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Summary This application note presents a design methodology using the Xilinx System Generator for 
DSP tool to create a parameterizable floating-point library computation method for 
trigonometric, power, and logarithmic operations based on the coordinate rotational digital 
computer (CORDIC) algorithm [Ref 1]. The design methodology leverages the fixed-point 
CORDIC LogiCORE™ IP v5.0 block, along with floating-point building blocks such as adders, 
multipliers, comparators, ROM, and FIFOs to create a set of floating-point CORDIC functions 
that can be used as building blocks in applications. These functions are an essential requisite 
in a wide range of engineering applications such as image processing, manipulator kinematics, 
radar signal processing, robotics, and optimization processes in which a large number of 
trigonometric or power operations must be computed in an efficient manner. The library has 
been designed using System Generator for DSP, version 13.4, and supports single- and 
double-precision input as defined by the IEEE 754 floating-point standard [Ref 2].

Introduction The arithmetic unit is one of the important components of CPU design. For computation of 
complex arithmetic functions on hardware, the CORDIC algorithm is an attractive fixed-point 
algorithm that uses a sequence of simple “shift and add” operations to compute a wide variety 
of arithmetic functions. However, many applications are required to work not only with high 
precision but also a large dynamic range. Floating-point arithmetic is a feasible solution for such 
high-performance systems providing a dynamic range for representing real numbers and 
capabilities to retain resolution and accuracy.

Floating-Point Solution for Xilinx FPGAs

Xilinx FPGAs have long been used to implement fixed-point DSP and video algorithms in 
hardware. The flexibility of programmable logic allows fixed-point arithmetic to use custom bit 
widths that are not bound to the 8-, 16-, or 32-bit boundaries of a fixed-point processor. 
Fixed-point bit widths can grow as needed to accommodate applications that require large 
dynamic range. However, as the dynamic range needs to grow, a fixed-point implementation 
becomes increasingly expensive. Although floating-point solutions on FPGAs are inherently 
slower than contemporary processors, the inherent massive parallelism allows these solutions 
to be competitive to the software equivalent. For this reason, FPGAs are increasingly being 
used as floating-point accelerators. To benefit from the parallelism, there is a requirement to 
use hardware-efficient algorithms for FPGAs. More complex floating-point systems on FPGAs 
require good implementations of elementary functions such as logarithmic, power, and 
trigonometric. The System Generator for DSP tool meets this demand by supporting design 
and implementation of floating-point algorithms from within the Simulink modeling environment. 
System Generator for DSP also has the flexibility of optimizing an implementation that is bit- 
and cycle-accurate to the original model. This library has been designed as an extension for 
customers familiar with the flow of the System Generator for DSP tool.
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Fixed-Point CORDIC Algorithm

CORDIC algorithms are a class of iterative solutions for trigonometric and other transcendental 
functions that use only shifts and adds to perform. The trigonometric functions are 
implemented based on vector rotation. Incremental functions such as logarithm and power are 
performed with a simple extension to the hardware architecture and, while not CORDIC in the 
strictest sense, are often included because of close similarity. A detailed study of the algorithm 
is given in Fixed-Point CORDIC Algorithm.

Design Approach

A floating-point library for CORDIC trigonometric functions has been developed using the 
fixed-point CORDIC block and other basic blocks. The approach chosen has been to use 
underlying trigonometric relations to extend the range of the fixed-point CORDIC algorithm. 
The input floating-point number is passed through a range reduction step and then processed 
with a fixed-point CORDIC block. The range reduction step reduces the input range to the one 
allowed by the fixed-point CORDIC algorithm. A post-processing step performs the inverse of 
the range reduction step after fixed-point computation. This approach is detailed in Figure 1. 
The library has been made parameterizable to ensure maximum flexibility. The floating-point 
CORDIC library presented in this application note has been implemented using the Xilinx IP 
portfolio. System Generator for DSP, version 13.4, was used to implement the flow.

Fixed-Point 
CORDIC 
Algorithm

The CORDIC algorithm was initially designed to perform vector rotation, where the vector (X,Y) 
is rotated through an angle θ yielding a new vector (X',Y'). The vector rotation equations are:

Equation 1

Equation 2

Equation 3

The CORDIC algorithm performs a vector rotation as a sequence of successively smaller 
rotations, each of angle atan(2-i), known as micro rotations. Equation 4 through Equation 6 
show the expression for the ith iteration, where i is the iteration index from 0 to n. The 
expression for the ith micro rotation is:

Equation 4

Equation 5

Equation 6

Where αi is the direction of rotation and can have a value of ±1.

A detailed description of the CORDIC algorithm is given in Floating-Point Algorithms and 
Library Interface Specifications, page 10.

X-Ref Target - Figure 1

Figure 1: Approach Chosen for Floating-Point CORDIC Library
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Floating-Point 
Algorithms

Floating-Point CORDIC sin-cos

The rotational mode of fixed-point CORDIC can be used to simultaneously compute the sine 
(sin) and cosine (cos) of the input angle. Setting the y component of the input vector to zero 
reduces the rotation mode to:

Equation 7

Equation 8

Where An is a gain factor corresponding to the ith micro rotation.

Range Enhancement

The range reduction step for the fixed-point CORDIC algorithm can be achieved by performing 
an angle rotation on the input. The input is rotated to a value between –π and +π, which can 
then be fed to the fixed-point CORDIC as input. This step is required because the fixed-point 
CORDIC only converges for the range between –π and +π. The rotation of the angle can be 
given by:

Equation 9

Because n is subtracted from the remainder, there is an inherent reflection in this step which 
needs to be adjusted for post-processing.

Algorithm

The steps in the algorithm are:

1. Range reduction: The input is rotated between –π and +π.
2. The fixed-point CORDIC block is used for computation of the sine and cosine of the 

number, as detailed above.

3. Post-processing: A reflection operation is performed on the output of the fixed-point 
CORDIC block.

Floating-Point CORDIC sinh-cosh

The close relationship between trigonometric and hyperbolic functions suggests that the same 
architecture can be used to compute hyperbolic functions. The CORDIC equations for 
hyperbolic rotations are derived by setting the αi factor in Equation 4, Equation 5, and 
Equation 6 by the amount shown in Equation 10.

Equation 10
\

This reduces the CORDIC output in rotation mode to Equation 11 and Equation 12.

Equation 11

Equation 12

Equation 13

The value of hyperbolic sine (sinh) and hyperbolic cosine (cosh) can be found by setting y0 to 0.

Range Enhancement

The range reduction for the hyperbolic functions can be found by splitting the input into 
fractional and integer portions. The integer portion can be processed by means of a stored 
look-up table (LUT). The fractional portion can be processed separately using a stored LUT.

Algorithm

The steps in the algorithm are:

Xn An x0 θ( )cos××=

Yn An x0 θ( )sin××=

Rotated angle(x) remainder(x, 2 π )× π–=

αi –1 if i 0, +1 otherwise<=

xn An x0 θ0( )cosh y0 θ0( )sinh×+×[ ]×=

yn An x0 θ0( )cosh y0 θ0( )sinh×+×[ ]×=

An Π 1 2
2 i–
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1. Range reduction: The input is reduced in range by first finding the absolute value of the 
number and then splitting the number into integer (int) and fractional (frac) portions.

2. The int portion is processed by means of a stored LUT while the frac portion is processed 
by means of a fixed-point CORDIC algorithm.

3. Post-processing: The outputs from the int and frac portions are combined using 
Equation 14 and Equation 15.

Equation 14

Equation 15

4. Final stage: A reflection operation is performed when the input is negative.

Floating-Point CORDIC Power

The algorithm for exponential (ex) is computed by using the sinh and cosh computed from 
Floating-Point CORDIC sinh-cosh. In addition to exponential, powers of 10 and 2 are supported 
in the library.

Algorithm

1. The exponential value of a number can be calculated from the sinh and cosh from 
Equation 16.

Equation 16

2. The power value of 10 and 2 is computed by the core from Equation 17 and Equation 18.

Equation 17

Equation 18

Floating-Point CORDIC atan

The floating-point CORDIC computes arctangent (atan (y/x)) directly using the vectoring mode 
of the CORDIC rotator if the angle is initialized with 0. The argument must be presented as a 
ratio of x/y. The angle accumulator output is given by Equation 19.

Equation 19

Range Enhancement

The range reduction step is performed by removing the sign portion of the input numbers and 
adjusting the input so that the imaginary part is always greater in magnitude than the real part. 
This adjustment is done to ensure that the output angle is always present in the first quadrant.

Algorithm

The steps in the algorithm are:

1. The absolute value of the input is found, and real and imaginary portions are adjusted so 
that the real portion is greater than the imaginary portion.

2. The fixed-point CORDIC atan is used to compute the output.

3. The output is rotated to the correct quadrant based on the input sign and whether the real 
portion of the number is greater than the imaginary portion.

Floating-Point CORDIC log

The CORDIC logarithm (ln) is implemented using the hyperbolic vectoring mode of CORDIC. 
The hyperbolic arctangent (atanh) can be used to compute log by using Equation 20. 
Logarithms to the base 10 and 2 are also supported.
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Equation 20

Range Enhancement

There is an inherent range reduction involved in the previous step. Using w–1 and w+1 ensures 
that the real portion is always less than the imaginary portion and that the real portion is never 
equal to the imaginary portion. If the real portion equals the imaginary portion, the output of 
atanh goes to infinity (which cannot be represented by the fixed-point CORDIC block). The 
other range reduction algorithm used is separation of input into the mantissa and exponent 
portion, which are processed separately. The mantissa is processed by means of the 
fixed-point CORDIC, and the exponent is processed by means of a multiplier.

Algorithm

The steps in the algorithm are:

1. Split the input into the exponent and mantissa portion. The exponent portion can be added 
back to the processed mantissa at the end.

2. Process the mantissa by using the fixed-point CORDIC algorithm as mentioned above.

3. The log10 and log2 is found in the CORDIC core using Equation 21.

Equation 21

System 
Generator 
Implementation

Setting Up the Library

For usage of the library in the System Generator for DSP tool, a patch has been created in the 
TAR file contained in the reference design (see Reference Design, page 16). After the overlay 
is installed, the library should appear similar to Figure 2. The patch works with the System 
Generator for DSP tool, version 13.4 for nt, nt64, lin, and lin64 builds.

To set up the library:

1. Clear the MATLAB and System Generator for DSP tool caches using the using 
xlCache ('clear all') command.

2. Extract the patch on top of the IDS build using WinZip or the tar –xvf command.

3. Open the System Generator for DSP tool to the corresponding IDS build.

4. The floating-point blocks are now visible as a part of the reference blockset as a “Floating 
Point” library.

5. These blocks are present as part of the library: Absolute, Conditional Negate, Floor-ceil, 
Split, Merge, Remainder, Cordic Sin-cos, Cordic Sinh-cosh, Cordic Atan, Cordic Log, and 
Cordic Power.

6. The library works for single and double floating-point data types.

Library Usage

The library is available in the floating-point section of the reference blockset, as shown in 
Figure 2. To use this library, the user can drag and drop any of the blocks to a new model file.

w( )ln 2 w 1–
w 1+
-------------- 
 atanh×=

w( )blog w( )log
b( )log

-----------------=
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Implementation Details

This section describes some of the System Generator for DSP tool-specific implementation 
details and application of additional blocks present in the library.

Parameterization of Blocks

The individual blocks in the library are created as subsystems. The GUI is customized using the 
parameters tab from the block mask. Additionally, user preferences (such as single or double, 
and size of the LUT) are handled by means of an initialization pane from the edit block mask 
window. The block mask window with parameters for sin-cos is shown in Figure 3. The 
initialization section also handles tuning latencies. Detailed instructions on how to create block 
masks can be found in Trade-offs in the Current Approach, page 13.

X-Ref Target - Figure 2

Figure 2: Floating-Point Blocks of the Xilinx Reference Blockset
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Latency Handling for AXI Blocks

The CORDIC LogiCORE IP v5.0 block has an AXI stream interface, while the basic blocks do 
not. This necessitates some input parameters to be propagated to the output side to adjust for 
latencies. For this purpose, FIFOs are used in the design. An example of how FIFO blocks are 
used to adjust for latency of AXI blocks is shown in Figure 4. For example, the sin-cos block 
requires sign information to be made available at the output. The read enable of the FIFOs are 
driven by the output TVALID of the CORDIC block.

X-Ref Target - Figure 3

Figure 3: Mask Editor: CORDIC Sin-cos Parameters
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Split and Merge

For some blocks in the library, the exponent and mantissa at the input can be processed 
separately as fixed-point numbers (e.g., log, atan) and then recombined to form a meaningful 
floating-point output. The split and merge blocks are useful for this operation. The split block 
splits the input floating-point numbers into exponent and mantissa while providing information 
on whether the input was a not a number (NaN) signal. The merge block does the inverse 
operation, recombining normalized mantissa and exponent to form an output floating-point 
number.

X-Ref Target - Figure 4

Figure 4: Usage of FIFOs in Sin-cos Block to Adjust for Latencies in CORDIC LogiCORE IP v5.0 Block
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Remainder 

The range reduction step of some algorithms involves computing the modulo of a number (e.g., 
sin-cos and sinh-cosh). For this purpose, a remainder block is useful and is implemented by 
means of a floating-point divide and a floor operation. This block is also available to the user as 
part of the library.

LUTs

The sinh-cosh and power blocks use internal LUTs to implement some portions of the 
processing. The output range of the above blocks tends to infinity very quickly, and the whole 
input range might not be of interest to the user. Therefore, control has been provided to the user 
to select the LUT size based on the input range. For implementation of user-configurable LUTs, 
ROM blocks have been used, as shown in Figure 5. This option allows the user to optimize an 
instance of the block for resource utilization.

Latency Tuning

The latencies of individual blocks in the subsystem are tuned to give approximately 280 MHz 
for a single precision floating-point data type and 240 MHz for a double precision floating-point 
data type.

X-Ref Target - Figure 5

Figure 5: ROM Block Configured to Support User-Defined Input Range
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Library 
Interface 
Specifications

This section describes the block interface terminology used for each of the different blocks. A 
sample user interface for sinh and cosh generated by MATLAB is shown Figure 6.

Table 1 describes parameter interfaces used across different blocks in the CORDIC library.

X-Ref Target - Figure 6

Figure 6: Block Mask for CORDIC Sinh-cosh Block

Table  1:  Parameter Interfaces in the CORDIC Library 

Parameter Name Description

Iterations Number of add-sub iterations. When set to 0, the number of 
iterations performed is determined by the required accuracy of the 
output. The default value of iterations is 0.

Precision Configures the internal precision of the fixed-point CORDIC. When 
precision is set to 0, the internal precision is automatically 
determined.

Data type The data types supported for this library are Single and Double, as 
defined by the IEEE 754 standard. Custom data types or parameter 
inference are not supported.

X552_06_021612
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Table 2 describes port interfaces used across various blocks in the CORDIC library.

Results and 
Discussion

To make comparisons at the architecture level, estimates have been made of the speed, area, 
latency, and throughput for the different blocks in the library. The results presented are based 
on the Virtex-7 devices. The speed information is presented for speed grades -1,-2, and -3. The 
device utilization figures are presented for -2 devices. The performance summary for the single 
data type is shown in Table 3.

Pipeline mode The supported pipeline modes are:
• Maximum: The CORDIC core is implemented with a pipeline 

after every shift-add substage.
• Optimal: The CORDIC core is implemented with as many stages 

of pipelining as possible without using additional LUTs.

Architectural configuration The architectural configurations supported are:
• Parallel: CORDIC core has single cycle data throughput and 

large silicon area.
• Word-serial: CORDIC core is implemented with multi-cycle 

throughput and a smaller silicon area.

Maximum input value This is present for sinh, cosh, and power to optimize the size of the 
LUT to conserve area. This is expected to be useful because power 
operations quickly tend toward infinity.

Table  2:  Port Interfaces in the CORDIC Library 

Port name Direction Description

Cartesian_tvalid I
Input tvalid handshake signal for the AXI stream

Phase_tvalid I

Tdata_imag I Real portion of the input data

Tdata_real I Imaginary portion of the input data

Tdata_phase I Angle input used for sin-cos and sinh-cosh modes

Cartesian_tlast I Used to specify the last data in a stream

Dout_tready I Handshake signal for AXI stream

Cartesian_tready O
Output tready signal used as handshake for AXI stream

Phase_tready O

Dout_tvalid O Signal valid data at the output

Dout_tlast O Signal last data at the output

Table  1:  Parameter Interfaces in the CORDIC Library (Cont’d)

Parameter Name Description
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The performance summary for the double data type is shown in Table 4.

Table  3:  Block Performance Summary for Single Data Type 

Block name Mode

-3 Speed 
Grade

-2 Speed 
Grade

-1 Speed 
Grade Latency Throughput

LUTs & 
Flip-Flops Slice Registers Slice LUTs Block RAM DSP48E1 

Slices

Sin-cos

Word Serial
302 281 223 130 24

6,514 4,725 4,898 1 9

Parallel
302 281 223 130 1

8,605 6,905 6,937 1 9

Sinh-cosh

Word Serial
302 281 223 138 28

10,020 7,306 7,560 3 27

Parallel
302 281 223 138 1

12,453 9,804 9,940 3 27

Power

Word Serial
302 281 223 171 28

11,049 8,091 8,198 3 40

Parallel
302 281 223 171 1

13,489 10,589 10,578 3 40

Log

Word Serial
302 279 223 64 28

2,460 1,625 1,856 1 8

Parallel
302 281 223 64 1

4,944 4,132 4,290 1 8

Atan

Word Serial
302 279 223 67 26

2,682 1,834 2,025 2 5

Parallel
302 281 223 67 1

4,935 4,152 4,257 2 5

Table  4:  Block Performance Summary for Double Data Type 

Block name Mode

-3 Speed 
Grade

-2 Speed 
Grade

-1 Speed 
Grade Latency Throughput

LUTs & 
Flip-Flops Slice Registers Slice LUTs Block RAM DSP48E1 

Slices

Sin-cos

Word Serial
282 246 215 171 45

16,598 12,504 12,060 1 20

Parallel
297 258 222 171 1

23,437 19,542 18,811 1 20

Sinh-cosh

Word Serial
285 251 217 179 49

24,183 17,898 18,219 5 73

Parallel
297 258 222 179 1

31,607 25,498 25,553 5 73

http://www.xilinx.com
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Trade-offs in the 
Current 
Approach

In the current approach simple range-enhancement algorithms are used along with a 
fixed-point CORDIC algorithm. The resulting output is expected to be hardware-efficient and to 
deliver performance comparable to that of the fixed-point CORDIC block. For example, the 
underlying CORDIC block in 32-bit mode for fixed-point sin and cos is expected to run at 
345 MHz for parallel mode and 222 MHz for word-serial architecture. This compares with 
280 MHz achieved for the floating-point CORDIC algorithm in single mode. The percentage of 
error tends to increase at a lower input range, whereas absolute error tends to increase at a 
higher range.

Detailed error profiles for different blocks are shown in Figure 7 to Figure 9. The error profiles 
are presented in terms of units in last place (ULP). The error profiles for sin-cos and sinh-cosh 
in single mode are given in Figure 7. The error profiles were obtained by providing a ramp 
signal as the input of the floating-point reference block and comparing it with the Simulink 
output. It can be seen that the error is maximum when the input value is closest to 0.

Power

Word Serial
285 229 217 212 49

26,257 19,438 19,663 5 101

Parallel
297 229 222 212 1

33,681 27,038 27,997 5 101

Log

Word Serial
283 248 216 85 49

3,075 2,787 3,575 1 25

Parallel
297 258 222 85 1

12,045 10,463 11,020 1 25

Atan

Word Serial
283 247 216 88 47

5,140 3,319 4,100 3 14

Parallel
297 258 222 88 1

12,399 10,636 11,271 3 14

Table  4:  Block Performance Summary for Double Data Type (Cont’d)

Block name Mode

-3 Speed 
Grade

-2 Speed 
Grade

-1 Speed 
Grade Latency Throughput

LUTs & 
Flip-Flops Slice Registers Slice LUTs Block RAM DSP48E1 

Slices
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X-Ref Target - Figure 7

Figure 7: Error Profile for sin-cos and sinh-cosh
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The error profiles for exponential and log are shown in Figure 8.

X-Ref Target - Figure 8

Figure 8: Error Profile for Log and Power
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The error profile for atan produced by providing a ramp for input 1 and inverse ramp for input 2 
is shown in Figure 9.

Reference 
Design

The reference design for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=185372

The reference design matrix is shown in Table 5.

X-Ref Target - Figure 9

Figure 9: Error Profile for atan
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Table  5:  Reference Design Matrix 

Parameter Description

General

Developer name Nikhil Dhume and Ramakrishnan 
Srinivasakannan

Target devices (stepping level, ES, 
production, speed grades)

Spartan-6, Virtex-6, 7 Series, and 
Zynq-7000 devices

Source code provided Yes

Source code format System Generator MDL library

http://www.xilinx.com
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Conclusion A floating-point library for computation of trigonometric, power, and logarithmic operations has 
been designed by applying range extension algorithms to underlying fixed-point blocks. This 
approach has been demonstrated to give comparable performance to the underlying 
fixed-point block. The device utilization, latency, and maximum operating frequency have been 
documented for all the blocks in the library.
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Design uses code and IP from existing Xilinx 
application note and reference designs, 
CORE Generator software, or third party

Yes

Simulation

Functional simulation performed Yes

Timing simulation performed Yes

Test bench used for functional and timing 
simulations

Yes

Test bench format System Generator MDL file

Simulator software/version used System Generator for DSP, version 13.4
ISE Design Suite 13.4

SPICE/IBIS simulations No

Implementation

Synthesis software tools/version used Xilinx Synthesis Technology (XST) 13.4

Implementation software tools/versions used System Generator for DSP, version 13.4
ISE Design Suite 13.4

Static timing analysis performed Yes

Hardware Verification

Hardware verified No

Hardware platform used for verification N/A

Table  5:  Reference Design Matrix (Cont’d)

Parameter Description
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