI AXI write, OSPI AXI write

TZProt 0x006C POR Write protection control for PMC_IOP_SLCR_SECURE TrustZone
registers

LPD_SLCR_SECURE TrustZone Control Registers

RPU0_TZ, RPU1_TZ
PL_AXI_LPD_TZ
PSM_TZ
DMA_Ch0_TZ (x8 Ch0 to
Ch7)

0x0020
0x0024
0x0050
0x0054
0x0060+

POR

Miscellaneous host transaction security settings:
RPU0, RPU1 processors
PS_AXI_LPD interface
PSM subsystem
LPD DMA controller

DPC_TZ 0x004C POR DPC transaction and register access security settings (APB, DMA,
Aurora)

XMPU_TZ
XPPU_TZ
CPM_CSR_TZ
IPI_TZ
CRL_TZ
SLCR_INT_TZ

0x0028
0x002C
0x0038
0x0040
0x0044
0x0048

POR Register access security settings for LPD programming interfaces

TZProt 0x0080 POR Write protection control for LPD_SLCR_SECURE TrustZone registers

LPD_IOP_SLCR_SECURE TrustZone Control Registers

IOP_AXI_WPRTCN_GEM0
IOP_AXI_RPRTCN_GEM0
IOP_AXI_WPRTCN_GEM1
IOP_AXI_RPRTCN_GEM1

0x0000
0x0004
0x0010
0x0014

POR
DMA transaction security settings:
GEM0 AXI write, AXI read
GEM1 AXI write, AXI read

IOP_AXI_USB_2 0x0020 POR USB transaction security setting

TZProt 0x007C POR Write protection control for LPD_IOP_SLCR_SECURE TrustZone
registers

FPD_SLCR_SECURE TrustZone Control Registers

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 733Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___iop_axi_wprtcn_sd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___iop_axi_rprtcn_sd0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___iop_axi_wprtcn_sd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___iop_axi_rprtcn_sd1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___iop_axi_wprtcn_qspi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___iop_axi_wprtcn_ospi.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_iop_slcr_secure___tzprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___rpu0_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___rpu1_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___pl_axi_lpd_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___psm_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___dma_ch0_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___dpc_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___xmpu_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___xppu_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___cpm_csr_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___ipi_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___crl_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___slcr_int_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr_secure___tzprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr_secure___iop_axi_wprtcn_gem0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr_secure___iop_axi_rprtcn_gem0.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr_secure___iop_axi_wprtcn_gem1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr_secure___iop_axi_rprtcn_gem1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr_secure___iop_axi_usb_2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_iop_slcr_secure___tzprot.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=733

Table 266: Persistent TrustZone Control Registers (cont'd)

Register Offset
Address

Reset
Type Description

APU_DUAL_TZ
FPD_XMPU_TZ
FPD_SLCR_TZ
CRF_TZ
PL_AXI_FPD_TZ
PL_ACELITE_FPD_TZ
FPD_CCI_TZ
FPD_SMMU_TZ

0x0104
0x0108
0x010C
0x0110
0x0114
0x0118
0x011C
0x0120

Register access security settings for LPD programming interfaces

WProt 0x0FF8 Write protection control for FPD_SLCR_SECURE TrustZone registers

Power Control and Status
The persistent control and status registers are summarized in the following table.

Table 267: Persistent Power Control and Status Registers

Register Offset
Address Description

PSM_LOCAL Power Control and Status Registers

APU0_PWR_CTRL
APU1_PWR_CTRL
L2_PWR_CTRL
L2_CE_CTRL

0x0000
0x0004
0x00B0
0x00B8

APU and L2 cache power control and status.

RPU_PWR_CTRL
RPU_PWR_STATUS
TCM_PWR_CTRL
TCM_CE_CTRL

0x0080
0x0084
0x00B0
0x00B8

RPU and TCM power control and status.

OCM_PWR_CTRL
OCM_CE_CTRL
OCM_PWR_STATUS

0x00C0
0x00C8
0x00CC

OCM power island control and status, and chip enable
control.

GEM_PWR_CTRL
GEM_CE_CTRL
GEM_PWR_STATUS

0x00E0
0x00E4
0x00E8

GEM power island control, status and chip enable
control.

DOMAIN_ISO_CTRL 0x00F0 Isolation control for LPD-FPD and XRAM boundaries.

LOC_PWR_STATE
LOC_AUX_PWR_STATE

0x0100
0x0104

Power-up status for all islands within the PS.

Clock and Reset Control
The persistent clock and reset registers are summarized in the following table.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 734Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___apu_dual_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___fpd_xmpu_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___fpd_slcr_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___crf_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___pl_axi_fpd_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___pl_acelite_fpd_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___fpd_cci_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___fpd_smmu_tz.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=fpd_slcr_secure___wprot.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu0_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___apu1_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___l2_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___l2_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___rpu_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___rpu_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___tcm_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___tcm_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___ocm_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_pwr_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_ce_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___gem_pwr_status.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___domain_iso_ctrl.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___loc_pwr_state.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=psm_local___loc_aux_pwr_state.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=734

Table 268: Persistent Clock and Reset Control Registers

Register Offset
Address Description

PMC CRP Clock and Reset Register Module

BOOT_MODE_USER
RESET_REASON

0x0200
0x0220

Software boot mode control and status.
Source of the last reset (POR_B required).

RST_PS
RST_NONPS
RST_DBG

0x031C
0x0320
0x0400

Resets: [PMC_POR], [PS_POR], [PL_POR] only. Non-PS,
PMC resets: [SOC_POR] only. Reset for Debug blocks.

LPD CRL Clock and Reset Register Module

RST_CPU_R5
RST_DBG_LPD
RST_FPD

0x0300
0x0338
0x0360

RPU Cortex®-R5F hard reset: [RESET_PGE].
Debug, HSDP, CoreSight™ resets.
FPD reset.

FPD CRF Clock and Reset Register Module

RST_APU
RST_DBG_FPD
RST_FPD_SWDT

0x0300
0x030C
0x0314

APU Cortex®-A72 hard resets: [APUx_PWRON].
SoC debug reset.
FPD system watchdog timer reset.

Miscellaneous Persistent Control Registers
Miscellaneous persistent registers are summarized in the following table.

Table 269: Miscellaneous Persistent Control Registers

Register Offset
Address Description

LPD_SLCR Register

HSDP_CFG 0x0088 HSDP datapath configuration through the XPipe.

Section XIV: Clocks, Resets, and Power
Chapter 75: Resets

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 735Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___boot_mode_user.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___reset_reason.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_ps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_nonps.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crp___rst_dbg.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_cpu_r5.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_dbg_lpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crl___rst_fpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_apu.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_dbg_fpd.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=crf___rst_fpd_swdt.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=lpd_slcr___hsdp_cfg.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=735

Chapter 76

Power
The device power architecture includes power domains and PS-based power islands. The power
domains are large areas of the device that have their own set of power pins. The power islands
are smaller areas within the LPD and FPD power domains. The power island are controlled by
onboard power FETs. These FETs are controlled by register bits. The power domains and islands
are shown in the Power Diagram.

The power domain states and the transitions from one state to another have some restrictions.
For the power domains and the power islands, the interconnect traffic must be brought to a halt
before power-down. The PS power islands are controlled by the PSM controller in the LPD. The
power-up process includes sequencing of power, clocks, and resets.

Power management is described in Power Management.

Power Domains

• PMC power domain: platform management controller and functional units

• LPD (low-power domain):

○ RPU MPCore processor

○ LPD functional units

○ CPM5, if present

• FPD (full-power domain): application processing unit and functional units

• PL power domain

○ PL building blocks and clock structures; the count is device dependent

○ CPM4, if present

○ AI Engine, if present

• SPD (system power domain)

○ NoC and NPI interconnect

○ DDR memory controllers

• BPD (battery power domain)

○ Real-time clock (RTC)

Section XIV: Clocks, Resets, and Power
Chapter 76: Power

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 736Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=736

○ Battery-backed RAM (BBRAM)

• Gigabit transceivers for high-speed I/O (GTM, GTY, GTYP)

○ AVCC, AVCCUAX, AVTT, AVTTRCAL transceiver pins

Power Islands

The LPD and FPD processors and some subsystem units are on their own power islands. These
are controlled by the PSM.

• RPU processor (all cores together)

• APU cores (individually)

• APU L2-cache

• 4 MB XRAM supports a total of 16 power islands (1 per 256 KB sub-bank)

The power island controls and service request registers are listed in Power Islands.

Power Reduction Features

There are several power reduction features. In addition to power control, the processors have
sleep modes. The power domains are controlled by output pins attached to external power
supplies. The PS power islands are controlled by on-chip power FETs that are controlled by
registers accessible to the PSM.

• Processor sleep/wake feature

• PS and PL clock frequency reduction and clock gating

Note: PL clocks can enabled and disabled by system software using an EMIO signal from one of the GPIO
controllers.

Power Diagram
The following figure shows the Versal™ ACAP power domains. The power domains are color
coded. The power islands are shown with small switch symbols.

Note: The GT power pins are listed in the Power Pins section.

Section XIV: Clocks, Resets, and Power
Chapter 76: Power

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 737Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=737

Figure 123: Power Domains and Islands Diagram

RTC

BBRAM

OscillatorVCCAUX_PMC
Good

VCCO_503

VCCO_500

VCCO_501

VCCO_502

VCC_PSLP

VCC_PSFP

GTx_AVCC
GTx_AVCCAUX

VCC_IO

VCC_RAM

VCCO_BANKx

VCC_SOC

APLL

RPLL

Dedicated

PPLL

NPLL

LPD MIO

L2 Cache
RAM

CPU 0

APU Dual
ProcessorAPU

Debug

AXI Interconnect

PLLs DDR
MCXPIO

N
M

Us
N

SU
s

CFU

VCCAUX_PMC

VCC_BATT

VCCAUX_SMON

PHY

VCCINT

PMC DMA

RCU PPU Quad SPI
Octal SPI

SD_eMMCPMC RAM
PMC_GPIO

NoC

VCC_FUSE

NPI

VCC_PMC

CPLL

PMC_I2C

eFUSE
Cache

PMC MIO 0

PMC MIO 1

JTAG

SLCRs

CPU 1

SYSMON

CCI

GIC

SCU

Interconnect

VCCAUX

16
FETs

PMC
PL
LPD
FPD
SPD
BPD

Power Domains

RPU Debug

CoreSightPL
Debug

TCM A0

TCM A1

TCM B0

TCM B1

LPD DMA

Debug GIC

RPU Dual
Processor

GEM 0

PSM Bank 0

Bank 1

Bank 2

Bank 3

OCM Control

Interconnect

XRAM

GEM 1

USB 2.0

LPD_I2Cx
SPIx

UARTx
CANFDx

TTCx
SLCRs

UltraRAM
Block RAM

100 G Multirate Ethernet

CFI

DSP Engines

HDIO

AI Engine CPM4

XPipe GTY

PL

PL

CLBs

LPD_GPIO

BBRAM
Controller

Power Island
On-chip

600 G Channelized Ethernet

600 Gb Interlaken

400 Gb High-speed Crypto

CPipe GTYP

GTY

GTM

CPM5

GTx_AVTT
GTx_AVTTRCAL

CPM4

CPM5

PL, 32 Gb/s

PL, 58 Gb/s

SoC
LPD

PS
PL

GT Bank Power Pins

Peri

AnalogESD

X23217-062921

Section XIV: Clocks, Resets, and Power
Chapter 76: Power

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 738Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=738

Power Domains
The primary power domains are listed in the Power Management section.

Power Domain State Requirements
The PMC power is always required. General rules include:

• PMC is required to operate the device

• LPD is required for the FPD

• SOC is required for the PL

• CPM, when present:

○ CPM4: PL and LPD are required

○ CPM5: LPD is required

PL and PS-centric modes:

• PMC and PL

• PMC and LPD

• PMC, LPD, FPD

• PMC, LPD, FPD, and PL

Note: The PL power domain includes the AI Engine and CPM4, if they are present.

There are restrictions regarding EMIO signals.

• LPD is required for PMC EMIO signals

Common power modes are listed in Power Modes.

Power Islands
The power islands are in the LPD and FPD. These are shown in the Power Diagram. The power
islands are controlled by the PSM firmware. The system software writes to the PSM global
registers to request power island state changes.

Section XIV: Clocks, Resets, and Power
Chapter 76: Power

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 739Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=739

The system software controls the PS power-up and power-down cycles by writing to the global
registers in the PSM. This is explained in the PSM Service Requests section.

For power-down requests, the PSM firmware makes the domain's interconnect transactions
quiescent before a shut-down.

Section XIV: Clocks, Resets, and Power
Chapter 76: Power

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 740Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=740

Section XV

Test and Debug
This section includes these chapters:

• Overview

• Integrated Debug

• Device Identification

• CoreSight Debug

Section XV: Test and Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 741Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=741

Chapter 77

Overview
Debug Packet Controller

The debug packet controller (DPC) responds to the commands from the debug host.

SoC Debug I/O

The Versal™ ACAP includes device-level debug and trace capabilities. The debug hardware
features include the following.

• Four host debugger access points to the DPC.

○ PCIe® Host: high-speed, high-bandwidth debug protocol

○ Aurora host: high-speed, serial debug protocol path to DPC

○ PL interface: high-speed, high-bandwidth streaming

○ JTAG

• Extensive debug environment for the following.

○ PS RPU and APU processors

○ PMC and PSM processors

○ PL, CPM, and AI Engine

• Intrusive and non-intrusive debug.

• Interfacing to ChipScope™.

• Daisy-chaining of multiple devices for debug or configuration through a unified cable.

Section XV: Test and Debug
Chapter 77: Overview

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 742Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=742

Chapter 78

Integrated Debug
The Versal™ ACAP has integrated debug that resides in the PMC. The integrated debug
subsystem includes the test access port (TAP) controller, the Arm® debug access port (DAP)
controller, and the debug packet controller (DPC). The PMC TAP controller supports PL
configuration, ChipScope™ debug, and JTAG boundary-scan operations. The Arm DAP controller
supports the Arm CoreSight™ debug and trace. The DPC is part of the high-speed debug port
(HSDP) and allows access to all debug resources including Arm CoreSight debug and trace and
ChipScope.

Figure 124: Debug Interface Block

Debug Packet
Controller

(DPC)

Platform management controller

Slave boot interface

Trace port interface unit

AXI-S 64b

AXI-S 64b

AXI4 64b

AXI4 32b

AXI4 64b

Debug reset requestDPC Link
Layer Options

 - HSDP Aurora (Hard IP)
 - Debug CPM PCIe
 - PL Aurora (Soft IP)
 - JTAG

TAP

Arm DAP

Boundary scan

Slave boot interface

System reset request

Debug reset request

se
cu

rit
y

TDO

TDI

Se
cu

rit
y

APB4 Platform management controller

TDI

Platform management controller
AXI4 32b

Arm CoreSight debug and trace components
APB3

TDO

X21548-103020

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 743Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=743

JTAG and Boundary-Scan
The Versal ACAP architecture is compatible with the IEEE Standard Test Access Port and
Boundary-Scan Architecture (IEEE Std 1149.1) and includes all the mandatory elements defined
by the standard. These elements include the TAP, TAP controller, instruction register, instruction
decoder, boundary register, and bypass register. Versal ACAPs also support a 32-bit device
identification register and a JTAG configuration register that adds additional readback and
configuration JTAG capability.

The primary debug access port is the JTAG interface. The JTAG chain order in the Versal ACAP is
fixed with the DAP controller followed by the TAP controller as shown in the following figure.

Figure 125: JTAG Chain

TAP

Arm DAP Security
Gate

JTAG
Registers

JTAG
Deserializer

TDO

PS
CoreSight

Slave Boot
Interface

PMC Main
Switch

PMC Main
Switch

TDI
TMS

TCK TDO TDI

TMS

TCK

APB
Access

Port

AXI
Access

Port

X21550-111320

The JTAG dedicated I/O supports boundary-scan operations, status register access, PL readback,
and a single-stepping hardware analyzer in the PL and AI Engine. The JTAG interface provides
base debug to assist with board or device bring-up issue isolation.

If JTAG is disabled, via the JTAG disable eFUSE, only the IDCODE JTAG instruction is available.
This is a permanent setting and cannot be reverted. See the Versal ACAP Security Manual
(UG1508) for the production readiness of the desired security feature, as well as its detailed
usage instructions. This manual can be downloaded from the Design Security Lounge.

IMPORTANT! An active NDA is required for access to the Design Security Lounge.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 744Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=744

If the JTAG disable eFUSE is not set, on power-up, the default boot mode is secure and the JTAG
interface accepts the base JTAG instructions regardless of the boot mode. For non-secure boot,
after the boot is complete, successfully or unsuccessfully, the full suite of extended JTAG
instructions are enabled. For secure boot, if the boot is completed successfully, the authenticated
software is capable of enabling the extended JTAG instructions. In the event of a failed secure
boot, the JTAG capabilities are dependent on how the device was provisioned.

The following figure illustrates the JTAG interface protections, as well as when the base JTAG
instructions or full extended instructions are available.

Figure 126: JTAG Interface Protections

RESET
(POR_B = 0)

PMC Boot Process

Successful
Secure Boot

Failed Secure Boot
Secure Lockdown

Extended JTAG
Instructions

Enabled

Secure Lockdown
Permanent

Extended JTAG
Instructions

Disabled

PPK Programmed
AND Not Revoked?

Wait for
AUTH_JTAG

Yes

JTAG Instructions1

Base Instructions
Available

Base + Extended
Instructions

Available

· AUTH_JTAG
· BYPASS
· ERROR_STATUS
· EXTENDED_IDCODE
· EXTEST
· EXTEST_PULSE
· EXTEST_TRAIN
· HIGHZ_IO
· IDCODE
· JTAG_STATUS
· READ_DNA
· SAMPLE/PRELOAD
· USERCODE

1For non-secure or secure boot, when the JTAG disable
eFUSE is programmed, only the JTAG IDCODE instruction
is available.

+ DAP instructions
+ DPC
+ JCONFIG
+ JRDBK
+ SYS_RST
+ USER1
+ USER2
+ USER3
+ USER4

Authenticated
JTAG Disabled?

Permanent
Extended JTAG

Instructions
Disabled

No

Yes

Successful
Non-Secure Boot

Failed
Non-Secure Boot

Extended JTAG
Instructions

Disabled

Disable
command

Enable
command

No

Extended JTAG
Instructions

Enabled

PPK Programmed
AND Not Revoked?

Yes

Authenticated
JTAG Disabled?

No

Yes

Enable
command

No

Wait for
AUTH_JTAG

X24713-052821

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 745Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=745

TAP Controller
Test Access Port Interface

The device test access port (TAP) contains the four mandatory, dedicated pins (TDI, TDO, TMS,
and TCK) as specified by the protocol. Test reset (TRST) and enable pins are optional control pins
sometimes used by devices from other manufacturers, but are not provided on Xilinx devices.

IMPORTANT! Be aware of optional signals when interfacing Xilinx devices with parts from different
vendors, because driving these optional pins could have different requirements.

Table 270: TAP Interface

Pin Type Direction Description
TDI Dedicated Input Test data in (TDI): This pin is the serial input to all JTAG

instruction and data registers. The state of the TAP
controller and the current instruction determine the register
that is fed by the TDI pin for a specific operation. TDI has an
internal resistive pull-up to provide a logic High to the
system if the pin is not driven. TDI is applied to the JTAG
registers on the rising edge of TCK.

TDO Dedicated Output Test data out (TDO): This pin is the serial output for all JTAG
instruction and data registers. The state of the TAP
controller and the current instruction determine the register
(instruction or data) that feeds TDO for a specific operation.
TDO changes state on the falling edge of TCK and is only
active during the shifting of instructions or data through the
device. TDO is an active driver output. TDO has an internal
resistive pull-up to provide a logic High if the pin is not
active.

TMS Dedicated Input Test mode select (TMS): This pin determines the sequence
of states through the TAP controller, which change on the
rising edge of TCK. TMS has an internal resistive pull-up to
provide a logic High if the pin is not driven.

TCK Dedicated Output Test clock (TCK): This pin is the JTAG test clock. TCK
sequences the TAP controller and the JTAG registers. TCK
has an internal resistive pull-up to provide a logic High if the
pin is not driven.

Test Access Port (TAP) Controller

The following figure shows the JTAG standard 16-state finite state machine. The four TAP pins
control how data is scanned into the various registers. The state of the TMS pin at the rising edge
of TCK determines the sequence of state transitions. There are two main sequences, one for
shifting data into the data register and the other for shifting an instruction into the instruction
register. A transition between the states only occurs on the rising edge of TCK, and each state
has a different name. The two vertical columns with seven states each represent the instruction
path and the datapath. The data registers operate in the states whose names end with "DR," and
the instruction register operates in the states whose names end in "IR." The states are otherwise
identical.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 746Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=746

Figure 127: Example JTAG TAP Controller and TAP Registers

IEEE Std 1149.1 Compliant Device

TMS

Instruction Register

Bypass[1] Register

IDCODE[32] Register

Boundary[N] Register

Instruction Decoder Select Data
Register

Shift-IR/Shift-DR

Select Next State

TAP State Machine

TCK

TDI

TDO

I/O I/O I/O I/O

Test-Logic-Reset

Run-Test/Idle Select-DR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

0

0

0

0

0

0

1

1

1

1
1

1

1

Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

0

0

0

1

1
1

1

1

1

00
1 1

X22463-050219

JTAG Register Reference
The Versal™ ACAPs provide JTAG registers that can be accessed through the JTAG interface for
boundary-scan operations and debug. Several of the JTAG registers provide valuable status
indicators for the device start-up and boot. The JTAG TAP registers in the Versal ACAP are listed
in the following table

Table 271: JTAG Registers

Register Name Register Length Description
BOUNDARY Varies per device Controls and observes input, output, and output enable

BYPASS 1-bit Bypasses the device

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 747Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=747

Table 271: JTAG Registers (cont'd)

Register Name Register Length Description
ERROR_STATUS 160-bit Captures the error management status for the PMC

EXTENDED_IDCODE 32-bit Captures the device extended IDCODE

DEVICE_IDENTIFICATION
(IDCODE)

32-bit Captures the device IDCODE

INSTRUCTION 6-bit • Holds the current instruction opcode and captures internal device
status

• Total Versal ACAP instruction register length is DAP (4-bit
instruction register length) + TAP (6-bit instruction register
length)

JTAG_CONFIG Varies • Connects the JTAG pins to the slave boot interface when using the
JTAG TAP instructions JCONFIG and JRDBK

• These JTAG TAP instructions write or read a programmable device
image into the Versal ACAP

• The JTAG_CONFIG data register does not support pausing during
data shifting via temporary transitions to the JTAG TAP DR-PAUSE
state. If data shifting must be paused, then pause by stopping
the TCK clock while keeping the JTAG TAP in the DR-SHIFT state.

DNA 128-bit Captures the device DNA value

SECURE_DEBUG 32-bit Shifts in the authenticated data packet to authenticate in secure
mode

JTAG_STATUS 36-bit Captures the platform management controller overall status

SYSTEM_RESET 1-bit Issues a Versal ACAP PMC_SRST

USER_DEFINED (USER1,
USER2, USER3, USER4)

Design specific Design-specific register

USERCODE 32-bit Captures the user-designated value

ERROR_STATUS Register

The ERROR_STATUS register is a 160-bit register that provides key error conditions from across
the Versal ACAP. The ERROR_STATUS register is accessed via JTAG.

Table 272: ERROR_STATUS Register Format

Bit Field Description
159:155 RSVD_READS_0 Reserved, returns 0

154:148 RESERVED Reserved

147:136 BOOTROM FIRST ERROR BootROM first error code detected

135:124 BOOTROM LAST ERROR BootROM last error code detected

123:110 PLM MAJOR ERROR PLM major error code

109:94 PLM MINOR ERROR PLM minor error code

93:64 GSW ERROR General software error code for PLM

63 RESERVED Reserved

62 BOOTROM NCR BootROM non-correctable error
Set by RCU BootROM during boot

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 748Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=748

Table 272: ERROR_STATUS Register Format (cont'd)

Bit Field Description
61 PLM CR Platform loader and manager boot correctable error

Set by PLM during boot

60 PLM NCR Platform loader and manager boot non-correctable error
Set by PLM during boot

59 GSW CR General software correctable error after boot

58 GSW NCR General software non-correctable error after boot

57 CFU ERROR CFU error

56 CFRAME ERROR CFRAME error

55 PSM CR PSM correctable error

54 PSM NCR PSM non-correctable error

53 DDRMC MB CR DDRMC MicroBlaze correctable ECC error

52 DDRMC MB NCR DDRMC MicroBlaze non-correctable ECC error

51 NOC CR NoC correctable error

50 NOC NCR NoC non-correctable error

49 NOC USER ERROR NoC user error

48 MMCM LOCK ERROR MMCM lock error

47 AIE CR AI Engine correctable error

46 AIE NCR AI Engine non-correctable error

45 DDRMC MC ECC CR DDRMC MC (memory controller) correctable ECC error

44 DDRMC MC ECC NCR DDRMC MC (memory controller) non-correctable ECC error

43 GT CR GT correctable error

42 GT NCR GT non-correctable error

41 SYSMON CR SYSMON correctable error

40 SYSMON NCR SYSMON non-correctable error

39 USER PL0 ERROR User-defined PL error

38 USER PL1 ERROR User-defined PL error

37 USER PL2 ERROR User-defined PL error

36 USER PL3 ERROR User-defined PL error

35 NPI ROOT ERROR NPI root error

34 SSIT ERROR3 SSI technology SLR error

33 SSIT ERROR4 SSI technology SLR error

32 SSIT ERROR5 SSI technology SLR error

31 PMC APB ERROR PMC APB error. Includes errors from registers: PMC_LOCAL, PMC_GLOBAL, CRP,
PMC_IOP_SECURE_SLCR, PMC_IOP, BBRAM_CTRL, PMC_ANLG, RTC

30 PMC BOOTROM ERROR PMC BootROM validation error

29 RCU HARDWARE ERROR RCU hardware error

28 PPU HARDWARE ERROR PPU hardware error

27 PMC PAR ERROR PMC switch and PMC IOP parity errors

26 PMC CR PMC correctable errors

25 PMC NCR PMC non-correctable errors

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 749Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=749

Table 272: ERROR_STATUS Register Format (cont'd)

Bit Field Description
24 PMC SYSMON0 ALARM PMC temperature shutdown alert and power supply failure detection errors

from SYSMON

23 PMC SYSMON1 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

22 PMC SYSMON2 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

21 PMC SYSMON3 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

20 PMC SYSMON4 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

19 PMC SYSMON5 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

18 PMC SYSMON6 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

17 PMC SYSMON7 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

16 PMC SYSMON8 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

15 PMC SYSMON9 ALARM PMC temperature shutdown alert and power supply failure detection errors
from SYSMON

14 CFI NCR CFI non-correctable error

13 SEU CRC ERROR SEU CRC error

12 SEU ECC ERROR SEU ECC error

11:10 RSVD_READS_0 Reserved, returns 0

9 RTC ALARM RTC alarm error

8 NPLL ERROR PMC NPLL lock error

7 PPLL ERROR PMC PPLL lock error

6 CLOCK MONITOR ERROR Clock monitor errors

5 PMC TIMEOUT ERROR PMC interconnect timeout errors from interconnect mission interrupt status
register, interconnect latent status register, and timeout interrupt status
register

4 PMC XMPU ERROR PMC XMPU errors from register access error on APB. Includes read permission
violation, write permission violation or security violation

3 PMC XPPU ERROR PMC XPPU errors from register access error on APB. Includes Master ID not
found, read permission violation, Master ID access violation, Master ID parity
error, TrustZone violation

2 SSIT ERROR0 SSI technology SLR error

1 SSIT ERROR1 SSI technology SLR error

0 SSIT ERROR2 SSI technology SLR error

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 750Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=750

EXTENDED_IDCODE Register

The EXTENDED_IDCODE register is a 32-bit register that is accessed via JTAG. The
EXTENDED_IDCODE register provides the extended device family code that is used with the
IDCODE register for device identification. See Device Identification for the Versal ACAP member
information.

Table 273: EXTENDED_IDCODE Register Format

Bit Field Description
31:28 RESERVED Reserved

27:14 EXTENDED FAMILY CODE Versal device family code extension

13:0 RESERVED Reserved

IDCODE Register

The Device_Identification (IDCODE) register is a 32-bit register accessed via JTAG. The IDCODE
register provides base family device and revision information with the manufacturer code. The
IDCODE register and the EXTENDED_IDCODE register provide the device identification. See
Device Identification for the Versal ACAP member information.

Table 274: IDCODE Register Format

Bit Field Description
31:28 VERSION CODE 4-bit version code

Used to identify production device

27:12 BASE FAMILY CODE 16-bit base family code

11:1 MANUFACTURER
CODE

11-bit Xilinx manufacturer's code is 11b'00001001001

0 RSVD_READS_1 As specified by the IEEE Std 1149.1, this bit is always 1

DNA Register

The DNA register is a 128-bit register accessed via JTAG. The DNA register provides the unique
device identifier. See Device Identification for the Versal ACAP member information.

Table 275: DNA Register Format

Bit Field Description
127 RSVD_READS_1 As specified by the Xilinx DNA, this bit is always 1

126 RSVD_READS_1 As specified by the Xilinx DNA, this bit is always 1

125:2 DNA 124-bit DNA represents the specific Versal ACAP unique device
identifier information

1 RSVD_READS_1 As specified by the Xilinx DNA, this bit is always 1

0 RSVD_READS_0 As specified by the Xilinx DNA, this bit is always 0

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 751Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=751

JTAG_STATUS Register

The Versal ACAP JTAG_STATUS register is 36-bits and provides key device information. The
register includes the selected boot mode, critical voltage supplies detection, bus width detection,
and security feature status. The JTAG_STATUS register format is shown in the following table.

Table 276: JTAG_STATUS Register Format

Bit Field Description
35 RESERVED Reserved

34 DONE Boot and configuration status indicator
A value of 1 on DONE indicates boot and configuration is complete

33 JRDBK ERROR JTAG readback status indicator
A value of 1 on JRDBK indicates an error reading data from SBI

32 JCONFIG ERROR JTAG data load error indicator
A value of 1 means the SBI is not ready to accept data

31:28 PMC VERSION PMC version

27:24 RESERVED Reserved

23 JTAG SEC GATE Security gate status
A value of 1 means DAP AXI transactions are allowed

22 RESERVED Reserved

21 PMC SCAN CLEAR DONE Scan clear done indication
A value of 1 means the scan clear is complete

20 PMC SCAN CLEAR PASS Scan clear pass indication
A value of 1 means the scan clear passed

19:16 RESERVED Reserved

15:12 BOOT MODE [3:0] Boot mode value captured from the MODE pins at release of POR_B

11 VCC_PMC DETECTED VCC_PMC supply detected

10 VCC_PSLP DETECTED VCC_PSLP supply detected

9 VCCINT DETECTED VCCINT supply detected

8 VCC_SOC DETECTED VCC_SOC supply detected

7 AES KEY ZEROIZED AES key zeroized indicator
A value of 1 indicates all keys are zeroized

6 BBRAM KEY ZEROIZED BBRAM key zeroized indicator
A value of 1 indicates that the BBRAM key is zeroized

[5:4] SELECTMAP BUS WIDTH SelectMAP boot mode bus width detected
00 = No bus width detected
01 = SelectMAP 8-bit
10 = SelectMAP 16-bit
11 = SelectMAP 32-bit

3 SBI JTAG ENABLED SBI JTAG indicator
A value of 1 indicates the SBI is configured to receive data from the
JTAG interface

2 SBI JTAG BUSY SBI JTAG BUSY indicator
A value of 1 indicates the SBI is BUSY and cannot accept data when in
JTAG mode

1 RSVD_READS_0 Reserved, returns 0

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 752Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=752

Table 276: JTAG_STATUS Register Format (cont'd)

Bit Field Description
0 RSVD_READS_1 Reserved, returns 1

TAP Instructions
The TAP instructions supported by the Versal ACAP are listed in the following table.

Table 277: TAP Instructions

Instruction Name Binary Code [5:0] Description
AUTH_JTAG 110101 Authenticated JTAG can enable the JTAG interface

BYPASS 111111 Enables BYPASS instruction

DPC 110110 Accesses the debug packet controller

ERROR_STATUS 111110 Accesses the error management status register

EXTENDED_IDCODE 011001 Used with IDCODE for extended device identification

EXTEST 100110 Enables the boundary-scan EXTEST instruction

EXTEST_PULSE 111100 Enables the IEEE Std 1149.6 functions in the GTs for testing
AC-coupled connections between GTs

EXTEST_TRAIN 111101 Enables the IEEE Std 1149.6 functions in the GTs for testing
AC-coupled connections between GTs

HIGHZ_IO 001010 3-stated user I/O pins but not GTs while enabling the bypass
register

IDCODE 001001 Accesses the Versal ACAP IDCODE

JCONFIG 000101 Accesses the slave boot interface for boot and configuration
of the Versal ACAP via JTAG

JRDBK 000100 Accesses the slave boot interface for readback via JTAG

JTAG_STATUS 011111 Access to the Versal ACAP JTAG status register value

READ_DNA 110010 Accesses the Versal ACAP unique device DNA value

SAMPLE/PRELOAD 000001 Enables boundary-scan SAMPLE/PRELOAD instruction

SYS_RST 110111 Resets the Versal ACAP with PMC_SRST

USER1 000010 Access to the user-defined register 1

USER2 000011 Access to the user-defined register 2

USER3 100010 Access to the user-defined register 3

USER4 100011 Access to the user-defined register 4

USERCODE 001000 Access to the user designated value

Arm DAP Controller
The Arm debug access port (DAP) controller uses the Arm debug interface version 5 (ADIv5). See
the Arm Debug Interface Architecture Specification for additional information.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 753Send Feedback

https://developer.arm.com/documentation/ihi0031/e/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=753

The debug port is used to access the DAP from an external debugger, and there are access port
components to access on-chip system resources. The DAP is referred to debug port and access
ports. The DAP controller supports the following features:

• Central controller for the CoreSight debug and trace components with the PS

• Interface to the Arm debug tools through the JTAG interface

• Invasive and non-invasive debug control

• Secure and non-secure debug support

Arm DAP Registers
The Versal ACAPs provide Arm DAP registers listed in the following table.

Table 278: Arm DAP Registers

Register Name Register Length Description
BYPASS 1-bit Bypasses the Arm DAP

IDCODE 32-bit Captures the Arm DAP IDCODE (6BA00477h)

INSTRUCTION 4-bit Holds the current instruction opcode. The total Versal ACAP
instruction register length is the DAP (4-bit instruction register
length) + TAP (6-bit instruction register length).

Arm DAP Instructions
The Versal ACAPs support the Arm DAP instructions listed in the following table.

Table 279: Arm DAP Instructions

Instruction Name Binary Code [3:0] Description
BYPASS 1111 Accesses the Arm JTAG debug port Bypass register

IDCODE 1110 Accesses the Arm JTAG debug port IDCODE register

ABORT 1000 Accesses the Arm JTAG debug port Abort register

DPACC 1010 Accesses the JTAG debug port DP register

APACC 1011 Accesses the JTAG debug port AP register

Debug Packet Controller
The debug packet controller (DPC) receives commands packets from one or more of debug host
interfaces. The DPC then generates reply packets and transmits them back to the debug host. A
link layer provides the communications between the debug host and the DPC. The DPC includes
several features to process the command packets from the debug host.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 754Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=754

• Command buffers to buffer the queued command packets

• Processing engine to process the queued instruction packets

• FIFO captures the input stream from AXI

• De-multiplexer and decode identifies the packet boundaries and decodes non-queued and
queued packets

• Reply buffers generate reply packets that are waiting to be transmitted out to the AXI

• Interconnect switch to provide access to the PMC interconnect, SBI, TPIU, and CoreSight
debug

Packet Processing

The command packets processed by the DPC are referred to as debug and trace packets (DTP).
Each packet consists of a header, payload, and package integrity (CRC) fields. The DPC decodes
the payloads to determine the commands, destinations, and any required higher level flow
control and management tasks. The DPC generates response packets including data and any
detected errors.

High-Speed Debug Port

The high-speed debug port (HSDP) provides a pathway to the GTY and GTYP transceivers for
the Aurora. The debug port provides debugging and trace capability for the programmable logic,
processing system, and AI Engines. The HSDP leverages the high-speed gigabit transceivers to
make debug less intrusive to the system configuration. The solution can also support at-speed
debug of PL designs through the PL ChipScope™ functionality.

System Architecture
The following figure shows the debug host interfaces that are connected to the DPC.

There are four debug host interfaces. The hosts establish a packet protocol with the DPC. To
create the response packet, the DPC writes to system resources via the DPC interconnect
switch.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 755Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=755

Figure 128: Integrated Debug System Architecture Block Diagram

CPM
PMC

Aurora
HSDP

Interface

Bridge
XP

IP
E

JTAG

PMC Main
Switch

TPIU
Bridge

SBI CoreSight
Debug Bus

Arm DAP
Controller

DPC
PCIe

Debug
DMA

DPC
Switch

Q
ua

d
2

G
TY

Q
ua

d
0

G
TY

Q
ua

d
1

G
TY

Q
ua

d
3

G
TY

PMC main
Switch

AXI-S

Aurora
Debug
Host

JTAG
Debug
Host

Reserved

PCIe
Debug
Host

AXI-S

AXI 64b

AXI 128b

AXI 32b

APB 32b

Xilinx TAP
Controller

PCIe
Protocol

1

1, 2, 4, 8, 16

AXI-SPL Aurora (Soft IP)

De
vi

ce
Bo

un
da

ry

1

1

64-bit

32-bit

Bidirectional
AXI/APB Data

PMC
PL
LPD

Power
Domains

In
iti

at
or

Bidirectional
Data Stream

In
iti

at
or

128-bit

PMC Main
Switch

TDI

TDO

PL
Debug
Host

X22479-051221

Debug Packet
Controller (DPC)

Debug Host Interfaces
The DPC interacts with one or more of the following external debug hosts.

• Serial, low-speed JTAG interface attached to the debug access port (DAP) controller

• Serial, high-speed debug port (HSDP) connected to the Aurora protocol unit

• Parallel, high-speed PCIe interface with debug protocols connected to the GTY quad
transceivers

• Parallel PL path for potential soft Aurora IP or other debug interface and protocol in the PL

Note: The JTAG interface is often used to start up the DPC and enable additional debug host interfaces.

Note: The quad GTY transceiver multiplexing options are shown in the GTY and GTYP Pipe Transceivers
section of the Device I/O Connectivity chapter.

The DPC can switch between these four debug hosts as needed. The DPC transaction layer is for
receiving commands packets and sending data packets. The four debug port interfaces are
summarized in the following table.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 756Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=756

Table 280: Debug Host Interface Options

Interface Description Comparison

HSDP to Aurora block
Aurora hardened interface attached to a gigabit
GTY transceiver. The HSDP interface consumes an
entire GTY quad, but uses only one channel.

Preferred choice, when available. Uses
HSDP to enable high-speed operation with
the capability to daisy-chain multiple
Versal ACAPs for debugging multiple
devices on the same board.

CPM PCIe PCIe interface access via GTY gigabit transceivers,
and CPM PCIe block

Another high-speed interface using PCIe
throughput. Transmits DPC packets using
a PCIe debug protocol.

PL Instantiated Aurora
block

PL fabric interface access via AXI4-Stream into PL
to enable soft Aurora

Can be selected when no other choice is
available. Can also be considered an HSDP
if full protocol is implemented. DPC access
is available after the PL design has been
loaded.

JTAG interface JTAG IEEE 1149.1 standard interface with debug
instruction

Bandwidth is limited by the JTAG
performance.

Section XV: Test and Debug
Chapter 78: Integrated Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 757Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=757

Chapter 79

Device Identification
The Versal™ ACAP has multiple device identification methods:

• Top package marking

• IDCODE + EXTENDED_IDCODE register value (see Versal ACAP data sheets)

• Device DNA register value

Security features such as PUF can also be used to create a unique identifier. For more
information on using PUF, see Security Management.

Package Marking

The Versal ACAPs have a top package marking that includes the Versal family name and a 2D
barcode for device-level tracking. The 2D barcode information can be accessed several ways
including with the Xilinx web-based tool or the Xilinx GO mobile application. For more
information, see the Versal ACAP Packaging and Pinouts Architecture Manual (AM013).

ID Code Introduction

The Versal ACAP has a 32-bit identification stored in the IDCODE register. The IDCODE is a
fixed, vendor-assigned value used to electrically identify the manufacturer. The IDCODE used in
conjunction with the EXTENDED_IDCODE can also identify the type of Xilinx device.

The IDCODE register can be read via the JTAG interface or from the AXI interface using the
IDCODE register address. When the IDCODE instruction is selected by the JTAG TAP, the
IDCODE register is connected between the JTAG TDI and TDO pins, and the value can be
shifted out through TDO for examination with tools such as the Vivado design suite. The least
significant bit of the IDCODE register is always 1 (based on the JTAG IEEE Std 1149.1).

Table 281: IDCODE Register

Register Type Register Name Address Description

Read only PMC_JTAG_CSR IDCODE
[31:0] 0xF11A_0000 ID code; also see the IDCODE Register

section for bit field details

Section XV: Test and Debug
Chapter 79: Device Identification

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 758Send Feedback

https://www.xilinx.com/member/2dbarcode.html
https://www.xilinx.com/about/xilinx-go.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_jtag_csr___idcode.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=758

Extended ID Code Introduction

The Versal ACAP has a 32-bit device extended family code that is stored in the
EXTENDED_IDCODE register. The EXTENDED_IDCODE vendor-assigned value is used with the
ID code to identify a unique Xilinx device.

The extended ID value can be read via the JTAG interface or from the AXI interface. When the
EXTENDED_IDCODE instruction is selected by the JTAG TAP, the EXTENDED_IDCODE register
is connected between the JTAG TDI and TDO pins, and the value can be shifted out through
TDO for examination with tools such as the Vivado design suite.

Software can access the extended ID code by reading the PMC_EFUSE_CACHE DEVICE register.

Table 282: EXTENDED_IDCODE Code Register

Register Type Register Name Address Description

Read only PMC_EFUSE_CACHE DEVICE bits
[27:14] 0xF125_0018 Extended device ID code; also see the

EXTENDED_IDCODE Register section.

DNA Introduction

The device DNA is a single unique 128-bit factory-programmed identifier for each device. The
JTAG TAP instruction, READ_DNA, reads the DNA value through the JTAG interface. The device
DNA value can also be read from the AXI interface using the combined value from the DNA_0,
DNA_1, DNA_2, and DNA_3 registers. The power-on reset (POR_B) pin must be released before
reading the DNA unique device identifier.

Table 283: DNA Registers

Register Type Register Name Address (Hex) Description

128 bit JTAG, read only DNA -
Access DNA[127:0] using te READ_DNA
instruction; also see DNA Register section for
bit field details

32-bit memory
mapped, read only

DNA_0 0xF125_0020 DNA 0 register contains DNA bits[31:0]

DNA_1 0xF125_0024 DNA 1 register contains DNA bits[63:32]

DNA_2 0xF125_0028 DNA 2 register contains DNA bits[95:64]

DNA_3 0xF125_002C DNA 3 register contains DNA bits[127:96]

Section XV: Test and Debug
Chapter 79: Device Identification

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 759Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_efuse_cache___device.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=pmc_efuse_cache___device.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=759

Chapter 80

CoreSight Debug
The CoreSight™ debug functionality is controlled by the DAP controller on the JTAG chain.

The width of the CoreSight output trace data bus can be 1, 2, 4, 8, or 16 bits wide. Higher
bandwidth output can be obtained using the high-speed debug port (HSDP).

Trace Port Interface Unit
The trace port interface unit (TPIU) receives data from the CoreSight™ debug logic and sends it
out to device pins or the PL.

Output Interface
The TPIU can be via the PMC MIO pins or the EMIO interface to the PL.

PMC MIO Data Interface

The maximum width of the trace data on MIO is 16 bits. The data is clocked out by a clock
output from TPIU with a double data rate (DDR).

EMIO Data Interface

The maximum width of the trace data on EMIO is 32 bits. The data is clocked out by a clock
input from the PL with a single data rate (SDR).

Frequency

The maximum clock frequency for the MIO and EMIO interfaces is speed grade dependent. See
the PS Trace Interface section of the Versal Prime Series Data Sheet: DC and AC Switching
Characteristics (DS956) and the Versal AI Core Series Data Sheet: DC and AC Switching
Characteristics (DS957).

TPIU Port Signals
The PS trace output data from the TPIU has routing options that is selected using the
EXTCTL_Out_Port register:

Section XV: Test and Debug
Chapter 80: CoreSight Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 760Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds956-versal-prime.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal;d=dbg_tpiu___extctl_out_port.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=760

• PMC MIO multiplexer (two options), clocked by TPIU with double data rate (DDR)

• EMIO to the PL, clocked by PL with single data rate (SDR)

• Trace TPIU bridge to DPC, clocked by TPIU with SDR

The signals for TPIU are listed in the following table. The data width should be programmed to be
1, 2, 4, 8, 16, or 32 bits.

Table 284: Trace Port Signals

MIO EMIO

Signal Name I/O

PMC
Multiplexer

Pins
MIO-at-a-

Glance Number Signal Name I/O

A B
TRACE_CLK O 6 32 0 PLPS_TRACE_CLK I

TRACE_CTRL O 4 30 1 PSPL_TRACE_CTL O

TRACE_DATA[0] O 5 31 2

PSPL_TRACE_DATA [31:0] O

TRACE_DATA[1] O 7 33 3

TRACE_DATA[2:3] O 8, 9 34, 35 4, 5

TRACE_DATA[4:7] O 10:13 36:39 6:9

TRACE_DATA[8:15] O 14:21 40:47 10:17

CoreSight Register Reference
The CoreSight™ registers are accessible on the 4 GB global address memory space and shown in
the Destinations Listed by Address section. The registers are located in the range of
0xF080_0000 to 0xF0FF_FFFF.

Section XV: Test and Debug
Chapter 80: CoreSight Debug

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 761Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=761

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix A: Additional Resources and Legal Notices

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 762Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=762

1. Versal ACAP product data sheet:

• Versal Architecture and Product Data Sheet: Overview (DS950)

2. Versal ACAP electrical data sheets:

• Versal Prime Series Data Sheet: DC and AC Switching Characteristics (DS956)

• Versal AI Core Series Data Sheet: DC and AC Switching Characteristics (DS957)

3. Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002)

4. Versal ACAP Clocking Resources Architecture Manual (AM003)

5. Versal ACAP DSP Engine Architecture Manual (AM004)

6. Versal ACAP Configurable Logic Block Architecture Manual (AM005)

7. Versal ACAP System Monitor Architecture Manual (AM006)

8. Versal ACAP Memory Resources Architecture Manual (AM007)

9. Versal ACAP AI Engine Architecture Manual (AM009)

10. Versal ACAP CPM CCIX Architecture Manual (AM016)

11. Versal ACAP Design Guide (UG1273)

12. Bootgen User Guide (UG1283)

13. Versal ACAP System Software Developers Guide (UG1304)

14. Xilinx AI Engine and Their Applications (WP506)

15. Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313)

16. Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

Cache Coherent Interconnect

1. CCI-500 Guide for ACE-Lite and ACE Interfaces

2. Arm CoreLink CCI-500 Cache Coherent Interconnect Technical Reference Manual

3. AMBA AXI and ACE Protocol Specification

Additional References

1. Recommendation for Applications Using Approved Hash Algorithms NIST Special Publication
800-107

2. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, NIST FIPS PUB
202

Appendix A: Additional Resources and Legal Notices

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 763Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds956-versal-prime.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1273-versal-acap-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp506-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://developer.arm.com/documentation/100095/0003/Level-2-Memory-System/
https://developer.arm.com/documentation/100023/
https://developer.arm.com/documentation/ihi0022/h
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-algorithms
https://www.nist.gov/publications/recommendation-applications-using-approved-hash-algorithms
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=763

Arm Documents
The Arm documents are grouped as follows:

• Cortex®-A72 MPCore and GIC

• CoreSight™ Debug

• Cortex®-R5F MPCore and GIC

Cortex-A72 MPCore and GIC

The Cortex-A72 and generic interrupt controller (GIC) documents include:

• Cortex-A72 MPCore Processor Technical Reference Manual, 100095

• Cortex-A72 MPCore Processor Cryptography Extension, 100097-0002004

• Architecture Reference Manual, DDI-0487C.a

• CoreLink GIC-500 Generic Interrupt Controller Technical Reference Manual, DDI00516E

• Generic Interrupt Controller Architecture Specification, IHI-0069D

CoreSight Debug

The CoreSight debug documents include:

• CoreSight Architecture Specification v2.0, IHI-0029D

• Debug Interface Architecture Specification, IHI-0031C

• Embedded Trace Macrocell Architecture Spec, IHI-0064D

• CoreSight ELA-500 Embedded Logic Analyzer, 100127_0202_00

• CoreSight SoC-400 Technical Reference Manual, 100536_0302_01

• CoreSight SoC-400 User Guide, 100490_0302_01

• CoreSight Trace Memory Controller, DDI-0461B

• STM-500 System Trace Macrocell Technical Reference Manual, DDI-0528B

• System Trace Macrocell Programmers' Model Architecture Spec, IHI-0054B

Cortex-R5 MPCore and GIC

• Cortex-R5F Technical Reference Manual, DDI-0460D, revision r1p2

• PrimeCell Generic Interrupt Controller (PL390) Technical Reference Manual, DDI-0416B,
revision r0p0

Appendix A: Additional Resources and Legal Notices

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 764Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=764

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix A: Additional Resources and Legal Notices

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 765Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=765

Copyright

© Copyright 2020-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and
used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell,
Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All other
trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

AM011 (v1.2) June 29, 2021 www.xilinx.com
Versal ACAP TRM 766Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM011&Title=Versal%20ACAP&releaseVersion=1.2&docPage=766

	Versal ACAP
	Revision History
	Table of Contents
	Sec. I: Introduction
	Ch. 1: Introduction to Versal ACAP
	Ch. 2: Navigating Content by Design Process
	Ch. 3: Versal Device
	System Block Diagram
	System Software
	RPU and APU Multiprocessor Cores
	Application Processing Unit
	Real-time Processing Unit

	System Performance
	Interconnect Features
	Transaction Quality of Service

	Platform Management Controller
	Embedded Processor Code
	Links to Platform Management Resources

	Software Programming Interfaces
	Implementation
	IP Versions
	Comparison to Previous Generation Xilinx Devices

	Ch. 4: Technical Reference Manual Outline
	Additional Versal ACAP Documents

	Sec. II: Hardware Architecture
	Ch. 5: Device Components
	Device-Level Interconnect Diagram
	Standard Hardware
	DDR Memory
	Network on Chip
	Embedded Memories
	Test and Debug

	Integrated Hardware Options
	AI Engine
	Accelerator RAM
	Coherency for PCIe Module
	CPM4

	Integrated Peripheral Options
	100G Multirate Ethernet MAC
	600G Channelized Multirate Ethernet
	600G Interlaken with FEC
	400G High-Speed Crypto Engine

	Example Physical Layout

	Ch. 6: Processing System Architecture
	PS Interconnect Diagram
	Full-power Domain
	Block Diagram
	APU Processor Features
	APU Interrupt Controller
	System Memory Management Unit
	Cache Coherent Interconnect

	Low-power Domain
	Block Diagram
	RPU Processor
	Tightly Coupled Memory

	OCM Switch
	Register Programming Interfaces

	Ch. 7: Platform Management Controller
	Block Diagram
	Functionality
	I/O Signals
	PMC Interconnect
	Comparison to Previous Generation Xilinx Devices

	Ch. 8: PS and PMC I/O Peripherals
	Ch. 9: Programmable Logic
	Block Diagram
	Adaptable Engines in PL
	Digital Signal Processing Engine
	Configurable Logic Block
	Block RAM
	UltraRAM

	Ch. 10: Device I/O Connectivity
	Device-Level Diagram
	PSIO Banks
	GTY and GTYP Pipe Transceivers
	CPM4 Design

	PL HDIO Banks
	XPIO Banks

	Sec. III: Platform Boot, Control, and Status
	Ch. 11: Overview
	Ch. 12: Non-Secure Boot Flow
	Ch. 13: Secure Boot Flow
	Asymmetric Hardware Root of Trust Secure Boot
	Configuration Update
	Configuration Update with Key Revocation
	PPK Revocation
	SPK Revocation
	Revocation as a Tamper Penalty

	Symmetric Hardware Root of Trust Secure Boot
	Configuration Update
	Configuration Update with Partition Revocation

	Ch. 14: Boot Image
	PDI Size Estimation
	Boot Header

	Ch. 15: Boot Modes
	JTAG Boot Mode
	Quad SPI Boot Mode
	I/O Configuration Detection
	Quad SPI Signals
	Single Device Interface
	Dual-Stacked Interface
	Dual-Parallel Interface

	SD Boot Modes
	SD Signals
	SD2.0 Interface
	SD3.0 Interface

	eMMC1 Boot Mode
	eMMC1 Signals
	eMMC1 Interface

	Octal SPI Boot Mode
	Octal SPI Signals
	Single Device Interface
	Dual-Stacked Interface

	SelectMAP Boot Mode
	SelectMAP Pattern and Bit Order
	SelectMAP Sequence
	SelectMAP Signals
	Single Device Interface
	Multiple Device Interface
	Ganged Device Interface

	Ch. 16: BootROM Error Codes
	Ch. 17: Platform Management
	Functional Safety Management
	Single Point Fault Detection
	Common Cause Failure Detection
	Latent Fault Detection
	Isolation Features
	Additional Features

	Dynamic Function eXchange
	Power Management
	Power Modes

	Security Management
	Tamper Monitoring and Response
	Secure Key Storage and Management
	Key Selection
	Battery-Backed RAM Key
	eFUSE Key
	Key Update Register
	Boot Header Key
	Storing Keys in Encrypted Form (Black)
	Physically Unclonable Function

	Key Management Summary

	User Access to Xilinx Hardware Cryptographic Accelerators

	Soft Error Mitigation

	Sec. IV: Address Maps and Programming Interfaces
	Ch. 18: Address Maps
	Global Address Map
	PMC and PS Address Maps
	Summary Map
	4 GB Address Maps
	Destinations Listed by Address
	Destinations Listed by Name

	Ch. 19: Programming Interfaces
	Programming Interface Types
	APB, AXI Programming Interface
	NPI Programming Interface
	CFI Programming Interface

	Sec. V: Signals, Interfaces, Pins, and Controls
	Ch. 20: Power and PMC Dedicated Pins
	Power Pins
	PMC Dedicated Pins

	Ch. 21: Multiplexed I/O Signals and Pins
	MIO-at-a-Glance
	MIO Routing Considerations
	MIO-EMIO Interface Routing Options
	MIO Pin Buffer Controls
	Input Buffer Control Registers
	Output Buffer Control Registers

	MIO Pin Routing
	MIO Routing Diagram
	MIO Routing Control Registers
	MIO Routing Functionality Details

	MIO Pin Programming
	PCIe Reset on MIO

	Ch. 22: Boundary Interface Signals
	PS-PL Boundary
	AXI Interfaces
	PS-PL Signals

	PMC-PL Boundary

	Sec. VI: Engines
	Ch. 23: Overview
	Scalar Engines
	Intelligent Engines
	AI Engine
	DSP Engine

	Adaptable Engines
	DMA Units

	Ch. 24: Real-time Processing Unit
	Features
	Comparison to Previous Generation Xilinx Devices

	Cortex-R5F Processor Implementation
	System Perspective
	Block Diagram
	AXI System Interfaces

	Operating Modes
	Lock-Step Architecture
	Configuration Registers

	Power Modes and States
	Address Maps
	CPU Local and Global Memory Map
	Local Interrupt Registers
	Memory Map Diagram

	Processor Memory Datapaths
	Tightly Coupled Memories
	Memory Error Detection and Correction
	RPU Memory Protection Unit
	Interrupts
	System Interrupts Generated by RPU

	GIC Interrupt Controller
	Block Diagram
	Software Generated Interrupts
	Shared Peripheral Interrupts
	SPI Interrupt Sensitivity
	Interrupt Prioritization

	System Errors Generated by RPU
	Test and Debug
	Interrupt Injection Mechanism
	Events and Performance Monitor

	Register Reference
	Processor Control and Status Registers

	Ch. 25: Application Processing Unit
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	FPD Block Diagram
	APU MPCore Functional Units
	System Interfaces

	Memory Space
	Execution Pipelines
	CPU Pipeline
	FPU Pipeline
	NEON Pipeline
	Cryptography Engine

	APU Address Model
	Virtualization
	Server Architecture
	Processor Counters
	Applications
	Physical Counter
	Virtual Counters
	Private Counters
	Programming

	Interrupts
	Interrupt Types
	Processor Interrupt Groups
	Virtual Interrupts
	Interrupt Translation Services
	LPI and ITS Cache Updates

	GIC Interrupt Controller
	Test and Debug
	Debug Counter

	Register Reference
	Processor Control and Status Registers
	GIC Registers

	Ch. 26: PS DMA Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Functional Units
	Common Buffer

	System Interfaces
	AXI Read Arbiter
	AXI Write Arbiter

	Memory Coherency
	PL Flow Control Interface
	Programming Guide

	Channel Block Diagram
	Modes and States
	Simple Mode Programming
	Sequence Steps

	Descriptor Mode Programming
	Data Flow
	Model
	Buffer Descriptor Format

	Decriptor Format
	Linked List Mode Use Case
	Linear Descriptor Use Case
	Linked-List Descriptor Use Case
	Hybrid Descriptor Use Case
	Buffer Descriptor Summary
	Interrupt Handling

	Done Interrupt Accounting
	Over Fetch
	Transaction Control
	Outstanding Transactions
	Rate Control

	PL Flow-Control Interface
	Flow-Control Interface Considerations
	Flow-Control Programming Model
	Attached to the SRC
	Channel Reading from a Flow Controlling the PL Slave
	Channel Writing to a Flow Controlling the PL Slave

	Interrupts
	Descriptions

	Transaction Security
	Channel Pause
	Coming Out of Pause

	Programming Model for Changing DMA Channel States
	Channel Enabled
	Channel Disabled

	Register Reference
	DMA Channel Registers

	I/O Flow Control Signals

	Sec. VII: Embedded Processor, Configuration, and Security Units
	Ch. 27: Overview
	Ch. 28: Platform Processing Unit
	Features
	Programming Model
	Interrupts
	System Interrupts

	Service Requests to PLM
	Power and Isolation
	CoreSight Wake-Up

	Authenticated JTAG
	Tamper Event Monitoring and Response System
	PMC Processor Register Reference
	Processor Global Registers
	Processor Local Registers

	Ch. 29: Processing System Manager
	Features
	System Perspective
	Interrupts
	Reset
	Processor State After Reset

	PSM Register Reference
	PSM Global Registers
	PSM Service Requests
	Power Islands
	Wake-Up Service Requests

	PSM Local Registers

	Ch. 30: PL Configuration
	Configuration Frame Unit
	Configuration Frame Interface

	Ch. 31: Slave Boot Interface
	Ch. 32: Streaming Interconnect Module
	Secure Stream Switch
	PMC DMAs
	AES-GCM
	SHA3-384

	Ch. 33: RSA/ECDSA
	Ch. 34: True Random Number Generator
	Ch. 35: Physically Unclonable Function
	Ch. 36: Battery-Backed RAM

	Sec. VIII: Interconnect
	Ch. 37: Overview
	Features
	Comparison to Previous Generation Xilinx Devices
	MMUs
	Interconnect Switches
	AXI Timeout
	AXI and APB Isolation

	Xilinx Memory Protection Unit
	Xilinx Peripheral Protection Unit

	System Perspective
	Network On Chip
	PMC and PS Interconnect
	Register Module Programming Interfaces

	Ch. 38: Interconnect Switches
	Switch Architecture
	Conceptual Interconnect Switch
	Features in the Pathway

	Switch Ingress Ports
	iPort Protocol Integrity Checker
	iPort Isolation
	iPort Parity Unit

	Switch Egress Ports
	ePort Timeout
	ePort Isolation
	ePort Parity Unit
	ePort Reset

	Switch Diagrams
	PMC Interconnect
	PMC IOP Interconnect
	PSM Interconnect
	LPD and OCM Interconnect
	LPD IOP Interconnect
	FPD Interconnect
	FPD Auxiliary Interconnect
	PS CPM Interconnect

	Interconnect Channels and Ports
	Interconnect Register Set Overview

	Ch. 39: Transaction Attributes
	Address
	Data
	System Management ID
	Features
	Comparison to Previous Generation Xilinx Devices

	Global SMID Assignments
	PMC and PS SMID Table
	APU SMID [3:0]

	TrustZone Security
	Features
	Architecture
	Security Profiles
	TrustZone Profile

	AxCACHE
	Quality of Service
	Sources
	Traffic Types

	Safety Features
	Poisoned Transaction

	Ch. 40: Transaction Routes
	Routing and Coherency Controls
	CPM Transaction Route Use Cases
	Block Diagram
	PCIe Root Complex Mode
	PCIe Endpoint Mode

	Transaction Route Restrictions
	CCI AXI Port Routing Restriction
	PCIe Root Port Mode Routing Restriction
	PCIe Endpoint Mode Routing Restriction

	Ch. 41: PL Interconnect Interfaces
	PL to PS Interfaces
	ACE Interface
	ACP Interface
	AXI Interface

	PS to PL Interfaces
	Register Reference

	Ch. 42: Shared Virtual Memory
	System Perspective
	APU Virtualization
	Interrupt Virtualization

	Ch. 43: System Memory Management Unit
	Features
	Comparison to Previous Generation Xilinx Devices

	TBU Instances
	Address Translation Examples
	Native, Non-Virtual
	Virtual
	Stream IDs

	Memory Protection Functionality

	Ch. 44: Cache Coherent Interconnect
	Features
	Comparison to Previous Generation Xilinx Devices

	Cache Coherency
	Two-way Coherency
	I/O Coherency

	Snoop Filter
	Snoop Filter Table Management

	AXI Outgoing Ports
	Striping NoC Interfaces

	Transaction Attribute Management
	QoS Response

	CCI Register Reference
	CCI CSR
	CCI Core

	Ch. 45: Memory Protection
	Functional Units
	Use Case Examples
	TrustZone Security

	Ch. 46: Xilinx Memory Protection Unit
	Features
	System Perspective
	PMC and PS Instances
	XRAM and DDRMC Instances

	Memory Regions
	Access Checking Operations
	Master ID Validation
	Security Validation
	Block Diagram

	Error Handling
	Transaction Signals
	Configuration

	Ch. 47: Xilinx Peripheral Protection Unit
	Features
	System Perspective
	Instances

	Access Checking Operation
	Aperture Permissions
	Aperture List
	Master ID Entry
	Register Format
	Protected Addresses

	Permission Checking
	Error Handling
	Configuration
	Master ID Validation

	Sec. IX: Interrupts and Errors
	Ch. 48: System Interrupts
	System Interrupt Controllers
	IRQ System Interrupts
	Register Reference
	Interrupt Masking Registers

	Ch. 49: Inter-Processor Interrupts
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Agent Communications
	Interrupt Architecture
	Interrupt Functionality
	Interrupt Signal Mapping

	Message Passing Architecture
	Messaging Diagram
	Agent Example

	Register Reference and Address Map
	Control Registers
	Register Write Lock Bit

	Agent Interrupt Registers
	Message Buffer

	Programming Examples
	Send an IPI Communication
	Receive an IPI Communication

	Ch. 50: System Errors
	System Error Accumulators
	Functional Safety Errors
	Security Errors
	Programming Model
	Programming Interface

	Error Accumulator Registers
	PMC Error Status Accumulator Registers
	PMC Error Status 1
	PMC Error Status 2

	PSM Error Status Accumulator Registers
	PSM Error Status 1
	PSM Error Status 2

	Error Status Register Mapping

	Ch. 51: Error Containment

	Sec. X: Timers, Counters, and RTC
	Ch. 52: Summary of Counters and Timers
	Ch. 53: Real-Time Clock
	Features
	Counter Module
	Calibration
	RTC Accuracy
	External Clock Crystal and Circuitry

	Interfaces and Signals
	Registers

	Ch. 54: System Counter
	Ch. 55: Triple-Timer Counters
	Features
	Block Diagram
	Overflow Detection Functional Model
	Interval Timing Functional Model
	Event Timer Functional Model
	Register Reference
	TTC I/O Signals

	Ch. 56: System Watchdog Timers
	Features
	Comparison to Previous Generation Xilinx Devices
	Instances

	System Perspective
	Block Diagram
	System Interface
	System Signals
	Clocks
	Resets
	Interrupts

	Programming Model

	Modes and States
	Generic Mode
	Basic Window Mode
	Q and A Window Mode

	Programming Sequences
	Generic Mode Sequence
	Basic Window Sequence
	Q and A Window Mode Programming Sequence

	Register Reference
	SWDT Register Set
	System-Level Registers

	SWDT I/O Signals

	Sec. XI: Memory
	Ch. 57: Overview
	Ch. 58: On-Chip Memory
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram

	States
	Address Map
	Memory Address Protection
	ECC Protection
	ECC Operations

	Ch. 59: XRAM Memory
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	System Interfaces
	Clock
	Reset
	Power

	Address Map
	Memory Address Protection
	ECC Protection

	Ch. 60: External Memories
	Ch. 61: Embedded Memories
	Ch. 62: Small Storage Elements

	Sec. XII: I/O Peripheral Controllers
	Ch. 63: CAN FD Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Object Layer
	Logical Link Layer
	MAC Transfer Layer
	System Interface
	System Signals
	Reference Clock
	Controller Reset
	System Interrupt
	System Error

	I/O Interface
	Programming Model

	Modes and States
	Reset State
	Mode Table
	Mode Transition
	Configuration Mode
	Normal Mode
	Sleep Mode
	Snoop (Bus Monitoring) Mode
	Loopback Modes
	Self Loopback
	Controller-to-controller Loopback

	Protocol Exception Event State
	Bus-Off Recovery State

	Configuration Sequence
	Message Transmission
	Cancellation

	Message Reception
	Acceptance Filters
	RX Buffer Usages
	Disabled RX Buffer
	Enabled RX Buffer

	Register Reference
	Control and Status
	Message Space Data
	System-level Control Registers

	I/O Signal Reference
	CANFD I/O Signals

	Ch. 64: Gigabit Ethernet MAC
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Functional Units
	System Interfaces
	AXI Master DMA Interface
	APB Programming Interface
	PL External FIFO Interface

	System Signals
	System Clocks
	Controller Reset
	System Interrupts

	I/O Interfaces
	I/O Block Diagram
	Clocks
	Timestamp Unit Clock

	Programming Model

	Modes and States
	10/100/1000 Operating Modes

	Memory Packet Descriptors
	Descriptor Length

	DMA AXI Master
	Burst Transactions
	Transaction Routing and Coherency

	Transmit Dataflow
	Packet Buffer TX Functionality
	TX Packets
	TX Descriptor Entry Words
	TX Descriptor Processing

	MAC Transmitter
	TX Broadcast Frames
	TX Pause Frame
	Quantum Time Base

	Receive Dataflow
	RX Packets
	RX Packet Flow Monitoring
	RX Descriptor Words
	RX Descriptor Processing

	MAC Receiver
	Filtering
	Hash Addressing
	Capture All Frames
	RX Broadcast Frames
	VLAN Support
	Wake-on-LAN Support
	Magic Packet Events
	Address Resolution Protocol
	Specific Address 1 Filter Match
	Multicast Hash Filter Match

	Precision Timestamp Unit
	MAC Pause Frames
	RX Pause Frames
	PFC Priority-based Pause Frame
	Disable Copy of Pause Frames

	Checksum Hardware
	RX Checksum Offload
	TX Checksum Offload

	Register Reference
	Control and Status
	Statistics
	System-Level Registers
	AXI Transaction Control

	I/O Signal Reference
	MIO - RGMII
	EMIO - GMII/MII
	MDIO PHY Interface
	Timestamp Unit Interface

	Ch. 65: GPIO Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	System Interface
	System Signals
	I/O Interface
	Programming Model

	Channel Block Diagram
	Input Programming Model
	Interrupt Programming Model
	Output Programming Model
	Registers
	GPIO Register Descriptions

	GPIO I/O Signals
	Assigned MIO Signals
	EMIO Signals

	Ch. 66: I2C Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	System Interface
	System Signals
	Clocks
	Resets
	System Interrupt
	I/O Interface

	Programming Model
	Reset Controller
	Configure I/O Signals
	Configure Clocks
	Interrupts
	Initiate Data Transfers
	Master Read Using Polled Method
	Master Read Using Interrupt Method
	Master Write Using Interrupt Method
	Slave Monitor Mode

	Programming Sequences
	Software Routines
	Reset
	Get Options
	Check Bus is Busy
	Transmit FIFO Fill
	Send Byte
	Reset Hardware
	Setup Master
	Master Send
	Master Receive
	Master Send Polled
	Master Receive Polled
	Enable Slave Monitor
	Disable Slave Monitor
	Master Send Data
	Master Interrupt Handler
	Setup Slave
	Slave Send
	Slave Receive
	Slave Send Polled
	Slave Receive Polled
	Receive Data
	Slave Interrupt Handler
	Set and Clear Options
	Set SCLK Frequency
	Get SCLK Frequency
	Self-Test

	Register Reference
	I2C Registers
	SLCR I/O Interface Registers
	System-level Clock and Reset Registers

	I2C I/O Interface

	Ch. 67: SPI Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	System Interface
	System Signals
	Reference Clock
	Controller Reset

	I/O Interface Overview
	Programming Model Overview

	Modes and States
	Master Mode
	Slave Mode
	Data Loopback Mode

	Clocking
	Functional Diagram
	FIFOs

	Data Transfer
	Register Reference
	Controller Registers
	System Level Registers

	I/O Interface

	Ch. 68: UART SBSA Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Functional Units
	System Interface
	System Signals
	Reference Clock
	Controller Reset

	Modes and States
	UART Functionality
	Block Diagram
	Baud Rate Generator
	Transmit FIFO
	Receive FIFO
	Transmit Logic
	Receive Logic
	Interrupts

	Operation
	Data Transmission and Reception
	Transmission
	Reception
	Error Bits
	Overrun Bit

	System and Diagnostic Loopback Testing

	Baud Rate Divider
	Character Frame
	Hardware Flow Control
	RTS Flow Control
	CTS Flow Control

	IrDA Functionality
	Block Diagram
	Transmit Encoder
	Receive Decoder
	Data Modulation

	Interrupts
	Flow Control Interrupts
	Change State Interrupt
	Timeout Interrupt
	Error Interrupt

	Registers
	UART Registers
	SLCR Registers
	Clock and Reset Registers

	UART I/O Signals

	Ch. 69: USB 2.0 Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	High-Level Block Diagram
	System Interfaces
	System Signals
	Clocks
	Controller Resets
	System Interrupts
	System Error Signal

	I/O Interface
	Power
	Programming Model

	Host Mode Data Structures
	Register Reference
	Controller Registers
	XHCI Registers
	Host Capabilities, Offset, and Operations Registers
	Port Status, Control, Host Interrupter, Event Ring, and Doorbell Registers
	Miscellaneous Control, Status, and Capabilities Registers
	Miscellaneous Configuration, Control, and User Registers
	Device and Command Registers

	System-Level Registers
	LPD System-Level Registers
	PMC System-Level Registers

	Clock and Reset Registers

	USB I/O Signals
	ULPI I/O Signals
	Port Indicator, Fault, and Power Select Signals

	Sec. XIII: Flash Memory Controllers
	Ch. 70: Octal SPI Controller
	Features
	Boot Device
	Nomenclature
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Functional Units
	System Interfaces
	System Signals
	Clocks
	Controller Reset
	System Interrupt
	System Error

	I/O Interface
	Programming Model

	Access Modes
	Memory Access Modes
	Polling Feature
	Start-up Sequences

	DMA Programming Model
	DMA Features
	Programming Steps
	Source DMA
	Source DMA Interrupts

	Destination DMA
	Destination DMA Interrupts

	Configuration Restrictions

	Interrupts
	Controller Interrupts

	Register Reference
	OSPI Controller Registers
	OSPI SRC DMA Registers
	OSPI DST DMA Registers
	System-Level Registers

	OSPI I/O Interface
	I/O Signal Table

	Ch. 71: Quad SPI Controller
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Functional Units
	System Interfaces
	System Signals
	Clocks
	Controller Resets
	System Interrupt
	System Error

	I/O Interface
	Programming Model

	Modes and States
	Start-up
	Reset
	PIO Mode
	DMA Mode

	I/O Functionality
	Configurations
	Clocking
	SCLK I/O Loopback Clock

	Clock Tap Control Settings
	I/O Striping Function
	Striping Programming Examples
	Striping with Odd Byte Count

	Command Words
	Word Format

	Programming
	Programming Flowchart
	DMA Data Transfer Length Examples

	PIO Mode Programming Model
	DMA Programming Model
	Polling Programming Model
	Register Reference
	QSPI Registers

	QSPI I/O Interface
	Wiring Diagrams
	MIO Signal Tables

	Ch. 72: SD/eMMC Controllers
	Features
	Comparison to Previous Generation Xilinx Devices

	System Perspective
	Block Diagram
	Functional Units
	System Interfaces
	System Signals
	Clocks
	Controller Reset
	System Interrupts
	System Errors

	I/O Interface

	Modes and States
	Speed Modes
	States

	Main Functionality
	Command Controller
	Transmit Control Unit
	Receive Control Unit
	Timeout Control
	Data Transfer Block Buffer

	I/O Functionality
	Card Detect
	Voltage Level Shifter Interface
	Boot Sequence Example

	Clock Functionality
	I/O Clock Block Diagram
	Clock Controls
	DLL Presets

	DIV_CLK Programming Model
	DLL Clocks Programming Model
	Programming Sequence

	I/O Clocks
	SCLK Clock Edge
	RX/TX Tuning Methods
	25 MHz Clocking
	TX Clocking > 25 MHz
	RX Clocking >25 MHz
	DLL Programming Example

	SD Commands
	SD Command Response Registers

	PIO Data Port Programming Model
	SDMA Programming Model
	ADMA Programming Model
	Software Routines
	Register Reference
	SDIO Registers
	SLCR Registers
	System Clock and Reset Registers

	I/O Signals
	SD I/O Signals
	Signaling Protocol

	Sec. XIV: Clocks, Resets, and Power
	Ch. 73: Clocks
	Clock Distribution Diagram
	Cross-Domain Clock Routing Consideration

	Clock Frequency Considerations
	Minimum and Maximum Frequencies
	Interconnect Clock Restrictions
	I/O Peripheral Clock Restrictions
	Flash Controller Clock Restrictions

	PMC Source Clocks
	PLL Clock Generators
	Features
	Block Diagram

	Reference Clock Frequency Dividers
	Features
	Block Diagram

	Registers
	Clock Generators
	PMC Reference Clocks
	LPD Reference Clocks
	FPD Reference Clocks

	Ch. 74: Clock Monitor
	Base Time Period
	Calculate Threshold Counts
	Monitored Clocks
	Interrupts
	Register Reference

	Ch. 75: Resets
	Comparison to Previous Generation Xilinx Devices
	System Perspective
	Reset Source Figures
	Reset Circuitry, EAM, and JTAG TAP Controller
	PMC Reset Controller
	Individual Reset Controllers

	Programming Model
	Reset Assertion Considerations
	Reset Service Requests
	Reset Reason Register

	Resets Overview
	Device-Level Resets
	Subsystem Resets
	Debug Resets

	POR_B Reset
	Flowchart

	System Integrity Monitoring
	Power Supply Dropout
	System Errors
	System Monitoring Software

	Reset Reference for Individual Blocks
	PMC Block Resets
	LPD Block Resets
	FPD Block Resets
	PL Resets
	SoC Endpoint Resets
	NPI Block Resets
	NoC Resets

	Persistent Registers
	Global and Local
	TrustZone Control
	Power Control and Status
	Clock and Reset Control
	Miscellaneous Persistent Control Registers

	Ch. 76: Power
	Power Diagram
	Power Domains
	Power Domain State Requirements
	Power Islands

	Sec. XV: Test and Debug
	Ch. 77: Overview
	Ch. 78: Integrated Debug
	JTAG and Boundary-Scan
	TAP Controller
	JTAG Register Reference
	ERROR_STATUS Register
	EXTENDED_IDCODE Register
	IDCODE Register
	DNA Register
	JTAG_STATUS Register

	TAP Instructions

	Arm DAP Controller
	Arm DAP Registers
	Arm DAP Instructions

	Debug Packet Controller
	System Architecture
	Debug Host Interfaces

	Ch. 79: Device Identification
	Ch. 80: CoreSight Debug
	Trace Port Interface Unit
	Output Interface
	TPIU Port Signals

	CoreSight Register Reference

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Arm Documents
	Please Read: Important Legal Notices

