Application Note: Spartan-6 FPGAs

Spartan-6 FPGA Dual-Lockstep MicroBlaze
iA XI I_I NX Processor with Isolation Design Flow

Author: Trevor Hardcastle

XAPP584 (v1.0) July 10, 2012

Summary This application note describes the creation of a dual-lockstep MicroBlaze™ processor system
on a Spartan®-6 LX150T device. This system is then implemented using the Xilinx Isolation
Design Flow (IDF) to separate it into isolated functions and regions. Finally, design preservation
is used to lock down the isolated regions and functions.

Overview This application note describes how to implement a dual-lockstep MicroBlaze processor
system on a Spartan-6 LX150T device using the Embedded Design Kit (EDK) Platform Studio.
EDK Platform Studio is included in the Xilinx ISE® Design Suite, version 13.4. An introduction
to the IDF is provided, along with how to apply the rules and considerations of the IDF to
separate the dual-lockstep MicroBlaze processor system into five physically isolated and
independent functions within the Spartan-6 device. Finally, a method is presented for locking
down the design using design preservation techniques available in the Xilinx tools.

This application note has many purposes, but primarily it describes:

Building a dual-lockstep MicroBlaze processor using the EDK Platform Studio.
Introducing the Xilinx IDF.

Applying the IDF to an EDK-based system.

Using the PlanAhead™ design tool to fully execute a bottom-up implementation.

AR

Using design preservation techniques to lock down design elements.

Reference Design Overview

The dual-lockstep MicroBlaze processor system described in this application note is
implemented on the Avnet Spartan-6 FPGA LX150T development board using the ISE Design
Suite 13.4: System Edition. The system implements two MicroBlaze processors, each with their
own local instruction and data memory. The system includes these peripherals:

e DDR3 SDRAM interface

e One RS-232 interface

e General-purpose I/O to interface to pushbuttons, DIP switches, and LEDs
e Linear flash interface

e Timer

¢ Timebase

e Peripheral block RAM

* Interrupt Controller

* One instance of the MicroBlaze Debug Module (MDM)

The system is implemented based on the AXI interconnect, which operates at 50 MHz. The
DDR3 SDRAM operates at 650 MHz.

In the dual-lockstep system, both MicroBlaze processors get the same code loaded at start-up.
The first MicroBlaze processor has full control over the AXI interconnect, driving the

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Vivado, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA and ARM are registered trademarks of ARM in the EU and other countries. PCI, PCle, and PCI Express are trademarks of PCI-SIG and
used under license. All other trademarks are the property of their respective owners.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 1

http://www.xilinx.com

Overview

& XILINX.

instructions to the peripherals, and monitoring the responses through the AXl interconnect. The
redundant MicroBlaze processor only monitors the response on the AXI interconnect so that it
can respond as if it were fully controlling the AXI interconnect, but it does not physically drive
the interconnect. This makes the first processor the system’s master processor and the second
processor the redundant checker. Redundant comparators monitor the outputs of both
MicroBlaze processors to make sure that the processors are executing the exact same code,
cycle for cycle. If an error is detected on a comparator, an LED is lit on the Avnet

Spartan-6 FPGA LX150T development board. One LED is connected to each comparator.
Figure 1 shows a picture of the Avnet Spartan-6 FPGA LX150T development board and
highlights the LEDs that are illuminated when the comparators detect an error.

Comparator 1 Comparator 0
Error Output Error Output GPIO LEDs

" 1‘ '. " 'l '\ I. '. '. '.

sssssmnnaa
4433333302

rREERRRY s

T A000 o

LELLRLLLY

" :‘n _n LI

k8
| o

X584_01_040412

Figure 1: LED Distribution

For debug support, the first MicroBlaze processor's LOCKSTEP_MASTER port is initially
connected to the second MicroBlaze processor. The MDM is also included in the system. Both
of these debug features are disconnected at the end of this application note to show how
design preservation can be used on a design to lock down isolated regions when making
design changes at the top level.

When IDF is applied, the dual-lockstep system is partitioned into five isolated functions:
MBO_TOP

MB1_TOP

PERIPHERALS_TOP

MBO_COMPARATOR_TOP

MB1_COMPARATOR_TOP

Each MBx_TOP function implements a MicroBlaze processor instance and its local instruction
and data memory. Each MBx_COMPARATOR_TOP function implements an instance of the

ok~ DN

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 2

http://www.xilinx.com

Overview & XILINX.

MicroBlaze Comparator (see MicroBlaze Comparator User Guide). The
U4_PERIPHERALS_TOP function implements all the AXI interconnects, system peripherals,
and the MDM. A block diagram of the final reference design is provided in Figure 2.

Primary MicroBlaze
Processor
Isolated Function AXI Full Bus , ,
(MBO Top) AXI Outputs Peripherals Isolated Function
- (Peripherals Top)
D/I LMB RAMs Primary
MicroBlaze DDR3- 128 MB
1 I
et Processor. AXI4 |=~| SDRAM DDR3
Data Isolated Function I/F SDRAM
(MBO Top)
Comparator Errors
8
MicroBlaze MicroBlaze |4 Block RAM Board LEDs
Processor MBO Comparator <= LED
Outputs MicroBlaze I/F
Interrupt || usB/
Controller RS232 RS232
VB Inferruot] I/F Converter
nterrupts System
Reset [l Reset Board
AXI4-Lite Full Bus Push- 3
AXIl4-Lite Outputs = buttons Push-
buttons
I/F
L
=
- | 3 Board 8
. . = DIP
MicroBlaze MicroBlaze < | . DIP
Switches -
Processor MB1 Comparator \/F Switches
Outputs
Linear 32 MB
ﬁf Secondary <+=| Flash Parallel
Instr MicroBlaze I/F Flash
{ Comparator
Isolated Function Timer
DA LMB RAMs (MBO Comparator
Secondary Top) Timebase
MicroBlaze
Processor
Isolated Function
(MB1 Top)
Spartan-6 FPGA XC6SLX150T-FGG676-3
X584_02_061812

Figure 2: Final Reference Design Block Diagram

Further discussions of use cases for the lockstep MicroBlaze processor and descriptions of the
lockstep output can be found in MicroBlaze Processor Reference Guide Embedded
Development Kit [Ref 1].

MicroBlaze Comparator User Guide

The dual-lockstep MicroBlaze processor system uses dual-redundant comparators to compare
the outputs of each of the MicroBlaze processors, cycle for cycle. This comparator, formally
known as the MicroBlaze Compatrator, is delivered as a pcore in this application note. The
MicroBlaze Comparator is addressable through either the AXI or processor local bus (PLB)

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 3

http://www.xilinx.com

Overview

& XILINX.

interconnects. The comparator provides a single bit error output along with an error bus
identification output. The comparator is fully synchronous, and connects to each of the
MicroBlaze processors through their lockstep output ports.

The MicroBlaze Comparator is primarily controlled through the AXI or PLB register interface. A
status register is implemented to indicate which MicroBlaze processor interface had a
comparison mismatch or error. Test error insertion is also enabled and controlled through the
control registers, allowing a specific MicroBlaze processor, MicroBlaze processor interface, and
interface bit to be targeted for error injection. After test error insertion is enabled, a test error is
injected for one clock cycle. A control bit is provided to clear comparison errors. The
comparison error indication remains asserted until the error is cleared either through the
control bit or the Error_Clear input. Figure 3 shows the MicroBlaze Comparator ports.

CLK

Error_Clear

LOCKSTEP1[0:4095]

LOCKSTEP2[0:4095]

Reset

SPLB_CTRL_PLB_ABus[0:31]

SPLB_CTRL_PLB_BE[0:3]

SPLB_CTRL_PLB_MSize[0:1]

SPLB_CTRL_PLB_PAValid

Error

SPLB_CTRL_PLB_RNW

Error_Bus[0:31]

SPLB_CTRL_PLB_SAValid

SPLB_CTRL_SI_MBusy

SPLB_CTRL_PLB_TAttribute[0:15]

SPLB_CTRL_SI_MIRQ

SPLB_CTRL_PLB_UABus[0:31]

SPLB_CTRL_SI_MRdErr

SPLB_CTRL_PLB_abort

SPLB_CTRL_SI_MWrErr

SPLB_CTRL_PLB_busLock

SPLB_CTRL_SI_SSize[0:1]

SPLB_CTRL_PLB_lockErr

SPLB_CTRL_SI_addrAck

SPLB_CTRL_PLB_masterlD

SPLB_CTRL_SI_rdBTerm

SPLB_CTRL_PLB_rdBurst

SPLB_CTRL_SI_rdComp

SPLB_CTRL_PLB_rdPendPri[0:1]

SPLB_CTRL_SI_rdDAck

SPLB_CTRL_PLB_rdPendReq

SPLB_CTRL_SI_rdDBus[0:31]

SPLB_CTRL_PLB_rdPrim

SPLB_CTRL_SI_rdWdAddr{0:3]

SPLB_CTRL_PLB_reqPri[0:1]

SPLB_CTRL_SI_rearbitrate

SPLB_CTRL_PLB_size[0:3]

SPLB_CTRL_SI_wait

SPLB_CTRL_PLB_type[0:2]

SPLB_CTRL_SI_wrBTerm

SPLB_CTRL_PLB_wrBurst

SPLB_CTRL_SI_wrComp

SPLB_CTRL_PLB_wrDBus[0:31]

SPLB_CTRL_SI_wrDAck

SPLB_CTRL_PLB_wrPendPri[0:1]

S_AXI_CTRL_ARREADY

SPLB_CTRL_PLB_wrPendReq

S_AXI_CTRL_AWREADY

SPLB_CTRL_PLB_wrPrim

S_AXI_CTRL_BRESP[1:0]

S_AXI_CTRL_ACLK

S_AXI_CTRL_BVALID

S_AXI_CTRL_ARADDR([31:0]

S_AXI_CTRL_RDATA[31:0]

S_AXI_CTRL_ARESETN

S_AXI_CTRL_RRESP[1:0]

S_AXI_CTRL_ARVALID

S_AXI_CTRL_RVALID

S_AXI_CTRL_AWADDR[31:0]

S_AXI_CTRL_WREADY

S_AXI_CTRL_AWVALID

S_AXI_CTRL_BREADY

S_AXI_CTRL_RREADY

S_AXI_CTRL_WDATA[31:0]

S_AXI_CTRL_WSTRB[3:0]

S_AXI_CTRL_WVALID

X584_03_041112

Figure 3: MicroBlaze Comparator Ports

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

http://www.xilinx.com

Overview

& XILINX.

Table 1: MicroBlaze Comparator Register Details

Each MicroBlaze Comparator implements five registers described in Table 1.

Register Details

Description

Control Register

Address

Comparator base address + 0x00

R/W

R/W

Description

Control register for enabling fault injection and clearing of faults. All bits are active-High.

Bit Descriptions

Bit 0 (msb) — Bit 29

Unused

Bit 30

Enable fault inject.

Bit 31 (Isb)

Clear fault (clears the status register and the error output).

Status Register

Address

Comparator base address + 0x04

R/W

R

Description

Status register to indicate which interface had a miscompare since the last clearing of the fault. All bit

indications are active-High.

Bit Descriptions

Bit Description
0 (msb) — 3 Unused
4 IPLB
5 DPLB
6 IXCL
7 DXCL
8 TRACE
9 DEBUG
10 AXI_IC
11 AXI_DC
12 AXI_IP
13 AXI_DP
14 ILMB
15 DLMB
16 FSLO/AXISO
17 FSL1/AXIS1
18 FSL2/AXIS2
19 FSL3/AXIS3
20 FSL4/AX1S4
21 FSL5/AXIS5
22 FSL6/AXIS6
23 FSL7/AXIS7
24 FSL8/AXIS8
25 FSL9/AXIS9

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

http://www.xilinx.com

Overview

& XILINX.

Table 1: MicroBlaze Comparator Register Details (Cont'd)

Register Details Description
Bit Descriptions 26 FSL10/AXIS10
(Cont'd) 27 FSL11/AXIST1
28 FSL12/AXIS12
29 FSL13/AXIS13
30 FSL14/AXIS14
31 (Isb) FSL15/AXIS15

Interface Fault Register 1

Address Comparator base address + 0x08
R/W R/W
Description Control register that enables fault injection on the specified interface for MicroBlaze 1 (LOCKSTEP1). All

bits are active-High.

Bit Descriptions

Bit Description
0 (msb) -3 Unused
4 IPLB
5 DPLB
6 IXCL
7 DXCL
8 TRACE
9 DEBUG
10 AXI_IC
11 AXI_DC
12 AXI_IP
13 AX|_DP
14 ILMB
15 DLMB
16 FSLO/AXISO
17 FSL1/AXIST
18 FSL2/AX1S2
19 FSL3/AXIS3
20 FSL4/AX1S4
21 FSL5/AXIS5
22 FSL6/AXIS6
23 FSL7/AXIS7
24 FSL8/AXIS8
25 FSL9/AXIS9
26 FSL10/AXIS10
27 FSL11/AXIS11

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

http://www.xilinx.com

Overview

& XILINX.

Table 1: MicroBlaze Comparator Register Details (Cont'd)

Register Details Description
Bit Descriptions 28 FSL12/AXIS12
(Cont'd) 29 FSL13/AXIS13
30 FSL14/AXIS14
31 (Isb) FSL15/AXIS15

Interface Fault Register 2

Address Comparator base address + 0x0C
R/W R/W
Description Control register that enables fault injection on the specified interface for MicroBlaze 2 (LOCKSTEP2). All

bits are active-High.

Bit Descriptions

Bit Description
0 (msb) -3 Unused
4 IPLB
5 DPLB
6 IXCL
7 DXCL
8 TRACE
9 DEBUG
10 AXI_IC
11 AXI_DC
12 AXI_IP
13 AX|_DP
14 ILMB
15 DLMB
16 FSLO/AXISO
17 FSL1/AXIS1
18 FSL2/AXIS2
19 FSL3/AXIS3
20 FSL4/AX1S4
21 FSL5/AXIS5
22 FSL6/AXIS6
23 FSL7/AXIS7
24 FSL8/AXIS8
25 FSL9/AXIS9
26 FSL10/AXIS10
27 FSL11/AXIS11
28 FSL12/AXIS12
29 FSL13/AXIS13

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

http://www.xilinx.com

Overview

& XILINX.

Table 1: MicroBlaze Comparator Register Details (Cont'd)

Register Details Description
Bit Descriptions 30 FSL14/AXIS14
(Conta) 31 (Isb) FSL15/AXIS15
Fault Inject Bit Register
Address Comparator base address + 0x10
R/W R/W
Description Control register that specifies which bit within an interface to inject the fault on.
Bit Descriptions Bit Description
0 (msb) — 20 Unused
21— 31 (Isb) Specifies which bit within an interface to inject the fault on.

The interfaces have the following number of bits:

e |PLB =298 + (IPLB_WIDTH/8) + IPLB_WIDTH

e DPLB =98 + (DPLB_WIDTH/8) + DPLB_WIDTH

e IXCL=35

e DXCL=35

e Trace =209

e AXI_IC =133 + (AXI_IC_WIDTH/8) + AXI_IC_WIDTH
e AXI_DC =133 + (AXI_DC_WIDTH/8) + AXI_DC_WIDTH
o AXI_IP =158

e AXI_DP =158

e ILMB =234

e DLMB=71

e FSLx/AXISx = 35

A sample driver is provided as part of the demonstration software included with this application
note for executing basic functions within the comparator. Table 2 lists the steps for executing
these basic functions.

Table 2: Steps to Execute Basic Functions in the Comparator

Basic Function Steps to Execute

Inject a comparator error 1. Enable a fault injection by setting the Enable Fault
Injection bit in the control register to 1.

2. Setthe Fault Inject Bit register to the bit within the
interface to inject an error.

3. Set Interface Fault Register 1 or Interface Fault
Register 2 to the interface to inject an error.

Clear previous comparator errors Set the Clear Status Register bit in the control
registerto 1.

Read comparison error since last reset, Read the status register.
Error_Clear, or clear status register

IDF Overview

The IDF allows for multiple physically isolated and independent functions to be implemented
within a single FPGA, utilizing a fence of unused device components between each function.
Each isolated function is separated by this fence, generating isolated regions within the device.
The flow uses early floorplanning, modular design, modular and bottom-up synthesis, and
adherence to a set of rules and considerations to guarantee isolation between functions. After
a design is implemented, the Isolation Verification Tool (IVT) can be used to visualize the

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 8

http://www.xilinx.com

Overview

& XILINX.

modules and fence, and verify that the design rules for isolation have been successfully
implemented. More details of the IDF as it applies to a Spartan-6 device can be found in
Developing Secure Designs with the Spartan-6 Family Using the Isolation Design Flow [Ref 2]
and Implementation of a Fail-Safe Design in the Spartan-6 Family using ISE Design Suite 12.4
[Ref 3].

Figure 4 illustrates the conceptual implementation of a design of four isolated functions
separated into four isolated regions by fences using the IDF.

Isolated Isolated

Region A Region B
FENCE

Isolated Isolated

Region C FENCE Region D

X584_04_032912

Figure 4: lsolation Desigh Flow Conceptual Design

The IDF is based on these rules and considerations:

1. Each isolated function must be at its own level of hierarchy in the hardware description
language (HDL).

IDF uses design partitions that allow for the identification of isolated regions and functions.
Isolated regions are floorplanned area groups of the device whose resources defined in the
area group are physically reserved for implementing an isolated function. An isolated
function is the HDL defined within a hierarchy that logically describes a function that is
isolated from another HDL-defined function within the hierarchy. The design modules that
exist below the “top” design file are the first level of modules that can be implemented as
isolated functions (logical) into isolated regions (physical).

2. Afence must be used to separate isolated functions within a single device.

A fence is defined as one or multiple user tiles that exist between two isolated regions and
does not contain routing or logic. The minimum required user tile number for a valid fence
depends on the user tile type (i.e., DSP48, RAMB, SLICE, DCM, or PLL) that defines the
fence and the device family (i.e., Spartan-6, Virtex®-5, or 7 series FPGAS). The results of
the isolation analysis performed by Xilinx show that using one or sometimes two such user
tiles placed between isolated regions guarantees that no single point of failure exists that
would compromise the isolation between the two isolated regions. Fences are
implemented with required manual floorplanning through the Xilinx tools.

3. Input/output buffers must be inferred or instantiated within the isolated function itself for
proper isolation of the buffer.

Instantiating or inferring I/O buffers within the isolated function is required so that the buffer
is considered part of the isolated function.

Global clock logic (i.e., DCMs, PLLs, or BUFGs) is the only type of logic allowed at the top
level of the design’s hierarchy because, by definition, it spans the whole design. Global
clock logic can be instantiated in its own module in the hierarchy to allow for cleaner design
hierarchy in the HDL, but this HDL module cannot be included in its own isolated region so
that global routing of the global clock is not prevented.

4. On-chip communication between isolated functions is achieved through the use of trusted
routing.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 9

http://www.xilinx.com

Reference Design Files

& XILINX.

Reference
Design Files

Trusted routing is a set of resources that is selected automatically by the Xilinx tools to
facilitate communication between isolated regions while maintaining the fence for physical
separation. To use trusted routing, all components required for implementation of an
isolated function must be part of the floorplanned isolated region, also referred to as the
partition in Xilinx tools. Trusted routing requires that routing within an isolated region
remain entirely within the isolated region. Communication and routing between multiple

isolated regions is allowed based on these rules:

» Signals feeding through an isolated region are not allowed without buffering:

- If a signal is directly connected to both an input port and an output port of an

isolated function, it must be buffered.

* Anisolated function’s output port cannot connect to more than one isolated function or

more than one isolated function’s input port:

- If a single output needs to connect to multiple isolated functions, the user must
create separate output ports of the source output.

- Each port must not violate the last rule.

* Asingle signal cannot drive two different output ports of the same module. Each port

must have a unique driver:

- The unique driver can be implemented using an instantiated look-up table (LUT)

buffer or flip-flop.

Further details about the IDF as it applies to a Spartan-6 FPGA can be found in Developing
Secure Designs with the Spartan-6 Family Using the Isolation Design Flow [Ref 2] and
Implementation of a Fail-Safe Design in the Spartan-6 Family using ISE Design Suite 12.4

[Ref 3].

The reference design files accompanying this application can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=189247

The design checklist in Table 3 includes simulation, implementation, and hardware details for

the reference design.

Table 3: Reference Design Checklist

Parameter Description
General
Developer name Xilinx
Target device Spartan-6 FPGA
Source code provided Yes
Source code format VHDL
Design uses code/IP from existing Xilinx application Yes
note/reference designs, the CORE Generator™ tool, or a
third party
Simulation
Functional simulation performed Yes
Timing simulation performed No
Test bench used for functional and timing simulations Yes
Test bench format VHDL/Verilog
Simulator software/version used ISim 13.4
SPICE/IBIS simulations No

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

10

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=189247

Reference Design Files

& XILINX.

Table 3: Reference Design Checklist (Contd)

Parameter

Description

Implementation

Synthesis software tools/version used

XST 13.4

Implementation software tools/version used

ISE Design Suite, version 13.4

Static timing analysis performed

No

Hardware Verification

Hardware verified

Yes

Hardware platform used for verification

Avnet Spartan-6 FPGA LX150T
development board

Table 4 shows the device utilization table.

Table 4: Device Utilization Table

. Speed .
Device Grade Package Pre-Map Post-Route Slices
XC6SLX150T -3 FGG676 88.37 MHz 51.65 MHz 8,527 (37%)

Installing the Reference Design Files into the Target Directories

These steps describe installing the reference design files into a Windows environment:

Install the ISE Design Suite, version 13.4.
2. Copy xapp584.zip to the Windows desktop.

3. Extract the contents of xapp584 . zip to the user drive.

Design files need to be unzipped into a directory without any spaces in the path.

Note: Throughout this application note, the use of <reference design>\ in the file path refers to the
root installation directory chosen as part of step 3 as well as the application note directory xapp584.

Setting Up the Environment

Installing Development Board Files

The dual-lockstep MicroBlaze processor system described in this application note is

implemented on the Avnet Spartan-6 FPGA LX150T development board using ISE Design
Suite, version 13.4. Avnet provides board development files for use by the ISE design tools to
automatically generate the design pinout and some of the system constraints. The board

development files are available on the Avnet website [Ref 4].

1. On the Spartan-6 FPGA LX150T Development Kit page of the Avnet website [Ref 4], click

Support Files and Downloads.

2. Enter your Avnet Express Login credentials to access the Support and Downloads page.

Note: The Avnet website does require a user to register with the site in order to download the files.

3. Under the XBD section, click EDK 13.3 XBD/IP-XACT files.
4. Save the ZIP file to the local computer and extract the files.

5. Follow the instructions in the Quick Install Readme file located within the ZIP file to install

the files in the Xilinx 13.4 directory.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

11

http://www.xilinx.com

Building the Reference Design & XILINX.

Building the
Reference
Design

Environmental Variables

The dual-lockstep MicroBlaze processor system requires the XIL_EDK_XST_OPTIONS
environment variable be set to -shreg_extract no:

e XIL_EDK_XST_OPTIONS = -shreg_extract no

The XIL_EDK_XST_OPTIONS environment variable adds the -shreg_extract no option to
EDK synthesis to prevent shift register inference of SRL16 and SRL32. SRL16s and
SRL32s should not be used in Spartan-6 FPGA designs to prevent false single-event upset
(SEU) detection.

A batch script can be developed to set the environment variable by copying this text into a
file with a . bat extension and double-clicking the file within a Windows Explorer window:

rem #H###FHHFHAHFHHAHFHHHHAHAHHSHAHARHSHA AR H SRS S HRH SRS RS HH
rem # SET ENVIRONMENT VARIABLES

rem #H#HHHFHHFHFHFHHSHFSHHHEHARHS RS RS R HSHA RS SRS SRR SRS H
set XIL_EDK_XST_OPTIONS=-shreg extract no

The reference design is executed in twelve high-level steps, illustrated in Figure 5. The first four
steps are executed using the EDK tools Platform Studio and Software Development Kit (SDK).
In EDK, a dual MicroBlaze processor system is created and then converted to a dual-lockstep
MicroBlaze processor system. Then, for the fifth step, modifications are made to the VHDL files
that describe the dual-lockstep MicroBlaze processor system to apply hierarchy and the
necessary changes required by IDF. From there, the PlanAhead tool is used to partition, isolate,
implement, and preserve the design. The IVT is also used throughout to verify the isolation of
the design as IDF is applied.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_05_041112

Figure 5: Reference Design Steps

Generating the Dual MicroBlaze Processor Base System in the EDK
Platform Studio
The steps in this section describe how to use the Platform Studio Base System Builder (BSB)

to generate a dual MicroBlaze processor system with the AXI interconnect. This dual
MicroBlaze processor system serves as the base system that is modified into the dual lockstep

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 12

http://www.xilinx.com

Building the Reference Design

& XILINX.

MicroBlaze processor system. The peripheral selections and settings in this application note

are chosen to keep the system simple and functional, but can be modified in accordance with
user requirements for incorporation into a user design. The peripheral selections and settings
are in no way locked down to make the dual-lockstep MicroBlaze processor.

1. Start EDK Platform Studio:

Start > All Programs > Xilinx ISE Design Suite 13.4 > EDK > Xilinx Platform Studio

2. In the Platform Studio welcome screen (Figure 6), click Create New Project Using Base
System Builder to start the Base System Builder wizard.

Getting Started

Create New Project Usng Base System Bulder

Lise the Base Systam Budder wizard to create an XPS project

Create New Blank Fromct

Create a new XPS project without using the Base System Builder

J Coen Prowect

Open a previously created project
bl Cocn Recenteroect

Open arecently used project

XILINX PLATFORM STUR

Documentation
.
| e——
Release notes and nformation about new DS features in this release
N
i View Product and

Information about EDK, praject flows, and documentation

./ View Al EDK Documentation
Al documentabon related to EDK

|

design using the embedded desgn flow

Figure 6: Platform Studio Welcome Screen

X584_06_041112

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

13

http://www.xilinx.com

Building the Reference Design & XILINX.

3. Make these selections in the Create New XPS Project Using BSB Wizard window to name

the project lockstep_system and base the system on the AXI interconnect (Figure 7), and
then click OK:

- Project File: <reference design>\edk\lockstep_system.xmp
- Interconnect Type: AXI System

' ™~
s Create New XPS Project Using BSB Wizard x
New Project
[l Project File s\trevorh\Lock_Step_MicroV X 150T_DesignYockstep_xapp\edkYockstep_system.xmp
Select an Interconnect Type
@ AXI System

AXIis an interface standard recently adopted by Xilinx as the standard interface used for all current and

future versions of Xilinx IP and tool flows. Details on AXI can be found in the AXI Reference Guide on
xilinx. com.

PLB System

PLB is the legacy bus standard used by Xilinx that supports current FPGA families, induding Spartané and
Virtex6. PLB IP will not support newer FPGA families, so is not recommend for new designs that may

migrate to future FPGA families. Details on PLB can be found in the PLBv46 Interface Simplifications
document on xilinx.com.

Select Existing .bsb Settings File(saved from previous session)

Set Project Peripheral Repository Search Path

ok || concel |

A

X584_07_040412

Figure 7: Create New XPS Project Using BSB Wizard Window in Platform Studio

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 14

http://www.xilinx.com

Building the Reference Design & XILINX.

4. Make these selections in the Board and System Selection window (Figure 8) to select the
Avnet Spartan-6 FPGA LX150T development board, then click Next >.

- Board: Create a System for the Following Development Board (Pre-Selected
Device Info)

- Board Vendor: Avnet

- Board Name: Spartan-6 LX150T Development Board
- Board Revision: D

- Select a System: Dual MicroBlaze Processor System

Board and System Selection
[Bl| Select a target development board and a System Template.

Board
@ Create a System for the Following Development Board (Pre-selected Device Info)

Board Vendor Avnet :I Board Name |Spartan-6 LX150T Development Board Izl Board Revision |D :I

) Create a System for a Custom Board

Board Configuration
Architecture [spartand | Device xcosh 150t ~ | Reference Clock Frequency |100.00 —v| MHz
|Jarane || |
Package |fggu?u j Speed Grade |-3 ~ | Reset Polarity Active High | = I [7] Use Stepping 3
'. Select a System
Single MicroBlaze Processor System System Information
Dual MicroBlaze Processor System This system consists of two instances of MicroBlaze with external memory and
commonly used peripherale such as UART, GPIO, Flash, TIC, Ethernet ete.

Peripherals are connected on a shared AXI interconnect, while DDR memory is

| connected on a AXI interconnect configured as a crossbar. Mailbax and Mutex IPs
are connected to the share AXI Interconnect for syndhronization. Click Next to

modify the default system, Custom boards do not have default peripherals and

need to be selected on the next page.

Related Information

vendor's Website
Vendor's Contact Information

Third Party Board Definition Files Download Website
"This board utilizes XILINX Spartan-6 LX 150T FPGA xchslx 150tfgb76. For more information, please visit www.em.avnet.com/spartanslx 150t."

Crow)|

X584_08_040412

Figure 8: Board and System Selection Window

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 15

http://www.xilinx.com

Building the Reference Design

& XILINX.

5.

In the Processor, Cache, and Peripheral Configuration window (Figure 9) perform these
steps to set the system clock frequency and to set up the memories and peripherals:

Processor, Cache, and Peripheral Configuration
Configure the proceseor(s). To add a peripheral, drag it from the “Available Peripherals” kst to the Induded Peripherals list. To configure & core parameter, dick on the peripheral.

Processor Frequency |50 MHz
Processor Configuration
Select a Processor

microblaze_0
microblaze_1

Select and Configure Peripherals
Avalable Peripherals

Peripheral Mames

= 10 Devices
R5232
Ethernet_Lite
ETHERMET

= Internal Peripherals
aa_bram_ctr
d_timebase_wdt
aa_timer

Add >

<Remave

microblaze_1

Enable Floating Point Unit

Local Memary Size 16 KB [=]
Instruction Cache Size 8 KB [+]
Data Cache Size 8KB [=]
Induded Peripherals (Shared by both Processors) Select Al
Care Parameter
DIP_Switches_8Bits
Core axi_gpio
Use Interrupt
LEDs_BBits
Core axi_gpio
Use Interrupt O
Linear_Flash
Core axi_emc
MCB_DDR2 (Cached)
Core aod_sb_ddmx
Push_Buttons_3Bits
Core axi_gpio
Use Interrupt
R5232_USB
RS232_USB a0i_uart16550 _.]
Configure Mode CONFIGURE AS 16550 j
Use Interrupt [+] '
axi_bram_ctr_0 (Cached)
Core axi_bram_ctrl
Memaory Size 16 KB -
aa_timebase_wdt_0
Core ai_timebase_wdt
Enable can be enabled/disabled by software Tl
Interval Length E) =
Use Interrupt
axd_timer 0
Core a_timer
Use Interrupt [¥]

MNOTE; Base System Buider always enables MooBlaze caches, Al memories connecied fo the AXT4 interconnect are cadhed. In mulliple processor systems, memory regions may be accessible from
muitipke proceseors. Lisers are responsible for managng memory and cache conerancy Ssues.

Mare Info

o)) (e |

Figure 9: Processor, Cache, and Peripheral Configuration Window Settings

a. Set the Processor Frequency to 50 MHz.

b. Inthe Processor Configuration section of the window, select processor microblaze_0
and make these selections:

- Enable Floating Point Unit: Unchecked
- Local Memory Size: 16 KB
- Instruction Cache Size: 8 KB

X584_09_040412

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

16

http://www.xilinx.com

Building the Reference Design

& XILINX.

- Data Cache Size: 8 KB

In the Processor Configuration section of the window, select processor microblaze_1
and make these selections to match microblaze_0:

Enable Floating Point Unit: Unchecked
Local Memory Size: 16 KB

Instruction Cache Size: 8 KB

- Data Cache Size: 8 KB

In the Select and Configure Peripherals > Available Peripherals section of the window,
add one instance of each of these items:

- axi_bram_ctrl
- axi_timebase_wdt
- axi_timer

In the Select and Configure Peripherals > Included Peripherals (shared by both
processors) section of the window, perform these steps in sequence:

- Remove the Ethernet_Lite peripheral.

- Remove the RS232 peripheral, but keep the RS232_USB peripheral.
- Highlight DIP_Switches_8bits and check Use_Interrupt.

- Highlight Push_Buttons_3bits and check Use_Interrupt.

- Highlight RS232_USB and set RS232_USB to axi_uart16550, CONFIGURE AS
165550, with Use_Interrupt checked.

- Highlight axi_bram_ctrl_0 and set the memory size to 16 KB.

- Highlight axi_timebase_wdt_0. Set can be enabled and disabled by software,
with an interval length of 30, and Use_Interrupt checked.

- Highlight axi_timer_0 and check Use_Interrupt.

Figure 9 shows the final settings for the Processor, Cache, and Peripheral Configuration.

Click Finish to complete the generation of the system.

After Platform Studio generates the dual MicroBlaze processor system, the Platform Studio
Main window appears showing the generated system (Figure 10).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 17

http://www.xilinx.com

Building the Reference Design

& XILINX.

B Xitinx Platiorm Studio (EDI

0.87xd) - C:\Users\trevorh\Lock

.

h File Edit View Project Hardware Device Configuration Debug Simulation Window Help

Préo s ad a0
Navigator X |U’F‘“"9 — . SRCIE
HE 0@ (@) @ E @
- 5 £ EDKInstall
EE:

Run DRCs

Implement Flow

BE

Ganerate Metist

#

Generate BitStream

Bus and Bridge
T Clock, Reset and Interrupt

% Communication High-Speed

Communication Low-Speed

DMA and Timer

4 Debug

FPGA Reconfiguration
 General Purpose 10

& 10 Modules

7 Interprocessor Communication
% Memory and Memory Controller
PO

& Peripheral Controller

#- Processor

% Utility

@ Verification

Project Local PCores

4 m

Search IP Catalog:

Qear *

& Froect | @ Pcataiog

Errors

Elcmmhl_ﬁm'ﬂarm

N ALLEL 4| Businterfoces | porta | Addresses |
K }l("‘ Ig an g Name Bus Mame IP Type IP Version m
—————————| | axid0 J axiinterconnect 105.2 E’
—_— | oxidite0 J¢ ai_interconnect 105.2
> 0 dimb i Imb_v10 2000
—_ microbloze_0_ilmb Fr Imb_v10 2006
ot | - microblaze_1_dlmb i Imb_v10 2006
St | icrobloze_1_ilmb Fr Imb_v10 2006
@ mi . 0 ¢ microblaze 820b
o & rrvig e 1 +r microblaze 820.b
1 T] - axi_bram_ctrl_ 0 bram_block ¢ bram_block 1.00.a
we & axi_bram_ctrl 0 i axi_bram_ctrl 103.a
H t— [microblaze_0_bram_block i bram_block 100.a
i > & mi 0 d_bram_ctrl ¢ Imb_bram_if_cntir 3006
i - i O_i_brom_ctrl ¢ Imb_bram_if_cntlr 3.00.b
(&l microblaze_1_bram_block +r bram_block 1002
i - i =_1_d_bram_cirl * Imb_bram_if_cntlr 3.00.b
{ i . 1 brom_ctrl ¢ Imb_bram i _cntlr 3006
A - MCB_DDR3 i axi_s6_ddnc 105.a
v @ Linear. Flosh T ani_emc 1032
¢y ——————— & debug_module ¥ mdm 2006
- i Qintc i axi_intc 10l.a
;.7 [DIP_Switches_8Bits +* axi_gpio 1.01.b
| & LEDs ais i ai_gpio 101b
& Push_Buttons_3Bits i axi_gpio 10Lb
[aui_timebase_wdt_0 ¢ axi_timebase_wdt 10la
- - axi_timer 0 i axi_timer 103.a
[RS232.USB Jir axi_uart16550 1012
- mailbax 0 i mailbox 100.2
B mutex 0 P mutex 1002
elock_generator_ 0 i clock_generator 4038
proc_sys_reset 0 i proc_sys reset 3.00.a
i i | '
Legend
diMaster @Slave diMaster/Slave b-Target <Initiator ¥ Connected UUnconnected I Monitor
Production (BlLicense (paid) Blicense (eval) SLocal iPre Production BbBeta EiDevelopment
diSuperseded UDincontinued i
T Design Summary (| @ GaphcalDesinView L) |@ systemassembyvew [
Radi =l B
v

X584_10_040412

Figure 10: Platform Studio Main Window Showing Generated Dual MicroBlaze Processor

Modifying the Base Dual MicroBlaze Processor System into the
Lockstep System

The dual MicroBlaze processor system that was created in Platform Studio serves as the
starting point for generating the dual-lockstep MicroBlaze processor system (see Figure 11).
The next steps describe the modifications that are made to the dual MicroBlaze processor
system to convert it to the dual-lockstep MicroBlaze processor system. Some of the
modifications are made through the Platform Studio GUI and some are made manually in the
system’s MHS file, which describes the system’s characteristics and connections and is used
by the Platform Studio GUI.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

18

http://www.xilinx.com

Building the Reference Design

& XILINX.

¥

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_11_041112

Figure 11: Reference Design Progress

Removing Unused Cores from the System

Because the two MicroBlaze processors function in lockstep and not as separate processors

that need to handshake with each other, the Mutex and Mailbox IPs included within the dual

MicroBlaze processor system can be removed. These steps describe how to remove the two
IPs (see Figure 12):

1. In the Platform Studio window under the System Assembly View Bus Interfaces tab,

right-click the mailbox_0 IP instance and then select Delete Instance in the pop-up menu.
2. Atthe Delete IP Instance prompt, select Delete instance and all its connections. Click

OK.

3. Repeat step 1 and step 2 on the mutex_0 IP instance.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

19

http://www.xilinx.com

Building the Reference Design

& XILINX.

I Rreos 28t g ae B
Mevgater 3 |PCaEog S L1-C RN ALLLL +ll Bus Interfaces | Ports | Addresses [1,.|:‘q‘
HeoEWREa Jf 3{: i ame T Mame: 1P Type P Version e
| Cesonriow | FN—— @aid 0 ¢ wi_nterconnect 1058 |
= 5 £ EDKlnstall axidlite_0 Fr wi_interconnect 1052 2
ﬁ 3 Anslog i @ dimb +r Imb_v10 2006
- # Bus and Brdge icroblaze_0 ilmb T Imb_10 1006
RunORCY 4 Clock, Reset and Intemrupt blaze_1_dimb T Imb_v10 2006
% Communication High-Speed : Litmb P Imb_v10 2006
Communication Low-Speed - 41 microblaze 0 fr microblaze 820k
m # DMA and Timer i Ry — | G microbloze_1 ¢ microblaze 820b
- 4 Debug T= — il @x_bram_ctrl_0 bram_biock P bram_block 100
gﬁ % FPGA Reconfiguration .i, 1 (i) ai_bram_ctr 0 * ai_bram_ctrl 103a
: = Genersl Purpose 10 | o] +_(_bram_block bram_bleck 100.2
e % 10 Modules | ottt T 5 i 0.4 bram ctt T Imb_bram if_cntlr 1005
& Intesprocessor Communication I k 3l 0. {bram_ctrl J Imb_bram_if_cntir 1006
A = & Memory and Memary Cantrolles | | i 1L bram_block Jr bram_block 100a
L —] = Pa | > —e——1 | G- microblaze_1 d_bram_ctrl J Imb_bram _if_cntlr 300
Generate BitSiream # Penphesal Controller | s k| B microbloze 1 { bram ctri P Imb_bram_if_cntlr 3006
@ Processor e G- MCB_DDR3 P wi_s6_ddnc 105
@ Unility ¥ [Linear Fiash T wi_emc 1032
e 3 Verfication - debug_module Hr mdm 200k
Project Local PCores ; - microbloze_0) inte Jr mi_inte 1012
ESLUMS * 1| & DP_Switches_a8its & i oo 106
v | 1 LEDs. 8Bits P ai_gpio 1016
v 1| B Push_Buttons 38us T mi_gpio 10Lb
4 B o_timebose_wdt 0 Yo =i timebase wdt 101.a
- v 3 aoa_timer_ 0 T wi_timer 1032
| o v <o i uartl 6550 1002
Generale HOL Fles | maitbax 0 Y mailbex 100.2
: G mutex O S mutex 1008
clock genergtor 0 r clock_generator 403.2
’ proc_sys_reset_0 Fr proc_sys_reset 300
Launch Senudator . 1] ")
= v | Legend
WiMaster @Slave diMaster/Slave B-Target {Initiator @ Connected UUnconnected I Manitor
Search IP Catalog: Clear FrProduction Plicense (paid) @license (eval) SaLocal d&Pre Production HiBeta B¥Development
A Superseded Discontinued
® Pomt| @ Poaog T Desgn Summary SIE-] CraphcalDesign View ole T O
i
Evors wO& X
- »
I (] conscle | 1\ wamings _' D B
I

X584_12_040412

Figure 12: Mutex and Mailbox IPs in Platform Studio GUI

Instantiating the MicroBlaze Comparator Cores IP

The dual-lockstep MicroBlaze processor system uses two redundant MicroBlaze Comparators
to compare the outputs of each of the MicroBlaze processors. The comparator is provided by
Xilinx to be instantiated as a local IP core. The files for the IP are provided as part of this
reference design and are located in the <reference design>\external_pcores
directory. These steps describe how to include and connect the MicroBlaze Comparator cores
into the system design:

1. Extractthe microblaze_comparator_vl_00_a.zip file located at <reference

design>\external_pcores to <reference design>\edk\pcores S0 it can be
found by the EDK Platform Studio tool.

2. In the Xilinx Platform Studio window, under the Project menu, select Rescan User
Repositories to make Platform Studio find the MicroBlaze Comparator IP core.

3. With the MicroBlaze Comparator IP found by Platform Studio, in the Platform Studio IP
Catalog pane, expand the Project Local PCores > USER tree to show the MicroBlaze
Comparator Module (see Figure 13).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 20

http://www.xilinx.com

Building the Reference Design

& XILINX.

@ File Edit View Project Hardware Device Configuration Debug

EEEICY T Iy =

Navigator € ! IP Catalog . 08 x|
' EE@E f
Description '
- £ EDKInstall
@ . [Analeg
- [Bus and Bridge
Run DRCs i Clock, Reset and Interrupt
[#- Communication High-Speed
Implement Flow (- Communication Low-Speed |
- (- DMA and Timer
£O [+ Debug
E‘D (- FPGA Reconfiguration i
" General Purpose 10
Geresats et - 10 Modules
[+ Interprocessor Communication
- Memory and Memory Controller
wra
Generate BitStream . [Peripheral Controller
Processor]
- [Utility
- Verification
Export Design =) Fgoja;tE;ocal PCores
[5. Microblaze Comparator Module
-
E]

Generate HDL Files

Launch Simulator

Tk

T— il

Search IP Catalog:

& ras

|

X584_13_040412

Figure 13: MicroBlaze Comparator Module in IP Catalog Pane

4. Right-click the MicroBlaze Comparator Module in the IP Catalog pane and click Add IP
to add an instance of the comparator to the dual MicroBlaze processor system.

5.

In the XPS Core Config window that appears (Figure 14), uncheck

C_INCL_TRACE_OUTPUT and set C_INTERCONNECT to AXI.

C_INCL_TRACE_OUTPUT is unchecked for this reference design because the design
does not utilize the MicroBlaze processor Trace outputs. The MicroBlaze processor Trace
outputs export a number of internal state signals for performance monitoring, analysis, and
debugging. Including the Trace ports in the MicroBlaze comparator can be done in a design
where the Trace port is not used to detect errors earlier before they reach the processor
outputs. However, including the Trace ports increases the size of the comparator instance.
For this reference design, it was decided to minimize the comparator logic footprint.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

21

http://www.xilinx.com

Building the Reference Design & XILINX.

r z
XPS Core Config - microblaze, 0- 2 v1.00_a =
g X A X vl O

Component Instance Name microblaze_comparator_0 '
Al | guses | Interconnect Settings for BUSIF oy [&

C_DPLE_DWIDTH 2

C_INCL_TRACE_OUTPUT

C_INTERCONMECT AXL E|
C_INVERTED_OUTPUT [
C_IPLB_DWIDTH 2
C_LOCKSTEP_SELECT 0x00000000 |
C_M_AXI_DC_DATA_WIDTH 2 |
C_M_AXI_IC_DATA_WIDTH 2 (=

OxFFFEFEFE

0x00000000

C_STREAM_INTERCONNECT o

n 3 C_S_AXI_CTRL_ACLK_FREQ_HZ AUTO :j 1
Show Al Ports — |
o J[comat J[ner
X584_14_040412
Figure 14: MicroBlaze Comparator IP Core Settings
6. Click OK.

7. Inthe Instantiate and Connect IP window that pops up, select Select MicroBlaze instance
to connect to... and select microblaze_0.

Click OK.

Repeat step 4 through step 8 to add a second instance of the MicroBlaze comparator core
with the same configuration and MicroBlaze processor connection settings. The name of
the second MicroBlaze comparator core is microblaze_comparator_1.

After the MicroBlaze comparators are added to the system, they appear in the Platform Studio
System Assembly View, as shown in Figure 15.

Note: Errors that appear in the Platform Studio transcript window are corrected in later steps in this
application note.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 22

http://www.xilinx.com

Building the Reference Design & XILINX.

Fil t t Hard e rat) =[]
BEoR R £ ad da A0
Navator X Ul?c.ulng ~ D8 x|, FTC OO 4 Businterfaces | Ports | Addresses | [)[s
i (@) () @) (¥ () 80 & 51{ A Name Bus Name 1P Type IP Version -
Descipton oxid0 % winterconnect 1054 §|
- £ £ EDKInstall axndite 0 Jr ax_interconnect 105a
& - Analog microblaze_0_dimb 4 Imb_y10 200
~ ® Bus and Bridge || - microbloze_0ilmb ¢ Imbv10 200
RunCRCs) Clock, Reset and Interrupt — || - microbloze_1_ dimb o Imb_v10 200
(51 Communication High-Speed i e_Lilmb g Imb_v10 200.b
(¢} Communication Low-Speed il [microblaze_0 microblaze 8.20.b
I & DMA and Timer Al)] - p— || (- microblaze_1 ¢ microblaze 8.20.b
(¥ Debug (& @x_brom_ctr_0_bram_block Hr bram_block 1.00.a
EB (i1 FPGA Reconfiguration % (¢} @al_brom_ctr_0 T i_bram _ctrl 103.a
(51 General Purpase 10 T T || @ microblaze_ 0 bram_block P bram _block 1.00.a
Generate Hetlst ®-10 Modules : &) i 0.d_bram.ctrl ¢ Imb_bram_if_cntlr 3006
(¢ Interprocessor Communication -]r (& microbloze_0_{_brom_ctrl Hr Imb_bram_if_cntir 3.00.b
r‘] (51 Memory and Memory Controller & microbloze_1_brom_block J¢ bram_block 100.a
100 #-PCl .E— & microbloze_1_d_brom_ctrl ¢ Imb_bram_if_cntlr 300.b y
Generate BitStream (&) Peripheral Controller - (#) microblaze_1_{ brom_ctrl ¢ Imb_bram_if_cntlr 3.00.b
[z Processor [MCE_DDR3 o axi_sb_ddrx 105.a
31 Utility v || @) Linear_Flash o wxi_emc 1032
@ (¢ Verification d & debug_module g mdm 200.b
= Project Local PCores (&} microblaze_0_intc ax_intc 101.a
i e (=1 USER] (&} DIP_Switches_8Bits +r axi_gpio 101
@ Microblaze Comparator Module - || @ LEDs_8Bits T axi_gpio 101b
(8- Push_Buttons_3Bits r axi_gpio 101b
(§) ax_timebase_wdt 0 dr wd_timebase_wdt 10La
w
) v [# ax_timer_0 wr axi_timer 1038
w v (- RS232 USB a_uart16550 1012
Generate HOL Fles (& microbloze_comparator, 0 microblaze_comparator 1.00.a
I: — || & microblaze_comparator_1 microblaze_comparator 1.00.a
l proc_sys_reset. 0 dr proc_sys_reset 300
Launch Smulator " "‘ +
il + | Legend
I _ MiMaster @slave @iMaster/Slave = Target <Initiator $Connected OUnconnected M Monitor
Search IP Catalog: [Clear | 'H'Producti:ndml-icenlu (paid) [License (eval) “Local Xipre Production F2Beta EDevelopment
N s 1 Supersede Discontinued
& iject‘ @ P catdog | T Dasign Summary & Graphical Dasign View e System Assembly View <]
Errors 08X
QERROR:EDK:4125 - IPNAME: microblaze_comparator, INSTANCE: microblaze_comparator_1, PORT: Error - ASSIGNMENT=REQUIRE is defined in the MPD. You must specify a ¢ «
o i] B
[T8]" console |1 wamings | @ errors |
4

X584_15_040412

Figure 15: MicroBlaze Comparator Cores Instantiated in the System

Note: Atany time, the Platform Studio Project can be saved by selecting Save Project... under the File
menu within Platform Studio.

Manually Completing Port Connections

As part of the conversion of the dual MicroBlaze processor system to the dual-lockstep
MicroBlaze processor system, interconnects need to be manually implemented in the system.
This is done through the Bus Interfaces and Ports tab of the System Assembly View within
Platform Studio. There are also some IP module configurations that need to be updated using
the Platform Studio GUI. The steps in the following sections describe the manual connections
and configuration changes that are required to transform to the dual-lockstep system.

Removal of microblaze 1 AXI Bus Connections

In the dual MicroBlaze processor system, microblaze_1 has its own AXI and MDM connections
to function as an independent processor in the system. In the dual-lockstep MicroBlaze
processor system, microblaze_1 needs to see the same AXI inputs as microblaze_0, and the
MDM connection to microblaze_1 needs to be completely removed. To start this process, the
AXI and debug buses of microblaze_1 are disconnected. This is done using these steps:

1. Within the Bus Interfaces tab of the System Assembly View, expand the bus list for
microblaze_1.

2. Click the down arrow in the Bus Name cell next to the M_AXI_DP bus and select No
Connection.

3. Repeat step 1 and step 2 for the buses M_AXI_IP, M_AXI_DC, M_AXI_IC, and DEBUG.

The updated bus connections for microblaze_1 are shown in Figure 16.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 23

http://www.xilinx.com

Building the Reference Design & XILINX.

fﬂ Bus Interfaces | Ports | Addresses

Name Bus Name IP Type IP Version
axid 0 +r axi_interconnect 1.05.a
axidiite 0 -fr axi_interconnect 1.05.a
microblaze O dimb r Imb_v10 2.00.b
microblaze O imb +r Imb_v10 200.b
microbloze 1_dimb +¥r Imb_v10 200.b
- microblaze_1_imb +r Imb_v10 200.b

- microblaze 0 +r microblaze 8.20.b

(=} microblaze 1 ¢ microblaze 8.20.b

DLME microblaze_1_dimb =]
ILMB microblaze_1_ilmb =)
M_AXI_DP No Connection =
-~ M_AXLIP No Connection [l
M_AXI_DC No Connection [=]
M_AXILIC No Connection =
- DEBUG No Connection =
- TRACE microblaze 1 TRACE
B axi_bram ctri O bram_block Jr bram_block 1.00.a
1 axi bram ctrl 0 <+ axi bram ctrl 1.03.2

X584_16_040412

Figure 16: microblaze_1 Bus Connections

microblaze 0 Lockstep Port Connections

To support troubleshooting of the system, the Lockstep Master Output port of microblaze_0 is
connected to the Lockstep Slave port of microblaze_1. This connection provides microblaze_1
with all the control outputs that microblaze_0 provides to the system so that microblaze_1 can
re-synchronize with microblaze_0 if they get out of synchronization. Each MicroBlaze
processor also has a lockstep output port that has all the processor outputs to connect to the
MicroBlaze comparators for comparison. These steps describe connecting the lockstep and
lockstep master outputs of microblaze_0 (see Figure 17):

1.
2.
3.

Within the Ports tab of the System Assembly View, expand the ports list for microblaze_0.
Click the empty Connected Port cell next to the LOCKSTEP_MASTER_OUT port.

In the pop-up menu, select microblaze_1 on the left side and LOCKSTEP_SLAVE _IN on
the right side to connect the microblaze_0 LOCKSTEP_MASTER_OUT port to the
microblaze_1 LOCKSTEP_SLAVE_IN port.

Click anywhere outside of the pop-up menu to apply the connection. The new connection is
made in the microblaze_1 port definition automatically.

Click the empty Connected Port cell next to the LOCKSTEP_OUT port.
In the pop-up menu, click the New Connection button to make two available connections.

In the first available connection for the LOCKSTEP_OUT port, connect it to the
microblaze_comparator_0 LOCKSTEP1 port by putting microblaze_comparator_0 on
the left side and LOCKSTEP1 on the right side.

In the second available connection for the LOCKSTEP_OUT port, connect it to the
microblaze_comparator_1 LOCKSTEP1 port by putting microblaze_comparator_1 on
the left side and LOCKSTEP1 on the right side.

Click anywhere outside of the pop-up menu to apply the connection. The new connection is
automatically made in the microblaze_comparator_0 and microblaze_comparator_1 port
definitions.

The updated port connections for microblaze_0 are shown in Figure 17.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 24

http://www.xilinx.com

Building the Reference Design & XILINX.

| Businterfaces | Ports | Addresses (&))]
Name Connected Port Direction Range Class Frequency(Hz) Reset Polarity Sensitivity IP Type 2
3 External Ports |
+-axd 0 ¥ axi_interconnect
4 axidiire 0 ﬁ axi_interconnect
i microblaze_0 dimb ¥ Imb_v10
3 microblaze_0 ilmb 7 Imb_v10
& microblaze 1 dimb ¥ Imbv10
#- microblaze_1_ilmb ¥r Imb_v10
= microblaze_ 0 ¢ microblaze
MB_RESET proc_sys_reset 0:MB_Reset 1 RST
INTERRUPT microblaze_0_intc:lrq I INTERRUPT LEVEL_HIGH
DBG_STOP 21
MB_Hakted o
i f0
LOCKSTEP_MASTER_OUT microblaze_1:LOCKSTEP_SLAVE_IN Zo [0:4095] |=
LOCKSTEP_SLAVE_IN 71 [0:4095]
micreblaze_comparator_0:LOCKSTEPL Vi
LOCKSTER OUY microblaze_comparator_1:LOCKSTEFL 9 1040351
& (BUS_IF] DLME Connes o ‘microblaze_U_dim
& (BUS_IF) ILMB Connected to BUS microblaze_0_ilmb =]
& (BUS_IF) M_AXI_DP Connected to BUS aadlite_0 =l
@ (BUS_IF) M_AXI IP Connected to BUS addlite_0 =]
&- (BUS_IF) M_AXI DC Connected to BUS xad 0 =
& (BUS_IF) M_AXLIC Connected to BUS ad 0 L=l

X584_17_040412

Figure 17: microblaze_0 Lockstep Port Connections

microblaze 1 Lockstep Port Connections
To connect the lockstep outputs of microblaze_1 (Figure 18):

1. Within the Ports tab of the System Assembly View, expand the ports list for microblaze_1.
2. Click the empty Connected Port cell next to the LOCKSTEP_OUT port.

3. In the pop-up menu, click the New Connection button to make two available connections.
4

In the first available connection for the LOCKSTEP_OUT port, connect it to the
microblaze_comparator_0 LOCKSTEP2 port by putting microblaze_comparator_0 on
the left side and LOCKSTEP2 on the right side.

5. In the second available connection for the LOCKSTEP_OUT port, connect it to the
microblaze_comparator_1 LOCKSTEP2 port by putting microblaze_comparator_1 on
the left side and LOCKSTEP2 on the right side.

6. Click anywhere outside of the pop-up menu to apply the connection. The new connection is
automatically made in the microblaze_comparator_0 and microblaze_comparator_1 port
definitions.

The updated port connections for microblaze_1 are shown in Figure 18.

& | Bus Interfaces | Ports | Addresses [@]mg
Name Connected Port Direction Range Class Frequency(Hz) Reset Polarity Sensitivity IP Type =
- axidlite_ 0 i axi_interconnect
- microbloze_0_dimb T Imb_v10 ¥
- microblaze_0 ilmb ¥ Imb_v10
&) microbloze_ 1_dlmb 7 Imb_10
- microblaze 1_ilmb 7 Imb_v10
&1~ microblaze_0 3¢ microblaze
El- microblaze 1 ¢ microblaze

MB_RESET proc_sys_reset_0::MB_Reset ! 1 RST
INTERRUPT 1 INTERRUPT LEVEL_HIGH
DBG_STOP 21
MB_Halted £0
MB _Error s}
LOCKSTEP_MASTER_OUT fo [0:4095]
LOCKSTEP_SLAVE_IN microblaze_0:LOCKSTEP_MASTER_OUT 21 [0:4095]
microblaze_comparator_0:zLOCKSTEP2 ra -
HOCE R OL microblaze_comparator 1:LOCKSTEP2 2 il
- (BUS_IF) DLMB Connected to BUS microblaze_I_dimb =
- (BUS_IF) ILMB Connected to BUS microblaze_1_ilmb El
#1- (BUS_IF) M_AXI_DP Mot connected to BUS or External Ports =
- (BUS_IF) M_AXT IP Not connected to BUS or External Ports E =
=} (BUS_IF) M_AXI_DC Not connected to BUS or External Ports =
& (BUS_IF) M_AXT IC Not connected to BUS or External Ports El

X584_18_040412

Figure 18: microblaze_1 Lockstep Port Connections

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 25

http://www.xilinx.com

Building the Reference Design & XILINX.

[=}- microblaze_comparator 0
CLK
Reset
Error_Clear
LOCKSTEP1
LOCKSTEP2
Error_Bus
Error
[#- (BUS_IF) S_AXI_CTRL
(=) microblaze_comparator_1
CLK
Reset
Error_Clear
LOCKSTEP1
LOCKSTEP2
Error_Bus
Error
[#- (BUS_IF) S_AXI_CTRL

Comparator Port Connections

These steps describe how to connect the clock, reset, and error outputs of the MicroBlaze
Comparators (see Figure 19):

1. Within the Ports tab of the System Assembly View, expand the ports list for
microblaze_comparator_0.

2. Click the empty Connected Port cell next to the CLK port and connect it to the CLKOUT2
port of clock_generator_0.

3. Click anywhere outside of the popup menu to apply the connection. The new connection
connects the comparator clock to the 50 MHz clock used in the system.

4. Click the empty Connected Port cell next to the Reset port and connect it to the MB_Reset
port of proc_sys_reset_0.

5. Click anywhere outside of the pop-up menu to apply the connection. The new connection
connects the comparator reset to the reset used by the MicroBlaze processors.

6. Click the empty Connected Port cell next to the Error port. Select External Ports on the left
and enter in microblaze_comparator_0_Error on the right to route out the error signal to
the system 1/O with an output pin name of microblaze_comparator_0_Error. This port is
later connected to an LED.

Click anywhere outside of the pop-up menu to apply the connection.

8. Repeat step 1 through step 7 on microblaze_comparator_1. Note that step 1 and step 4
use the same port connections. For step 6, the pin name should be
microblaze_comparator_1_Error.

The updated port connections for the comparators are shown in Figure 19.

clock_generator_0:CLKOUT2
proc_sys_reset_0::MB_Reset

CLK
RST

microblaze_0:LOCKSTEP_OUT
microblaze_1:LOCKSTEP_OUT

[0:4095]
[0:4095]
[0:31]

OB = = = -

External Ports::microblaze_comparator_0_Error
Connected to BUS axidlite_0

clock_generator_0::CLKOUT2
proc_sys_reset_0::MB_Reset

CLK
RST

microblaze_0:LOCKSTEP_OUT
microblaze_1:LOCKSTEP_OUT

[0:4095]
[0:4095]
[0:31]

B O = = (=

External Ports::microblaze_comparator_1_Error
Connected to BUS axidlite_0

FHENE N R T N T NN NN L

X584_19_040412

Figure 19: MicroBlaze Comparator Port Connections

Modifying the LED Connections

With the addition of the MicroBlaze comparator Error ports to the system 1/O, the existing LED
connections that were generated by the Platform Studio BSB need to be modified to support
connecting the new ports to the LEDs. The MicroBlaze comparators also need to have their
configurations updated to invert the error output to interface to the LED so that it can be
illuminated when an error is indicated. The LED needs an active-Low signal to turn on. These
steps describe the modification:

1. Within the Bus Interfaces tab of the System Assembly View, right-click the LEDs_8Bits
instance of the axi_gpio and select Configure IP....

2. Inthe XPS Core Config window, under the User tab, expand the Channel 1 section and
change the GPIO Data Channel Width setting to 6.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 26

http://www.xilinx.com

Building the Reference Design & XILINX.

10.

11.

Click OK to apply the change.

Within the Bus Interfaces tab of the System Assembly View, right-click the
microblaze_comparator_0 instance of the microblaze_comparator and select Configure
IP....

In the XPS Core Config window, check C_INVERTED_OUTPUT.

a. For microblaze_comparator_1 only, within the XPS Core Config window, set
C_S_AXI_CTRL_BASEADDR to 0x7d220000 and C_S_AXI_CTRL_HIGH_ADDR
to 0x7d22 £££ £ to correct an address calculation error done by this version of Platform
Studio.

Click OK to apply the change.
Repeat step 4 through step 6 for microblaze_comparator_1.

Click the Project tab located next to the callout for the IP Catalog tab on the bottom right of
the Platform Studio window.

Under the Project Files tree, double-click the user constraints file (UCF) line to open the
project's UCF.

Within the UCF, connect the MicroBlaze Comparator Error outputs to the removed LED
ports by changing these lines from:

NET LEDs_8Bits_TRI_O[6] LOC = "C26" | TOSTANDARD = "LVCMOS33";

NET LEDs_8Bits_TRI_O[7] LOC = "F23" | TOSTANDARD = "LVCMOS33";

to:

NET microblaze_comparator_0_Error LOC = "C26" | TIOSTANDARD = "LVCMOS33";
NET microblaze_comparator_1_Error LOC = "F23" | TIOSTANDARD = "LVCMOS33";

Save the updated UCF by pressing Ctrl+S.

Connecting the axi_bram_ctrl_0 Instance to the AXI4-Lite Interconnect

The Platform Studio BSB connected the axi_bram_ctrl_0 instance to the AXI interconnect. For
this reference design, axi_bram_ctrl_0 should be connected to the AXI4-Lite interconnect. To
do this, execute these steps (see Figure 20):

1.

2.

Within the Bus Interfaces tab of the System Assembly View, find the axi_bram_ctrl_0
instance callout.

With the mouse, click the empty green circle to the left of the axi_bram_ctrl_0 row in the
green AXI column. This moves the connection from the AXI to the AXI4-Lite interconnect.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 27

http://www.xilinx.com

Building the Reference Design

& XILINX.

‘_J Bus Interfaces | Ports I Addresses

g
=
=

MName Bus Name

axid 0

axidlite_0

microblaze 0 dimb

microblaze @ ilmb

microblaze 1 dimb

microblaze 1_ilmb

+- microblaze 0

E-@

} microblaze_1

-axi_bram ctrl 0 bram_block

axi_bram ctrl 0

{53 BE

microblaze_U bram_block

} microblaze_0 d_bram_ctrl

+- microblaze_0 1 bram_ctrl

I microblaze_1_bram_block
+}- microblaze_1 d_bram_ctrl

}- microblaze 1 i bram ctrl

}- Linear_Flash

S e

&-F- 5858

MCB_DDR3

b

debug_module
microblaze 0 intc

S D 5 5 o 3 25 2 0 9 2

-5

" .'. ‘

< | T

Legend

diMaster #Slave diMaster/Slave BTarget {Initiator ﬂConnected JUnconnected M Monitor

Production
! Superseded Discontinued

= Design Summary

License (paid) @ILlcense (eval)

%Local aiPre Production uﬁ?ﬂeta #EDevelopment

X ‘ & Graphical Design View x NN

System Assembly View

B)

X584_20_040412

Figure 20: Connecting axi_bram_ctrl_0 to AXI4-Lite Interconnect

Modifying the MicroBlaze Debug Module

The MDM configuration needs to be modified to connect only to microblaze_0 for the
dual-lockstep MicroBlaze processor system. A step is also executed to make the MDM a local
IP core to prepare the design to be isolated using the IDF.

1.

5.

Within the Bus Interfaces tab of the System Assembly View, right-click the debug_module
instance of the MDM and select Make This IP Local.

When prompted whether to continue making the IP local, click OK.

Making IP local places a copy of the necessary IP files into the pcores directory used by the
project. By making the IP local, its source code can be modified to customize it for special
design flows such as IDF. When the debug_module instance has been made local by
Platform Studio, the icon next to the instance changes from a star and is added to the
Project Local Cores tree in the IP catalog pane.

Begin to modify the debug_module to support only one debug port by right-clicking the
debug_module instance in the Bus Interfaces tab of the System Assembly View, and select
Configure IP....

In the XPS Core Config window, under the User tab, expand the Debug section and change
the Number of MicroBlaze debug ports setting to 1.

Click OK to apply the change.

Modifying the AXI4-Lite Interconnect

To support better timing during design implementation, the axi4lite buses are fully registered for
this reference design. These steps configure the axi4lite instance of the axi_interconnect with
registered signals:

1.

Within the Bus Interfaces tab of the System Assembly View, right-click the axidlite_0
instance of the axi_interconnect and select Configure IP....

In the XPS Core Config window Master/Slave Specific Settings, Register Slices, and Write
Address tabs for each Connected Master and Connected Slave, change the setting from

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 28

http://www.xilinx.com

Building the Reference Design & XILINX.

BYPASS to FULLY_REGISTERED to add registers to the interconnect signals (see
Figure 21).

& XPS Core Config - axidlite_0 - axi_interconnect_v1_05_a =

Component Instance Name | axi#te_0

| General | control Interface Master/Slave Information | _Interconnect Settings for BUSIF | o) () &)

| ACLK Settings R,'WDmF]Fo | RWissung | RWAcceptance | Arbitration | BaselD | Secue | Sngle Thread

| Write Address ‘lﬂeud Address | ReadData | WriteData | Wirite Response |
Insert Register Slice on Write Address Channel at the Bus Interface

Connected Master Connected Slave

microblaze_0,M_AXI_DP FULLY_REGISTERED |v|| microblaze_comparator_1.S_AXI_CTRL FULLY_REGISTERED [v]

microblaze_0.M_AXI_IP FULLY_REGISTERED E microblaze_comparator_0.5_AXI_CTRL FULLY_REGISTERED E
microblaze_0_intc.5_AXT FULLY_REGISTERED |Z|
debug_module.5_AXI FULLY_REGISTERED |Z|
axi_timer_0.5_AXI FULLY_REGISTERED [v]
axi_timebase_wdt_0.5_AXI FULLY REGISTERED E|
RS232_LUSB.5_AX FULLY_REGISTERED E|
Push_Buttons_3its.S_AXT FULLY_REGISTERED [v]
Linear_Flash.S_AXI_MEM FULLY_REGISTERED [v|
LEDs_8Bits.5_AXT FULLY_REGISTERED [v]
DIP_Switches_8Bits.5_AXT FULLY_REGISTERED |Z|

o) o

X584_21_040412

Figure 21: AXl4-Lite Write Address Registering

3. Repeat step 2 for each Connected Master and Connected Slave in the Read Address,
Read Data, Write Data, and Write Response tabs.

4. Click OK to apply the changes.

Final System Modifications Done Manually to MHS File

The final step in the conversion of the dual MicroBlaze processor system to the dual-lockstep
MicroBlaze processor system is to modify the MHS file to add in parameters and port
connections to the block RAM controllers and the MicroBlaze processors that could not be
entered through the Platform Studio GUI. The updates are provided with the reference design
inthe <reference design location>\file_mods\edk directory. The steps in the
following sections are provided to copy in the modifications to the active Platform Studio project
MHS file.

C_MASK Parameter to microblaze_1 Block RAM Controllers

A C_MASK parameter has to be added to the microblaze_1_i_bram_ctrl and
microblaze_1_d_bram_ctrl instances within the 1ockstep_system.mhs file. The parameter
is required for Platform Studio to calculate the correct address decoding when building the
dual-lockstep MicroBlaze processor system. The parameter is only required for the
microblaze_1 block RAM controllers because they are connected to the slave MicroBlaze
processor, where automatic calculation of the parameter cannot be performed because the

slave is isolated from the peripherals by only being connected to the AXI inputs.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 29

http://www.xilinx.com

Building the Reference Design & XILINX.

1. With a text editor, open the files <reference design>\edk\lockstep_system.mhs
and <reference design>\file_mods\edk\mhs\bram_ ctrl_mhs_mod. txt.

2. Copy the parameter line located in the bram_ctrl_mhs_mod. txt file and paste it under
the PARAMETER C_HIGHADDR line for both the microblaze_1_i_bram_ctrl and

microblaze_1_d_bram_ctrl instances in the 1lockstep_system.mhs file.

3. Save the lockstep_system.mhs file.
The C_MASK value that is added to the microblaze_1_i_bram_ctrl and

microblaze_1_d_bram_ctrl instances must match the calculated value for

microblaze_0_i_bram_ctrl and microblaze_0_d_bram_ctrl or each of the MicroBlaze
processors do not operate in lockstep. Because this application note lists the detailed steps to
build the system, the value is not expected to differ from the value copied in the preceding
section. If the MicroBlaze processors do not operate in lockstep, one thing to check is that the
C_MASK values match for the i_bram_ctrl and d_bram_ctrl of the MicroBlaze processors. To
do this, after generating the netlist in Platform Studio, the user can grep the <reference
design>\edk\hdl directory for C_MASK and validate that the C_MASK generic setting
provided in the microblaze_0_d_bram_ctrl_wrapper.vhd,
microblaze_0_i_bram_ctrl_wrapper.vhd, microblaze_1_d_bram ctrl_wrapper.vhd,
and microblaze_1_i_bram_ ctrl_wrapper.vhd files are all set to the same value. If the
C_MASK settings do not match, the microblaze_1_i_bram_ctrl and microblaze_1_d_bram_ctrl

instances C_MASK value in the 1ockstep_system.mhs file should be updated with the
C_MASK generic value in the microblaze_0_i_bram_ctrl_wrapper.vhd file.

microblaze_1 Port and Parameter Updates

The microblaze_1 port serves as the slave and checker in the dual-lockstep MicroBlaze
processor system. It is the checker in that it does not drive the AXI interconnects directly, but it
does execute the same instructions as microblaze_0 and monitors AXI interconnect signals to
ensure that it is getting the same responses as microblaze_0. The AXI interconnect signals that
are inputs to microblaze_0 need to be manually connected to microblaze_1 in the MHS file so
that both MicroBlaze instances see the same inputs from the AXI interconnects.

The interrupt signal that connects to microblaze_1 needs to be the same signal that connects
to microblaze_0, so a port connection is added to make the connection.

For this reference design, the dual-lockstep MicroBlaze processor does not allow the use of
LUTRAMs, SRL16s, and SRL32s to prevent false SEU detection in Spartan-6 devices. A
C_AVOID_PRIMITIVES parameter is added to prevent these primitives from being utilized by
each MicroBlaze processor instance.

The C_LOCKSTEP_SLAVE parameter is also added to microblaze_1 to differentiate it as the
lockstep slave. This addition is done here because it is not automatically added by Platform
Studio when the lockstep master port connection is made.

Finally, C_LINTERCONNECT_*_REGISTER parameters are added to microblaze_1 to give it
the same registering that is applied to microblaze_0 on the AXI4-Lite interconnect.

Adding these updates is done using these steps:

1. With a text editor, open the files <reference design>\edk\lockstep_system.mhs
and <reference design>\file_mods\edk\mhs\microblaze_1_mhs_mod. txt.

2. Copy the parameter and port lines located in the microblaze_1_mhs_mod. txt file and
paste it under the BUS_INTERFACE DLMB line for the microblaze_1 instance in the
lockstep_system.mhs file.

3. Save the lockstep_system.mhs file.
microblaze_0 Port and Parameter Updates

The AXI interconnect signals that are inputs to microblaze_0 need to be redundantly called out
in the microblaze_0 instance as they were for microblaze_1. Also, as was done for

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 30

http://www.xilinx.com

Building the Reference Design & XILINX.

microblaze_1, a C_AVOID_PRIMITIVES parameter is added to prevent LUTRAM and SRL
primitives from being utilized by the MicroBlaze processor.

These are the steps to add the updates:

1.

With a text editor, open the files <reference design>\edk\lockstep_system.mhs
and <reference design>\file_mods\edk\mhs\microblaze_0_mhs_mod. txt.

Copy the parameter and port lines located in the microblaze_0_mhs_mod. txt file and
paste it under the BUS_INTERFACE DEBUG line for the microblaze_0 instance in the
lockstep_system.mhs file.

Save the lockstep_system.mhs file.

Return to the Platform Studio window. When prompted to reload the project, click Reload
to update the Platform Studio GUI with the updated MHS file.

Building the Dual-Lockstep MicroBlaze Processor System in the EDK
Platform Studio
With the dual MicroBlaze processor system converted to the dual-lockstep MicroBlaze

processor system (Figure 22), the design is synthesized and a bitstream is generated to
perform a design sanity check that all the updates are functioning correctly.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

E/:l 2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_22_041112

Figure 22: Reference Design Progress

To generate the bitstream:

1.

Click the Generate Bitstream button on the right side of the Platform Studio window. This
starts the Platgen function within Platform Studio to synthesize and implement the defined
system.

Note: Generation of the bitstream takes some time.

A completed 1lockstep_system.mhs file that fully implements the dual-lockstep MicroBlaze
processor system is archived in the <reference
design>\reference_files\completed_mhs directory. This file can be copied into the
<reference design>\edk directory to build the dual-lockstep MicroBlaze processor system
after generating the dual MicroBlaze processor system. If this file is used, the user still needs to
make the UCF change noted in step 10 of Modifying the LED Connections, page 26.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 31

http://www.xilinx.com

Building the Reference Design

& XILINX.

Performing a Quick Sanity Check of the Design

With the design netlist and bitstream built, SDK, included within EDK, is used to create a
software project, import the provided source files, compile the provided source files, and
generate an executable file to perform a quick sanity check to validate operation of the system
on the Avnet Spartan-6 FPGA LX150T development board (Figure 23).

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

E/:l 3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_23_041112

Figure 23: Reference Design Progress

Exporting the Files from Platform Studio to SDK

These steps describe exporting the Platform Studio design information to SDK, launching SDK,
and creating a software project:

On the left side of the Platform Studio window, click the Export Design button.

In the Export to SDK/Launch SDK window, check Include bitstream and BMM file and
then click Export & Launch SDK to export the design files to the <reference
design>\edk\SDK\SDK_Export\hw directory and launch the SDK software.

Xilinx SDK launches and asks where to set up an SDK workspace to hold all the files for the
SDK project. For this design, the SDK projectis setup in <reference design>\sdk. In
the Workspace Launcher window, set the workspace location to <reference
design>\sdk. Click OK.

Building the Board Support Package

These steps describe how to create a new standalone Board Support Package (BSP) for the
dual-lockstep MicroBlaze processor system.

1.

After SDK finishes loading, in the SDK window, select File > New > Xilinx Board Support
Package to start setting up a BSP for the imported design.

In the New Board Support Package Project window, click Finish to build the new board
support package with the default name standalone_bsp_0 for the edk_hw_platform and
CPU microblaze_0 of BSP OS type standalone. The hardware platform edk_hw_platform
represents the system exported by Platform Studio.

In the Board Support Package Settings window (Figure 24), with Overview selected on the
left, select xilflash and xilmfs under supported libraries to include the libraries in the BSP.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 32

http://www.xilinx.com

Building the Reference Design & XILINX.

4.

r - -
€ Board Support Package Settings - 2
Board Support Package Settings
Control various settings of your Board Support Package.
standalone -bsp_0
uilflash 05Type standalone Standalone is a simple, low-level software layer. It provides access to basic processor features such as
Imnf , - caches, interrupts and exceptions as well as the basic features of a hosted environment, such as standard
b 05 Version: 303.2 input and output, profiling, abort and exit.
drivers
b o Target Hardware
Hardware Specification: C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\sdk\edk_hw_platform\system.ml
Processor: microblaze 0
Supported Libraries

Check the box next to the libranes you want included in your Board Support Package.You can configure the library in the navigator on the left.

MName Version Description
] iwipld0 1.00.a hwdP TCP/IP Stack library: bwiP v1.4.0, Xilinx adapter v1.00.a
I uilfatfs 1.00.3 Provides read/wnite routines to access files stored on a FATI6/32 file system. Requires Sys...
7| xilflash 3.00.a Xilinx Flash library for Intel/ AMD CFI compliant parallel flash
1 xilisf 2042 Xilinx In-system and Serial Flash Library
& xilmfs 1.00.a Kilinx Memeory File System
|

)

oK [canca |

X584_24_040412

Figure 24: Selecting xilflash and xilmfs Libraries for Inclusion in the BSP

In the Board Support Package Settings window (Figure 25), with standalone selected on
the left, verify for stdin and stdout that the value is set to RS232_USB to connect the
RS-232 instance that is in the dual-lockstep MicroBlaze processor system as the
standard-in and standard-out device. Click OK.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 33

http://www.xilinx.com

Building the Reference Design

& XILINX.

O

Description
stdin peripheral
stdout peripheral

Enable 5/W Intrusive Profiling or
Enable MicroBlaze Exceptions

- -
Board Support Package Settings
Board Support Package Settings
Control various settings of your Board Support Package.
4 Overview
standalone Configuration for 05 standalone
x?\’flash MName Value Default Type
xilmfs .
. stdin RS232_USB none peripheral
a drivers -
stdout RS5232_USB none peripheral
CPU
enable_sw_intrusive_profiling false false boolean
 exceptions false false boolean
< m

13

ok]|

Cancel

Figure 25: Verify stdin and stdout Settings

»

X584_25_040412

5. After clicking OK, SDK compiles the BSP. After the compilation is done, verify that
Finished building libraries can be seen in the SDK console, indicating the
compilation was successful.

Generating a Test Design to Test the Peripherals

SDK has a built-in ability to generate pre-packaged applications. One of these pre-packaged
applications is a test of the peripherals of the embedded system. These steps describe linking,
building, and running a pre-packed C application to test the embedded system’s peripherals:

1. Inthe SDK window, select File > New > Xilinx C Project to bring up the available
pre-packaged applications.

2. In the New Xilinx C Project window (Figure 26), make these settings to build a peripheral

test application to run on the microblaze_0 processor. Then click Next >.

e Use Default Location: checked

* Target Platform: edk_hw_platform

e Processor: microblaze 0

e Select Project Template: Peripherals Tests

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

34

http://www.xilinx.com

Building the Reference Design & XILINX.

New Xilinx C Project _
Create a managed make application project. Choose from one of the sample applications, i i‘ F,

Project name: peripheral_tests 0

[¥] Use default location
Location: | CAUsers\trevorhLock_Step_Micro\LX150T_Design\lockstep_xapphsdidperipheral Browrse...
haase file system: | default

Target Hardware

Hardware Platform: | edk_hw_platform

Processor: microblaze_0

Select Project Template

Dhrystone Descnption
Empty Application
Hello World

IwlIP Echo Server
Memory Tests

SREC Bootloader

Kilkernel POSIX Threads Demo
Zynqg FSBL

Simple test routines for all peripherals in the hardware. =

(_?j < Back MNext » Finish Cancel

X584_26_040412

Figure 26: New Xilinx C Project Settings

3. Inthe next window, select Target an existing Board Support Package and click Finish to
link this to the existing BSP. The application then compiles.

4. \Verify that in the SDK console window it says elf check passed. Finished
building: peripheral_tests_0.elfcheck atthe end of the compilation.

With the HW platform, BSP, and C Project all set up and compiled, the next step is to run the
software on the board. The Avnet Spartan-6 FPGA LX150T development board connects to a
computer through a USB to RS-232 converter located on the board to a USB port on the user’s
machine. Through this connection, the board can communicate through a terminal program
such as HyperTerminal or the terminal embedded within the SDK. The driver software for the

USB to RS-232 converter is provided with the Avnet Spartan-6 FPGA LX150T development
board or is available for download on the Avnet site [Ref 5].

To run the Xilinx C project on the Avnet Spartan-6 FPGA LX150T development board:

1. Connect a Xilinx Platform Cable and a USB cable to the Avnet Spartan-6 FPGA LX150T
development board and to the user computer. The Xilinx Platform Cable connects to J9 on

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 35

http://www.xilinx.com

Building the Reference Design & XILINX.

the board. There is only one USB port on the board, and it is located near the DB9
board-mounted socket.

Power on the Avnet Spartan-6 FPGA LX150T development board by setting SW11 to ON.
In the SDK window on the menu bar, select Xilinx Tools > Program FPGA.

In the Program FPGA window, the Bitstream and block RAM memory map (BMM) file
locations point to the files exported by Platform Studio because it was selected to export
the bitstream and BMM file in Platform Studio. The software configuration shows bootloop
for both microblaze_0 and microblaze_1. Click Program to program the FPGA through the
Xilinx Platform Cable.

After the FPGA has programmed successfully, within the SDK window’s Terminal pane, set
up the terminal to have a serial connection with settings of 9600, 8, 1, none, and none.
Connect the terminal.

In the SDK window, right-click the peripheral_tests_0 callout in the Project Explorer
section and select Run As > Launch on Hardware.

Click OK in the Reset Status window.

The program now runs. In the Terminal (settings 9600, 8, 1, none, and none), something
like Figure 27 appears where self-tests were run on each peripheral and they all passed.

E_ Problems Z Tasks | E Console| = Properties .,'}E' Terminal 1 33-. . = 3|
Serial: (COMS, 9600, 8, 1, None, None - CONMNECTED) = | = | @) - B~ &
-—-Entering main--- -

Running IntcSelfTestExample() for microblaze 0 _intc...
IntcSelfTestExample PASSELD

Running GpicOutputExample() for LEDs_8Bits...
GpiocCutputExample PASSED.

Running GpicInputExample() for Push Buttons_3Bits...
GpiolInputExample PASSED. Read data:0=x0

Running WdtTbSelfTestExample () for axi timebase wdt 0...
WdtTbSelfTestExample PASSED

Running TmrCtrSelfTestExample () for axi_timer O...
TmrCtrSelfTestExample PASSED

Running UartLiteSelfTestExample () for debug module...
UartLiteSelfTestExample PASSED

Running GpioInputExample () for DIFP Switches 8Bits...
GpioInputExample PASSED. Read data:0x2Z2A
———Exiting main---

4| n | »

X584_27_040412
Figure 27: C Project Peripherals Test Terminal Output

If desired, a memory test is also available in the pre-packaged C projects and can be
executed similarly to the peripherals test.

When done running the applications in SDK, close SDK by selecting File > Exit.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 36

http://www.xilinx.com

Building the Reference Design & XILINX.

Preparing the Dual-Lockstep MicroBlaze Processor System for
Isolated Design

Figure 28 shows the reference design progress to this point.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

NN NN

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_28_041112

Figure 28: Reference Design Progress

In this application note, the IDF is applied to the dual-lockstep MicroBlaze processor to partition
and floorplan the design into isolated functions. IDF requires that the design be hierarchical to
identify the isolated functions. When the EDK Platform Studio generates a design, it is
effectively flat, where all the design components are at the same level of the design hierarchy.
The next sections describe what was done to change the flat design generated by Platform
Studio into a hierarchical design that follows the rules and considerations for IDF. The finished
hierarchical HDL files are in the <reference design>\src\hdl directory.

The design has the hierarchy illustrated in Figure 29. For the design, there are five isolated

functions:
e MBO_TOP
e MB1_TOP

e PERIPHERALS_TOP

e MBO_COMPARATOR_TOP

e MB1_COMPARATOR_TOP

The clock generator is also included in its own hierarchical element as good coding practice for

readability. This is allowed in IDF because the clock generator is not implemented as its own
isolated function.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 37

http://www.xilinx.com

Building the Reference Design

& XILINX.

LOCKSTEP_SYSTEM_TOP

. ° ° .
[1 1 1 1 |
CLOCKGEN_TOP MB1_TOP MBO_TOP PERIPHERALS_TOP MBO_COMPARATOR_TOP MB1_COMPARATOR_TOP
| | |
Gl microblaze_1 microblaze_0 axi4 axidlite microblaze microblaze_
generator comparator_0 comparator_1
micrqblaze_1_ micrqblaze_o_ axi_timer axi_timebase_
ilmb ilmb wdt
microblaze_1_ microblaze_0_ axi_bram_ axi_bram_
i_bram_ctrl i_bram_ctrl block ctrl
microblaze_1_ microblaze_0_ microblaze_
dimb dimb intc re232_usb
microblaze_1_ microblaze_0_ push_buttons_
d_bram_ctr d_bram_ctr 3bits meb_dar3
microblaze_1_ microblaze_0_ . .
bram. block bram, block linear_flash leds_8bits
dip_switches_ debug_
8bits module
proc_sys_
reset

X584_29_041112

Figure 29: Dual-Lockstep MicroBlaze Processor System Hierarchy

These changes require that the contents of the BMM and UCF files be updated to account for
the new hierarchy. The updated files are provided in the <reference design>\src\bmm
and <reference design>\src\ucf directories and are used in the implementation and
floorplanning steps.

The use of IDF also requires a change to the EDK files that generate the MDM. Steps for the
change are provided in the next section.

Modifying the MicroBlaze Debug Module Generation Files

The files used to generate the MDM in EDK need to be modified to bring out a global clock
buffer instantiation used to route the DRCK clock. For global clocks to be used in an isolated
design, they must be instantiated at the design’s top level or within a module that is not part of
an isolated function. If the BUFG instantiation remains within the MDM, which is included within
the PERIPHERALS_TOP isolated function, global routing of the clock signal can be prevented.
For this reference design, the DRCK BUFG instance is removed from the MDM and instantiated
within the LOCKSTEP_SYSTEM_TOP. vhd file, the design’s top.

The steps in this section describe the modifications required so that the EDK Platform Studio
does not instantiate the BUFG within the MDM, but instead routes out the BUFG connections
to the 1/O of the MDM. The system’s netlist is then rebuilt to incorporate the changes.

1. Inthe Platform Studio window, in the System Assembly View Bus Interfaces tab, right-click
the debug_module instance and select Browse HDL Sources....

2. In the file selection window, open the mdm. vhd file.
With the file open, make these modifications to the mdm.vhd file:

a. Addthese two ports to the MDM entity port declarations to route out the connections to
the DRCK BUFG:

drck: in std_logic; --DRCK BUFG output

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 38

http://www.xilinx.com

Building the Reference Design & XILINX.

drck_i: out std_logic; --DRCK BUFG input

b. Atlines 527 and 534 of the mdm. vhd file, comment out the signal declarations for the
drck and drck_i signals because they are now part of the entity port declarations.

c. Atlines 743 to 747 of the mdm. vhd file, comment out the BUFG_DRCK1 BUFG
instance because it is not used for Spartan-6 device implementations.

d. Atline 749, uncomment the signal assignment drckl <= drckl_i to route through
the assignment to drck1.

e. Atlines 751 to 755 of the mdm. vhd file, comment out the BUFG_DRCK BUFG instance
to remove it from the MDM and allow it to be instantiated at the
LOCKSTEP_SYSTEM_TOP HDL file.

4. Save the updated mdm.vhd file by clicking File > Save in the Platform Studio menu bar.

5. In the Platform Studio window, in the System Assembly View Bus Interfaces tab, right-click
the debug_module instance and select View MPD.

6. With the addition of the drck input and drck_i output to the mdm module ports, the MPD file
also needs to be updated so that Platform Studio knows of the updated module description.
At line 105 of the mdm_v2_1_0.mpd file, below the port instance of Debug_SYS_reset,
add these two lines to indicate the two new ports:

PORT drck = "", DIR =T
PORT drck_i = "", DIR = O

7. Save the updated mdm_v2_1_0.mpd file by clicking File > Save in the Platform Studio
menu bar.

8. To apply the updated files to the lockstep_system project, rescan the user repositories
within Platform Studio by selecting Project > Rescan User Repositories from the menu
bar.

9. Verify that the drck and drck_i ports are now applied to the project by going to the System
Assembly View Ports tab and expanding the ports for the debug_module. The new ports
drck and drck_i should be shown in the tab.

10. Clean the lockstep system netlist and the implementation files by clicking Project > Clean
All Generated Files from the Platform Studio Menu toolbar. Select Yes when prompted
Are you sure you want to delete all generated files?

11. After the netlist files have been deleted, regenerate the netlist to generate the system NGC
and VHD files by clicking Hardware > Generate Netlist.

12. The netlist generation takes some time. After the netlist generation completes, close the
Platform Studio application.

Comparing Flat Files between Designs

The _TOP.vhd files that define the hierarchical system and are located at <reference
design>\src\hdl were derived from the lockstep_system refgen.vhd file located
within this same directory. The lockstep_system_refgen.vhd file is a copy of the
lockstep_system.vhd file that was generated by the EDK Platform Studio and placed in the
<reference design>\edk\hdl directory when the system was generated by EDK as part
of writing this application note. The next sections describe how the hierarchical top files were
generated from this lockstep_system_refgen.vhd file. Now the user should compare the
file EDK generated for the user’s system (located at <reference
design>\edk\hdl\lockstep_system.vhd) with lockstep_system_refgen.vhd. If
the files differ, the user might need to make minor modifications to the provided top files.

All the _TOoP.vhd files capitalize the input and output ports and have a suffix of either _IN or
_OUT to define the port direction. Input and output bus names also have the bit numbers
included in the name to identify the portion of the larger bus they consume.

For example, AXI4LITE_0_S_RID_0_INis an input that is bit O of the axi4lite_0_s_rid bus

defined within the original 1lockstep_system_refgen.vhd file. Signal names that end in

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 39

http://www.xilinx.com

Building the Reference Design & XILINX.

_int are internal signals that were added to the design as part of the hierarchical development
to connect up buffers and registers. All other signal names remain unchanged from the
lockstep_system_refgen.vhd file. This coding standard was utilized to make the code
more readable and traceable given the large number of signals required to describe the
system.

Generating the CLOCKGEN_TOP HDL File

The CLOCKGEN_TOP . vhd file instantiates the clock_generator_0_wrapper implemented by the
EDK Platform Studio. The file was developed to receive the reset from the proc_sys_reset
component instantiated in the PERIPHERALS_TOP isolated function and fanout the clocks
and the DCM_LOCKED output to the dual-lockstep MicroBlaze processor system. The
clock_generator_0O_wrapper takes in the external 100 MHz clock, so the
EXTERN_CLK_IN_IBUF has been added. The black_box attribute is applied to the
clock_generator_0_wrapper so that the module’s netlist is pulled from files implemented by
Platform Studio.

Generating the MBO_TOP HDL File

The MBO_TOP. vhd file instantiates the microblaze_0_wrapper, microblaze_0_ilmb_wrapper,
microblaze_0_i_bram_ctrl_wrapper, microblaze_0_dimb_wrapper,

microblaze_0_d_bram_ctrl_wrapper, and microblaze_0_bram_block implemented by Platform
Studio.

The file implements I/O for these system connections:

* Receive the 50 MHz clock input from the CLOCKGEN_TOP module
* Receive the MicroBlaze and bus structure Resets

* Receive the MicroBlaze interrupt

e Connect to the MicroBlaze Debug Module’s Debug bus

e Output the lockstep buses to MB1_TOP and each of the comparators
e Connect to the AXI and AXI4-Lite interconnect buses

The black_box attribute is applied to all the wrapper components so that the modules’ netlists
are pulled from the files implemented by Platform Studio.

An equivalent_register_removal attribute is applied to the fanout buses of the lockstep_out
output. The lockstep_out output is fanned out to both of the MicroBlaze Comparators. In
accordance with IDF rules and considerations for a single signal driving two different output
ports of the same module, lockstep_out must be fanned out using active buffers. The
equivalent_register_removal attribute is set to no to prevent the equivalent registers
implemented in the P_LOCKSTEP_FANOUT process from being consolidated into one
register set.

The lower 43 bits of the LOCKSTEP_MASTER output bus and various AXI and AXI4-Lite
outputs not only drive loads located in other isolated functions of the design, but they also drive
loads internally to the MBO_TOP isolated function. In accordance with IDF rules and
considerations for signals that drive multiple isolated functions, LUT buffers have been added to
the outputs, leaving the MBO_TOP isolated function. These LUT buffers prevent a failure in the
external isolated function from affecting the MBO_TOP isolated function. Signals that drive
multiple isolated functions, where one load was within the MBO_TOP isolated function and
another load was in an another isolated function, were indicated as isolation errors by running
the IVT in native circuit description (NCD) mode on the design. These errors were then
corrected and verified by re-implementing and re-running IVT. The errors were not directly
determined by just reading the HDL code.

Generating the MB1_TOP HDL File

The MB1_TOP. vhd file instantiates the microblaze_1_wrapper, microblaze_1_ilmb_wrapper,
microblaze_1_i_bram_ctrl_wrapper, microblaze_1_dimb_wrapper,

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 40

http://www.xilinx.com

Building the Reference Design & XILINX.

microblaze_1_d_bram_ctrl_wrapper, and microblaze_1_bram_block implemented by Platform
Studio.

The MB1_TOP. vhd file, similar to MBO_TOP, implements 1/O for these system connections:
* Receive the 50 MHz clock input from the CLOCKGEN_TOP module.

* Receive the MicroBlaze and bus structure Resets.

* Receive the MicroBlaze interrupt.

* Connect to the MicroBlaze Debug External Break inputs.

* Receive the Lockstep Master bus from MB1_TOP.

e Output the Lockstep buses to each of the comparators.

e Connect to the AXI and AXI4-Lite interconnect buses.

Like all the other hierarchical components, the black_box attribute is applied to all the wrapper
components.

As was done for MBO_TOP, and for the same reason, the lockstep_output is fanned out using
active buffers and has the equivalent_register_removal attribute applied and set to no for the
fanout buses.

Generating the MBO_COMPARATOR_TOP HDL File

The MBO_COMPARATOR_TOP.vhd file instantiates the microblaze_comparator_0_wrapper
implemented by Platform Studio.

The file implements I/O for these system connections:

¢ Receive the 50 MHz clock input from the CLOCKGEN_TOP module.

* Receive the MicroBlaze processor reset.

* Receive the lockstep buses from each of the MicroBlaze processors.

e Output the comparator error signal to PERIPHERALS_TOP for buffering and final output.
e Connect to the AXI4-Lite interconnect buses.

Like all the other hierarchical components, the black_box attribute is applied to all the wrapper
components.

The AXI4-Lite outputs not only drive loads located in other isolated functions of the design, but
they also drive loads internally to the MBO_COMPARATOR_TOP isolated function. In
accordance with IDF rules and considerations for signals that drive multiple isolated functions,
LUT buffers have been added to the outputs leaving the MBO_COMPARATOR_TOP isolated
function. These LUT buffers prevent a failure in the external isolated function from affecting the
MB0_COMPARATOR_TORP isolated function.

Note: The signals that drive multiple isolated functions were indicated as isolation errors by running the
IVT in NCD mode on the design. These errors were then corrected and verified by re-implementing and
re-running the IVT. The errors were not directly determined by just reading the HDL code.

Generating the MB1_COMPARATOR_TOP HDL File

The MB1_COMPARATOR_TOP.vhd file instantiates the microblaze_comparator_1_wrapper
implemented by Platform Studio. The highlights of generating the file are the same as
MB0_COMPARATOR_TOP.vhd.

Generating the PERIPHERALS_TOP HDL File

The PERIPHERALS_TOP.vhd file instantiates the AXI| and AXI4-Lite interconnect buses. It
also instantiates all the AXI peripherals, reset module, interrupt controller, and MDM.

The file implements I/O for these system connections:
* Receive the 50 MHz clock input from the CLOCKGEN_TOP module.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 41

http://www.xilinx.com

Building the Reference Design & XILINX.

* Receive the DDR3 clock inputs for the CLOCKGEN_TOP module.
* Receive the DCM Locked input to feed the reset module.

e Output the MicroBlaze processor resets to both MicroBlaze processors and MicroBlaze
comparators.

* Output the MicroBlaze interrupts to both MicroBlaze processors.
e Output the external breaks to both MicroBlaze processors.

* Receive the MicroBlaze Comparator error outputs, and then buffer and output the signal to
the pins.

* Connect the MDM DRCK clock to the DRCK clock BUFG that was removed from the
debug module generation files as discussed in Modifying the MicroBlaze Debug Module
Generation Files, page 38.

* Provide the AXI and AXI4-Lite interconnect signals to connect the MicroBlaze processors
and MicroBlaze Comparators to the interconnect buses.

e Connect the MDM to MBO_TOP.
* Provide external pin connections to LOCKSTEP_SYSTEM_TOP.

Like all the other hierarchical components, the black_box attribute is applied to all the wrapper
components.

An equivalent_register_removal attribute is applied to the fanout buses of the MicroBlaze
processor interrupt output. The interrupt output is fanned out to both of the MicroBlaze
processors, and in accordance with IDF rules and considerations for a single signal driving two
different output ports of the same module, must be fanned out using active buffers. The
equivalent_register_removal attribute is set to no to prevent the equivalent registers
implemented in the register process from being consolidated into one register set. A dual
register set is used to help with cross clock domain signal generation.

IOBUFs, IBUFs, and OBUFs are instantiated within the PERIPHERALS_TOP isolated function
so that the I/O buffer is logically and physically owned by the isolated function in accordance
with IDF. Directly instantiating the BUFs allows for the bottom-up synthesis to be accomplished
within a single PlanAhead or ISE tool project. If the BUFs were not directly instantiated, the
PlanAhead and ISE tools would instantiate the buffers at the top level, which would be against
the rules of IDF. The I/O buffers for the DDR3 SDRAM were not instantiated in the
PERIPHERALS_TOP. vhd file because they were directly instantiated by Platform Studio in the
mcb_ddr3_wrapper netlist.

Note: The user can tell which I/O buffers are owned by which hierarchical block by expanding the
hierarchical blocks netlist in the PlanAhead tool Netlist window, and then expanding the Primitives tree.
The OBUFS, IBUFS, and IOBUFS are listed in the primitives. The primitive type is listed in parentheses
next to the primitive name.

Each of the MicroBlaze Comparators drive error outputs that go to PERIPHERALS_TOP,
where they are buffered with a LUT buffer to provide isolation buffering between the isolated
functions. They are then forwarded to OBUFs for output. The MicroBlaze Comparator error
outputs were handled this way to allow for easier floorplanning of the design, given the Avnet
Spartan-6 FPGA LX150T development board pinout. Keeping ownership of the comparator
error output buffers would have made the design unroutable due to the need to route the AXI
interconnect throughout the chip.

The external reset fanout to the clock generator, along with the fanout of the MicroBlaze
processor reset, the common AXI and AXI4-Lite outputs, and the JTAG signals that make up
the MicroBlaze processor debug bus are all LUT buffered in accordance with IDF rules and
considerations for signals with loads in two different isolated functions. As noted in Generating
the MBO_TOP HDL File, page 40 and Generating the MBO_COMPARATOR_TOP HDL File,
page 41, some of the signals that drive multiple isolated functions were indicated as isolation
errors by the IVT running in NCD mode. These errors were then corrected and verified by

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 42

http://www.xilinx.com

Building the Reference Design & XILINX.

re-implementing and rerunning the IVT. The errors were not directly determined by just reading
the HDL code.

Generating the LOCKSTEP_SYSTEM_TOP HDL File

The LOCKSTEP_SYSTEM_TOP.vhd serves as the overall design top file, and instantiates the
CLOCKGEN_TOP, MBO_TOP, MB1_TOP, PERIPHERALS_TOP, MBO_COMPARATOR_TOR,
MB1_COMPARATOR_TOP, and the BUFG instance for the debug module’s DRCK. The entity
I/O names match the names generated by Platform Studio in the
lockstep_system_refgen.vhd file to minimize changes to the UCF, which is also
generated by Platform Studio. The BUFG instance is instantiated within this file so that it is
logically owned at the top level in accordance with IDF. No black-box callouts are required
because all the submodules generated by Platform Studio that have netlists are instantiated at
least two levels down in the hierarchy.

Porting the UCF

When generating the netlist, Platform Studio also generates a UCF for the design. When
developing the UCF for the isolated design, this generated UCF was used as the base because
it already contained the pinouts and timing constraints. There were some constraints that were
added to this base UCF to support the isolated design. These changes are discussed in this
section.

This constraint was added to allow for non-global clock routes to be utilized on the 50 MHz
clock route:

PIN "Ul_clkgen/clock generator_0/clock_generator_0/PLLO_CLKOUT2_BUFG_INST.O"
CLOCK_DEDICATED_ROUTE = FALSE;

This is required because the lockstep output bus from each of the MicroBlaze processors
forwards the clock signal through bit 591. Without this constraint, Map would fail.

The constraint:
NET "*/mcb_wrapper_inst/selfrefresh_mcb_mode" TIG;
was changed to:

NET "U4_peripherals/MCB_DDR3/MCB_DDR3/mcb_ui_top_0/mcb_raw_wrapper_inst/
selfrefresh_mcb_mode" TIG;

to account for the new hierarchy.

The OUT_TERM = UNTUNED_50 was added to each of the mcbx_dram I/O to include a
constraint included in the netlist constraints file (NCF) for the DDR3 SDRAM. The DDR3 NCF
is not included in the PlanAhead tool project because it causes pinout conflicts.

Porting the BMM File

When generating the netlist, Platform Studio also generates a BMM for the design. When
developing the BMM for the isolated design, this generated BMM was used as the base
because it contained the memory mappings. The memory mappings in the BMM only needed
to be updated to account for the new design hierarchy. This was done with three simple
replaces that placed the hierarchical instance name at the beginning of the memory path where
it is instantiated. The three replaces executed were:

* microblaze_1_bram_block/ changed to U3_mb1/microblaze_1_bram_block/

* microblaze_0_bram_block/ changed to U2_mb0/microblaze_0_bram_block/

e axi_bram_ctrl_0_bram_block/ changed to U4_peripherals/ axi_bram_ctrl_0_bram_block/
Synthesize and Floorplan the Hierarchical Design

Figure 30 shows the reference design progress to this point.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 43

http://www.xilinx.com

Building the Reference Design

& XILINX.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

NN N NN

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_30_041112

Figure 30: Reference Design Progress

The next sections define the steps to synthesize and floorplan the isolated functions into
isolated regions using the PlanAhead tool.

Building the PlanAhead Tool Project

1.

Launch the PlanAhead tool, version 13.4 by clicking Start All Programs Xilinx ISE Design
Suite 13.4 > PlanAhead > PlanAhead.

In the Getting Started window, click Create New Project.

Click Next in the New Project wizard.

In the Project Name window (Figure 31), make these settings, then click Next >.
* Project Name: FloorPlan_Lockstep

e Project Location: <reference design>\planahead

e Create Project Subdirectory: checked

XAPP584 (v1.0) July 10, 2012

www.xilinx.com 44

http://www.xilinx.com

Building the Reference Design

& XILINX.

5.

' T ™

| [@] New Project &
Project Name

‘ Enter a name for your project and spedify a directory where the project data files will be stored g?;

Project name: | FloorPlan_Lockstep
Project location: | C:\Users\trevorh'Lock_Step_Micro\LX 150T_DesignVockstep_xapp'planahead E]

Create Project Subdirectory

Project will be created at: C:\Users\trevorhiLock_Step_Micro\LX150T_Designlockstep_xapp'planaheadFloorPlan_Lodkstep

[< Back ” Mext >] Finish

X584_31_040412

Figure 31: PlanAhead Tool New Project - Project Name Window

In the Design Source window (Figure 32), select Specify RTL Sources. Click Next >.

Building the project with the Register Transfer Level (RTL) sources specified provides the
PlanAhead tool with the ability to execute a bottom-up synthesis on a hierarchical design
without having to perform synthesis externally.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 45

http://www.xilinx.com

Building the Reference Design

& XILINX.

r©]
Ej New Project %
Design Source
Specify the type of sources for your design. You can start with RTL or a synthesized EDIF. ﬁs
@ Spedfy RTL Sources

You will be able to run RTL analysis, synthesis, post-synthesis design analysis, planning and implementation.
[] Import settings and sources from XST or Synplify project

, Spedfy synthesized (EDIF or NGC) netlist
You will be able to run post-synthesis design analysis, planning, and implementation.

Enable Partial Reconfiguration

y Create an IO Planning Project
Do not specify design sources. You will be able to do port assignment and verification.

= Import ISE Place & Route resuits
You will be able to do post-implementation analysis of your design.

= Import ISE Project
Create a PlanAhead project from an ISE project file,

[<Bak |[mext>] Finish

%)

X584_32_040412

Figure 32: PlanAhead Tool New Project - Desigh Source Window
In the Add Sources window (Figure 33), click Add Files.... Select the files listed under
each of these directories:
<reference design>\src\hdl:
e CLOCKGEN_TOP.vhd
e LOCKSTEP_SYSTEM_TOP.vhd
e MBO_COMPARATOR_TOP.vhd
e« MBO_TOP.vhd
e MBI1_COMPARATOR_TOP.vhd
e+ MB1_TOP.vhd
e PERIPHERALS_TOP.vhd
<reference design>\src\bmm:
e Jlockstep_system.bmm

In the Add Sources window (Figure 33), click Add Directories.... Navigate to
<reference design>\edk\implementation. Select the directory.

Adding the directory allows the PlanAhead tool to pull netlist and HDL files into the project

without having to select each file individually.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

46

http://www.xilinx.com

Building the Reference Design

& XILINX.

8. Inthe Add Sources window (Figure 33), verify that Add Sources from Subdirectories is
checked and that Copy Sources into Project and Scan and Add RTL Include Files into
Project are not checked.

rﬂ New Project

it

L e, i ——

Add Sources
Spedify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to your ggs

project. You can also add and create sources later.

h 1
wh 2
\@3
wh 4
[0
wh 6
il 7
28

B9

Id

Name Library

CLOCKGEN_TOP.vhd work
LOCKSTEP_SYSTEM_TOP.vhd work
MBO_COMPARATOR_TOP.vhd work

MBO_TOP.vhd work
MB1_COMPARATOR_TOP.vhd work
MB1_TOP.vhd work
PERIPHERALS_TOP.vhd work
lockstep_system.bmm N/A
implementation work

HDL Source for Location

Synthesis & Simulation » C:\Users\trevorh\Lock_Step Micro'LX 150T_DesignYockstep_xapp\srcihdl

Synthesis & Simulation » Ci\Users\trevorh\Lock_Step_Micro\LX 150T_DesignVockstep_xapp'srcihdl

Synthesis & Simulation » C:\Users\trevorh\Lock_Step_Micro\LX 150T_DesignVockstep_xapp'srcihdl

Synthesis & Simulation » C:\Wsers\trevorh\Lock_Step MicroLX 150T_DesignYockstep_xapp'\srcihdl %
Synthesis & Simulation » C:\Users\trevorh\Lock_Step Micro'LX 150T_DesignYockstep_xapp'\srcthdl

Synthesis & Simulation » C:\Users\trevorh\Lock_Step_Micro\LX 150T_DesignVockstep_xapp'srcihdl +
Synthesis & Simulation » C:\Wsers\trevorh\Lock_Step_Micro\LX 150T_DesignYockstep_xapp'\srcthdl

NfA » C:\sers\trevorh\Lock_Step Micro'LX 150T_DesignYockstep_xapp\src\bmm £
Synthesis & Simulation » Ci\Users\trevorh\Lock_Step_Micro\LX 150T_DesignVockstep_xapp'edk

Add Files...] t_Add Directories... | [

Create File...

[7] 5can and Add RTL Indude Files into Project
[7] Copy Sources into Project
Add Sources from Subdirectories

[< Back][Next >] Finish
4

X584_33_040412

Figure 33: PlanAhead Tool - Add Sources Window

9. Click Next >.
10. Click Next> in the Add Existing IP window without adding any files.

11. In the Add Constraints window (Figure 34), there should be a list of NCF files pulled in from
the <reference design>\edk\implementation directory.

a. Add the system UCF by selecting Add Files.... and then adding the <reference
design>\src\ucf\lockstep_system.ucf file.

b. Select lockstep_system.ucf as the target.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

47

http://www.xilinx.com

Building the Reference Design & XILINX.

[@ New Project

Add Constraints (optional)

Specify or create UCF constraint files for physical and timing constraints. If there are multiple files then please choose the target, which is where all of the g?\j
constraints created by PlanAhead will be saved. J

Constraint File Target Location

microblaze_1_wrapper.ncf C:\Users\trevorhLodk_Step_MicroLX 150T_DesignYockstep_xapp'edkmplementation
microblaze_1_iimb_wrapper.ncf C:\Users\trevorh\Lodk_Step_Micro\LX150T_DesignYockstep_xapp\edkymplementation
microblaze_1_dimb_wrapper.ncf C:\Wsers\trevorh\Lodk_Step_Micro\LX150T_DesignVockstep_xapp\edkmplementation
microblaze _0_wrapper.ncf C:\Users\trevorh\Lodk_Step_Micro\LX150T_Design\ockstep_xapp\edk\mplementation
microblaze_0_iimb_wrapper.ncf C:\users\trevorh\Lodk_Step_MicroLx 150T_DesignYockstep_xapp'\edkmplementation
microblaze_0_dimb_wrapper.ncf C:\Users\trevorh\Lodk_Step_MicroLX150T_DesignYockstep_xapp'\edk mplementation
mcb_ddr3_wrapper.ncf C:\Users\trevorh\Lodk_Step_Micro\L X 150T_DesignYockstep_xapp\edkmplementation i
axi4_0_wrapper.ncf C:\Users\trevorh\Lodk_Step_Micro\LX150T_Designockstep_xapp\edkmplementation
axidite_0_wrapper.ncf C:'\Users\trevorh\Lock_Step_Micro\LX 150T_DesignYockstep_xapp'\edkymplementation
lockstep_system.ucf @ C:\Users\trevorh\Lodc_Step_Micro\LX150T_DesignYockstep_xapp\srciuch

[Add Files...][Create File...]

[] Copy Constraints into Project

[<Back | Mext> | Fnish

\ A

X584_34_040412

Figure 34: PlanAhead Tool - Add Constraints Window

12. With Copy Constraints into Project not selected, click Next >.
13. In the Default Part window, select the device xc6sIx150tfgg676-3. Click Next >.

14. Click Finish in the New Project Summary window. The tool creates the PlanAhead tool
project (Figure 35).

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 48

http://www.xilinx.com

Building the Reference Design & XILINX.
_— " S gL shesd Flocef Floorfian Lockitep.ppe] - Panihesd 114 IR ——— T
File [dt Flow Took Window Layout View Help
BB aeX P b WAK LD Srexaruagme: - Y e
il
@ Prowa Seongs

= ea 3§

o Desgr Saurces

+ @4y LOCKSTEP_SYSTEM_TOP - STRUCTURE
3 5212 s wapper

o Add Sources

T Catsiog

7 Batrate

) Bears Seianen

E Project Summary

RTL Design -

-0 %

Fart Corstants Svamgy
4ty SO 75-3 conss_}

wiste1SUEOE76-3 coras 1 ISE Defults ISF 19)

saes Proges st

Flandhead Defauts (T 1) Mot sared [10%

b] —

Sepsed USI(W) P pey) TengScow Unoued Desoipton

-O&x

Partnead Defais (15T defauins wi Rerarcy)
ISE Dy, inchucing pasing regesters i 108 ofF

ATL Flow

Figure 35: PlanAhead Tool with HDL Files as Part of Project

X584_35_040412

15. After the PlanAhead tool’s project is created, in the Sources tab, scroll down and expand
the Constraints > constrs_1 tree.

16.

In the expanded tree, right-click the mcb_ddr3_wrapper .ncf file and select Disable

File, causing the file to be grayed-out in the Sources tab. Selecting Disable File prevents
the file from being used in the implementation of the design. Among other constraints, the
DDRS3 pinout listed in the mcb_ddr2_wrapper .ncf file conflicts with the correct pinout
and DDR3 constraints listed in the main lockstep_system.ucf file. When the
PlanAhead tool executes the build, it compiles the constraints into a single UCF. With all the
constraints from the UCF and NCF files in a single UCF, conflicting constraints cause errors
in the build. By disabling the file, the constraints in the mcb_ddr3_wrapper .ucft file are
not applied to the design and constraint conflicts are avoided.

Building the Netlists

With the PlanAhead tool’s project created, the next step is to generate the RTL netlist. The RTL
netlist is a compiled netlist of the design. With the RTL netlist, the user can indicate the
partitions of the design. Setting partitions in the PlanAhead tool builds an xpartition.pxml
file used by the Xilinx implementation tools to indicate the partitions and partition attributes of
the design. Partitions define isolated functions and isolated regions in the PlanAhead tool.
More information about the xpartition.pxml file is in Xilinx Hierarchical Design
Methodology Guide [Ref 6].

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

49

http://www.xilinx.com

Building the Reference Design & XILINX.

These steps describe building the RTL netlist and using the netlist to indicate the partitions:

1. Inthe left of the PlanAhead tool window, click RTL Design to build the RTL netlist
(Figure 36).

File Edit Flow Tools Window Layout View Help
R @0 X & DB X LS [SroctMrsgement ~| %

Project Manager - FloorPlan_Lockstep

Project Manager

| Sources il AL 3
| D93 pda
= la == wat 2E
B> Design Sources (7) -
{F IP Catalog @ @ LOCKSTEP_SYSTEM_TOP - STRUCTURE (LOCKSTEP_SYSTEM TOP.vhd) (5) T
i~ rs232_ush_wrapper (rs232_ush_wrapper
&% Baborate {4g) push_butions._Thits wrapper
X ;) {#l proc_sys_reset_0_wwrapper (oo
@- Behavioral Simulation (i microblaze_comparator_1 mmpe
fach S (& microblaze mn-p;ah:r 0 mmper
E sl ¥ (& microblaze_1_wrapper (»
| [microblaze _1_wrapper (s
| RTL Design bl ﬁmdﬂamihhmm
- (#f microblaze _1_jlmb_wrapper (microk
() microblaze_1_j_bram_ctri, mawer m
- ﬁmu'ublar.e 1_dimb_wrapper a
) microblaze_1_dimb_wrapper (m a
Sp— {8 microblaze_1_d_bram_ctrl_wrapper (m
() microblaze_1_bram_block nrq:per
(i microblaze_0_wrapper (= aze
i) microblaze_0_wrapper (
[> }ﬁmnbla:e_o_nac_mm r
- (i) microblaze_0_ilmb_wrapper
Implement i) microblaze_0_iimb_wrapper (mcroblaze 0 b v
: (@) microblaze_0_i_bram _ctrl_wrapper (mcroblaze 0 i b tr
| () microblaze_0_dimb_wrapper (microblaze 0 _dimb_wrapper.ng
) (i microblaze_0_dimb_wrapper (mecroblaze fimb_wrapper .ng
(s microblaze_0_d_bram_ctrl_wrapper (microblare_0_d_bram_cirl_wrapper.ng
‘ () microblare Gler_hbd: wrapper (microblaze 0 bram_block_wrapper nge)
% () mch_ddr3_wrapper (dr3_wrapy O
;ﬂm ddr3_wrapper (;

Wrapper.nge)

_WTapEer.ngc)

m

rapper.ngc)

_Wrapper, ngc
_wrapper.ngc)

ﬁddlmmnﬁkmixm’ .'"__-
4 dock_generator_0_wwapper (c
;ﬂc‘rodc_generawowapp:r d
{# axi_trmer_0_wrapper (a
I:Hiera.rdw Libraries Cnrru:k&da’

£ Sowrces | Templates

Properties = 0O g X

« »[&x

X584_36_040412

Figure 36: PlanAhead Tool Window - RTL Design Button

2. After the RTL netlist is built, click the RTL Netlist tab in the PlanAhead tool’s window
(Figure 37).

3. With the RTL netlist now loaded, the PlanAhead tool needs information about what the
isolated functions are by initially associating each isolated function to a partition. In the RTL
Netlist tab, left-click then right-click U2_mb0 and select Set Partition to indicate that the
MBO_TOP instance is a partition in the design (Figure 37).

Note: After a partition is set for a component, the square to the left of the instance callout in the RTL

Netlist tab changes to a solid yellow. The U4_peripherals instance has a blue check in the box
because area group constraints are provided in the lockstep_system.ucf file for that instance.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 50

http://www.xilinx.com

Building the Reference Design & XILINX.

File Edit Flow Tools Window Layout View Help

EEELEE TN R EX LY (bl —"

RTL Design - rtl_1* - xcbslx150tfggb76-3 (active)

| Project Manager |
RTL Netist =0 a X
E RTL Design hd [
=
1F 1P Catalog [LOCKSTEP_SYSTEM_TOP
[Nets (21939)
&5 Eaborate [+ Primitives (1)

[#-[@) U1_dkgen (CLOCKGEN_TOF)

R Estimati
esource Estimation ERm|2_mbo (MB0_TOP) |}

£} Power Estimation B[] U3_mb1 (ME1_TOF)
(- [@] U4_peripherals (PERIPHERALS_TOP)
@ RunDRC G- [@] US_mb0_comp (MBO_COMPARATOR_TOP)

[--[F] U6_mb1_comp (MB1_COMPARATOR_TOP)
M Run Noise Analysis

@ Behavioral Simulation . & Sources . [14 RTL Netlist |
9 Instance Properties - 0O a =
= m
Synthesize g ﬁ [k
| [@] u2_mbo
Netlist Design v "
g Full Name: U2_mb0 ’:l
I) Cell: MBO_TOP I’
e Type: Others =

Implement

Statistics | Pins | Children | Attributes |Coni ¢ » B

[Properties | @ Clock Regions |

Implemented Design v‘

X584_37_040412

Figure 37: PlanAhead Tool RTL Netlist Tab

4. Repeat step 3 for U3_mb1, U4_peripherals, U5_mb0_comp, and U6_mb1_comp.

With the partitions indicated, the PlanAhead tool has enough information to automatically
execute a bottom-up synthesis of the design. The U1_clkgen instance is not set as a
partition because it contains the global clocking components that cannot be included within
a partition per IDF.

5. Prepare to synthesize the design by making the Synthesis settings. In the left of the
PlanAhead tool window, click the down arrow next to Synthesize and select Synthesis

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 51

http://www.xilinx.com

Building the Reference Design & XILINX.

Settings...(Figure 38).

File Edit Flow Tools Window Layout View Help

FER@aX > D DNHOB K LG [Eormn

RTL Design - rtl_1* - xc6slx150tfgg676-3 (active)

| Project Manager

= RTL Design -
1F 1P Catalog

[Nets (21939)
& Haborate [Primitives (1)

G
S (#-[@&] U1_dkgen (CLOCKGEN_TOP)
Resource Estimation [U2_mbO (MBO_TOP)
~[@ U3_mb1 (ME1_TOP)

€] Power Estimation
U4 _peripherals (PERIPHERALS TOP)

U5_mb0_comp (MEO_COMPARATOR._TOP)

1@
8]))5_mb1_comp (MB1_COMPARATOR_TOP)

@ RunDRC

FE] Run Noise Analysis

@ Behavioral Simulation “\ & Sources @ RTL Netlist ‘
» Instance Properties - O o X
h
« »[%]
Synthesize @ Ei;
Us_mb1_comp
Netlist Design - A
Full Name: U6_mb1_comp 3
I} Pblock: | (@ pblock_U&_mb1_comp | A
v
Implement Cell: MB1_COMPARATOR_TOP @

Statistics | Pins | Children | Attributes |Com ¢ p 3

|| 7@ Properties | @ Clock Regions |

Implemented Design | w

X584_38_040412

Figure 38: PlanAhead Tool Window - Synthesize Menu

6. In the Synthesis Settings window (Figure 39), click the ... button next to the Options: line
to open the Design Run Settings window.

-
B Synthesis Settings

@ Change synthesis options and launch the run.

Options
Top Moduie Name: | LOCKSTEP_SYSTEM_TOP |
ConstraintSet: | @ constrs_1 (active) - |
Options: ‘8. PlanAhead Defaults (XST 13) = |@
Launch Options: Launch on local host (XAQTREVORHS) |
Language Options: | top_lib work loop_count 1000 verilog_version=Verilog 2001 |)
Spedify Partitions: ‘ U2_mb0=Implement U3_mb 1=Implement U4_peripherals=Implement U5_mb0_comp=Implement U6_mb 1_comp=Implement | E]

[R [swve || cancdl |

X584_39_040412

Figure 39: PlanAhead Tool Synthesis Settings Window

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 52

http://www.xilinx.com

Building the Reference Design & XILINX.

In the Design Run Settings window (Figure 40), change these settings:
-opt_mode: area

-opt_level: 2

More options: -shreg_extract no

The setting -shreg_extract no prevents shift register inference.

EI Design Run Settings . =)

Strategy: ‘3 Planahead Defaults (XST 13) - | L2

Description: PlanAhead Defaults (XST defaults with hierarchy)

=l Synthesis (xst)
-opt_miode [area =
-opt_level l?_ - |
-register_balandng [rlo - |
-fsm_encoding [auto =)
dc [off -
-auto_bram_packing [no v]
-use_dsp48 [aum .-]
~resource_sharing [yes =]
Hob [autn =]
-netlist_hierarchy [reh..ﬂt -]
-power [no vJ
-ram_style [auto)
+bufg
-equivalent_register_removal [yes)
-“mux_extract [',res hd]

T S <=s =r=ctro
More Options
Use this field to specify any additional options for XST 4

ok J[cancel |

X584_40_040412

Figure 40: PlanAhead Tool Design Run Settings - Synthesis

8. Click OK to save the settings. Click Run in the Synthesis settings menu to start synthesis

(Figure 41). If prompted to save the project, click Save.

Note: Running synthesis creates a component netlist that can be floorplanned for an isolated
design.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 53

http://www.xilinx.com

Building the Reference Design & XILINX.

-
E Synthesis Settings

Options

Constraint Set:
Options:

Launch Options:
Language Options

Specify Partitions:

@ Change synthesis options and launch the run.

Top Module Name:

LOCKSTEP_SYSTEM_TOP | (=)
'@ constrs_1 (active) - |
& Planahead Defauits (XST 13) - [
Launch on local host (XAQTREVORH3) ™
:top_lib work loop_count 1000 veriog_version=Verilog 2001 | ()
U2_mb0=Implement U3_mb1=Implement U4_peripherals=Implement US_mb0_comp=Implement U6_mb 1_comp =Implement | ()

[Rn [save J[cancdl |

X584_41_040412

Figure 41: PlanAhead Tool Synthesis Settings - Run

9. When synthesis is complete, open the netlist design by either selecting Open Netlist
Design at the Synthesis Completed prompt or click Netlist Design on the left side of
the PlanAhead tool window (Figure 42).

File Edit Flow Tools Window Layout View Help

E|3 .|ﬂlﬂ)({ﬂ|$ > B‘IE‘FH@%%|E@\%W%W

|. Project Manager | RTL Design - rtl_1 - xc6slx150tfgge76-3 (active)
Sources - O o %

El RTL Design A 4

55 i =

== w3
ﬁ e [=l-@> Design Sources (7) -
& Haborate £-@ g% LOCKSTEP_SYSTEM_TOP - STRUCTURE (LOCH

R)1 _ckgen - CLOCKGEN_TOP - STRUCTURE (CLOG
Resource Estimation . [#-& U2_mb0 -MBO_TOP - STRUCTURE (MBO_TOP.vhe

Eﬂ--@ U3_mb1-MB1_TOP - STRUCTURE (ME1_TOP.vhc
@ Power Estimation Eltﬂh U4_peripherals - PERIPHERALS_TOP - STRUCTUR

S -l proc_sys_reset_0 - proc_sys_reset_0_wrapp
@ RunDRC .| - microblaze_0_intc - microblaze_0_intc_wrapp:

. i --fah debug module - debua module wrapoer (det ™
MRl Run Noise Analysis < | m | =)
(il Behavioral Simulation Libraries | Compile Order |

“_& Sources | [RTL Netist |

? w | Source Node Properties - O g ¥
Synthesize | PR
Netlist Design - ‘| @h U1_dkgen - CLOCKGEN_TOP - STRUCTURE (CLOCKGEN_TOP.vhd
l) Instance: U1_dkaen i
v Architechure: €1 OCKGFN TOP -
Implement 4| (1] | (]

= _ &l Properties [Clock Regions |

Implemented Design v‘

4 1/ Ports

X584_42_040412

Figure 42: PlanAhead Tool Window - Netlist Design Button

XAPP584 (v1.0) July 1

0, 2012 www.Xxilinx.com 54

http://www.xilinx.com

Building the Reference Design & XILINX.

10. Click Yes to close the RTL Design before opening Netlist Design.

After the netlist is loaded, the PlanAhead tool updates the Device tab with a graphical view of
the device showing the area group constraints that already exist in the UCF (Figure 43). For this
reference design, area group constraints have already been provided for the U3_mb1,
U4_peripherals, and U6_mb1_comp isolated functions. Area group constraints define the
components that are reserved for implementation of a partition. For isolated designs, partitions
define isolated regions. The PlanAhead tool uses pblocks to define the area group definition for
an isolated region. The Netlist tab in the PlanAhead tool indicates the synthesized netlist. The
Physical Constraints tab defines the partitions by identifying the pblocks and can be found by
clicking from the PlanAhead tool window menu bar Window > Physical Constraints.

File Edt Flow Tools Window Layout View Help

FeRwmaxXdd PRS00 K LG Eropmg RO
P Netlist Design - netlist_1 - xcBslx150tigg676-3 (actwe
Physcal Canstrants =0O& X hetist -0 X oject Summary > | @ Device x | i Schematic X | I lockstep_system.ucf x
RTL Design " o < 18]
9 W netist 1 31 LOOSTE _SYSTEM_TOP P
¥ | |5 @roor -0 Nels
3 pblock U3 mb1 -0 Primitives -
@ pblock_UM_perigherais i1 shoun I
3 phiock_U6_mb1_comp Busmby O
15 u4_perpherals -1
0 US_mb0_comp =1
1 Us_mb1_comp
&
J
-
&
&
= =
> Propertes -0& X =]
5 F
| « >
Tnpleesd £
e
L
j“ e d
Promote Partins
3 Properties | & Cock Regons | % Selection
1/O Ports -0g x
A, | riame or Neg Diff Par Ste Bak 1jOSu Voo wef DveStength SewType PulType OFChipT.. INJERM OUT_TH
=|= 5 Mpors (115
Tnput 5 LVCMOS33* 2sow NONE NONE NONE
outpt 5 LYCMOS33* 33 12 S.0W YT S NONE NONE
Output 1LvCMOS25 25 125.0W FPTT_ S0 NONE NONE
Infout LYCMOS25 25 1250w FPTT S NONE NONE
Tnput 5 LVCMOS33* 12 SLoW NONE NONE NONE
Output 4 SSTLIS_jI™ L5 0.5 FP_VTT_S0 NONE UNTUNED
Output 45sTLIS = 15 075 FPVIT S NONE TN
InfOut 4 SSTLIS_I* 15 Q75 FPVITS NONE UNTLNEL
3 Td Conscle | (O Messages | (3] Complaton | 3 Reports | [Desgn funs | D> 1/0 Ports
RIL Fiow

X584_43_040412

Figure 43: PlanAhead Tool with Netlist Design Open

Creating the Remaining Pblocks

These steps describe assigning new pblocks to the design for the U2_mb0 and U5_mb0_comp
instances:

1. Inthe Netlist pane, left-click then right-click the U2_mb0 instance and select New
Pblock... (Figure 44).

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 55

http://www.xilinx.com

Building the Reference Design & XILINX.

Netlist Design - netlist_1 - xc€

|_ Project Manager
| ||| Physical Constraints -0 a3 x Netiist -0 3 x
RTL Design | w | 1 P
< =|E = HE
? [netist_1 3] LOCKSTEP_SYSTEM_TOP
v ||&-@roor - Netx (21577
Synthesize - (3 pblock_U3_mb1 : §— e
-~ (@ pblock_U4_peripherals - ==
=] Hetlist Design - “- (@ pblock_U&_mb1_comp o
Resource Estimation E
@ RunDRC W
FR Run Noise Analysis
(3 Report Timing
M[Slack Histogram
'i%. Setup ChipScope
[’ Instance Properties -0 &5 X
W<l v | « - BIS
U2_mb0

Implemented Design w |

Full Mame: U2_mb0

g Cell: UZ_mb0=MB0_TOP
Type: Others

Promote Partitions

General Statistics | Pins | Chidren Attrin 4 p B
3 Properties | & Clock Regions | Selecton |

X584_44_040412

Figure 44: Netlist Instance of U2_mb0
2. Inthe New Pblock window, verify that the Assign selected instance checkbox is checked
and the name is set to pblock_U2_mb0.
3. Click OK to create the new pblock.

After the pblock is created, it appears in the Physical Constraints pane of the PlanAhead
tool. The netlist instance also gets a blue check, indicating there is a pblock assigned to the
instance (Figure 45).

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 56

http://www.xilinx.com

Building the Reference Design

& XILINX.

Project Manager |
RTL Design d
» .
Synthesize
] Netlist Design -
Resource Estimation
@ RunDRC
M Run Noise Analysis
g Report Timing
m Slack Histogram
ﬁb Set up ChipScope
.
Implement
Implemented Design | w |
Promote Partitions
® .

Netlist Design - netlist 1 *

Physical Constraints i [L Nethst — [
QI & = HE
netiist_1 (3] LOCKSTEP_SYSTEM_TOP
E"“IB ROOT = Netz (21977)
lock_U2_mb0 #1153 Primitives (1)
o E1--[@] U1_dkgen (CLOCKGEN_TOP)
(@ pblock_U3_mb1 t
& 2 mb0 (U2 _mb0=MED_TOP
(@ pblock_U4_peripherals i@ U3_mb1 (U3_mb 1#MB1_TOR)
(@ pblodc_U6_mb1_comp U4_peripherals (U4_peripherals=PERIPH
B Us_mb0_comp (U5_mb0_comp=MED_C
([Us_mb1_comp (U6 _mb1_comp=MB1_C
Pblock Properties B
9 g
|&l pblock_U2_mb0
Physical Resource Estimates =
Site Type Available Required % Util =
LuT 0 3549 Disablec—
FD_LD [}] 12791 Disable
SLICEL 0 9659 Disable
SLICEM [}] 984 Disable
DSP48A1 [}] 3 Disablet
RAME 16BWER 0 18 Disables
4 T_J-n““;n r O

General | Statistics | Instances | Rectangle 4 » &

= ~._|3 Properties L Clock Regions | & Selection]

X584_45_040412

Figure 45: New Pblock Created for U2_mb0

At this stage in the design, device resources are not assigned to the pblock but only create
the pblock. Before assigning the device resources, IDF attributes need to be set so that the
PlanAhead tool allows all device resources to be floorplanned.

Repeat step 1 through step 3 to create a pblock for the U5_mb0_comp instance. The name

of the instance should be pblock_U5_mb0_comp (see Figure 46).

Note: The pblocks could have also been created within the RTL netlist, before synthesis, if desired.
For this application note, it was chosen to create them after synthesis.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

57

http://www.xilinx.com

Building the Reference Design

& XILINX.

| Netlist Design - netlist_1* - xc6slx150tfgg676-3

| Project Manager |
| | Physical Constraints g Ellt MNetlist - 0O o =
RTL Design v ——
= =[E = SiE
netiist_1 (3] LOCKSTEP_SYSTEM_TOP
v | |B-@RoOT ' = Nets (21977)
Synthesi ... [@ pblock_U2 mb0 [[Primitives (1]
. o E:o d<_U3-mb1 [#--[[@] U1_dkgen (CLOCKGEN_TOP)
TR +~ (@ pblock U3, mb1 - [@] UZ_mb0 (U2_mb0#MED_TOF)
etlist Design - Iil pblock_U4_peripherals & U3_mb1 (U3_mb1#ME1_TOP)
5 T " Joblock_US_mb0_comp (- [@] U4_peripherals (4 _peripherals #PERIPH
ESUILE LRI '~ () pblock_U&_mb1_comp EERET)5_mbo_comp (US_mb0_comp#MBO_CC
@ RunDRC (- [@] U6_mb1_comp (Us_mbl_comp#MB1_C
FF Run Meise Analysis
6 Report Timing
[l Slack Histogram
% Setup ChipScope
b Pblock Properties T [| P
V| 4= bl >3l g
Implement —
@ phlock_US_mb0_comp
my | vi -
Physical Resource Estimates —
g Site Type Available Required % Ut =
LuT 0 2152 Disabled
Promote Partitions FD_LD 0 1653 Disabled
SLICEL 0 269 Disabled
‘ SLICEM 0 265 Disabled
-
gram and Debug Clock Report
Domain (Module) Resourc ™
= et | ;
General | Statistics | Instances | Rectangle 4)
| [Properties | m Clock Regions & Selection |

X584_46_040412

Figure 46: All Pblocks Created
Setting the IDF Attributes

Two attributes must be set through the PlanAhead tool on each partition to allow for complete
floorplanning and building of an isolated design when using the IDF. The first is the PRIVATE
attribute. The PRIVATE attribute, when set to NONE, allows global clock component placement
and routing within and across an isolated region. The second attribute is the SCC_ISOLATED
attribute, which when set indicates to the Xilinx tools that the partition is to be floorplanned and
implemented as a fully isolated function. If SCC_ISOLATED is not set in the PlanAhead tool, a
user can only floorplan SLICE, RAMB, and DSP48 components. If SCC_ISOLATED is set, all
components within the device can be floorplanned.

Note: Setting the SCC_ISOLATED attribute in the PlanAhead tool sets the Isolated = True setting for
each partition in the xpartition.pxml file.

These steps describe how to set the PRIVATE and SCC_ISOLATED attributes within the
PlanAhead tool (see Figure 47):

1. In the Physical Constraints pane, click the pblock_u2_mb0 pblock.
2. Inthe Pblock Properties pane, click the Attributes tab.
3. Inthe Pblock Properties pane’s Attributes tab, click the green plus sign to add an attribute.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 58

http://www.xilinx.com

Building the Reference Design

& XILINX.

Project Manager]

RTLDesign |

P

Synthesize

E Netlist Design -
Resource Estimation

@ RunDRC

] Run Noise Analysis

¢ Report Timing

M Slack Histogram

& Setup ChipScope

>

Implement

Implemented Design ‘ hd |

4.

Iy

Promote Partitions

xcbslx150tfgg676-3

Netlist Design - netlist_1 ™"

(active)

Physical Constraints - g X Netlist -] g X
o T = X
netlist_1 (3] LOCKSTEP_SYSTEM_TOP
E"D G- = Nets (21977)
(- [Primitives (1)
s [@] U1_dkgen (CLOCKGEN_TOF)
—= 2_mb0 (U2_mb0=MB0_TOP)
(@ pblock_U4_peripherals U3_mb1 (U3_mb1#ME1_TOP)
- (@ pblock_US_mb0_comp U4_peripherals (1J4_peripherals #PERIA
= (@) pblock_U6_mb1_comp U5_mb0_comp (U5_mb0_comp#MBO_
- [@] U6_mb1_comp (U6_mb1_comp#MB1_(
Pblock Properties [o
: el
+«+BE === %El
|5 pblock_U2_mb0
__HD_IS_PARTITION [«
CLASS pblock B
NAME pblock UZ mb0
__HD_IS_PARTITION I |
Attribute Type: Boolean Read-only: No -
=]

| General | Statistics | Instances | Rectangles|| Attributes |

A |1 Properties l Clock Regions { [z Selection |

X584_47_040412

Figure 47: Adding Attribute to Pblock

In the Add Pre-defined Attributes window (Figure 48), search and select the attribute

PRIVATE. Click OK.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

59

http://www.xilinx.com

Building the Reference Design

& XILINX.

5.

[€] Add Pre-defined A

Search: ‘ O~ Private] (1 match)
PRIVATE

PRIVATE

Attribute Type: Enumeration Read-only: No

X584_48_040412

Figure 48: Selecting PRIVATE Attribute

In the Pblock Properties pane’s Attributes tab, click Apply to set the PRIVATE attribute to
NONE (Figure 49).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

60

http://www.xilinx.com

Building the Reference Design

& XILINX.

Project Manager

| Netlist Design - netlist_1*

10.

11.

xcbshc150tfigg676-3 (active)

| | Physical Constraints — O g % Netlist R I P P
RTL Design | - m
=@ = XE
[=] netlist_1 (3] LOCKSTEP_SYSTEM_TOP
¥ ||=-@rooT 3 Nets (21977)
. N 0iock U2 [= Primitives (1)
S—— 'L%,' pb3 (@ U1,_dkgen (CLOCKGEN_TOR)
- : @ 3 [ETMET)I2 mb0 (U2 mb0=MB0_TOP)
E HNetlist Design v - (@ pblock_U4_peripherals G- [@ U3_mb1 (U3 mb1#M
o + @ pblodk_U5_mb0_comp U4jperipl"\er§|s {U4_p
Resource Estimation . (3) pblock_Us_mb1_comp @ U5_mb0_comp (LI5_mi
0 Run DRC U6_mb1_comp (Us_mb1_comp=MB1_|
FE Run Noise Analysis
@ Report Timing
MIL Slack Histogram
ﬁb Set up ChipScope
I} Pblock Properties -0 g x
vie+BE ===+
Implement =
. | (@ pblock_U2_mb0
npreme ian | | __HD_IS_PARTITION .
CLASS pblock
$ potock viwo0 |
PRIVATE® NONE %17
Promote Partitions
® . i
and Debug — 1=l
General | Statistics | Instances | Rectangles | Attributes |
| (15 ety | cont]
§ _ | Properties | [Clock Regions l 5 Selection |

X584_49_040412

Figure 49: PlanAhead Tool Physical Constraints and Pblock Properties

Repeat step 1 through step 5 to add and set the PRIVATE attribute to NONE for
pblock_U3_mb1, pblock_U4_peripherals, pblock_U5_mb0_comp, and
pblock_U6_mb1_comp.

To begin setting the SCC_ISOLATED attribute, in the Netlist pane, click the U2_mb0
instance (Figure 50).

In the Instance Properties pane, click the Attributes tab (Figure 50).

Add the SCC_ISOLATED attribute by clicking the green plus sign within the Instance
Properties menu (Figure 50).

Note: If the green plus sign is not selectable, save the PlanAhead tool project. Then close the netlist
design by clicking the down arrow next to Netlist Design and selecting Close. After the netlist design
has closed, re-open the netlist by clicking Netlist Design. After the netlist design is open again,
restart at step 7.

Within the Add Pre-defined Attributes window, search SCC_ISOLATED and select the
SCC_ISOLATED attribute. Click OK.

Set the SCC_ISOLATED attribute by checking the checkbox in the Instance Properties
pane’s Attributes tab. Click Apply to save the change (Figure 50).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 61

http://www.xilinx.com

Building the Reference Design & XILINX.

Netlist Design - netlist_1 - xcbslx150tfggb76-3 (active)

Physical Constraints - O O X Netlist - O @ X

God g E e
Q = &[E = x[E
netlist_1 (3 LOCKSTEP_SYSTEM_TOP
(@ ROOT - - @ Nets (21977)
- |d pblock_U2_mb0 B Primitives (1)
i BT’ $ ock U3 mb1 U1_dkgen (CLOCKGEN_TOP)

-~ @ pblock_U4 pevipherals [[@] U3_mb1 LI3_r'15 13MB ‘-__TOF‘

- [pblock_US_mb0_comp .- [@] U4_peripherals (U4 peripherals #PERIPHERAL
- (@ pblock_U6_mb1_comp 2] U5_mb0_comp (US_mb0_comp#MB0_COMPAR
U6_mb1_comp (U5_mb1_comp#MB1_COMPAR

:Im;la'lceProperties T [[P

«»>BEL ==

U2_mb0

IS_BEL_FIXED
1S_BLACKBOX
IS_LOC_FIXED
IS_PARTITION
IS_PRIMITIVE
I5_RECONFIGURABLE
IS_SEQUENTIAL
LIB_CFLL UZ_mh0$MBO_TOP
NAME UZ_mb0

PBLOCK block UZ mb0 B
SCC_ISOLATED* b

SCC_TSOLATED
Attribute Type: Boolean Read-only: No

]

EO

General | Statistics | Pins | Children | Attributes | Connecti ¢ p E

| (5 20y)| [mconce]

-5 Properties L Clock Regions tq Selection ‘

X584_50_040412

Figure 50: PlanAhead Tool Instance Properties - SCC_ISOLATED

Repeat step 7 through step 11 to set the SCC_ISOLATED attribute for the U3_mb1,
U4_peripherals, U5_mb0_comp, and U6_mb1_comp instances. Save the overall PlanAhead
tool project.

Floorplanning the Design

The floorplan for the U3_mb1, U4_peripherals, and U5_mb1_comp isolated functions have
already been provided through the lockstep_system.ucf file provided with the reference
design. In this section, the floorplans for the remaining isolated functions are created. Creating
a floorplan is done by creating pblock rectangles in the Device pane of the PlanAhead tool that
visually define the area and resources of the device where that isolated function is to be
implemented. For isolated designs, each isolated function is separated by a fence, creating
isolated regions. A fence is defined as one or multiple user tiles that exist between two isolated
regions, and does not contain routing or logic. The minimum required user tile number for a
valid fence is dependent on the user tile type (i.e., DSP48, RAMB, SLICE, DCM, or PLL) that
defines the fence.

The steps in this section define creating the floorplan for the remaining isolated functions in the
design. A fully floorplanned UCF is provided at <reference
design>\reference_files\ucf_w_all_partitions, which can be copied into the
project.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 62

http://www.xilinx.com

Building the Reference Design & XILINX.

In the Physical Constraints pane, left-click then right-click the pblock_U5_mb0_comp
pblock and select Set Pblock Size.

2. In the Device pane, draw a vertical rectangle on the left side of the device in the empty
cutout space next to the pblock_U4_peripherals floorplanned area (Figure 51). Rectangles
are drawn by holding down the left mouse button while tracing the rectangle’s diagonal.

L Project Summary X | Device X | %] Schematic X O a x

&7

T,

Q&

avg

5

BR [da| P

&

% 1

X584_51_040412

Figure 51: Drawing the Pblock Rectangle for pblock_U5_mb0_comp

3.

In the Set Pblock window (Figure 52), make sure that SLICE and DSP48 resources are
checked to be constrained in pblock_U5_mb0_comp. Click OK.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 63

http://www.xilinx.com

Building the Reference Design

& XILINX.

;
[€] Set Pblock

" constrain?

Grids

""| Which resources do you wish pblock_U5_mb0_comp to

SLICE

DSP48

| selectal || Cearal |

oK

—

[Cancel

X584_52_040412

Figure 52: Resources for pblock_U5_mb0_comp

A highlighted rectangle appears, indicating that the device resources have been assigned

to the pblock associated with the U5_mb0_comp partition (see Figure 53).

Click the Rectangles tab in the Pblock Properties pane and adjust the rectangle through
click and drag actions in the Device pane (see Figure 53) until the Rectangle settings are:

e XLlo:13
* YLlLo:73
e XHi:26
* Y Hi:160

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

64

http://www.xilinx.com

Building the Reference Design

& XILINX.

Netlist Design netlist_1*

xchslx150tfiggh76-3 (active)

Physical Constraints -0 &5 X% Netist —_Oa x
QL) po o] 1.3
%] netlist_1 [OCKSTEP _SYSTEM_TOP
(@) ROOT) Nets (21

dl pblock_U2_mbo ‘ imm:;‘vzs 1) .

1) U1_ckgen (CLOCKGE
od i @] U2.mb0 (U2 b0
(@ pblock_U4_peripherals UL b (U3_mb

[Roblock_US_mba_comp
(@ pblodk_U6_mb1_comp

Pblock Properties -03 x
«+BR B+ =4
(@ pblodk_US_mb0_comp

Id Xlo Ylo XH YH

I
N ES EEN R S T

) Properties | @ Clock Regions

seneral | Statistics | Instances | Rectangles » B

& Selection

(2] U4_peripherals (L4 ipher PERIPHERAL
[6-1)5_mb0_comp (US_mb0_comp #MB0_COMPARATC|
smp #MB 1_COMPARAT

] U6_mb1_comp (U6_mh1

%« k[BRG |

« m =

L Project Summary X | Device x | 7 Schematic x

|

[t 2 5

S &S

e
o

< 1 (L3

X584_53_040412

Figure 53: Final Pblock Rectangle for pblock_U5_mb0_comp

Note: Inthe new pblock rectangle for pblock_U5_mb0_comp, on the left side of the rectangle, there
is one column of unselected RAMBSs between the rectangle and the pblock_U4_peripherals area. On
the top and bottom of the pblock_U5_mb0_comp rectangle, there is a row of unselected slices and
two unselected DSP48 tiles separating the pblock_U4_peripherals area. These unselected
resources are the fence between the U5_mb0_comp isolated region and the U4_peripherals isolated
region. There are two unused DSP48 tiles on both the top and bottom horizontal fences because for

the Spartan-6 device IDF, a minimum of two DSP48 tiles are required for a valid horizontal fence.

In the Physical Constraints pane, left-click then right-click the pblock_U2_mb0 pblock and
select Set Pblock Size.

In the Device pane, draw a vertical rectangle starting from one SLICE column to the left of

the bottom-left of the pblock_U6_mb1_comp rectangle. The vertical rectangle should be

drawn up to within one SLICE column and one SLICE row of the pblock_U4_peripherals
area in the top left quadrant of the device (see Figure 54).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

65

http://www.xilinx.com

Building the Reference Design

& XILINX.

L Project Summary X @ Dewvice X 7] Schematic

W (G| S | L &

i

&% (& W G IR G e3¢

x | EA lockstep_system.ucf X og x

I L3

X584_54_040412

Figure 54: Drawing the Pblock Rectangle for pblock_U2_mb0

7.

In the Set Pblock window, make sure that all the resources are selected (Figure 55). Click
OK.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 66

http://www.xilinx.com

Building the Reference Design

& XILINX.

,
[€] Set Pblock

e

r—

- e

Grids

f b Which resources do you wish pblock_U2_mb0 to constrain?

BLICE
DSP48
RAMB16

RAMB3

| selectal || Cearal |

[ok

|| cancel

X584_55_040412

Figure 55: Resources for pblock_U2_mb0

A highlighted rectangle appears, indicating that the device resources have been assigned
to the pblock associated with the U2_mb0 partition (Figure 56).

Click the Rectangles tab in the Pblock Properties pane and adjust the rectangle through
click and drag actions in the Device pane (see Figure 56) until the rectangle settings are:

e XLo:30
e YLo:53
e XHi:73
e YHi132

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

67

http://www.xilinx.com

Building the Reference Design & XILINX.

Netlist Dosign - netlist_1* - xc6slx150tigg676-3 (active)

-0 & X L Project Summary % |6 Deviee X | 7 Schematic x

1) lockstep_system ucf % o8 x

4

e
) ROOT

Epvioc 2 mba |
3 polock_U3_mb1
) phlock_U4_peripherals
3 pblodk_US_mba_comp
3 polock_U6_mb1_comp

¥ % x kS &R

Phiack Properbes -0 %
+ = [&5
3 pblock_U2_mbd

T u s vo xn wn
|1 S N (i T

ol s s s vt

 Properties | [Clock Regions | & Selection 4 I i

X584_56_040512

Figure 56: Final First Pblock Rectangle for pblock_U2_mb0

9. The remaining empty space is also assigned to pblock_US3. To add to the floorplan for
pblock_U2_mb0, in the Physical Constraints pane, left-click then right-click the
pblock_U2_mb0 pblock and select Add Pblock Rectangle.

10. In the Device pane, draw a horizontal rectangle starting from the top left of the rectangle
just drawn (see Figure 57). The horizontal rectangle should be drawn up to within one
SLICE row and one DSP48 column of the pblock_U4_peripherals area in the top right
quadrant of the device and within one slice row of the pblock_U6_mb1_comp rectangle.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 68

http://www.xilinx.com

Building the Reference Design

& XILINX.

L Project Summary X | @ Dewice x ' Schemabc x | [} lockstep_system.ucf x 0g x

Be s o

&% Nk ER & Bl

S el e, U AR

X584_57_040512

Figure 57: Drawing the Second Pblock Rectangle for pblock_U2_mb0

OK.

11. In the Set Pblock window (Figure 58), make sure that all the resources are selected. Click

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

69

http://www.xilinx.com

Building the Reference Design

& XILINX.

12.

Figure 58:

E‘] Add Rectangle

|0| Which ranges should be added to pblodk_U2_mb0?

Grids

[¥] SLICE
[¥] BUFH
[¥] bcm

[V] DsP48
[¥] PLL_ADV
[V] RAMB16

[V] RAMBS

| selectal || Clearal |

Resources for the pblock_U2_mb0 Second Rectangle

A second highlighted rectangle appears, indicating that additional device resources have
been assigned to the Pblock associated with the U2_mb0 partition (Figure 59).

Click the Rectangles tab in the Pblock Properties pane and adjust the rectangle through
click-and-drag actions in the Device pane (Figure 59) until the rectangle settings for

Rectangles 1, 2, and 3 match the listed settings:

Rectangle 1:
e XLlo:91
e YLo:53
e XHi:122
e Y Hi90
Rectangle 2:
e XLo:88
e YLo:53
e XHi: 89
e YHi86
Rectangle 3:
e XLo:75
e YLo:53
e XHi: 87
e YHi90

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

70

http://www.xilinx.com

Building the Reference Design

& XILINX.

Netlist Design - netlist_1*

Physical Constraints -0a x

azs[E

Rectangle 4 settings should remain as was previously drawn.
X Lo: 30
Y Lo: 53
X Hi: 73
Y Hi: 132

xcBslx150tfgg676-3 (active)

netlist_1
= (3) ROOT
)
i (@ pblock_U3_mb1
(@) pblock_U4_peripherals
i @ pblock_US_mb0_comp
+ (@ pblock_Us_mb1_comp

Pblock Properties 0o x

+«+BEE+

(@ pblock_U2_mb0

I d Xlo YLlo XHi Y Hi
I S S N FE 0
I R Y I
I N T A O
I O O N N PR

seneral | Statistics Inﬂan{ »y B

) Properties | @ Clock Regions | [; Selection 1§

"'!L_l‘ |

®% xkBER G (RGO

L

Figure 59: Final Floorplan for pblock_U2_mb0

X584_59_040512

13. Save the updated floorplan and the PlanAhead tool project by selecting File > Save

Discussing the Provided Floorplans

Design from the menu bar.

When the floorplan is saved, the target UCF is updated with AREA RANGE constraints

based on the pblock rectangles drawn in the Device pane.

The floorplan for the U3_mb1, U4_peripherals, and U6_mb1_comp isolated functions were
provided through the lockstep_system.ucft file provided with the reference design. In this

section, the methodology of generating the provided floorplans is discussed.

U3_mb1 Floorplan

The U3_mb1 floorplan (Figure 60) is initially generated as a simple horizontal rectangle. When
drawing the simple horizontal rectangle, the DSP48 in the upper right of the rectangle
(DSP48_X1Y16) gets included. For isolation in Spartan-6 devices, a minimum of two DSP48
user tiles is required for a valid horizontal fence. This DSP48 needs to be excluded from the

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

71

http://www.xilinx.com

Building the Reference Design

& XILINX.

floor plan. To do this, the simple rectangle is drawn and the UCF is then edited to change this
constraint:

AREA_GROUP "pblock U3_mbl" RANGE=DSP48_X1Y6:DSP48_X1Y16;

to:

AREA_GROUP "pblock U3_mbl" RANGE=DSP48_X1Y6:DSP48_X1Y15;

Changing the constraint removes the DSP48 user tile and creates a valid horizontal fence.
DSP48_X1Y17 gets excluded when the floorplan for U2_mb0 is drawn due to the manner in
which the rectangle crosses the tile.

Physical Constraints -0 a %

o I =

Netist — O O X . Project Summary x| @ Device X

= XE

] netist_1
E- @ ROOT
i (@ pblock_U2_mb0

.- @ pblock_U6_mb1_comp

[3) LOCKSTEP_SYSTEM_TOP

b0 (U2_mb0=M
_mb1 (U3_mbLME
}_peripherals (U4_p|

5_mb0_comp (US_m|
6_mb1_comp (U&_m|

cc

Q@8 Gz

Fat

Phlock Properties

« + 58]

q

(@ pblock_U3_mb1

d
L]

XLlo

=<

Lo
4

3

X
I

I
=
I

B

i

=
3

3

Wi

2
ey
@

3

LI

D% Kk I® RGP

neral | Statistics | Instances | Rectangles | ¢ » =2

| Properties | @@ Clock Regions| I Selection

1

»

X584_60_040512

Figure 60: U3_mb1 Floorplan

On the left side of the U3_mb1 floorplan, a single column of SLICE user tiles is used to
implement the vertical fence between U3_mb1 and U4_peripherals. On the right side, a single
column of DSP48 user tiles is used to implement the vertical fence between U3_mb1 and
U4_peripherals. Separating U3_mb1 from U2_mb0 is a single row of SLICE user tiles, two
DSP48 user tiles, and in two columnar locations, a single RAMB user tile. Separating U3_mb1
from U6_mb1_comp is a single row of SLICE user tiles, a single DCM user tile, and a single
RAMB user tile. On the bottom side, separating U3_mb1 from U4_periperals is a single row of
SLICE user tiles, three columnar instances of a single RAMB user tile, two DSP48 user tiles,
and one PLL_ADV user tile. All fences were generated using the required minimum user tiles
for each user tile type for both vertical and horizontal fences. Figure 61 shows the fence
surrounding U3_mb1 highlighted in blue.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 72

http://www.xilinx.com

Building the Reference Design & XILINX.

AEELY YRR A

% (K ¥ (S ER

td

L Project Summary X | % Device X | [} lockstep_system.ucf x Oa X

X584_61_041412

Figure 61: U3_mb1 Fence Highlighted in Blue

The area group constraints for pblock_U3_mb1 show that BUFH constraints have not been
included. They were excluded because they are not a resource that is required for
implementing U3_mb?1.

U6_mb1_comp Floorplan

The U6_mb1_comp floorplan (Figure 62) is drawn as a simple rectangle. Given its location, it
naturally selects resources that fulfill the minimum user tile separations for a fence. On the left
side of the U6_mb1_comp floorplan, a single column of SLICE user tiles is used to implement
the vertical fence between U6_mb1_comp and U2_mb0. On the right side, a single column of
DSP48 user tiles is used to implement the vertical fence between U6_mb1_comp and
U4_peripherals. On the top and bottom side, for the horizontal fences, a single row of SLICE
user tiles, a single RAMB user tile, and a single DCM user tile are used. Figure 63 shows the
fence surrounding U6_mb1_comp highlighted in blue.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 73

http://www.xilinx.com

Building the Reference Design & XILINX.

Physical Constrants -0 X
o X mE
|5 nethst_1
| =@ rooT
@ pblock_U2_mb0
@ pblock_U3_mb1
@ pblock_U4_peripherals
(@ pblock_US_mb0_comp
]

L Project Summary | i Device x| [} lockstep_system.ucf x Oa x

+
=

=R R % 3

|G &

|| 3¢

PhlockProperfies
+« =+ &L
(@ phlock_Us_mb1_comp

Id Xl Yo XH YH

| ESN EZZ T PP PP | A EEEIETEEEEEEE L

sstcs | Instances | Rectangles |« » @ |
@ Prope.. |8 Cock .. | & Selection ‘ i

X584_62_040512

Figure 62: U6_mb1_comp Floorplan

[B lockstep_system.ucf x |

| X Project summary x | @ Device x

-

X584_63_041412

Figure 63: U6_mb1_comp Fence Highlighted in Blue

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 74

http://www.xilinx.com

Building the Reference Design & XILINX.

The area group constraints for pblock_U6_mb1_comp show that the BUFH and BUFGMUX
constraints have been included as resources available to implement U6_mb1_comp. While the
BUFGMUX is not required to implement U6_mb1_comp, it is required to implement the global
clocking for the overall design. For IDF, global logic must logically be owned at the top level, but
must be physically owned by an area group so that the global logic can be implemented. The
PLL_ADV used by the CLOCKGEN module is locked through placement constraints to be
physically owned by the U6_mb1_comp isolated region for this design. The BUFH was included
in the area group because removing it brought no added benefit, even though it is not required
to implement U6_mb1_comp.

U4 _peripherals Floorplan

For this design, the U4_peripherals floorplan (Figure 64) was the most difficult to develop. All
the 1/O for the design was originally owned by the U4_peripherals isolated function, except for
the two comparator error outputs. It became too difficult to route the design given the existing
pinout of the Avnet Spartan-6 FPGA LX150T development board if these two I/O were not also
included in the U4_peripherals isolated function. With this, the HDL was updated so that all the
I/O were within the U4_peripherals isolated function.

Physical Constraints - 0O g x Netiist -0O0a x I Project Summary X | @ Device x | [lockstep_system.ucf X oo =®
& | = HE]
5] netlist_1 () LOCKSTEP_SYSTEM_TOP P
[=- (@) ROOT \E G .Na_r:*. 21-"-?}
. 3 pblock_U2_mbo & [Primitives (1)) >
- @ pblodk_U3_mb1 (& [@] U1_dkgen (C P-,:I:_ 5
I8F Joblock_U4_peripherals y
{a &

i3 pblock_U5_mb0_comp
t.- (@) pblock_U6_mb1_comp

&, Sources' Physical Constraints

Phlock Properties -0a X

+ »[EE

@ pblock_U4_peripherals

Id XL YlLo XH YHi

F

-al | Statistics | Instances | Rectangles | 4 » B

7] Pmperﬁs‘ Clock Reg.. | I} Selection

U6_mb1_comp (U6_mb

B & % R v % %S

« [=

X584_64_040512

Figure 64: UA4_peripherals Floorplan

To draw the floorplan, a pblock rectangle was added on the left side of the device parallel to
what is now the pblock for U5_mb0_comp. This pulled in the ILOGIC, OLOGIC, IODELAYS,
memory controller blocks (MCBs), BUFIO, BUFIO2, BUFPLL, and BUFPLL_MCB instances on
the left side of the device into the area group. The MCB that is mapped to the DDR3 pinout is
the MCB on the upper left of the device, which also needed the BUFPLL_MCB on the left side
of the device for clocking. The 1/0O components on the upper left side of the device were also
required for the DDRS interface, along with I/O components toward the middle of the left side for
the RS-232 interface. To ease floorplanning, all instance types on the left side of the device
were included in the U4_peripherals floorplan.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 75

http://www.xilinx.com

Building the Reference Design & XILINX.

A second pblock rectangle was added across the top of the device, excluding the ILOGIC,
OLOGIC, and IODELAYS across the top. The I/O components across the top were excluded for
two reasons. First, there are no 1/Os across the top used in the design. Second, there is a
limitation in the way that the Xilinx software calculates overlapping area group ranges for the
I/O components. Leaving a single or group of excluded 1/0 components prevents the Xilinx
software from calculating a larger area group for the I/O than is actually used. This method
prevents the tools from reporting erroneous area group overlaps. See Developing Secure
Designs with the Spartan-6 Family Using the Isolation Design Flow [Ref 2] for further
information regarding this limitation with the Xilinx tools and the workaround.

For this second pblock rectangle, the BUFIO2, BUFIO2FB, BUFPLL, BUFPLL_MCB, BUFDS,
IPAD, OPAD, GTPA1_DUAL, and PCIE_A1 components located on the top of the device were
also excluded from the area group to prevent unintentional area group overlaps. They also were
not required for the design. The GTPA1_DUAL, IPAD, OPAD, and PCIE components are
completely excluded for the U4_peripherals area group because they are not required for the
design.

A third pblock rectangle was added on the right side of the device parallel to what are now the
pblocks for U2_mb0, U6_mb1_comp, and U3_mb1. The pblock was drawn to include the I/O
components on the top and bottom right of the device but initially excluded all the I/O
components on the right side of the device, along with the MCBs, BUFIO2s, BUFIO2FBs,
BUFPLLs, BUFPLL_MCBs, and BSCANs. The components were initially excluded so that
specific instances could be included later.

A series of pblocks were added after this to include a series of components on the right side of
the device. One pblock was added to include BSCAN_X0Y1 and BSCAN_XO0YO0. Another
pblock was added to include ILOGIC, OLOGIC, and IODELAY components from X35Y171
down to X35Y46. This leaves a gap of excluded I/O components down the remainder of the
right side of the device, which prevents the Xilinx tools from reporting erroneous area group
overlaps. A pblock was also added to include the BUFIO2, BUFIO2FB, BUFPLL, and
BUFPLL_MCB on the right side of the device. The MCBs on the right side of the device are
completely excluded because they are not required for this design.

Finally, a series of pblocks were added to pull in the U4_peripherals isolated region to within the
minimum required user tiles for a fence. It was determined that because the U4_peripherals
floorplan was already an irregular shape, this floorplan would be adjusted to include the
minimum of two unused DSP48 user tiles for a valid horizontal fence, wherever possible. This
same thinking was also applied to floorplanning RAMB tiles for the fence. This meant manually
dragging and resizing the small rectangles that the PlanAhead tool automatically created to
define the irregular floorplan shape. Also, on the bottom side of the device, IODELAY, ILOGIC,
and OLOGIC X8YO0 to X8Y3 were excluded to provide a gap, preventing the Xilinx tools from
reporting unintentional area group overlaps. For completeness, Figure 65 shows the locations
of the 1/0 components excluded from the U4_peripherals area group.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 76

http://www.xilinx.com

& XILINX.

Building the Reference Design

Excluded I/O
Components

77

X584_65_041612

www.Xxilinx.com

POST_CRC_INTERNAL

ICAP
SPI_ACCESS
SUSPEND_SYNC
STARTUP
DNA_PORT
GTPA1_DUAL
PCIE_A1

These components were completely excluded from the floorplan because they were not
SLAVE_SPI

Figure 65: UA4_peripherals Floorplan Excluded I/O Components
required for the design:

XAPP584 (v1.0) July 10, 2012

http://www.xilinx.com

Building the Reference Design & XILINX.

 IPAD
* OPAD

For Spartan-6 device designs, the pad ranges need to be set manually for the I/O blocks or
pads used in the design so that they are included in the isolated region. The PAD range is
identified in the UCF with the AREA_ GROUP "pblock U4_peripherals"
RANGE=PAD211, PAD190, PAD191,...; line. The PADXXX numbers correspond to the I/O pad
and 1/O block used for the pin. The PAD numbers can be found by zooming in on the 1/0 block
in the PlanAhead tool’'s Device pane, as shown in Figure 66. The PAD number is listed in
parentheses. Each pad used in the design must be listed individually in the Range constraint,
separated by a comma.

I Project Summary X | § Device x|ﬂ"1|ockstep_system.ucf x O g X

] ' R

X584_66_040512

Figure 66: View of PAD in the PlanAhead Tool Device Pane

As previously discussed in this section, there is a limitation in the way that the ISE tools
calculate overlapping area group ranges for the 1/0 components. This limitation also affects the
BUFPLLs, BUFPLL_MCBs, BUFIO2s, and BUFIO2FBs. For the design, only the components
located on the left and right side of the device are included. The PlanAhead tool incorrectly

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 78

http://www.xilinx.com

Building the Reference Design & XILINX.

defines the constraints for these components when they are included in the area group, making
the check for overlapping area groups think that these components overlap with the U2_mb0,
U3_mb1, U5_mb0_comp, and U6_mb1_comp area groups.

On the right side of the device are:

* BUFIO2_X3Y10, BUFIO2_X3Y11, BUFIO2_X3Y12, BUFIO2_X3Y13, BUFIO2_X4Y18,
BUFIO2_X4Y19, BUFIO2_X4Y20, BUFIO2_X4Y21

* BUFIO2FB_X3Y10, BUFIO2FB_X3Y11, BUFIO2FB_X3Y12, BUFIO2FB_X3Y13,
BUFIO2FB_X4Y18, BUFIO2FB_X4Y19, BUFIO2FB_X4Y20, BUFIO2FB_X4Y21

e BUFPLL_X2Y2, BUFPLL_X2Y3
e BUFPLL_MCB_X2Y5

On the left side of the device are:

* BUFIO2_X1Y8, BUFIO2_X1Y9, BUFIO2_X1Y14, BUFIO2_X1Y15, BUFIO2_X0Y16,
BUFIO2_X0Y17, BUFIO2_X0Y22, BUFIO2_X0Y23

* BUFIO2FB_X1Y8, BUFIO2FB_X1Y9, BUFIO2FB_X1Y14, BUFIO2FB_X1Y15,
BUFIO2FB_X0Y16, BUFIO2FB_X0Y17, BUFIO2FB_X0Y22, BUFIO2FB_X0Y23

e BUFPLL_X0Y2, BUFPLL_X0Y3
e BUFPLL_MCB_XO0Y5
The user works around the overlap limitation by listing each area group constraint as separate

groups, where the first group defines the components on the right side, and the second group
defines the components on the left side separated by a comma.

Note: The constraints could have been written left side first, then right side.
The constraints in the UCF become:

* AREA_GROUP "pblock_ U4_peripherals"
RANGE=BUFIO2_X3Y10:BUFIO2_X4Y21l, BUFIO2_X0Y16:BUFIO2_X0Y23;

* AREA_GROUP "pblock_ U4_peripherals"
RANGE=BUFIO2FB_X3Y10:BUFIO2FB_X4Y21, BUFIO2FB_X0Y16:BUFIO2FB_X0Y23,

* AREA_GROUP "pblock_ U4_peripherals"
RANGE=BUFPLL_X2Y3 :BUFPLL_X2Y3, BUFPLL_X0Y2:BUFPLL_X0Y3;

* AREA_GROUP "pblock_ U4_peripherals"
RANGE=BUFPLL_MCB_X2Y5:BUFPLL_MCB_X2Y5, BUFPLL_MCB_XO0Y5:BUFPLL_MCB_X0Y5;

This workaround to the overlap limitation forces the tools to know that the components are
defined in two smaller pblock rectangles instead of one large pblock rectangle that spans the
whole device. The UCF constraint for the BUFPLL shows that BUFPLL_X2Y2 is missing. That
is because with it included, the PlanAhead tool removes the constraint segments and changes
the constraint to RANGE = BUFPLL_X0Y2:BUFPLL_X2Y3, which causes overlap errors.
Basically, removing BUFPLL_X2Y2 puts a gap in the constraint.

Figure 67 shows the fence separating U4_peripherals from the rest of the isolated functions
highlighted in blue.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 79

http://www.xilinx.com

Building the Reference Design & XILINX.

X584_67_041412
Figure 67: U4_peripherals Fence Highlighted in Blue

Note: The user should start floorplanning any isolated design as early as possible after the pinout and
inter-isolated function communication is known. For a design that uses IDF, the user should also plan the
design pinout to make floorplanning easier. Also, floorplanning can be an iterative process, requiring small
to medium tweaks when it comes to executing final routing and meeting timing.

Verifying the Floorplans are Large Enough

The user might question if the assigned pblocks are large enough to implement the isolated
function. The PlanAhead tool provides a quick pre-implementation check to indicate, based on
the required component count, if the pblock is large enough.

To verify that the pblock associated with each isolated function is large enough, these steps
should be performed for each isolated function:

1. Inthe Physical Constraints pane, click the pblock that you want to check.
2. Inthe Pblock Properties pane, click the Statistics tab.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 80

http://www.xilinx.com

Building the Reference Design & XILINX.

3. In the Statistics tab, there is a section entitled Physical Resource Estimates, indicating the
percentage of the resources within the pblock that the isolated function consumes,
excluding routing resources. If the percentage exceeds 100%, the Site Type row turns red.

Placing Desigh Components

For the reference design, three components are locked down to specific sites within the device.
The three components are the PLL used for the overall design clock generation, a
BUFPLL_MCB that provides the clocking for the DDR3 memory controller, and the memory
controller itself. By locking down these components, the implementation time is shortened and
the PLL is physically owned by an isolated region.

These steps describe assigning the three component instances to specific device sites:

1. Click in the Device pane. Press Ctrl+F to begin a search.
2. Change the Find to Instances, and the Criteria to Type is Clock (Figure 68).

e L

Find | Instances v

Criteria

Type - |lis * | |Clock -

[Match Case

Open in a new tab

{ OK] [Cancel

X584_68_040512

Figure 68: Find Instance Clock

3. Click OK.

4. A Find Results pane appears at the bottom of the PlanAhead tool window listing the
BUFGs, BUFPLL_MCB, and PLL_ADV found in the netlist. In the Find Results pane, click
the BUFPLL_MCB.

5. With BUFPLL_MCB selected, go to the Instance Properties pane, and click the Attributes
tab (Figure 69).

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 81

http://www.xilinx.com

Building the Reference Design

& XILINX.

) Properties | @ Clock Regions | [y Selection |

Find Results - Instances - Type is ‘Clock’ (5)

Project Manager |: Netlist Design - netlist_1
|5 Physical Constraints — 0.8 x Netiist — 03 X
RTL Design | - m = -
= A8
& (& retist_1 i) MCB_DDR 3fmcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_sice_d3/ar_j ~
ROOT [} MCB_DDR.3/mcb_ui_top_0/P0_UI_AXI.pD_axi_mch/faxi_register_slice_d3far_y
(@ pblodk_UZ_mbD [iil MCB_DDR.3/mcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_slice_d3/far
@ pblock_U3_mb1 [}l MCB_DDR.3/mcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_shce_d3far
) pbi -Uq_gu:mrals [l MCB_DDR 3fmcb_ui_top_0/P0_UI_AXI.p0_axi_mcb/axi_register_slice_d3far j
=~ US_mb0._com [} MCB_DDR.3/mcb_ui_top_0/P0_UI_AXL.p0_axi_mch/faxi_register_shice_d3/far_y
e kit phiock | . P [ii} MCB_DDR.3fmcb_ui_top_0/P0_UT A)C[.pﬂ_a)q_md:nfa.n:_regslﬁ_sioe_dsfau
(@ pblock_US_mb1_comp [} MCB_DDR 3 /mcb _ui_top_0/P0_UI_AXL.p0_axi_mch/axi_register_siice_d3/far_j
@ RunDRC (i) MCB_DDR 3/mcb_ui_top_0/P0_UI_AXIL.p0_axi_mcb/axi_regster_sice_d3farj
(il MCB_DDR.3/mcb _ui_top_0/P0_UT_AXI.p0_axi_mch/axi_register_slice_d3far i |
P Run Noise Analysis [} MCB_DDR.3/mch_ui_top_0/P0_UI_AXI.pD_axi_mch/faxi_register_slice_d3far_y
[ii} MCB_DDR.3fmcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_slice_d3far
(@ Report Timing Instance Properties = O & % | |{)MCB_DDR3fmch_ui_top_0/P0_UI_AXI.p0_axi_mcb/axi_register_sice_d3/ar J
) = - = [} MCB_DDR3/mcb _ui_top_0/P0_UI_AXL.p0_axi_mch/axi_register_slice_d3far_j
ill. Stack Histogram +*- -D“EIL% |I =="F+ [l MCB_DDR 3fmch_ui_top_0/P0_UI_AXL.p0_axi_mchy/axi_register_shice_d3/ar |
- [i] MCB_DDR3/meb_ui_top_0fgen_spartan6_bufpl_mcb.bufpll_0 [ii} MCB_DDR.3fmcb_ui_top_0/P0_UT A)C[.w_a)q_md:nfa.n:_regslﬁ_ﬁce_d.}fau
& Set up ChipScope = [} MCB_DDR 3fmcb_ui_top_0/P0_UT_AXI.p0_axi_mch//axi_register_slice_d3far
= » ||| |[i)MCB_DDR3mcb_ui_top_0/P0_UT_AXI.p0_axi_mcb/axi_register_siice_d3/far_j
b 1S_RECONFIGURABLE : | () MCB_DDR 3 fmcb_ui_top_0/P0_LIT_AXT.pl_axi_meh/axi_register_sice_d3far |
S 15_SEQUENTIAL [: | [MCB_DDR 3fmcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_siice_d3far |
Implement IE_CEUl BUEPLL MCB - | (il MCB_DDR 3fmdcb_ui_top_0/P0_UI_AXI.p0_axi_mdb/axi_register_slice_d3far j
| BUFPLL_MCB_XOY5| @ MCS_DDR3ﬂncb_q_wp_o,m_uI_m.w_mq_m,'a:q_reosu_m_ﬂfaJ
imenemeaesn | FSTeaee o e | B g e e
I Name U4_peripherals/MCB_DDR3/NCS_D. .. | i) MCB_DDR.3/mcb_ui_top_0/PO_UI_AXL.p0_axi_mcb/axi_register_sice_d3far |
g PARENT | [MCB_DDR 3 fmeb_ui_top_0/P0_UT_AXI.p0_axi_mch/axi_register_sice_d3far_
PBELOCK pblock U4 peripherals |§ Ez‘:‘MCB_DDRSm_“i_tDP_ﬂﬁ_m_m-m_!ﬁ_ﬂﬁm_rmh_ﬁ_:ﬁ‘J
At PRIMITIVE GROUP oL | i}l MCB_DDR 3, _ui_top_0/PO_UI_AXI.pD_axi_r faxi_register_shice_d3far j
Promate Partitions s :LEVEL LI:;F i gg_om;ﬂ_ui_mp_gﬁ_ﬁ_mﬂ_m_mﬁm_regsml_ﬁce_:g:ar 1
ITIVE, £ 0 DDR. _ui_top_0/PO_UI_AXI.p0_axi_mch/axi_register_sice_d3far
PRIMITIVE_SUBGROUP gelk L3 [}l MCB_DDR.3/mcb_ui_top_0/P0_UI_AXI.p0_axi_mch/faxi_register_shice_d3/ar_y
¥ XSTLIB - [} MCB_DDR.3/mcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_slice_d3/far
og ioc [}l MCB_DDR.3/mcb_ui_top_0/P0_UI_AXL.p0_axi_mch/axi_register_slice_d3/far
7 . [} MCB_DDR 3 fmcb_ui_top_0/P0_UI_AXI.pd_axi_mch/faxi_register_shce_d3far_j
Attrbute Type: String Read-only: No (i)} MCB_DDR 3fcb_ui_top_0/P0_UL_AXL.p0_axi_mcbaxi_register_sice_d3/ar
[l MCB_DDR.3fmcb_ui_top_0/P0_UI_AXI.p0_axi_mch/axi_register_slice dSph:ﬁ
[l MCB_DDR 3/mcb_ui_top DMJ UI_AXI.p0_axi_mchfreset1_INV_0 (INV)
General | Pins | Attributes | Connectivity | [AJMCE_DOR 3fmcb_ui g | L .
[l MCB_DDR 3 /mch_ui_top, _0fmcb_raw _wrapper_inst/Mmux_gated_pl_lock11 (
“ 9 Acply]l[[3§ Cancel] (il MCB_DDR 3fmcb _ui_top_0/mcb_raw_wrapper_inst/da_15_0_data.iodrp2_da.
G'.lM(]iDDR.?ﬁncbu topcllmcb rawqu:permt{dq 15 Odalalod'ﬂdq_v

“ 1 [\

=

?\ Id MName Cell Pins Partition
{1 surs_DRCK BUFG 2 Top
& [Mi|2 Ju4_peripherals/MOB_DDR3/MCB_DDR3/mch_ui_top_0/gen_spartans_bufpl_mcb.bufpl_0 BUFPLLMCE |3 Ju4_peripheral
@ 3 U1_chkgen/dock_generator_0/dodk_generator_0/PLLO_CLKFBOUT_BUFG_INST BUFG 2 Top
[l 4 U1_ckgen/dock_generator_0/dock_generator_0/PLLO_CLKOUT2_BUFG_INST BUFG 2 Top
s U1_clkgen/dock_generator_0/dod_generator_0/PLLO_INST/Using_PLL_ADV.PLL_ADV_inst PLL_ADV 62 Top

[{i] Instances - Type is ‘Clock' (5) | [1] Instances - Type is 'Clock’ (5) |

|5 Td Console | > Messages |] Complation | %) Reports- ¥ Find Results | (% Desgn Runs | D> [/O Ports |

X584_69_040512

Figure 69: Setting LOC Attribute for BUFPLL_MCB

6. Click the green cross within the Attributes tab, and add the LOC Attribute to the
BUFPLL_MCB (Figure 69).

7. Setthe LOC attribute to BUFPLL_MCB_XO0Y5 to assign the instance to the site. Click

Apply to set the attribute assignment (Figure 69).
Repeat step 4 through step 7 to lock the PLL_ADV instance to PLL_ADV_X0Y2.
9. Click in the Device pane. Press Ctrl+F to begin a search.

. Change the Find to Instances, and the Criteria to Type is MCB (Figure 70).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

82

http://www.xilinx.com

Building the Reference Design & XILINX.

rEIFind R e — — - o]
I ¥ N e - ¥ e
1 Find | Instances -
Criteria

Type v ||is '|"

[T Match Case
Openin a new tab

| [ok || cancel

& = = = = — e —
X584_70_040512

Figure 70: Find Instance MCB

11. In the Find Results pane, click the MCB.

12. With the MCB selected, through the Attributes tab in the Instance Properties pane add the
LOC attribute and set it to MCB_X0Y3, which is the MCB tied to the DDR3 pins.

13. Click Apply.

14. Click Save in the PlanAhead window to add the Instance LOCs to the
lockstep_system.ucf file.

Run IVT on the Design in UCF Mode

Figure 71 shows the reference design progress to this point.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 83

http://www.xilinx.com

Building the Reference Design & XILINX.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

NN N NN N

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_71_041112

Figure 71: Reference Design Progress

The IVT software is a command line tool that verifies that an FPGA design partitioned into
isolated regions and functions meets stringent standards for fail-safe design. The IVT is used at
two stages in the IDF. Early in the flow, the IVT is used to perform a series of design rule checks
on floorplans and pin assignments. Use of the IVT at this stage in the flow is optional but highly
recommended. The goal of UCF checking is to identify potential isolation problems before
commitment to board layout. After the design is complete, the IVT is used again on the NCD to
validate that the required isolation is built into the design. The use of the IVT on the NCD is
mandatory in the flow to verify isolation.

At this stage in the application note, the IVT is run on the lockstep_system.ucft file in what
is known as UCF mode. The IVT in UCF mode checks these conditions:

* Pins from different isolation regions are not physically adjacent, vertically or
horizontally, at the die.

* Pins from different isolation regions are not physically adjacent at the package.
Adjacency is defined in eight compass directions: north, northwest, west, southwest,
south, southeast, east, and northeast.

* Pins from different isolation regions are not co-located in an 1/O block.

While the IVT does not fault such conditions, the real rule is application-specific and
whether or not it is a fault depends on the program.

¢ The AREA_RANGE constraints are defined such that the minimum user tile for a
fence is defined between isolated regions.

The files to run the IVT on the design are provided as part of the application note. Subsequent
sections contain steps to install and run the IVT on the design’s UCF and describe the structure
of the input and output files.

Installing the IVT

The IVT executable, version 7.08, is included within the <reference design>\ivt
directory.

1. Inthe <reference design>\ivt directory, extract the file ivt_7_08_nt.zip to the
<reference design>\ivt directory.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 84

http://www.xilinx.com

Building the Reference Design

& XILINX.

2. Navigate down to <reference design>\ivt\ivt_7_08_nt\bin_nt\13.4\nt and
copy ivt.exe to the 32-bit binary executables directory of the ISE tools 13.4 installation
directory (usually located at C:\Xilinx\13.4\ISE_DS\ISE\bin\nt) to install the
32-bit Windows version of the IVT.

3. Navigate down to <reference design>\ivt\ivt_7_08_nt\bin_nt\13.4\nt64
and copy ivt.exe to the 64-bit binary executables directory of the ISE tools 13.4
installation directory (usually located at C: \Xilinx\13.4\ISE_DS\ISE\bin\nt64)to
install the 64-bit Windows version of the IVT.

Executing the IVT in UCF Mode

When running the IVT in UCF mode, two files are required to run the tool. The first is the pin
isolation group (PIG) file. The PIG file uses the UCF syntax, so it can be copied directly from the
UCF to define which pins go with which isolated function. The pins for each isolated function
are listed in the format NET "Net Name" LOC = Pin Number; and bracketed with this
formatted statement:

ISOLATION_GROUP Isolated Function Instance Name BEGIN

NET
NET

"Net Name" LOC = Pin Number;
"Net Name" LOC = Pin Number;

END ISOLATION_GROUP

All isolation functions must be listed, even if they do not have any pin I/O within the isolated

function.

Note: The global clock input pin is not part of an isolated function so it does not have to be included in

the PIG file.

The lockstep_system.pig file for the dual-lockstep MicroBlaze processor system is
located at <reference design>\ivt\ucf and has the following contents. All the pins are
part of the U4_peripherals isolated function.

Place all Global (top level) signals here (each commented out)

#NET

"Ul_clkgen/EXTERN_CLK_IN" LOC = U23;

#U2_mb0 pin definitions
ISOLATION_GROUP U2_mb0 BEGIN
END ISOLATION_GROUP

#U3_mbl pin definitions
ISOLATION_GROUP U3_mbl BEGIN
END ISOLATION_GROUP

#U4_peripherals pin definitions.
ISOLATION_GROUP U4_peripherals BEGIN

NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET

"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[0]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[1]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[2]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[3]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[4]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[5]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[6]"
"U4_peripherals/EXTERN_DIP_SWITCHES_8BITS_TRI_I[7]"
"U4_peripherals/EXTERN_LEDS_8BITS_TRI_O[0]" LOC = M1
"U4_peripherals/EXTERN_LEDS_8BITS_TRI_O[1]" LOC = L1
"U4_peripherals/EXTERN_LEDS_8BITS_TRI_O[2]" LOC = M2
"U4_peripherals/EXTERN_LEDS_8BITS_TRI_O[3]" LOC = F2
"U4_peripherals/EXTERN_LEDS_8BITS_TRI_O[4]" LOC = H2
"U4_peripherals/EXTERN_LEDS_8BITS_TRI_O[5]" LOC = C2
"U4_peripherals/EXTERN_MB0_COMPARATOR_ERROR_OUT" LOC
"U4_peripherals/EXTERN_MB1_COMPARATOR_ERROR_OUT" LOC
"U4_peripherals/EXTERN_LINEAR_FLASH_ADDRESS[0]" LOC
"U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[10]" LOC

LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC
8;
9;
1;
2;
2;
5;

=L

= K21;
= G23;
= G24;
= J20;
= J22;
= E24;
= E23;
= K22;

C26;
F23;
24;

R19;

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

85

http://www.xilinx.com

Building the Reference Design & XILINX.

NET "U4_peripherals/EXTERN_LINEAR_FLASH_ADDRESS[11]" LOC = P21;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[12]" LOC = P22;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[13]" LOC = R20;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[14]" LOC = R21;

]
]
]
]
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[15]" LOC = P24;
]
]
]

NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[16]" LOC = P26;
NET "U4_peripherals/EXTERN_LINEAR_FLASH_ADDRESS[17]" LOC = R23;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[18]" LOC = R24;

NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS[19]" LOC = T24;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[1]" LOC = N19;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS[20]" LOC = T26;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[21]" LOC = V24;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS([22]" LOC = V26;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS([23]" LOC = N17;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS[2]" LOC = N20;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS([3]" LOC = N21;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[4]" LOC = N22;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[5]" LOC = P17;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS[6]" LOC = P19;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS[7]" LOC = N23;
NET "U4_peripherals/EXTERN_LINEAR FLASH ADDRESS[8]" LOC = N24;
NET "U4_peripherals/EXTERN_LINEAR_FLASH ADDRESS[9]" LOC = R18;
NET "U4_peripherals/EXTERN_LINEAR FLASH CE_N" LOC = AB9;

NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[0]" LOC = W25;

NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[10]" LOC = WS8;

NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[11]" LOC = AF6;
NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[12]" LOC = AD6;
NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[13]" LOC = W19;
NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[14]" LOC = V18;
NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[15]" LOC = AD23;
NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[1]" LOC = ABl4;

NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[2]" LOC = AF22;
NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[3]" LOC = Y20;
NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[4]" LOC = AD5;

]
]
]
NET "U4_peripherals/EXTERN_LINEAR_FLASH_DATA[5]" LOC = N18;
]
]
]

NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[6]" LOC = AAll;
NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[7]" LOC = AF3;
NET "U4_peripherals/EXTERN_LINEAR FLASH DATA[8]" LOC = AAlO;

NET "U4_peripherals/EXTERN_LINEAR_FLASH DATA[9]" LOC = W7;

NET "U4_peripherals/EXTERN_LINEAR_FLASH_OE_N" LOC = W26;

NET "U4_peripherals/EXTERN_LINEAR_FLASH_RESET" LOC = AA9;

NET "U4_peripherals/EXTERN_LINEAR_FLASH_WE_N" LOC = AA25;

NET "U4_peripherals/EXTERN_PUSH_BUTTONS_3BITS_TRI_I[0]" LOC L20;
NET "U4_peripherals/EXTERN_PUSH_BUTTONS_3BITS_TRI_I[1]" LOC L21;
NET "U4_peripherals/EXTERN_PUSH_BUTTONS_3BITS_TRI_I[2]" LOC = H20;
NET "U4_peripherals/EXTERN_RESET IN" LOC = M19;

NET "U4_peripherals/EXTERN_RS232_USB_SIN" LOC = AE2;

NET "U4_peripherals/EXTERN_RS232_USB_SOUT" LOC = AEl;

NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[0]" LOC = L7;

NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[10]" LOC = J9;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr([11]" LOC = E3;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[12]" LOC = K8;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[1l]" LOC = L6;

[1

[1

[1

[1
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[2]" LOC = K10;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[3]" LOC = MS8;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[4]" LOC = J7;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[5]" LOC = L4;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[6]" LOC = L3;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[7]" LOC = L10;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[8]" LOC = C2;
NET "U4_peripherals/MCB_DDR3/mcbx_dram_addr[9]" LOC = C1;
]

NET "U4_peripherals/MCB_DDR3/mcbx_dram bal[0]" LOC = B2;

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 86

http://www.xilinx.com

Building the Reference Design

& XILINX.

NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET
NET

"U4_peripherals/MCB_DDR3/mcbx_dram_ba[l]" LOC = Bl;
"U4_peripherals/MCB_DDR3/mcbx_dram _bal[2]" LOC = G3;
"U4_peripherals/MCB_DDR3/mcbx_dram_cas_n" LOC = L8§;
"U4_peripherals/MCB_DDR3/mcbx_dram_clk" LOC = K5;
"U4_peripherals/MCB_DDR3/mcbx_dram_clk_n" LOC = J5;
"U4_peripherals/MCB_DDR3/mcbx_dram_cke" LOC = K9;
"U4_peripherals/MCB_DDR3/mcbx_dram_ldm" LOC = J3;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[0]" LOC = H3;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[1l0]" LOC = K3;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[ll]" LOC = K1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[l2]" LOC = M3;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[l3]" LOC = MI1;
"U4_peripherals/MCB_DDR3/mcbx_dram _dg[l4]" LOC = N2;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[l5]" LOC = NI1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[l]" LOC = H1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[2]" LOC = G2;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[3]" LOC = G1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dqg[4]" LOC = D3;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[5]" LOC = DI1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[6]" LOC = E2;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[7]" LOC = E1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[8]" LOC = J2;
"U4_peripherals/MCB_DDR3/mcbx_dram_dg[9]" LOC = J1;
"U4_peripherals/MCB_DDR3/mcbx_dram_dgs" LOC = F3;
"U4_peripherals/MCB_DDR3/mcbx_dram_dgs_n" LOC = F1;
"U4_peripherals/MCB_DDR3/mcbx_dram_odt" LOC = M6;
"U4_peripherals/MCB_DDR3/mcbx_dram_ras_n" LOC = L9;
"U4_peripherals/MCB_DDR3/mcbx_dram_ddr3_rst" LOC =
"U4_peripherals/MCB_DDR3/mcbx_dram_udm" LOC = J4;
"U4_peripherals/MCB_DDR3/mcbx_dram_udgs" LOC = L2;
"U4_peripherals/MCB_DDR3/mcbx_dram_udgs_n" LOC = L1;
"U4_peripherals/MCB_DDR3/mcbx_dram_we_n" LOC = G4;

"U4_peripherals/MCB_DDR3/rzg" LOC =
"U4_peripherals/MCB_DDR3/zio" LOC =

M4 ;
H6;

END ISOLATION_GROUP

#U5_mb0_comp pin definitions
ISOLATION_GROUP U5_mbO_comp BEGIN
END ISOLATION_GROUP

#U6_mbl_comp pin definitions
ISOLATION_GROUP U6_mbl_comp BEGIN
END ISOLATION_GROUP

E4;

The second file that is needed is the parameter file. The parameter file usually has the

extension . ivt. In UCF mode, the IVT accepts the parameters listed in Table 5.

Table 5: IVT Parameters in UCF Mode

IVT Command Line Argument (1)

Description

-device device_name

Specifies the device.

-package package_name

Specifies the package.

-group isolation_group area_group

required.

Associates the area group name to an arbitrary isolation
group name. At least two distinct isolation groups are

[-pig pin_isolation_groups|.pig]]

analysis is performed.

Specifies the pin isolation group file. If omitted, no pin-related

[-output outpuf].rpt]]

Specifies the name of the output report.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

87

http://www.xilinx.com

Building the Reference Design

& XILINX.

Table 5: IVT Parameters in UCF Mode (Contd)

IVT Command Line Argument (1) Description

[-verbose] Writes out all IVT reporting information.

[-f parameter _file] Specifies an external file that lists all the IVT command line
arguments.

constraint_file[.ucf] Constraint file for the design (UCF).

[-h] Displays a brief argument summary.

[-license] Displays the license agreements.

Notes:

1.

The
loca

Optional arguments are in brackets [].

lockstep_system_ucf.ivt file for the dual-lockstep MicroBlaze processor system is
ted at <reference design>\ivt\ucf and has these contents:

#Verbose callout to print the verbose report.
-verbose

define the device targeted for the design with the -device flag.
-device xc6slx150t -package fgg676

define the isolation groups and their corresponding area groups as
identified in PlanAhead and the ucft.

Groups Isolation Group Area Group

B e
-group U2_mb0 pblock _U2_mb0

-group U3_mbl pblock _U3_mbl

-group U4_peripherals pblock U4_peripherals
-group U5_mb0_comp pblock_U5_mb0_comp
-group U6_mbl_comp pblock_U6_mbl_comp

#-pig flag identifies the Pin Isolation Group file, which defines the
association of the Isolation group

#to the design I/O.

Pin Isolation Groups

-pig lockstep_system.pig

#Identify the location of the UCF file to evaluate.
User Constraint File
..\..\src\ucf\lockstep_system.ucf

#Identify the output report file to generate.
Output file
-output lockstep_system_ucf.rpt

Open up an ISE Design Suite command prompt.
Note: The next action launches the 64-bit Windows version of the tool.

Start > All Programs > Xilinx ISE Design Suite 13.4 > Accessories > ISE Design Suite
64 Bit Command Prompt.

Within the command prompt, change directory (cd) to <reference design>\ivt\ucft.
See Figure 72 for an example.

Within the command prompt, type ivt -f lockstep_system_ucf.ivt. Press Enter.

After the IVT runs, verify that the status displays SUCCESS!, indicating that no isolation
violations were found.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 88

http://www.xilinx.com

Building the Reference Design & XILINX.

[ISE Design Suite 64 Bit Command |

C:xXilinx~\13 _4NISE_DS>ed C:slseprsstrevorhsLock_Step_ MicrosLE158T_Designslockstep
xappsivesuct

trevorhs\Lock_Step MicroSLH158T _DesignSlockstep_xapphivtsucf>ivt —f lock
f.ivt
Uerification Tool 7.88

A11 Hilinx, Inc. All rights reserved.
a brief argume SUNNAary .
i agreement .
ice from file ’'6s1x158t.nph’ in environment

G:NUserssntrevorhsLock_Step MicrosLR158T_Designslockstep_ xappsivtsuct >

X584_72_040512

Figure 72: IVT in UCF Mode Command Line
Examining the Outputs of the IVT in UCF Mode

The IVT outputs two files when complete, a text report file and a graphical report file. The text
report file for the run is located at <reference design>
\ivt\ucf\lockstep_system_ucf.rpt. The text report file contains these sections:

* Provenance: This section includes the date, IVT version, ISE tools version used for the
run, ISE tools version against which the IVT was compiled, the location of the ISE
tools installation, the command line, the current working directory, the output report
location, and the part and package.

* Area range constraints: This section contains the corresponding area groups and
associated site ranges used to define the floorplan of the design are listed for each
isolation group.

* Package pins, I/O buffers, and I/O banks: In this section, pin assignments of the
design are presented with coordinates, 1/0 banks, isolation groups, and net names.

* Pinisolation summary: This section lists the number of isolation violations for die pins
(/0 buffers), package pins, and 1/O banks.

* Area group separation: This section lists the distance in tiles between area ranges
from distinct isolation groups.

* Area fault summary: This section lists the number of area ranges from distinct
isolation groups that are not separated by an adequate fence.

* Isolation verification summary: This section lists the total number of constraints
violated, reports completion, and reports the elapsed time to perform the analysis and
generate the report.

The graphical report file for the run is located at <reference design>
\ivt\ucf\lockstep_system_ucf.svg. This file is generated as a silicon vector graphics
(SVG) file so that it can be displayed with a web browser. While the text report is
all-encompassing, the SVG file gives a high-level view of any faults (these are indicated with
X’s) and is useful in debugging the floorplan. In the SVG file, the colored tiles denote the
ownership of the tiles by each isolated region. The uncolored tiles denote the fence. Figure 73
shows the SVG file next to the floorplan for the dual-lockstep MicroBlaze processor system.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 89

http://www.xilinx.com

& XILINX.

Building the Reference Design

1

[— —1]
i
@l

|

Figure 73: Floorplanned Design and IVT SVG Output in UCF Mode

X584_73_040512

90

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

http://www.xilinx.com

Building the Reference Design & XILINX.

Implement the Design

Figure 74 shows the reference design progress to this point.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

N NN N NN N,

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_74_041112

Figure 74: Reference Design Progress

With the reference design floorplan done and the floorplan verified through the IVT, the next
step is to implement the design, and run ngdbuild, par, map, and BitGen. All of the
implementation tools are configured and run through the PlanAhead tool for this reference

design.
Setting the Implementation Settings and Running Implementation

1. On the left side of the PlanAhead tool window, click the down arrow next to the Implement
button, and select Implementation Settings... (see Figure 75).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 91

http://www.xilinx.com

Building the Reference Design & XILINX.

File Edit Flow Tools Window Layout View Help Q- Search commands
EECE0eXY P DPIAAGO® K E G [Eroopnnng RN SonEE
Netlist Design - netlist_1 - xcBshx150tigg676-3 (active) ;

Physical Constrants =08 X | Netst =Oa x . Project Summary x | § Device x Og x
oz =@ = 2@ 5
[netist_1 3] LOCKSTEP _SYSTEM_TOP
= (@ ROOT 33 Nets (21977) b
3) pbiock_U2_mbd P TT::; Y -
3 pbiock_U3_mb1 55 U2_mbo (U2 R
Nethst Design @ pbiock_U4_peripherals &8 @u{n&ﬂ 3 mb1s =
@ pblock_U5_mb0_comp @[3 U4_perpheras =
3) pblock_Us_mb1_comp - [US_mb0_comp (U5, &
- U6_mb1_comp (Us_mb A
-3
"
£ Sources [Physical Constraints =
s
Propertes -0 a x
+ =%k

% = k& RGP

3 Properties | [Clock Regions | & Selection

X584_75_040512

Figure 75: Accessing the Implementation Settings

2. Inthe Implementation Settings window, expand the implementation settings by clicking the
... button next to the Options: row (see Figure 76).

|

,‘0" Change implementation options and launch the run.

Options
Constraint Set: i constrs_1 (active -
Options: A ISE Defaults (ISE 13) ¥
Launch Options: | Launch on local host (XAQTREVORH3) E]
Spedify Partitions: |U2_mb0=Implement U3_mb 1=Implement U4_peripherals=Implement U5_mb0_comp=Implement U6_mb 1_comp=Implement E]

[Run | save |[cancel |

X584_76_040512
Figure 76: Expanding the Implementation Options

3. Inthe Design Run Settings window, apply the settings for Translate, Map, and Place &
Route as indicated in Figure 77. Click OK to apply the settings.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 92

http://www.xilinx.com

Building the Reference Design

& XILINX.

|E Translate (ngdbuild)

-ur
a
-aul

More Options

=/ Place & Route (par)
-ol

-l

-

-smartguide
+

X

-mt

-power
-activityfile
More Options

4.

OOoOOOO

[high

[<none >

[<none >

»

m

= Map (map)

r*
-smartguide

=i

-t

-am
<anore_keep_hierarchy
1

Hc

T

-timing

Jogic_opt

-global_opt

-retiming
-register_duplication

-al

-power
-activityfile
More Options

Implementation Settings

m

X584_77_040512

In the Implementation Settings window, click Run to start running the implementation.

Note: The implementation takes some time.

When implementation has completed, open the implemented design by either selecting
Open Implemented Design at the Tmplementation Completed prompt or click
Implemented Design on the left side of the PlanAhead window (Figure 78). When the
implemented design is open, the placed components are shown in the PlanAhead tool
Device pane. With the Implemented Design open, the user can run Trace for Timing,
bring-up FPGA Editor, or execute other analysis tools all from the left side of the PlanAhead
tool window. The implementation reports and logs can also be viewed from the Reports tab
within the Implementation Run Properties pane. The overall design run should show a
Timing Score of 0 and an Unrouted Score of 0 in the Design Runs tab, showing that the
design routed completely and timing was met.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

93

http://www.xilinx.com

Building the Reference Design

& XILINX.

[§] Focrotan Locistep - (CAUSerstrevarti\Lock, Step, Micro\LXIS0T Dess 3

Window Loyout Veew Help
1@ Q8 K LD Soesnindiyss v g

|F1Ie Edft Fow Tooks
FEREaaxXHd>PrE3E

Droject Manager Implemented Design - impl_1 - xchsbc150tigg6T6-3 (active
RTL Design - e
P ¢
Synthesoe ol — i
= - [§ Uz_mb0 b
Netist Design | | & E b s
&3] U perghersis =
) + [US_mbd_comp #
| | & @usmbi_comp
Igiesment s
d
B implemented Design & Sources] Methst s
¥ Resource Estmaton “rmpiermentaton S Properbes -0a % r’;
@ munpre e L3 a
BB Run Mosse Analyss o il u
g rnme Hare Modified s |
o = Trarsiate
FPGA Editer - .
= s NGDBuid Report 362 €SP £
B Power Anabyzer Mo =
| = 3 MRP Report 36/12 457PM r
T Twming Smulaton 1 MAP Report 36/12 457PM
B Physcal Syt L d
< j Place & Route
% Pad Report 3/6/12 5:27PM
Fromote Partitions PAR Repert 3E/125:27PM
) Unvoutes Report 3/6/12 5:27PM
= B e
- B webTak
Program and Debug Statc Temng Report
3 Trace Report 3612 5: 9P
‘ '
Genersl | Options |Moritor | Reports Messages | Parttions

Design Runs
A | Name Part Constrants Stategy
| =¥ symith_1 xchishx 150tipoé 76-3 constrs_1

~ v mel 1 | meishe150ti0Q676-3 constrs 1 ISE Defaults’
4

L |

=

4

¥

B TdConssle O Messages] Complation . % Design Runs | (& Timing Resuts

Status

Planahesd Defauts ™ (XST 13) XST Compiete!

* (SE 13) PAR Complete!

-0a %

Progress. Start Bapsed Ut (%) FMax (M) TmingScore Uwrouted Desc
I 100 223/12425PM 000535 5 82464 Frand
N 100% J/12422PM 01:08:07 2 SLS12 L] 0ISED
v
RTL Flow

Figure 78:

Running BitGen

X584_78_040512

Implemented Design View in the PlanAhead Tool

While in the PlanAhead tool, generate the programming bitstream by executing BitGen.

1. On the left side of the PlanAhead tool window (Figure 79), click the down arrow next to
Program and Debug, and select Generate Bitstream....

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

94

http://www.xilinx.com

Building the Reference Design

& XILINX.

2.

Project Manager |
RTLDesin ||
> .
Synthesize
B Netiist Design l v
> .
Implement

B Implemented Design

Resource Estimation
@ RunDRC

[Run Noise Analysis
(3 RunTRCE

FPGA Editor

@ XPower Analyzer
ﬁ Timing Simulation

5

Promaote Partitions

=
-
Program and Debug

Implemented Design - impl_1

Netist =oax]
=
[] LOCKSTEP_SYSTEM_TOP i
-5 Nets (21977) 1
i Primitives (1) .
[@] U1_dkgen (CLOCKGEN_TOP) I
U2_mb0 (U2_mb0#MB0_TOF)
U3_mb1 {(U3_mb1#MB1_TOP) K
U4_peripherals (U4_peripherals#PERIPHERALS_TOFP) -
U5_mb0_comp (U5_mb0_comp#MBE0_COMPARATOR_TOF) I
Us_mb1_comp (U6_mb1_comp#MB1_COMPARATOR_TOF) ‘
[|
~._ &b Sources. Ll]lletist | 5
]
Implementation Run Properties -0 g = d
« »FER i
=¥ impl_1 E
Name Modified sz 11 g
E)-Translate (nadbuild) | B
| L[NGDBuild Report 3/6/12 4:25PM A
3f6/12 4:57 PM a
3/6/12 4:57PM Iz
3f6/12 5:27PM
3f6/12 5:27 PM
3f6/12 5:27 PM
i-- [WebTalk Report
LB WebTak Log
[=]-Static Timing Report (trce)
i[5 Trace Report 3f6/12 5:29PM
< I | »
General | Options | Monitor | Reports | Messages | Partitions |

Nesinn Runs

Figure 79: Select Program and Debug - BitGen

X584_79_040512

In the Generate Bitstream window (Figure 80), click OK to start BitGen and generate the
bitstream.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

95

http://www.xilinx.com

Building the Reference Design & XILINX.

@ Create a programming (.bit) file for the design. Use iIMPACT to program
¥' the FPGA device or generate 3 PROM programming file from the
generated bitstream.

Options

3
OOoOO0OoOoOOoOoOoO

More Options

-bd
Update Block RAM. Updates the bit file with the Block RAM contents from
the spedfied ELF or MEM file.

ok ||| cancel

X584_80_040512

Figure 80: Generate Bitstream Window

3. After the bitstream is generated successfully, the Bitstream Generation Completed window
appears. Click OK to close the window.

Run the IVT on the Design in NCD Mode

Figure 81 shows the reference design progress to this point.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 96

http://www.xilinx.com

Building the Reference Design & XILINX.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

NN NNNN NN

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_81_041112

Figure 81: Reference Design Progress

The IVT, in NCD mode, does all the same checks it did in UCF mode, but now IVT works on the
final routed design. Instead of looking at area group isolation, the IVT now ensures all the
components and nets of each isolated module have a valid fence between them.

The files to run the IVT on the design are provided as part of this application note.
Executing the IVT in NCD Mode

When running the IVT in NCD mode, only the parameter file is required. The parameter file
usually has the extension .ivt. In NCD mode, the IVT accepts the parameters listed in Table 6.

Table 6: IVT Parameters in NCD Mode

IVT Command Line Argument(1) Description

-group isolation_group instance_name | Associates the isolated instance to the area group name.

[-output output].rpt]] Specifies the name of the output report.

[-verbose] Writes out all IVT reporting information.

[-f parameter _file] Specifies an external file that lists all the IVT command
line arguments.

user_design[.ncd] Specifies the fully routed design file (NCD).

[-h] Displays a brief argument summary.

[-license] Displays the license agreements.

Notes:

1. Optional arguments are in brackets [1.

The lockstep_system_ncd. ivt file for the dual-lockstep MicroBlaze processor system is
located at <reference design>\ivt\ncd and has these contents:

-verbose

Groups Isolation Group Instance Name

__
-group U2_mb0 U2_mb0

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 97

http://www.xilinx.com

Building the Reference Design

& XILINX.

-group U3_mbl U3_mbl

-group U4_peripherals U4_peripherals
-group U5_mb0_comp U5_mb0_comp
-group U6_mbl_comp U6_mbl_comp

Combined Design
LOCKSTEP_SYSTEM_TOP_routed.ncd

Output file
-output lockstep_system_ncd.rpt

To access the routed design, in the Design Runs pane within the PlanAhead tool, left-click
and then right-click impl_1.

In the pop-up window, select Open Run Directory....

In the explorer window that appears, copy the LOCKSTEP_SYSTEM_TOP_routed.ncd
file to the <reference design>\ivt\ncd directory.

Open up a ISE Design Suite command prompt.

Start > All Programs > Xilinx ISE Design Suite 13.4 > Accessories > ISE Design Suite
64 Bit Command Prompt

Note: This step launches the 64-bit Windows version of the tool.

Within the command prompt, change directory (cd) to <reference design>\ivt\ncd.
Within the command prompt, type ivt -f lockstep_system_ncd.ivt and press Enter.
After the IVT runs, verify the status displays SUCCESS! to show that no isolation violations

were found (Figure 82).

B I5E Design Suite 84 Bit Command Prompt

CasRHilinxs13 . 45\ISE_DS>cd C:slUsersstrevorhsLock _Step Micro“LHE158T_Designslockstep
xappsivtsncd

C:slzersstrevorhsLiock _Step_MicrosLE15AT_Design~lockstep_xapp~ivtsncd>ivt —f lock
step_system_ncd.ivt
Ailinx Isolation Uerification Tool 7.088

Copyright (C» 2ZA86—2011 Xilinx,. Inc. All rights reserved.
Yivt —h' displays a brief argument summary.
*ivt —license’ displawvs the licensze agreement.
Loading LOCKSTEP_SYSTEM_TOP_routed.ncd...done.
module UZ_mbA in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module U3_mbl in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module U4_perdipherals in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module US_mbB_comp in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module U6_mbl_comp in LOCKSTEP_SYSTEM_TOP_routed.ncd.

C:islzsersstrevorhsLock _Step_ MicrosLE158T_Design~lockstep_xapp~ivtsncd>

X584_82_ 041112

Figure 82: IVT in NCD Mode Command Line on Implemented Design

XAPP584 (v1.0) July 10, 2012 www.xilinx.com

98

http://www.xilinx.com

Building the Reference Design

& XILINX.

Examining the Outputs of the IVT in NCD Mode

The IVT, in NCD mode, also outputs two files when complete, a text report file and a graphical
report file. The text report file for the run is located at <reference design>
\ivt\ncd\lockstep_system ncd.rpt and contains these sections:

Provenance: This section includes the date, IVT version, ISE tools version used for the
run, ISE tools version against which the IVT was compiled, the location of the ISE tools
installation, the command line, the current working directory, the output report location,
and the part and package.

Isolated Modules: This section lists the isolation groups and associated design blocks or
partial NCD files.

Uncategorized User Global Nets: This section lists nets (signals) in the design that are
above the isolated modules in the design hierarchy and might connect isolated functions.
All such nets must be examined for their impact on the data separation and independence
requirements of the system. Ideally, the only nets listed in this section would be nets
specifically intended to connect isolated functions. In practice, some global clock signals
appear here as well. In the report, uncategorized global nets are said to be “found in
multiple isolation groups.” This is an artifact of the original implementation of the IVT in
which multiple partial NCD files were used to specify isolation groups. Global resources
are duplicated in all the partial NCD files.

Categorized Nets: This section has many possible subsections corresponding to various
categories of nets that for one reason or another are benign with respect to isolation.
Examples include constants, global clocks, trusted bus macros, and clocking inserted
automatically to mitigate negative-bias temperature instabilities.

Trusted Bus Macros: This section lists all the instances of trusted bus macros in the design
and the nets connected to them.

Area Range Constraints: This section lists the corresponding area groups and associated
site ranges used to define the floorplan of the design for each isolation group.

Net Fault-Cost Violations (Failing Paths): For Virtex-4 FPGA designs only, this section lists
pairs of putatively isolated nets that cannot be shown to be sufficiently isolated with a
routing search based on fault cost. Examples of low-cost paths between isolated nets are
listed, and several customer designs have produced isolation violations. However, in all
cases, the violations turned out to be due to insufficient information in the cost function,
not an actual vulnerability.

Tiles with Net Content Violations: This section lists the contents of all tiles that contain
isolated logic or routing from more than one isolation group.

Tiles in the Fence Containing Nets: This section lists the contents of tiles that are outside
all the isolated area ranges. This list is advisory. It is permissible for inter-region signals
and clocking to exist in the fence. Akin to the list of Uncategorized Global Nets, nets in tiles
that are outside of all isolation groups must be vetted for their impact on data separation
and independence requirements. This section provides low-level details of the specific
nodes and wire segments used to implement routing in the fence.

Tiles in the Fence Containing Programming: This section lists tiles in the fence that are
associated with components and therefore are not entirely unused. All such tiles must be
examined for their impact on the data separation and independence requirements of the
system.

Tiles in the Fence Containing Used PIPs: This section lists tiles containing programmable
interconnect points (PIPs), which are nodes that have the potential to connect to other
nodes. For example, suppose a certain type of node spans five horizontal tiles called A, B,
C, D, and E, and that this node has PIPs in tiles A, C, and E. This node can be used to
connect two isolated regions provided the only tiles in the fence are B or D.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 99

http://www.xilinx.com

Building the Reference Design & XILINX.

* Tiles with Net Adjacency Violations: This section lists all pairs of tiles that are adjacent and
contain isolated logic or routing resources from distinct isolation groups—in other words,
pairs of tiles that should be separated by a fence tile.

e Package Pins, I/O Buffers, and I/0 Banks: In this section, pin assignments of the design
are presented with coordinates, I/O banks, isolation groups, and the net names.

e |/O Buffer Isolation Violations: This section lists pairs of 1/0 buffers from distinct isolation
groups that are adjacent on the die.

* |/O Bank Violations: This section lists examples of pins from distinct isolation groups that
are members of a single I/O bank.

e Package Pin Isolation Violations: This section lists pairs of pins from distinct isolation
groups that are adjacent on the package.

e [solation Verification Summary: This section lists the total number of constraints violated
by category, reports completion, and reports the elapsed time to perform the analysis and
generate the report. For each section of the report containing violations, there is a line in
the summary with a tally of the violations in that section.

The graphical report file for the run is located at <reference design>
\ivt\ncd\lockstep_system_ncd.svg. The format and properties are the same for NCD
mode as UCF Mode. Figure 83 shows the floorplan, SVG file output, and routed design for the
implemented design.

X584_83_040512

Figure 83: Floorplan, SVG, and FPGA Editor of Implemented Design

Build Final Software In SDK

Figure 84 shows the reference design progress to this point.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 100

http://www.xilinx.com

Building the Reference Design & XILINX.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

NNN NN NSNS

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

X584_84_04112

Figure 84: Reference Design Progress

In Importing the Final Demonstration Software into SDK, the final dual-lockstep MicroBlaze
processor demonstration software is added to the SDK project. The software is compiled and
programmed into the linear flash on the Avnet Spartan-6 FPGA LX150T development board. A
bootloader is also created to load the software from the flash into both the MicroBlaze
processors of the dual-lockstep MicroBlaze processor system. Finally, the software is executed
to test the dual-lockstep MicroBlaze processor system.

Importing the Final Demonstration Software into SDK

A full SDK environment has been archived in <reference
design>\final_demonstration_sw thatincludes the dual-lockstep MicroBlaze processor
demonstration software. These steps describe importing this demonstration software into the
user's SDK project.

1. Start the EDK Software Development Kit:

Start > All Programs > Xilinx ISE Design Suite 13.4 > EDK > Xilinx Software
Development Kit

2. In the Workspace Launcher window, set the workspace location to <reference
design>\sdk. Click OK to open the SDK workspace. The location of the workspace that
was generated during the quick sanity check is <reference design>\sdk.

3. Inthe SDK window, click File > Import... to bring up the Import window to start the process
of importing the demonstration software.

4. Inthe Import window (Figure 85), expand the General tree and select Existing Projects
into Workspace. Click Next >.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 101

http://www.xilinx.com

Building the Reference Design & XILINX.

@ C/C++ - standalone_bsp_0/system.mss - Xilinx SDK o|B) ®
File Edit Source Refactor Navigate Search Run Project Xilinx T
£~ | 6 e el (- @ @lmeent »- 9% B¥s 4 — - &5 %5 Debug [C/C
Project Explorer ele = 8](2= out @Ma| =0 2~ =
[Project Explorer &3 Select \ =)E: BN @ Blp =™ =]
b [edk_hw_platform Create new projects from an archive file or directory. E - EI bage |2 ~ ~
b £ peripheral tests 0 ~ | Anoutlineis notavaileble. || %% &7 Te [
& (M standalone_bsp_0 v
Select an import source: N d
I ‘ f Tga!TTermina\i\ =) =
(= General - P
= | = >~ ||z =
Archive File G B Bk B
[Existing Projects into Workspace o
1], File System
=, Preferences
N (= CfC++
| (= Remote Systems
(= Run/Debug
(= Team
| ® Fri

0 items selected

X584_85_040512

Figure 85: SDK Import Window

5. In the Import Projects window (Figure 86):

a. Choose Select root directory and browse to <reference
design>\final_demonstration_sw\sdk\dual_lockstep_demo.

b. Inthe Projects area, check dual_lockstep_demo.
Check the Copy projects into workspace checkbox.
Click Finish to import the project and related code.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 102

http://www.xilinx.com

Building the Reference Design

& XILINX.

& 1mport [c[@] =

Import Projects

Select a directory to search for existing Eclipse projects. @

-

|9,-Selectrootd|redory: Ci\Users\trevorhi\Lock_Step_Micro\LX150T_Design\lockstep_xapp\bare_environmentifinal_demonstration_swhsdk\dual_lockstep_demo | Browse...

) Select archive file: Browse...

Projects:

| il |dua|_\uckrtep_dem o (Ch\Users\trevorhtLock_Step_Micro\LX150T_Design\lockstep_xapp\bare_environment\final_demonstration_sw\sdk\dual_lockstep_demo) Select All

Deselect All

opy projects into workspace

Working sets
[] Add project to working sets

X584_86_040512

Figure 86: Import Projects Window

With the dual_lockstep_demo imported, in the SDK window’s Project Explorer pane,
right-click dual_lockstep_demo and select Change Referenced BSP.

Verify that the selected BSP to reference is the BSP that was created during the quick
check, standalone_bsp_0. Click OK.

The dual-lockstep demonstration software has now been imported into SDK.

Creating the Bootloader

As part of this application note, the demonstration software is loaded into the linear flash
included in the dual-lockstep MicroBlaze processor system. A bootloader is created to load the
demonstration software into the Data and Instruction block RAM for each MicroBlaze
processor. These steps define how to create the bootloader:

1.

In the SDK window, select File > New > Xilinx C Project to bring up the available
pre-packaged applications.

In the New Xilinx C Project window (Figure 87), set these items to build the bootloader
then click Next >:

e Use Default Location: Checked

* Target Platform: edk_hw_platform

* Processor: microblaze_0

e Select Project Template: SREC Bootloader

’

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

103

http://www.xilinx.com

Building the Reference Design & XILINX.

@ New Project =] =
MNew Xilinx C Project
Create a managed make application project. Choose from one of the sample applications. &

Project name: srec_bootloader 0
|¥] Use default location
ni | C\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\sdk\srec_boot Browse...
tern: | default
Target Hardware
Hardware Platform: | edk_hw_platform

Processor: microblaze_0 -

Select Project Template

Dhrystone Description
Empty Application Simple bootloader for loading SREC images from non -
Hello World —

volatile memory. This program assumes that you have
IwIP Echo Server an SREC image programmed into flash (or other non-
Memory Tests volatile_ memory already. The program also assumes
pe"iheral Tests that the target SREC image is an application for this
SC Bootloader processor that does not overlap the bootloader and
Xillkeernel POSIX Threads Demo resides in separate physical memory in the hardware. E
Zynq FSBL Typically this application is initialized into BRAM so that
it bootloads the SREC image when the FPGA is powered
up.

Don't forget to modify blconfig.h to reflect the physical —
address where your SREC image resides in non-volatile .

@ <Back [Net> |[Fnish][Cancel

X584_87_040512

Figure 87: New Project Window - SREC Bootloader

In the next window, select Target an existing Board Support Package and click Finish to
link this to the existing BSP. The application then compiles.

Verify that in the SDK console pane it says elf check passed. Finished
building: srec_bootloader_0.elfcheck atthe end of the compilation.

In the SDK window’s Project Explorer pane, expand the code tree srec_bootloader_0 >
src > blconfig.h.

Double-click blconfig.h in the Project Explorer pane to open the file in the SDK text
editor.

Within the blconfig.h file, change the value of FLASH_IMAGE_BASEADDR from
0xF8000000 to 0x46000000.

0x46000000 is the first address of the linear flash for the dual-lockstep MicroBlaze
processor system. For this application note, the demonstration software is loaded into the
flash starting at the first address of the linear flash. This address can be found either from
the lockstep_system.mhs file that defines the EDK system, or within the system.xml
file that SDK uses as the hardware platform definition and can be found within the Project
Explorer pane at edk_hw_platform > system.xml.

Save the updated blconfig.h file.

In the SDK window’s Project Explorer pane, double-click srec_bootloader_0 > src >
platform.c to open the file in the SDK text editor.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 104

http://www.xilinx.com

Building the Reference Design & XILINX.

10.

11.
12.

Within the platform. c file, change the code at line 13 from:
XUartNs550_SetBaud (STDOUT_BASEADDR, XPAR_XUARTNS550_CLOCK_HZ, 9600);
to:

XUartNs550_SetBaud (STDOUT_BASEADDR, XPAR_XUARTNS550_CLOCK_HZ, 38400);

This change sets the RS-232 port of the dual-lockstep MicroBlaze processor system to
operate at a baud rate of 38400. This is done to make it similar to the baud rate used in the
demonstration software.

Save the updated platform.c file.

Before the software is loaded into the flash, perform a clean build of the demonstration
software and bootloader by right-clicking each in the Project Explorer pane,
dual_lockstep_demo and srec_bootloader_0, and selecting Build Configurations >
Build All.

Loading the Demonstration Software into Flash

SDK provides a built-in tool to load software images into the flash on a board. The steps for
loading the demonstration software into the linear flash are:

1.

Connect a Xilinx Platform Cable to the computer and the Avnet Spartan-6 FPGALX150T
development board. Then, do the same with a USB cable.

Power on the board.

To load the flash, the FPGA must be loaded with an image. The bitstream that was created
in the PlanAhead tool is used as the image. Within the SDK window, click Xilinx Tools >
Program FPGA.

In the Program FPGA window (Figure 88), set these settings, then click Program:

e Hardware Configuration Bitstream:
<reference_design>\
\planahead\FloorPlan_Lockstep\FloorPlan_Lockstep.runs\impl_1\lo
ckstep_system_top.bit

e Hardware Configuration BMM File:
<reference_design>\planahead\FloorPlan_Lockstep\FloorPlan_Locks
tep.runs\impl_I1\lockstep_system_bd.bmm

e Software Configuration microblaze_0: bootloop
e Software Configuration microblaze_1: bootloop

Note: The BIT and BMM file for the user implementation might be located in a directory other than
impl_1 if multiple implementations are executed within the PlanAhead tool. The bootloop application
loaded into each MicroBlaze processor puts them in a standby state. An actual application is loaded
later.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 105

http://www.xilinx.com

Building the Reference Design & XILINX.

@ Program FPGA i o _ e ﬂ

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Specification: C:\Users\trevorh\Lock_Step_Micro\LX130T_Design\lockstep_xapp\sdk\edk_hw_platform\system.xml
Bitstream: C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\planahead\FloorPlan_Lockstep\FloorPlan_Lockstep.runs\impl_1\lockstep_system_top.bit

BMM File: C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\planahead\FloorPlan_Lockstep\FloorPlan_Lockstep.runs\impl_1\lockstep_system_bd.bmm Browse..

Software Configuration
Processor ELF File to Initialize in Block RAM
microblaze 0 -
microblaze_1 bootloop -
@ [Program] i Cancel

X584_88_040512

Figure 88: Program FPGA Window - Bootloop

5. After the FPGA has configured successfully, within the SDK window, click Xilinx Tools >
Program Flash to start the flash programmer.

6. Click OK to the Flash Programmer Support Information window.

7. Within the Program Flash Memory window (Figure 89), make these settings and click
Program:

* Image File: <reference
design>\sdk\dual_lockstep_demo\Release\dual_lockstep_demo.elf

e Check Convert ELF to bootloadable SREC format and program.
* Flash Memory Settings:

- Controller: Linear_Flash

- Controller Program at offset: 0x00000000
* Uncheck Target Flash Device is a Xilinx Platform Flash.

e Working Memory Settings Controller: MCB_DDR3 (Bank Address
S0_AXI_BASEADDR)

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 106

http://www.xilinx.com

Building the Reference Design & XILINX.

@ Program Flash Memory b

Program Flash Memaory
Program Parallel Flash Memory via In-system Programmer.

Image File: C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\sdk\dual_lockstep_demo'\Release\dual_lockstep_demo.elf

[¥] Convert ELF to bootloadable SREC format and program

Flash Memoary Settings

Controller: Linear_Flash (Bank Address: S_AXI MEMO_BASEADDR) - I
Address: 0:46000000
Size: 32MB

Program at offset: 0x00000000
["] Target Flash Device is a Xilinx Platform Flash

Working Memory Settings

Execution memory for the in-system programmer.

Controller: [M(,B_DDR_’. (Bank Address: S0_AXI_BASEADDR) -
Address: 0xB8000000

Size: 128 MB

@ { Program] l Cancel

X584_89_040512

Figure 89: Program Flash Memory Window

Note: The Convert ELF to bootable SREC format and program must be checked for the image to be
used with the bootloader.

8. After the flash has programmed successfully, click OK in the Flash Programmed
Successfully prompt.

Loading the Bootloader into the FPGA

With the demonstration software now loaded in the linear flash, the FPGA can be loaded with
the bootloader embedded in each MicroBlaze processor.

1. Within the SDK window’s Terminal pane, set up the terminal to have a serial connection
with settings of 38400, 8, 1, none, and none. Then connect the terminal.

2. Within the SDK window, click Xilinx Tools > Program FPGA.
3. Inthe Program FPGA window (Figure 90), set or verify these settings, then click Program:

e Hardware Configuration Bitstream: <reference_design>\
\planahead\FloorPlan_Lockstep\FloorPlan_Lockstep.runs\impl_1\lo
ckstep_system_top.bit

* Hardware Configuration BMM File:
<reference_design>\planahead\FloorPlan_Lockstep\FloorPlan_Locks
tep.runs\impl_I1\lockstep_system_ bd.bmm

» Software Configuration microblaze_0:

<reference_design>\sdk\srec_bootloader_0\Release\srec_bootloade
r 0.elf

e Software Configuration microblaze_1:

<reference_design>\sdk\srec_bootloader_0\Release\srec_bootloade
r_0.elf

Note: The setting for Software Configuration microblaze 1 is not found as a direct option. The user has
to select Browse... and then browse to and select the e1 £ file. Selecting the same file as microblaze_0
ensures the MicroBlaze processors work in lockstep.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 107

http://www.xilinx.com

Building the Reference Design & XILINX.

'8 ! 53!1

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Specification: C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\sdk\edk_hw_platform\system.xml
Bitstream: C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\planahead\FloorPlan_Lockstep\FloorPlan_Lockstep.runs\impl_1\lockstep_system_top.bit

BMM File: C\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\planahead\FloorPlan_Lockstep\FloorPlan_Lockstep.runs\impl_1\lockstep_system_bd.bmm | Browse..

Software Configuration
Processor ELF File to Initialize in Block RAM]
microblaze_0 C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\sdk\srec_bootloader_0\Release\srec_bootloader_0.elf -]

microblaze_1 C:\Users\trevorh\Lock_Step_Micro\LX150T_Design\lockstep_xapp\sdk\srec_bootloader_0\Release\srec_bootloader_0.elf -

@ l Program][Cancel J

]

X584_90_040512

Figure 90: Program FPGA Window - Bootloader

4. After the FPGA is programmed, go to the Terminal pane to view the serial output from the
design. The SREC bootloader provides a status while it is loading the demonstration
software. After the demonstration software is loaded from flash, the demonstration
software prompt shows in the terminal screen (Figure 91).

> - ~\

[z_l‘ Problems I\'E[Tasks = Console[D Properties m =0

Serial: (COMS, 38400, 8, 1, None, None - CONMNECTED) L= 'IEI | ';i_| = ﬁ v

-

R R AR R AR AR R R R AR AR AR R R AR R AR R R R R R R R R R
o o R R R o R R o o R o R R o R o o R o o o R o
. Xilinx Dual Lockstep Microblaze ot oA
R R AR R R AR AR AR AR AR R AR R R AR R AR AR R AR R R R AR R R AR R R R R R R R R R
o e o o e e e e e o e e e e e e e i o e o e e o R e e i i o e o o R e e R e e e e e o e e e R e e e
Choose Feature to Test:

Peripherals Self Teats.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator Status Registers.
Clear Microblaze 0 Comparator Status Errors.

Clear Microblaze 1 Comparator Status Errors.

Bl ;bW e

] n] »

X584_91_040512

Figure 91: Dual-Lockstep MicroBlaze Processor Demonstration Software Prompt in
Terminal

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 108

http://www.xilinx.com

Building the Reference Design & XILINX.

The Comparator Error outputs are routed to the two LEDs nearest the System ACE™
technology card slot on the board. If these two LEDs are not lit, the comparators are not
indicating a comparison error (Figure 1, page 2).

Running the Demonstration Software

The demonstration software provided with this application note runs seven different
sub-applications to test and demonstrate the dual-lockstep MicroBlaze processor. To select a
sub-application, the number of the sub-application should be entered into the terminal window.

Peripherals Self-tests

The Peripherals Self-Test runs the peripherals test that was executed as part of the quick sanity
check. Self-tests are run on the interrupt controller, six LEDs connected to the LED controller,
pushbuttons, Timebase, timer, MDM, and DIP switches. A screen capture of the executed
application is shown in Figure 92.

|[2ll Problems |Z| Tasks [Console[-m Properties |.§Tmlmll£@ - =]
Serial: (COMS, 38400, 8, 1, None, None - CONNECTED) NN Dl P %

ww Xilinx Dual Lockstep Microblaze LA -

e

R R R R o R R R o R R o o R
Choose Feature to Test:

1: Peripherals Self Tests.

: BRAM Memory Test.

: Dip Switch and LED Demo.

: Comparator Test.

: Read Both Microblaze Comparator Status Registers.

: Clear Microblaze 0 Comparator Status Errors.

: Clear Microblaze 1 Comparator Status Errors.

-] tn b W R

-=-=-Entering Peripherals Test ---

Running IntcSelfTestExample() for microblaze 0 intc...
I IntcSelfTestExample PASSED

\Running GpioOutputExample () for LEDs_8Bits...
IGpicOutputExample PASSED.

Running GpioInputExample () for Push Buttons 3Bits...
GpioInputExample PASSED. Read data:0=x0

Running WdtTbSelfTestExample() for axi_timebase_wdt_0...
(WdtTbSelfTestExample PASSELD

m

Running TmrCtrSelfTestExample () for axi timer 0...
ITmrCtrSelfTestExample PASSELD

Running UartliteSelfTestExample () for debug_module...
UartliteSelfTestExample PASSED

Running GpioInputExample () for DIP Switches 8Bits...
iGpioInputExample PASSED. Read data:0x2A
——-Exiting Peripherals Test main---

R R R R R R R R R R R R R R R R R R AR AR AR AR AR AR AR AR R R R R R
o R R R R R R R R R R R R R R R R R o R R R R R R R R R R R R R R R R R
e Xilinx Dual Lockstep Microblaze el
o e e e e e e o e o o o e e e e o o o o o o o e e e o o o o o o e e o o o e
o o e e e o o o o e e o o o e e o o o o o e e o o o
Choose Feature to Test:

: Peripherals Self Tests.

: BRAM Memory Test.

: Dip Switch and LED Demo.

: Comparator Test.

¢ Read Both Microblaze Comparator Status Registers.

: Clear Microblaze 0 Comparator Status Errors.

: Clear Microblaze 1 Comparator Status Errors. -

N EE

| 11 3

X584_92_040512

Figure 92: Peripherals Self-Tests

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 109

http://www.xilinx.com

Building the Reference Design

& XILINX.

BRAM Memory Test

The block RAM (BRAM) Memory test runs write and read tests on the AXI_BRAM. A screen
capture of the executed application is shown in Figure 93.

|2 Problems & Tasks| & Console [Properties | 4™ Terminal 1 i3

Serial: (COMS, 38400, 8, 1, None, None - CONNECTED) e PR
ki Xilinx Dual Lockstep Microblaze balod

]]
]
Choose Feature to Test:

: Peripherals Self Tests.

: BRAM Memory Test.

: Dip Swictch and LED Damo.

: Comparator Tesc.

: Read Both Microblaze Comparator Status Registers.

: Clear Microblaze 0 Comparator Status Errors.

: Clear Microblaze 1 Comparator Status Errors.

MO ne wh e

--Starcing Memory Test Application--
HOTE: This application runs with D-Cache disabled.As a resulc, cacheline
s will not be generated
Testing memory region: axi_bram ctrl 0
Memory Controller: axi_bram ctrl
Base Address: 0xb4000000
Size: 0x00004000 bytes

32-bit teat: PASSED!

16-bit teat: PASSED!

8-bit test: PASSED!
--Memory Test Application Complete--

udad Xilinx Dual Lockstep Microblaze W
...................... -
-------------- AR AR AR AR AR AR
Choose Feature to Test:

1: Peripherals Self Tests.
2: BRAM Memory Test.

3: Dip Switch and LED Demo.
4: Comparator Test.

5: Read Both Microblaze Comparator Status Registers.
6: Clear Microblaze 0 Comparator Status Errors.

7: Clear Microblaze 1 Comparator Status Errozs.

reque:

X584_93_040512

Figure 93: BRAM Memory Test

DIP Switch and LED Demonstration

The DIP switch and LED Demonstration reads DIP switches 1 through 6 (SW6) on the Avnet
Spartan-6 FPGA LX150T development board and outputs the setting to the LEDs. After
reporting the DIP switch settings, the application prompts the user to re-run the application or
return to the demonstration application prompt. A screen capture of the executed application is
shown in Figure 94.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

110

http://www.xilinx.com

Building the Reference Design

& XILINX.

[L Problems I_\/:-] Tasks LE Console | & Propertisj_é.}] Terminal 1 2 -

b e T
o e o e o o o o o e o o e e o e o

* Xilinx Dual Lockstep Microblaze *k
B R

is set to LOW.

is set to HIGH.

is set to LOW.

IDip Switch is set to HIGH.

Dip Switch is set to LOW.

Dip Switch & is set to HIGH.

Press the Enter Key to return to menu.

Pres=s the any other key to Sample Dip Switches again.

Dip Switch
Dip Switch
Dip Switch

ol W R e

o e e e e e e o o e o o ke o o o e o o o e o o o o o ok o e o o e ol o o e o o o o o o o o o o o e o o o ol o o o
o o o o o e o o o o o e o o o e o o o o o ol o o e o o ol o o o ol o ol o ol ol o e o ol o e o o o o o
ik Xilinx Dual Lockstep Microblaze sl
oo o o o o o o o o o o o o ol o o o o o ol o o o o o o o ol o o o o o o

b e T

Choose Feature to Test:

: Peripherals Self Tests.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator Statu= Registers.
Clear Microblaze 0 Comparator Status Errors.
Clear Microblaze 1 Comparator Status Errors.

| T

Figure 94: DIP Switch and LED Demo

Comparator Test

[Serial: (COMS, 38400, 8, 1, None, None - CONNECTED) IR B

:E\

-

X584_94_040512

The Comparator test checks the overall function of the two MicroBlaze Comparators, including
error injection. The first part of the test runs code for a time and monitors both MicroBlaze
Comparators to see that no comparator error is indicated. This part of the test basically checks
that the MicroBlaze processors remain in lockstep. The second part of the test checks that the
error injection on all the bits in all the connected buses works and that the status register clears
when commanded. In this system, the connected buses are AXI_IC, AXI_DC, AXI_IP, AXI_DP,
ILMB, and DLMB. This check is done for both interfaces of each MicroBlaze Comparator. A
screen capture of the executed application is shown in Figure 95.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

111

http://www.xilinx.com

Building the Reference Design

& XILINX.

(2. Problems | Z] Tasks | B Console [Properties [Terminal 1 &3

...................................... AR AR
e Xilinx Dual Lockstep Microblaze kel
Choose Feature to Tesc:

: Peripherals Self Tests.

: BRAM Memory Test.

: Dip Switch and LED Demo.

: Comparator Test.

: Read Both Microblaze Comparator Status Registers,

: Clear Microblaze 0 Comparator Status Errors.

: Clear Microblaze 1 Comparator Status Errors.

o b ke

Testing that both comparators run for some time without loosing synec.

Running sync test iteration....
1000 out of 1000
Sync Test Completed........: Test PASSED!

Testing error injection on Microblaze Comparator 0.
Comparator Status Register value is 10000.

Microblaze 0 Comparator Error Injection Test Completed.
......... Test PASSED!!
Testing error injection on Microblaze Comparator 1.
Comparator 5tatus Register value is 10000.

Microblaze 1 Comparator Error Injection Test Completed.

........ Teat PASSED!!

Comparator Teats Complete.

............... B T T LT T ——
......... R
e Xilinx Dual Lockstep Microblaze e

R R R R KRR KR KR R R
....... T
iChoose Feature to Test:

: Peripherals Self Tests.

: BRAM Memory Test.

: Dip Switch and LED Demo.

: Comparator Test.

: Read Both Microblaze Comparator Status Registers.

: Clear Microblaze 0 Comparator Status Errors.

: Clear Microblaze 1 Comparator 5Status Errors.

A W N

=

nr

»

(Seriak (COMS, 38400, 8, 1, None, None - CONNECTED) SO P X

4 |

X584_95_040512

Figure 95: Comparator Test

Read Both MicroBlaze Comparator Status Registers

When Read Both MicroBlaze Comparator Status Registers is executed, the status register for
each MicroBlaze comparator is read and printed to the screen. A value other than zero

indicates that a comparator error was detected. A screen capture of the executed application is
shown in Figure 96.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

112

http://www.xilinx.com

Building the Reference Design

& XILINX.

Eu Problems | ¥ Tasks | B Console | = Properties | & i »

Serial: (COMS, 38400, 8, 1, None, None - CONNECTED) S | |I_TI | __J,:!l - ﬁ -

o e o e o o o o o e o o o o o o e e
o e R e o R R R R o o R o o o o o R o R o o o o o o o o o o o e o R o o R o o o R R R R R
il X¥ilinx Dual Lockstep Microblaze =
L L e T T T
o e e o e o e e e o e o o o e o e o e o o e o o e o e o o o e o e o e e o e e o e o e o e
Choose Feature to Test:

Peripherals Self Tests.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator Status Registers.
Clear Microblaze 0 Comparator Status Errors.

Clear Microblaze 1 Comparator Status Errors.

M a0 b R

MB 0 Comparator Status Register walue is 0.
ME 1 Comparator Status Register value is 0.

o o o o o o o o o e ol o e o o ol o e o o o o ol ol e o o o ol ol o ol o ol o o ol ol o o o o o o o o o
R AR R R R AR R R R R R A R R R R AR A AR AR A AR A AR AR R AR AR R R R R R R R R R R
il Xilinx Dual Lockstep Microblaze =
R R R R R R R o o R R R o o R o o o R R R R R R R R R R R
o o o o o o o o o o o o o o o o e o ol o o o o e o o o o o o o o o o o o o o e
Choose Feature to Test:

Peripherals Self Tests.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator Status Registers.
Clear Microblaze 0 Comparator Status Errors.

Clear Microblaze 1 Comparator Status Errors.

N BN

m

+

-

3

X584_96_040512

Clear MicroBlaze X Comparator Status Errors.

Figure 96: Read Both MicroBlaze Comparator Status Registers

Running the Clear MicroBlaze 0 or 1 Comparator Status Error application writes to the Clear
Fault bit of the control register and verifies that the status register is cleared for the
corresponding MicroBlaze processor. A screen capture of the executed application run on
MicroBlaze 0 is shown in Figure 97.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

113

http://www.xilinx.com

Building the Reference Design

& XILINX.

E_- Problems \Z Tasks [El Console rlj Properties [,@ Terminal 1 253"

R R R R R R R R A R R R R R R A A R R AR A R R RN A AR AR A AR AR R AR R AR R R
o o o o o o o o o o o ol o o ol o o o o o o ol o o o o o
o ¥ilinx Dual Lockstep Microblaze okl
R AR R R R AR R A A R R R R R R R A A AR R AR AR AR A AR AR AR AR R R AR R R R R R
o o o o o o ol o o ol ol o o o o e o ol ol ol ol ol ol o ol ol e o ol ol ol ol ol ol ol ol ol ol o ol ol ol o ol ol ol ol ol o o o ol o
Choose Feature to Test:

Peripherals Self Tests.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator Status Regiaters.
Clear Microblaze 0 Comparator Status Errors.

Clear Microblaze 1 Comparator Status Errors.

[e I T S P

ME 0 Comparator Status Register walue after clear i=s 0.

EEAAAA AR AR RR A A AR AR R AR R R R AR R R R AR R R R R AR R R AR R R R R R R R R R R R R R
e e o o e e e o o o e e o o o e e e o o o e e o o ol e e e o o o e e o o o e e o o o o e e o o o e e o o o
ik Xilinx Dual Lockstep Microblaze okl
A AR R EA AR REA A AR R AR AR R AR AR R AR AR AR R AR R R AR R R R AR R R R

R L e e e

Choose Feature to Test:

Peripherals Self Tests.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator S5tatus Registers.
Clear Microblaze O Comparator Status Errors.
Clear Microblaze 1 Comparator Status Errors.

N O

| 1

=8

Serial: (COMS, 38400, 8, 1, None, None - CONNECTED) I == WY] | A & %

3

3

X584_97_040512

Figure 97: Clear MicroBlaze 0 Comparator Status Errors

Disconnect the MicroBlaze Processors and Debug Logic

Figure 98 shows the reference design progress to this point.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

NN NN NN NN

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

12. Re-verify the Re-implemented Design in IVT.

Figure 98: Reference Design Progress

X584_98_041112

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

114

http://www.xilinx.com

Building the Reference Design & XILINX.

The Lockstep Master bus that connects the two MicroBlaze processors can be removed so that
the MicroBlaze processors are completely independent of each other. For the next phase of the
application note, design preservation techniques are used to lock down and preserve all the
isolated functions but disconnect the Lockstep Master bus between the two MicroBlaze
processors. For added effect, the MDM is disconnected from the first MicroBlaze processor.

More information about design preservation can be found in Repeatable Results with Design
Preservation [Ref 7] and Xilinx Hierarchical Design Methodology Guide [Ref 6]. A tutorial is
also available in Design Preservation Tutorial: PlanAhead Design Tool [Ref 8].

Note: When this application note was started, the initial plan was to completely remove the MDM from
the design at this phase. Locking down all the isolated regions and completely removing the MDM would
have required that the MDM be included in its own isolated function and region. As a result of the
Spartan-6 FPGA LX150T Development Board pinout and the limitation it put on the floorplan, the MDM
had to be included in the U4_peripherals isolated function. In this case, completely removing the MDM
would have required that the U4_peripherals isolated function be reimplemented, which would have
defeated the purpose of executing preservation on all the isolated regions.

Promoting Partitions

The first step of design preservation is promoting the partitions within the PlanAhead tool so
that the netlists of the promoted partitions (isolated regions) can be pulled back in when the
design is re-implemented. These steps describe how to promote the partitions for all the
isolated functions and regions within the dual-lockstep MicroBlaze processor system:

1. |Ifitis closed, reopen the PlanAhead tool project that implemented the isolated
dual-lockstep MicroBlaze processor system.

Note: If the PlanAhead tool was closed, the netlist design has to be reopened, and the
SCC_ISOLATED attribute has to be re-enabled on each of the isolated functions. This is a bug in the
PlanAhead tool. If the SCC_ISOLATED attribute shows that it is enabled after opening the netlist,
disable it, click Apply, re-enable it, and click Apply to ensure that the PlanAhead tool’s attribute
database is in sync with the design.

2. To lock down the isolated regions, click Promote Partitions on the left side of the
PlanAhead tool window (see Figure 99).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 115

http://www.xilinx.com

Building the Reference Design

& XILINX.

File Edit Flow Tools Window

Clnd INZ AR

Project Manager
RTL Design ‘ -
» .
Synthesize
Netlist Design L 4

g Resource Estimation
@ RunDRC

FE] Run Noise Analysis
@ Report Timing

m Slack Histogram

f@ Set up ChipScope

> .

Implement

Implemented Design ‘ v

K,

< Promote Partitions

(=

Program and Debug

X584_99_040512

Figure 99: Promote Partitions Button

In the Promote Partitions window (see Figure 100), verify that U2_mb0, U3_mb1,

U4_peripherals, U5_mb0_comp, and U6_mb1_comp are all selected under the synth
and imp runs to promote the synthesis and implementation runs. Check Automatically
manage Partition action and Import location to have the PlanAhead tool automatically

manage the files.

Note: Do not select the LOCKSTEP_SYSTEM_TOP. The disconnection of the buses occurs at the
top level of the design, so the top has to be re-implemented.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

116

http://www.xilinx.com

Building the Reference Design

& XILINX.

E] Promote Partitions

the partitions into runs.
Select Partitions to promote

|

,0 Please select entire runs or spedfic partitions to be promoted. This copies the partitions in
"' implemented run to the spedfied promote directory. After promoting runs, you can import

oy B
Run Directory Description
- synth_1

| ep'FloorPlan_Lockstep.promote\Xsynth_1 E]”

[l LOC
1 p2_mb
[13_mb1

M U4_peripherals
bl

7]

15_mb0_comp

J6_mb1_comp

impl_1 [step\FloorPlan_Lockstep.promote \Ximpl_1 E]”

.[d LOCKSTEP_SYSTEM_TOP
[®r2_mbo

13 mb1

U4_peripherals
1J5_mb0_comp

T |

U6_mb1_comp

| selectimplemented | [Cear Al |

V| Automatically manage Partition action and import location

[o

| [cancel

X584_100_040512

Figure 100: Promote Partitions Window

4. Click OK to promote and store the isolated region netlists.

Removing the Lockstep Master and MDM Connections

Removing the Lockstep Master Bus and the MDM connections requires disconnecting the

buses in the LOCKSTEP_SYSTEM_TOP. vhd file and adding some constraints to the design’s
UCF. The next section defines the changes to the LOCKSTEP_SYSTEM_TOP . vhd file and the
additions to the lockstep_system.ucf file.

1. Open the Sources tab within the PlanAhead tool window (Figure 101) by clicking
Window > Sources.

2. Double-click the LOCKSTEP_SYSTEM_TOP - STRUCTURE line under the Design
Sources tree within the Sources tab to open the LOCKSTEP_SYSTEM_TOP . vhd file within
the PlanAhead tool’s text editor (Figure 101).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

117

http://www.xilinx.com

Building the Reference Design

& XILINX.

Project Manager |

® .

Synthesize
=1 Netlist Design -
Resource Estimation
@ RunDRC
| Run Noise Analysis
G Report Timing
m Slack Histogram
& Setup ChipScope

> .

Implement

implemented Design ‘ v|

3

Promote Partitions

=
=

Program and Debug

Figure 101:

RTLDesign ||

| KR P——p— 2=
_ Libraries | Compile Order |

(% Promoted Partitions £ Sources | [B) Physical Constraints |

Netlist Design - netlist_1 - xc6slx150tfgg676-3 (active)

Sources

@ U2_mb0 - MBO_TOP - STRUCTURE (MBO_TOP.vhd) ()

@ U3_mb1 - MB1_TOP - STRUCTURE (MB1_TOP.vhd) (&)

@ U4_peripherals - PERIPHERALS_TOP - STRUCTURE (PERIPHERA
@ US_mb0_comp - MBO_COMPARATOR_TOP - STRUCTURE (MBD_(
@l US_mb1_comp - MB1_COMPARATOR_TOP - STRUCTURE (ME1_(
-l rs232_usb_wrapper (rs232_usb_wrapper.ngc)

- push_buttons_3bits_wrapper (push_buttons_3bits_wrapper.ngc)
i proc_sys_reset_0_wrapper (proc_sys_reset_0_wrapper.ngc)

-l microblaze_comparator_1_wrapper (microblaze_comparator_1_wrap
- microblaze_comparator_0_wrapper (microblaze_comparator_0_wrap
- microblaze 1 wraoper (microblaze i

_akgen - CLOCKGEN_TUF - 5TRUCTURE (CLOUKGEN_TOF. v |i

=

Instance Properties

«+fr T ==B+

Us_mb1_comp

- 0O g =

BUS_INFO

CLASS cell

HD_MOD_NAMES U6_mbl_compiMB1l_COMPARA. .. |-

I5_BEL_FIXED] 1

IS_BLACKBOX il

IS_LOC_FIXED =

IS_PARTITION

IS_PRIMITIVE ™ -
BUS_INFO

Attribute Type: String Read-only: No

General | Statistics | Fins | Children | Attributes Connectivity |Parh'h'on

_ [Properties l_ @ Clock Regions | & Selection |

X584_101_040512

LOCKSTEP_SYSTEM_TOP within Sources Tab

Within the LOCKSTEP_SYSTEM_TOP . vhd file, scroll down to Line 1024 and change lines

1024 to 1026 from:

EXT_BRK_IN => EXT_BRK_MBO,
EXT_NM_BRK_IN => EXT_NM_BRK_MBO,
LOCKSTEP_MASTER_OUT => LOCKSTEP_MASTER,
to:

EXT_BRK_IN = '0"',
EXT_NM_BRK_IN = '0"',
LOCKSTEP_MASTER_OUT => OPEN,

This disconnects the two External Break inputs and the Lockstep Master output of

U2_mb0.

Note: Ctrl+g can be used within the text editor to jump to lines.
Within the LOCKSTEP_SYSTEM_TOP . vhd file, scroll down to Line 1189 and change lines

1189 through 1196 from:

MB_DBG_CLK_IN => MB_DBG_CLK,

MB_DBG_TDI_IN => MB_DBG_TDI,

MB_DBG_TDO_OUT => MB_DBG_TDO,

MB_DBG_REG_EN_IN => MB_DBG_REG_EN,
MB_DBG_CAPTURE_IN => MB_DBG_CAPTURE,
MB_DBG_SHIFT_ IN => MB_DBG_SHIFT,

MB_DBG_UPDATE_IN => MB_DBG_UPDATE,
MB_DEBUG_RST_IN => MB_DEBUG_RST

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 118

http://www.xilinx.com

Building the Reference Design

& XILINX.

to:

MB_DBG_CLK_IN
MB_DBG_TDI_IN
MB_DBG_TDO_OUT
MB_DBG_REG_EN_IN
MB_DBG_CAPTURE_IN
MB_DBG_SHIFT IN
MB_DBG_UPDATE_IN
MB_DEBUG_RST_IN

=>
=>
=>
=>
=>
=>
=>

=>

|OI,
|OI,
OPEN,
x"00",
|OI,
|OI,
|OI,
|OI

This disconnects the MDM connections of U2_mb0.

5. Within the LOCKSTEP_SYSTEM_TOP.vhd file, scroll down to Line 1198 and add in this
code line to tie the LOCKSTEP_MASTER input to U3_mb1:

LOCKSTEP_MASTER <=

(OTHERS =>

IOI);

6. Within the LOCKSTEP_SYSTEM_TOP.vhd file, scroll down to Line 1205 and change line

1205 and 1206 from:

EXT_BRK_IN
EXT_NM_BRK_IN

to:

EXT_BRK_IN
EXT_NM_BRK_IN

=>
=>

EXT_BRK_MB1,
EXT_NM_BRK_MB1,

|OI,
|OI,

This disconnects the two External Break inputs and the Lockstep Master output of

U3_mb1.

7. Within the LOCKSTEP_SYSTEM_TOP . vhd file, scroll down to Line 1277 and change lines

1277 through 1280 from:

EXT_BRK_MBO_OUT
EXT_BRK_MB1_OQUT
EXT_NM_BRK_MBO_OUT
EXT_NM_BRK_MB1_OUT

to:

EXT_BRK_MBO_OUT
EXT_BRK_MB1_OQUT
EXT_NM_BRK_MBO_OUT
EXT_NM_BRK_MB1_OUT

EXT_BRK_MBO,
EXT_BRK_MB1,
EXT_NM_BRK_MBO,
EXT_NM_BRK_MB1,

OPEN,
OPEN,
OPEN,
OPEN,

This disconnects the External Break outputs of U4_peripherals.

8. Within the LOCKSTEP_SYSTEM_TOP.vhd file, scroll down to Line 1288 and change line

1288 and 1289 from:
DEBUG_MODULE_DRCK_IN

DEBUG_MODULE_DRCK_OUT

to:
DEBUG_MODULE_DRCK_IN

=>

=>

=>

DEBUG_MODULE_DRCK_IN,
DEBUG_MODULE_DRCK_OUT,

|OI’
OPEN,

DEBUG_MODULE_DRCK_OUT =>

This disconnects the U4_peripherals component from the MDM DRCK_BUFG instantiated
within LOCKSTEP_SYSTEM_TOP.vhd.

Within the LOCKSTEP_SYSTEM_TOP.vhd file, scroll down to Line 1538 and change lines

1538 through 1545 from:

MB_DBG_CLK_OUT =
MB_DBG_TDI_OUT =>
MB_DBG_TDO_IN =>
MB_DBG_REG_EN_OUT =>
MB_DBG_CAPTURE_OUT =>
MB_DBG_SHIFT_ OUT =>
MB_DBG_UPDATE_OQUT =

MB_DBG_CLK,
MB_DBG_TDI,
MB_DBG_TDO,
MB_DBG_REG_EN,
MB_DBG_CAPTURE,
MB_DBG_SHIFT,
MB_DBG_UPDATE,

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

119

http://www.xilinx.com

Building the Reference Design

& XILINX.

MB_DEBUG_RST_OUT => MB_DEBUG_RST,
to:

MB_DBG_CLK_OUT => OPEN,
MB_DBG_TDI_OUT => MB_DBG_TDI,
MB_DBG_TDO_IN => MB_DBG_TDI,
MB_DBG_REG_EN_OUT => OPEN,
MB_DBG_CAPTURE_OUT => OPEN,
MB_DBG_SHIFT_ OUT => OPEN,
MB_DBG_UPDATE_OUT => OPEN,
MB_DEBUG_RST_OUT => OPEN,

This disconnects the MDM outputs of U2_mb0 and loops the TDI output to TDO for JTAG
connectivity.

10. Within the LOCKSTEP_SYSTEM_TOP . vhd file, scroll down to Line 1578 and comment out
the BUFG_DRK instance.
11. Save the updated LOCKSTEP_SYSTEM_TOP.vhd file.
12. Within the Sources tab, scroll down and expand the Constraints tree and double-click
lockstep_system.uct to open the file within the PlanAhead tool’s text editor.
13. At the bottom of 1lockstep_system.ucf, add in these constraints:
PIN "U3_mbl.LOCKSTEP_MASTER_IN(*)" ALLOW_CONSTANT_PUSHING = FALSE;
PIN "U3_mbl.EXT_BRK_IN" ALLOW_CONSTANT_PUSHING FALSE;
PIN "U2_mbO.EXT_BRK_IN" ALLOW_CONSTANT_PUSHING FALSE;
PIN "U3_mbl.EXT_NM_BRK_IN" ALLOW_CONSTANT_ PUSHING FALSE;
PIN "U2_mb0.EXT_NM_BRK_IN" ALLOW_CONSTANT PUSHING = FALSE;
PIN "U2_mbO.MB_DBG_CLK_IN" ALLOW_CONSTANT_PUSHING FALSE;
PIN "U2_mb0O.MB_DBG_TDI_IN" ALLOW_CONSTANT_PUSHING FALSE;
PIN "U2_mb0.MB_DBG_REG_EN_IN(*)™" ALLOW_CONSTANT_PUSHING = FALSE;
PIN "U2_mbO0.MB_DBG_CAPTURE_IN" ALLOW_CONSTANT_PUSHING = FALSE;
PIN "U2_mb0.MB_DBG_SHIFT IN" ALLOW_CONSTANT_PUSHING = FALSE;
PIN "U2_mb0.MB_DBG_UPDATE_IN" ALLOW_CONSTANT PUSHING = FALSE;
PIN "U2_mb0.MB_DEBUG_RST_IN" ALLOW_CONSTANT_PUSHING = FALSE;
PIN "U4_peripherals.DEBUG_MODULE_DRCK_IN" ALLOW_CONSTANT_ PUSHING = FALSE;
These constraints prevent the Xilinx Implementation tools from modifying the isolated
function due to the inputs that are now connected to constants (High or Low) instead of
active drivers. If these constraints were not added, ngdbuild would report an error stating
that the isolated function had changed.
The constraint has the format:
PIN "Partition_Instance.Partition_Pin" ALLOW_CONSTANT_ PUSHING = FALSE;
14. Save the updated lockstep_system.ucf file.
15. If prompted that the Netlist Design is out of date, reload the Netlist by clicking Reload.

Re-implementing the Design with Promoted Partitions

With the Lockstep Master and MDM now disconnected in the code, the design can now be

re-implemented. The design has to go through the full implementation flow including synthesis
because of the changes to the top and constraint files. These steps define how to indicate to
use the promoted partitions and re-implement the design:

1. Inthe PlanAhead tool window (Figure 102), click the down arrow next to Synthesize and
select Specify Partitions....

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

120

http://www.xilinx.com

Building the Reference Design

& XILINX.

2.

RTL Design ‘ = |

4] Netlist Design -

Resource Estimation

@ RunDRC

B Run Noise Analysis
@ Report Timing
M[Slack Histogram

[Popamsge)

i 8

& Setup ChipScope

> .

Implement

implemented Design ‘ -

Ej

Promote Partitions

¥
4

Program and Debug

Netlist Design - netlist_1 - xc6slx150tfigg676-3 (a

@ Netiist Design is out-of-date. Constraints were modified. more... Reload

Clo:

Sources = [o X

Q= wa3E

[axi4_0_wrapper (axi4_0_wrapper.ngc)
= BMM (1)
- Constraints (1)

EHm constrs_1

i--[2 microblaze_1_wrapper.ncf

microblaze_1_iimb_wrapper.ncf
microblaze_1_dimb_wrapper.ncf
microblaze_0_wrapper.ncf
microblaze_0_ilmb_wrapper.ncf
microblaze_0_dmb_wrapper.ncf
mcb_ddr3_wrapper.ncf
|2 axi4_0_wrapper.ncf
axidlite_0_wrapper.ncf
i fH lodkstep_system.ucf (target)

o +

Hierarchy | Libraries | Compile Order |

"% Promoted Partitions ., £ Sources | [B Physical Constraints |

Instance Properties - O a

e+BrIZ==B 4

U6_mb1_comp

J

CLASS cell

HD_MOD_NAMES U6_mbl_ compiMB1 COMPAR. . _
1S_BEL_FIXED B

15_BLACKBOX]

15_LOC_FIXED [l

I5_PARTITION

1S_PRIMITIVE] -

13

m

BUS_INFO
Attribute Type: String Read-only: No

General | Statistics | Pins | Children | Attributes | Connectivity | Partition |

B _ & Properties L Clock Regions [It Selection |

X584_102_040512

Figure 102: Synthesize Menu Selections

In the Specify Partitions window (Figure 103), verify that all the partitions U2_mb0,
U3_mb1, U4_peripherals, U5_mb0_comp, and U6_mb1_comp have an action of
Import and a preservation of Routing on both the Synthesis and Implementation tabs.

Click OK. The import location is automatically set to where the promoted partitions were

stored.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com

121

http://www.xilinx.com

Building the Reference Design

& XILINX.

FE Specify Partitions =
. 0 Spedfy whether partitions wil be imported or implemented
| Synthesss | Implementation |
Name Action Import from Preservation
CIv LOCKSTEP _SYSTEM_TOP Implement - N/A
B+ U2_mbo Import w |C:\Users\trevorh\Lock Step Micro\LX150T DesianVockstep xapp'planahead\FloorPlan Lockstep\FloorPlan Lockstep.promote¥synth 1 [=}| Routing -
B+ U3_mb1 Import v |C:Wsers\trevorh\Lock Step Micro\LX150T DesianVockstep xapp‘planahead\FloorPlan Lockstep\FloorPlan Lockstep.promoteWsynth 1 -§| Routing -
B+ U4_perpherals Import w | C:\sers\trevorhlLock Step Micro\LX150T DesianVockstep xapp'planahead\FloorPlan Lockstep\FloorPlan Locksten.promoteWXsynth 1 | Routing £
S+ U5_mb0_comp Import w | C:\Users\trevorh\Lock Step Micro\LX150T DesianVockstep xapp'planaheadFloorPlan Lodstep\FloorPlan Lodkstep.promote\Xsynth 1 | ~}| Routing -
B+ Us_mb1_comp Import w |C:\sers\trevorh'\Lock Step MicrolLX150T DesianVockstep xapp'planahead\FloorPlan Lockstep\FloorPlan Lockstep.promotetXsynth 1 -}| Routing -
| OK. || Cancel
- X584_103_040512
Figure 103: Promote Partitions Window
3. Synthesize the design by clicking the Synthesize button on the left side of the PlanAhead
tool window.
4. When prompted whether to rerun synthesis, click OK.
5. After Synthesis is completed, open the Netlist Design.
6. With the Netlist Design open, click Implement on the left side of the PlanAhead tool
window to implement the design.
7. When implementation is complete, verify that the design met timing. The NCD can also be

opened in FPGA Editor to see that the Lockstep Master bus has been disconnected
between the two MicroBlaze processors and that only the global clock crosses the two
isolated functions. Figure 104, as an example, shows where the Lockstep Master bus used
to connect between the two processors. The signal highlighted in red is the global 50 MHz
clock, which is the only signal that remains.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 122

http://www.xilinx.com

Building the Reference Design & XILINX.

X584_104_040512

Figure 104: u2_mb0 and U3_mb1 Isolated Function Boundary with Master Lockstep Removed

Building the Bitstream with the Bootloader Embedded

The bitstream can be built through the PlanAhead tool so that the bootloader is added to the
MicroBlaze processor Data and Instruction memory without having to go through SDK. This is
done through BitGen using the -bd flag identifying the ELF file coupled with the tag command
to identify the MicroBlaze processor. These steps describe this process:

1. With the design re-implemented, click the down arrow next to Program and Debug on the
left side of the PlanAhead tool window. Select Generate Bitstream....

2. In Generate Bitstream, use the More Options field (Figure 105), which allows multiple
flag inputs. Add in these lines, then click OK:

-bd <reference design>/sdk/srec_bootloader_0/Release/srec_bootloader_0.elf tag microblaze_0
-bd <reference design>/sdk/srec_bootloader_0/Release/srec_bootloader_0.elf tag microblaze_1

] Generate Bitstream =

o Create 2 programming (bit) fle for the desgn. Use IMPACT to program the FPGA device or generate a PROM programming fil from the generated bitstream,

ok][gt]

X584_105_040512

Figure 105: Generate Bitstream with ELF Callout

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 123

http://www.xilinx.com

Building the Reference Design & XILINX.

3. After BitGen is complete, the generated file can be loaded into the FPGA through the
iIMPACT tool (a foundational tool in the ISE Design Suite). This FPGA load brings up the
demonstration code, which is still stored in the linear flash.

Figure 16 shows a screen capture of the demonstration software's Comparator test
successfully executed on the re-implemented design.

[Problems (E Tasks (E Console | = Properties M 5 E 'I|§|| ~E-x —0O

Serial: (COMS5, 38400, 8, 1, None, None - CONMNECTED)

B L L T T e

o o R R R R R R o R o o o o e e e e e R e e R e R R e e R R R R R R R R R R R R R R R
okl Xilinx Dual Lockstep Microblaze bkl
o o R R R R R R o R o o o o e e e e e R e e R e R R e e R R R R R R R R R R R R R R R
R AR R R AR R
Choose Feature to Test:

1: Peripherals Self Tests.

2: BRAM Memory Test.

3: Dip Switch and LED Demo.

4: Comparator Test.

I5: Read Both Microblaze Comparator Status Registers.

&: Clear Microblaze 0 Comparator Status Errors.

7: Clear Microblaze 1 Comparator Status Errors.
4

Testing that both comparators run for some time without loos=ing sync.
|JRunning sync test iteration....

1000 out of 1000

Sync Test Completed......... Test PASSED!'!

Testing error injection on Microblaze Comparator 0.
WValue of control register read is l.r setting control register to Clear Fault was not 0.

Microblaze 0 Comparator Error Injection Test Completed.

......... Test PASSED!!

m

Testing error injection on Microblaze Comparator 1.
WValue of control register read is l.r setting control register to Clear Fault was not 0.
Microblaze 1 Comparator Error Injection Test Completed.

......... Test PASSED!!

Comparator Tests Complete.

R R R R R R R R R R R AR R
AR R AR AR AR AR AR R AR R
okl Xilinx Dual Lockstep Microblaze bkl
o o R R R R R R o R o o o o e e e e e R e e R e R R e e R R R R R R R R R R R R R R R
o o R R R R R R o R o o o o e e e e e R e e R e R R e e R R R R R R R R R R R R R R R
Choose Feature to Test:

Peripherals Self Tests.

BRAM Memory Test.

Dip Switch and LED Demo.

Comparator Test.

Read Both Microblaze Comparator Status Registers.
Clear Microblaze 0 Comparator Status Errors.

Clear Microblaze 1 Comparator Status Errors.

= s W R

—

X584_106_040512

Figure 106: Snapshot of Comparator Test Run on Preserved Build with Embedded ELF

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 124

http://www.xilinx.com

Building the Reference Design

& XILINX.

Re-verify the Re-implemented Design in the IVT

Figure 107 shows the reference design progress to this point.

1. Generate Dual MicroBlaze System in EDK Platform Studio.

2. Modify Dual MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

NN NN NN NNN N,

12. Re-verify the Re-implemented Design in IVT.

X584_107_041112

Figure 107: Reference Design Progress

With the design re-implemented, run the NCD through the IVT one last time to verify that there
are no isolation violations.

In the PlanAhead tool, in the Design Runs pane, left-click and then right-click impl_1.
In the pop-up window, select Open Run Directory....

In the Explorer window that appears, copy the LOCKSTEP_SYSTEM_TOP_routed.ncdfile
to <reference design>\ivt\ncd.

Open up a ISE Design Suite command prompt.

Start > All Programs > Xilinx ISE Design Suite 13.4 > Accessories > ISE Design Suite
64 Bit Command Prompt.

Note: This command launches the 64-bit Windows version of the tool.
Within the command prompt, change directory (cd) to <reference design>\ivt\ncd.
Within the command prompt, enter ivt -f lockstep_system_ncd.ivt. Press Enter.

After the IVT runs, verify that the status says SUCCESS!, indicating that no isolation
violations were found (Figure 108).

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 125

http://www.xilinx.com

Building the Reference Design & XILINX.

B ISE Design Suite 64 Bit Command Prompt L= | B e 8

IC:N\BilinxN\13 . 4NISE_DS>cd C:NUsershtrevorhM\Lock Step MicroNLB158T _Designlockstep

L xappsivtsncd

C:N\UsersstrevorhN\Lock_Step_ Micro\LK158T_Designslockstep_xappsivtsncd?>ivt —f lock
'step_system_ncd_iut
Ailinx Isolation Verification Tool 7.88

Copyright <G> 2806-2011 Xilinx, Inc. All rights reserved.
*ivt —h' displays a brief argument summary.
*ivt —license’ displays the license agreement.
Loading LOCKSTEP_SYSTEM_TOP_routed.ncd...done.
module U2_mbB in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module U3_mbl in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module U4_peripherals in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module US_mbBA_comp in LOCKSTEP_SYSTEM_TOP_routed.ncd.
module U6_mbl_comp in LOCKSTEP_SYSTEM_TOP_routed.ncd.

SUCC

IC:\UsersstrevorhsLock_Step_MicroNLE158T_Designslockstep_xapphNivtincd>

X584_108_040512

Figure 108: IVT in NCD Mode Command Line on Re-implemented Design

Figure 109 shows the floorplan, the SVG file output, and routed design for the re-implemented

design.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com

126

http://www.xilinx.com

Building the Reference Design & XILINX.

X584_109_040512

Figure 109: Floorplan versus SVG File versus FPGA Editor of Re-implemented Design

The dual-lockstep MicroBlaze processor system is now created, IDF is applied, and design
preservation is used. Figure 110 shows the completed steps for this reference design.

1. Generate Dual-MicroBlaze System in EDK Platform Studio.

2. Modify Dual-MicroBlaze System into Lockstep through EDK Platform Studio.

3. Build the Dual-Lockstep MicroBlaze System in EDK Platform Studio.

4. Perform a Quick Sanity Check of the Design.

5. Prepare Dual-Lockstep MicroBlaze Design Source for Isolated Design.

6. Synthesize and Floorplan Hierarchical Design.

7. Run IVT on the Design in UCF Mode.

8. Implement the Design.

9. Run IVT on the Design in NCD Mode.

10. Build Final Software in SDK.

11. Disconnect the MicroBlaze Processors and Debug Logic.

NN NNNNNN NN NS

12. Re-verify the Re-implemented Design in IVT.

X584_110_041112

Figure 110: Reference Design Complete

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 127

http://www.xilinx.com

Conclusion & XILINX.
Conclusion The Xilinx All-Programmable technologies and solutions enables generation of a
cycle-for-cycle, highly available, highly reliable, repeatable dual-lockstep MicroBlaze processor
system. A cycle-for-cycle dual-lockstep MicroBlaze processor system can be derived from a
dual MicroBlaze processor system using the EDK tools. Using IDF, the system can be divided
into isolated functions and regions within a single device, providing increased system reliability
and availability. Design preservation can be applied to lock down isolated functions and
guarantee repeatable results for future implementation iterations.
References This application note uses the following references:
UGO081, MicroBlaze Processor Reference Guide Embedded Development Kit
2. XAPP1145, Developing Secure Designs with the Spartan-6 Family Using the Isolation
Design Flow
3. XAPP1104, Implementation of a Fail-Safe Design in the Spartan-6 Family using ISE
Design Suite 12.4
4. Avnet Spartan-6 LX150T Development Board website:
http://www.em.avnet.com/en-us/design/drc/Pages/Xilinx-Spartan-6-LX150T-Development-
Kit.aspx
5. Avnet driver software for the USB to RS-232 converter website:
https://www.em.avnet.com/Support%20And%20Downloads/CP2102_USB_Drivers01.zip
6. UG748, Xilinx Hierarchical Design Methodology Guide
7. WP362, Repeatable Results with Design Preservation
8. UG747, Design Preservation Tutorial: PlanAhead Design Tool
To find addition documentation, see the Xilinx website at http://www.xilinx.com/support.
Revision The following table shows the revision history for this document.
History
Date Version Description of Revisions
07/10/2012 1.0 Initial Xilinx release.
Notice of The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Disclaimer Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS

IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

XAPP584 (v1.0) July 10, 2012

www.Xxilinx.com 128

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/mb_ref_guide.pdf
http://www.xilinx.com/warranty.htm#critapps
http://www.em.avnet.com/en-us/design/drc/Pages/Xilinx-Spartan-6-LX150T-Development-Kit.aspx
https://www.em.avnet.com/Support%20And%20Downloads/CP2102_USB_Drivers01.zip
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/white_papers/wp362.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/PlanAhead_Tutorial_Design_Preservation.pdf
http://www.xilinx.com/support

Automotive Applications Disclaimer & XILINX.

Automotive XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE
App"cations IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS
Disclaimer RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (1) CONTROL OF A VEHICLE, UNLESS

THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE
OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A
WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (lll) USES THAT COULD
LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND
LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

XAPP584 (v1.0) July 10, 2012 www.xilinx.com 129

http://www.xilinx.com

	Spartan-6 FPGA Dual-Lockstep MicroBlaze Processor with Isolation Design Flow
	Summary
	Overview
	Reference Design Overview
	MicroBlaze Comparator User Guide
	IDF Overview

	Reference Design Files
	Setting Up the Environment

	Building the Reference Design
	Generating the Dual MicroBlaze Processor Base System in the EDK Platform Studio
	Modifying the Base Dual MicroBlaze Processor System into the Lockstep System
	Building the Dual-Lockstep MicroBlaze Processor System in the EDK Platform Studio
	Performing a Quick Sanity Check of the Design
	Preparing the Dual-Lockstep MicroBlaze Processor System for Isolated Design
	Synthesize and Floorplan the Hierarchical Design
	Run IVT on the Design in UCF Mode
	Implement the Design
	Run the IVT on the Design in NCD Mode
	Build Final Software In SDK
	Disconnect the MicroBlaze Processors and Debug Logic
	Re-verify the Re-implemented Design in the IVT

	Conclusion
	References
	Revision History
	Notice of Disclaimer
	Automotive Applications Disclaimer

