
XAPP552 (v1.0) June 1, 2012 www.xilinx.com 1

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. AMBA and ARM are registered trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.

Summary This application note presents a design methodology using the Xilinx System Generator for
DSP tool to create a parameterizable floating-point library computation method for
trigonometric, power, and logarithmic operations based on the coordinate rotational digital
computer (CORDIC) algorithm [Ref 1]. The design methodology leverages the fixed-point
CORDIC LogiCORE™ IP v5.0 block, along with floating-point building blocks such as adders,
multipliers, comparators, ROM, and FIFOs to create a set of floating-point CORDIC functions
that can be used as building blocks in applications. These functions are an essential requisite
in a wide range of engineering applications such as image processing, manipulator kinematics,
radar signal processing, robotics, and optimization processes in which a large number of
trigonometric or power operations must be computed in an efficient manner. The library has
been designed using System Generator for DSP, version 13.4, and supports single- and
double-precision input as defined by the IEEE 754 floating-point standard [Ref 2].

Introduction The arithmetic unit is one of the important components of CPU design. For computation of
complex arithmetic functions on hardware, the CORDIC algorithm is an attractive fixed-point
algorithm that uses a sequence of simple “shift and add” operations to compute a wide variety
of arithmetic functions. However, many applications are required to work not only with high
precision but also a large dynamic range. Floating-point arithmetic is a feasible solution for such
high-performance systems providing a dynamic range for representing real numbers and
capabilities to retain resolution and accuracy.

Floating-Point Solution for Xilinx FPGAs

Xilinx FPGAs have long been used to implement fixed-point DSP and video algorithms in
hardware. The flexibility of programmable logic allows fixed-point arithmetic to use custom bit
widths that are not bound to the 8-, 16-, or 32-bit boundaries of a fixed-point processor.
Fixed-point bit widths can grow as needed to accommodate applications that require large
dynamic range. However, as the dynamic range needs to grow, a fixed-point implementation
becomes increasingly expensive. Although floating-point solutions on FPGAs are inherently
slower than contemporary processors, the inherent massive parallelism allows these solutions
to be competitive to the software equivalent. For this reason, FPGAs are increasingly being
used as floating-point accelerators. To benefit from the parallelism, there is a requirement to
use hardware-efficient algorithms for FPGAs. More complex floating-point systems on FPGAs
require good implementations of elementary functions such as logarithmic, power, and
trigonometric. The System Generator for DSP tool meets this demand by supporting design
and implementation of floating-point algorithms from within the Simulink modeling environment.
System Generator for DSP also has the flexibility of optimizing an implementation that is bit-
and cycle-accurate to the original model. This library has been designed as an extension for
customers familiar with the flow of the System Generator for DSP tool.

Application Note: Spartan-6, Virtex-6, 7 Series, and Zynq-7000 Devices

XAPP552 (v1.0) June 1, 2012

Parameterizable CORDIC-Based
Floating-Point Library Operations
Authors: Nikhil Dhume and Ramakrishnan Srinivasakannan

http://www.xilinx.com

Fixed-Point CORDIC Algorithm

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 2

Fixed-Point CORDIC Algorithm

CORDIC algorithms are a class of iterative solutions for trigonometric and other transcendental
functions that use only shifts and adds to perform. The trigonometric functions are
implemented based on vector rotation. Incremental functions such as logarithm and power are
performed with a simple extension to the hardware architecture and, while not CORDIC in the
strictest sense, are often included because of close similarity. A detailed study of the algorithm
is given in Fixed-Point CORDIC Algorithm.

Design Approach

A floating-point library for CORDIC trigonometric functions has been developed using the
fixed-point CORDIC block and other basic blocks. The approach chosen has been to use
underlying trigonometric relations to extend the range of the fixed-point CORDIC algorithm.
The input floating-point number is passed through a range reduction step and then processed
with a fixed-point CORDIC block. The range reduction step reduces the input range to the one
allowed by the fixed-point CORDIC algorithm. A post-processing step performs the inverse of
the range reduction step after fixed-point computation. This approach is detailed in Figure 1.
The library has been made parameterizable to ensure maximum flexibility. The floating-point
CORDIC library presented in this application note has been implemented using the Xilinx IP
portfolio. System Generator for DSP, version 13.4, was used to implement the flow.

Fixed-Point
CORDIC
Algorithm

The CORDIC algorithm was initially designed to perform vector rotation, where the vector (X,Y)
is rotated through an angle θ yielding a new vector (X',Y'). The vector rotation equations are:

Equation 1

Equation 2

Equation 3

The CORDIC algorithm performs a vector rotation as a sequence of successively smaller
rotations, each of angle atan(2-i), known as micro rotations. Equation 4 through Equation 6
show the expression for the ith iteration, where i is the iteration index from 0 to n. The
expression for the ith micro rotation is:

Equation 4

Equation 5

Equation 6

Where αi is the direction of rotation and can have a value of ±1.

A detailed description of the CORDIC algorithm is given in Floating-Point Algorithms and
Library Interface Specifications, page 10.

X-Ref Target - Figure 1

Figure 1: Approach Chosen for Floating-Point CORDIC Library

Input Floating-
Point Number

Output Floating-
Point Number

Range
Reduction

Fixed-Point
Algorithm

Exception
Handling

X552_01_042612

Range
Extension

X′ θ()cos X θ(sin–×() Y)×=

Y′ θ()cos Y θ(sin+×() X)×=

θ′ 0=

Xi 1+ xi αi– yi 2
i–××=

yi 1+ yi αi xi 2
i–××+=

θi 1+ θi αi– 2
i–()atanh×=

http://www.xilinx.com

Floating-Point Algorithms

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 3

Floating-Point
Algorithms

Floating-Point CORDIC sin-cos

The rotational mode of fixed-point CORDIC can be used to simultaneously compute the sine
(sin) and cosine (cos) of the input angle. Setting the y component of the input vector to zero
reduces the rotation mode to:

Equation 7

Equation 8

Where An is a gain factor corresponding to the ith micro rotation.

Range Enhancement

The range reduction step for the fixed-point CORDIC algorithm can be achieved by performing
an angle rotation on the input. The input is rotated to a value between –π and +π, which can
then be fed to the fixed-point CORDIC as input. This step is required because the fixed-point
CORDIC only converges for the range between –π and +π. The rotation of the angle can be
given by:

Equation 9

Because n is subtracted from the remainder, there is an inherent reflection in this step which
needs to be adjusted for post-processing.

Algorithm

The steps in the algorithm are:

1. Range reduction: The input is rotated between –π and +π.
2. The fixed-point CORDIC block is used for computation of the sine and cosine of the

number, as detailed above.

3. Post-processing: A reflection operation is performed on the output of the fixed-point
CORDIC block.

Floating-Point CORDIC sinh-cosh

The close relationship between trigonometric and hyperbolic functions suggests that the same
architecture can be used to compute hyperbolic functions. The CORDIC equations for
hyperbolic rotations are derived by setting the αi factor in Equation 4, Equation 5, and
Equation 6 by the amount shown in Equation 10.

Equation 10
\

This reduces the CORDIC output in rotation mode to Equation 11 and Equation 12.

Equation 11

Equation 12

Equation 13

The value of hyperbolic sine (sinh) and hyperbolic cosine (cosh) can be found by setting y0 to 0.

Range Enhancement

The range reduction for the hyperbolic functions can be found by splitting the input into
fractional and integer portions. The integer portion can be processed by means of a stored
look-up table (LUT). The fractional portion can be processed separately using a stored LUT.

Algorithm

The steps in the algorithm are:

Xn An x0 θ()cos××=

Yn An x0 θ()sin××=

Rotated angle(x) remainder(x, 2 π)× π–=

αi –1 if i 0, +1 otherwise<=

xn An x0 θ0()cosh y0 θ0()sinh×+×[]×=

yn An x0 θ0()cosh y0 θ0()sinh×+×[]×=

An Π 1 2
2 i–

– 0.80≅=

http://www.xilinx.com

Floating-Point Algorithms

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 4

1. Range reduction: The input is reduced in range by first finding the absolute value of the
number and then splitting the number into integer (int) and fractional (frac) portions.

2. The int portion is processed by means of a stored LUT while the frac portion is processed
by means of a fixed-point CORDIC algorithm.

3. Post-processing: The outputs from the int and frac portions are combined using
Equation 14 and Equation 15.

Equation 14

Equation 15

4. Final stage: A reflection operation is performed when the input is negative.

Floating-Point CORDIC Power

The algorithm for exponential (ex) is computed by using the sinh and cosh computed from
Floating-Point CORDIC sinh-cosh. In addition to exponential, powers of 10 and 2 are supported
in the library.

Algorithm

1. The exponential value of a number can be calculated from the sinh and cosh from
Equation 16.

Equation 16

2. The power value of 10 and 2 is computed by the core from Equation 17 and Equation 18.

Equation 17

Equation 18

Floating-Point CORDIC atan

The floating-point CORDIC computes arctangent (atan (y/x)) directly using the vectoring mode
of the CORDIC rotator if the angle is initialized with 0. The argument must be presented as a
ratio of x/y. The angle accumulator output is given by Equation 19.

Equation 19

Range Enhancement

The range reduction step is performed by removing the sign portion of the input numbers and
adjusting the input so that the imaginary part is always greater in magnitude than the real part.
This adjustment is done to ensure that the output angle is always present in the first quadrant.

Algorithm

The steps in the algorithm are:

1. The absolute value of the input is found, and real and imaginary portions are adjusted so
that the real portion is greater than the imaginary portion.

2. The fixed-point CORDIC atan is used to compute the output.

3. The output is rotated to the correct quadrant based on the input sign and whether the real
portion of the number is greater than the imaginary portion.

Floating-Point CORDIC log

The CORDIC logarithm (ln) is implemented using the hyperbolic vectoring mode of CORDIC.
The hyperbolic arctangent (atanh) can be used to compute log by using Equation 20.
Logarithms to the base 10 and 2 are also supported.

int frac+()cosh int()cosh frac()cosh× int()sinh frac()sinh×+=

int frac+()sinh int()cosh frac()sinh× frac()cosh int()sinh×+=

e
x

x()sinh x()cosh+=

10
x

e
x ln(10)⋅()

=

2
x

e
x ln(2)⋅()

=

θn θ0

x0

y0
----- 
 

1–
tan+=

http://www.xilinx.com

System Generator Implementation

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 5

Equation 20

Range Enhancement

There is an inherent range reduction involved in the previous step. Using w–1 and w+1 ensures
that the real portion is always less than the imaginary portion and that the real portion is never
equal to the imaginary portion. If the real portion equals the imaginary portion, the output of
atanh goes to infinity (which cannot be represented by the fixed-point CORDIC block). The
other range reduction algorithm used is separation of input into the mantissa and exponent
portion, which are processed separately. The mantissa is processed by means of the
fixed-point CORDIC, and the exponent is processed by means of a multiplier.

Algorithm

The steps in the algorithm are:

1. Split the input into the exponent and mantissa portion. The exponent portion can be added
back to the processed mantissa at the end.

2. Process the mantissa by using the fixed-point CORDIC algorithm as mentioned above.

3. The log10 and log2 is found in the CORDIC core using Equation 21.

Equation 21

System
Generator
Implementation

Setting Up the Library

For usage of the library in the System Generator for DSP tool, a patch has been created in the
TAR file contained in the reference design (see Reference Design, page 16). After the overlay
is installed, the library should appear similar to Figure 2. The patch works with the System
Generator for DSP tool, version 13.4 for nt, nt64, lin, and lin64 builds.

To set up the library:

1. Clear the MATLAB and System Generator for DSP tool caches using the using
xlCache ('clear all') command.

2. Extract the patch on top of the IDS build using WinZip or the tar –xvf command.

3. Open the System Generator for DSP tool to the corresponding IDS build.

4. The floating-point blocks are now visible as a part of the reference blockset as a “Floating
Point” library.

5. These blocks are present as part of the library: Absolute, Conditional Negate, Floor-ceil,
Split, Merge, Remainder, Cordic Sin-cos, Cordic Sinh-cosh, Cordic Atan, Cordic Log, and
Cordic Power.

6. The library works for single and double floating-point data types.

Library Usage

The library is available in the floating-point section of the reference blockset, as shown in
Figure 2. To use this library, the user can drag and drop any of the blocks to a new model file.

w()ln 2 w 1–
w 1+
-------------- 
 atanh×=

w()blog w()log
b()log

-----------------=

http://www.xilinx.com

System Generator Implementation

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 6

Implementation Details

This section describes some of the System Generator for DSP tool-specific implementation
details and application of additional blocks present in the library.

Parameterization of Blocks

The individual blocks in the library are created as subsystems. The GUI is customized using the
parameters tab from the block mask. Additionally, user preferences (such as single or double,
and size of the LUT) are handled by means of an initialization pane from the edit block mask
window. The block mask window with parameters for sin-cos is shown in Figure 3. The
initialization section also handles tuning latencies. Detailed instructions on how to create block
masks can be found in Trade-offs in the Current Approach, page 13.

X-Ref Target - Figure 2

Figure 2: Floating-Point Blocks of the Xilinx Reference Blockset

X552_02_042612

http://www.xilinx.com

System Generator Implementation

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 7

Latency Handling for AXI Blocks

The CORDIC LogiCORE IP v5.0 block has an AXI stream interface, while the basic blocks do
not. This necessitates some input parameters to be propagated to the output side to adjust for
latencies. For this purpose, FIFOs are used in the design. An example of how FIFO blocks are
used to adjust for latency of AXI blocks is shown in Figure 4. For example, the sin-cos block
requires sign information to be made available at the output. The read enable of the FIFOs are
driven by the output TVALID of the CORDIC block.

X-Ref Target - Figure 3

Figure 3: Mask Editor: CORDIC Sin-cos Parameters

X552_03_021612

http://www.xilinx.com

System Generator Implementation

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 8

Split and Merge

For some blocks in the library, the exponent and mantissa at the input can be processed
separately as fixed-point numbers (e.g., log, atan) and then recombined to form a meaningful
floating-point output. The split and merge blocks are useful for this operation. The split block
splits the input floating-point numbers into exponent and mantissa while providing information
on whether the input was a not a number (NaN) signal. The merge block does the inverse
operation, recombining normalized mantissa and exponent to form an output floating-point
number.

X-Ref Target - Figure 4

Figure 4: Usage of FIFOs in Sin-cos Block to Adjust for Latencies in CORDIC LogiCORE IP v5.0 Block

phase_tdata_phase

Convert

4
In4

phase_tvalid

phase_tlast

dout_tready
dout_tlast

dout

empty

full

din

we

re

CORDIC_5_0

FIFO

dout_tdata_real

dout_tdata_imag

dout_tvalid

phase_tready

z-4
cast

Convert3

z-4
cast

Convert1

Conditional-negate

Negate

in
out

sign

z-4
cast

Convert2

Delay5

z-4
cast

z-1

float

z-1

x(-1)

z-4cast

From

[A]

Goto2Delay3

z-5

Delay2

2
Out2

[A]

Goto

[C]

From2

3

Out3

4

Out4

z-5 5

Out5

1
Out1

Convert4

Terminator1

Terminator

[C]

X552_04_021612

http://www.xilinx.com

System Generator Implementation

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 9

Remainder

The range reduction step of some algorithms involves computing the modulo of a number (e.g.,
sin-cos and sinh-cosh). For this purpose, a remainder block is useful and is implemented by
means of a floating-point divide and a floor operation. This block is also available to the user as
part of the library.

LUTs

The sinh-cosh and power blocks use internal LUTs to implement some portions of the
processing. The output range of the above blocks tends to infinity very quickly, and the whole
input range might not be of interest to the user. Therefore, control has been provided to the user
to select the LUT size based on the input range. For implementation of user-configurable LUTs,
ROM blocks have been used, as shown in Figure 5. This option allows the user to optimize an
instance of the block for resource utilization.

Latency Tuning

The latencies of individual blocks in the subsystem are tuned to give approximately 280 MHz
for a single precision floating-point data type and 240 MHz for a double precision floating-point
data type.

X-Ref Target - Figure 5

Figure 5: ROM Block Configured to Support User-Defined Input Range

X552_05_022912

http://www.xilinx.com

Library Interface Specifications

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 10

Library
Interface
Specifications

This section describes the block interface terminology used for each of the different blocks. A
sample user interface for sinh and cosh generated by MATLAB is shown Figure 6.

Table 1 describes parameter interfaces used across different blocks in the CORDIC library.

X-Ref Target - Figure 6

Figure 6: Block Mask for CORDIC Sinh-cosh Block

Table 1: Parameter Interfaces in the CORDIC Library

Parameter Name Description

Iterations Number of add-sub iterations. When set to 0, the number of
iterations performed is determined by the required accuracy of the
output. The default value of iterations is 0.

Precision Configures the internal precision of the fixed-point CORDIC. When
precision is set to 0, the internal precision is automatically
determined.

Data type The data types supported for this library are Single and Double, as
defined by the IEEE 754 standard. Custom data types or parameter
inference are not supported.

X552_06_021612

http://www.xilinx.com

Results and Discussion

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 11

Table 2 describes port interfaces used across various blocks in the CORDIC library.

Results and
Discussion

To make comparisons at the architecture level, estimates have been made of the speed, area,
latency, and throughput for the different blocks in the library. The results presented are based
on the Virtex-7 devices. The speed information is presented for speed grades -1,-2, and -3. The
device utilization figures are presented for -2 devices. The performance summary for the single
data type is shown in Table 3.

Pipeline mode The supported pipeline modes are:
• Maximum: The CORDIC core is implemented with a pipeline

after every shift-add substage.
• Optimal: The CORDIC core is implemented with as many stages

of pipelining as possible without using additional LUTs.

Architectural configuration The architectural configurations supported are:
• Parallel: CORDIC core has single cycle data throughput and

large silicon area.
• Word-serial: CORDIC core is implemented with multi-cycle

throughput and a smaller silicon area.

Maximum input value This is present for sinh, cosh, and power to optimize the size of the
LUT to conserve area. This is expected to be useful because power
operations quickly tend toward infinity.

Table 2: Port Interfaces in the CORDIC Library

Port name Direction Description

Cartesian_tvalid I
Input tvalid handshake signal for the AXI stream

Phase_tvalid I

Tdata_imag I Real portion of the input data

Tdata_real I Imaginary portion of the input data

Tdata_phase I Angle input used for sin-cos and sinh-cosh modes

Cartesian_tlast I Used to specify the last data in a stream

Dout_tready I Handshake signal for AXI stream

Cartesian_tready O
Output tready signal used as handshake for AXI stream

Phase_tready O

Dout_tvalid O Signal valid data at the output

Dout_tlast O Signal last data at the output

Table 1: Parameter Interfaces in the CORDIC Library (Cont’d)

Parameter Name Description

http://www.xilinx.com

Results and Discussion

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 12

The performance summary for the double data type is shown in Table 4.

Table 3: Block Performance Summary for Single Data Type

Block name Mode

-3 Speed
Grade

-2 Speed
Grade

-1 Speed
Grade Latency Throughput

LUTs &
Flip-Flops Slice Registers Slice LUTs Block RAM DSP48E1

Slices

Sin-cos

Word Serial
302 281 223 130 24

6,514 4,725 4,898 1 9

Parallel
302 281 223 130 1

8,605 6,905 6,937 1 9

Sinh-cosh

Word Serial
302 281 223 138 28

10,020 7,306 7,560 3 27

Parallel
302 281 223 138 1

12,453 9,804 9,940 3 27

Power

Word Serial
302 281 223 171 28

11,049 8,091 8,198 3 40

Parallel
302 281 223 171 1

13,489 10,589 10,578 3 40

Log

Word Serial
302 279 223 64 28

2,460 1,625 1,856 1 8

Parallel
302 281 223 64 1

4,944 4,132 4,290 1 8

Atan

Word Serial
302 279 223 67 26

2,682 1,834 2,025 2 5

Parallel
302 281 223 67 1

4,935 4,152 4,257 2 5

Table 4: Block Performance Summary for Double Data Type

Block name Mode

-3 Speed
Grade

-2 Speed
Grade

-1 Speed
Grade Latency Throughput

LUTs &
Flip-Flops Slice Registers Slice LUTs Block RAM DSP48E1

Slices

Sin-cos

Word Serial
282 246 215 171 45

16,598 12,504 12,060 1 20

Parallel
297 258 222 171 1

23,437 19,542 18,811 1 20

Sinh-cosh

Word Serial
285 251 217 179 49

24,183 17,898 18,219 5 73

Parallel
297 258 222 179 1

31,607 25,498 25,553 5 73

http://www.xilinx.com

Trade-offs in the Current Approach

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 13

Trade-offs in the
Current
Approach

In the current approach simple range-enhancement algorithms are used along with a
fixed-point CORDIC algorithm. The resulting output is expected to be hardware-efficient and to
deliver performance comparable to that of the fixed-point CORDIC block. For example, the
underlying CORDIC block in 32-bit mode for fixed-point sin and cos is expected to run at
345 MHz for parallel mode and 222 MHz for word-serial architecture. This compares with
280 MHz achieved for the floating-point CORDIC algorithm in single mode. The percentage of
error tends to increase at a lower input range, whereas absolute error tends to increase at a
higher range.

Detailed error profiles for different blocks are shown in Figure 7 to Figure 9. The error profiles
are presented in terms of units in last place (ULP). The error profiles for sin-cos and sinh-cosh
in single mode are given in Figure 7. The error profiles were obtained by providing a ramp
signal as the input of the floating-point reference block and comparing it with the Simulink
output. It can be seen that the error is maximum when the input value is closest to 0.

Power

Word Serial
285 229 217 212 49

26,257 19,438 19,663 5 101

Parallel
297 229 222 212 1

33,681 27,038 27,997 5 101

Log

Word Serial
283 248 216 85 49

3,075 2,787 3,575 1 25

Parallel
297 258 222 85 1

12,045 10,463 11,020 1 25

Atan

Word Serial
283 247 216 88 47

5,140 3,319 4,100 3 14

Parallel
297 258 222 88 1

12,399 10,636 11,271 3 14

Table 4: Block Performance Summary for Double Data Type (Cont’d)

Block name Mode

-3 Speed
Grade

-2 Speed
Grade

-1 Speed
Grade Latency Throughput

LUTs &
Flip-Flops Slice Registers Slice LUTs Block RAM DSP48E1

Slices

http://www.xilinx.com

Trade-offs in the Current Approach

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 14

X-Ref Target - Figure 7

Figure 7: Error Profile for sin-cos and sinh-cosh

sin-cos Single

X552_07_042712

sinh-cosh Single

Input

E
rr

or
 in

 U
LP

-5

12

10

8

6

4

2

0

E
rr

or
 in

 U
LP

6

5

4

3

2

1

0

-4 -3 -2 -1 0 1 2 3 4

Input
-5 -4 -3 -2 -1 0 1 2 3 4

sin

cos

sinh

cosh

http://www.xilinx.com

Trade-offs in the Current Approach

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 15

The error profiles for exponential and log are shown in Figure 8.

X-Ref Target - Figure 8

Figure 8: Error Profile for Log and Power

Log Single

X552_08_042712

Power Single

Input

E
rr

or
 in

 U
LP

0

1

0.8

0.6

0.4

0.2

0

E
rr

or
 in

 U
LP

4

3

2

1

0

200 400 600 800 1000 1200 1400 1600 1800 2000

Input
0 1 2 3 4 5 6 7 8 9

Log

Power

http://www.xilinx.com

Reference Design

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 16

The error profile for atan produced by providing a ramp for input 1 and inverse ramp for input 2
is shown in Figure 9.

Reference
Design

The reference design for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=185372

The reference design matrix is shown in Table 5.

X-Ref Target - Figure 9

Figure 9: Error Profile for atan

atan Single

Input

E
rr

or
 in

 U
LP

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

atan

X552_08_042712

Table 5: Reference Design Matrix

Parameter Description

General

Developer name Nikhil Dhume and Ramakrishnan
Srinivasakannan

Target devices (stepping level, ES,
production, speed grades)

Spartan-6, Virtex-6, 7 Series, and
Zynq-7000 devices

Source code provided Yes

Source code format System Generator MDL library

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=185372

Conclusion

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 17

Conclusion A floating-point library for computation of trigonometric, power, and logarithmic operations has
been designed by applying range extension algorithms to underlying fixed-point blocks. This
approach has been demonstrated to give comparable performance to the underlying
fixed-point block. The device utilization, latency, and maximum operating frequency have been
documented for all the blocks in the library.

References This application note uses the following references:

1. Volder, Jack E., The CORDIC trigonometric computing technique. IRE Transactions on
Electronic Computers, vol. EC-8, September 1959, pp. 330-334
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5222693

2. IEEE Std. 754-2008, IEEE Standard for Floating-Point Arithmetic, August 2008.
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

3. WP409, High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP
Algorithms with Xilinx FPGAs

4. Andraka, Ray. A survey of CORDIC algorithms for FPGA based computers, Proceedings of
the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays,
Feb 22–24, 1998. pp. 191–200
http://www.andraka.com/files/crdcsrvy.pdf

5. Lang, T. and E. Antelo, High-throughput CORDIC-based geometry operations for 3D
computer graphics, IEEE Transactions on Computers, vol. 54, no. 3, March 2005,
pp. 347–361
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1388199

Design uses code and IP from existing Xilinx
application note and reference designs,
CORE Generator software, or third party

Yes

Simulation

Functional simulation performed Yes

Timing simulation performed Yes

Test bench used for functional and timing
simulations

Yes

Test bench format System Generator MDL file

Simulator software/version used System Generator for DSP, version 13.4
ISE Design Suite 13.4

SPICE/IBIS simulations No

Implementation

Synthesis software tools/version used Xilinx Synthesis Technology (XST) 13.4

Implementation software tools/versions used System Generator for DSP, version 13.4
ISE Design Suite 13.4

Static timing analysis performed Yes

Hardware Verification

Hardware verified No

Hardware platform used for verification N/A

Table 5: Reference Design Matrix (Cont’d)

Parameter Description

http://www.xilinx.com
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1388199
http://www.andraka.com/files/crdcsrvy.pdf
http://www.xilinx.com/support/documentation/white_papers/wp409_Floating_Point_DSP_Algorithms.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5222693

Revision History

XAPP552 (v1.0) June 1, 2012 www.xilinx.com 18

6. DS858, LogiCORE IP CORDIC Product Specification

7. UG638, System Generator for DSP Reference Guide

8. Creating a Block Mask (in MATLAB)
http://www.mathworks.com/help/toolbox/simulink/ug/brx7xj4.html

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS
IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

06/01/2012 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/cordic/v5_0/ds858_cordic.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/sysgen_ref.pdf
http://www.mathworks.com/help/toolbox/simulink/ug/brx7xj4.html
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Parameterizable CORDIC-Based Floating-Point Library Operations
	Summary
	Introduction
	Floating-Point Solution for Xilinx FPGAs
	Fixed-Point CORDIC Algorithm
	Design Approach

	Fixed-Point CORDIC Algorithm
	Floating-Point Algorithms
	Floating-Point CORDIC sin-cos
	Floating-Point CORDIC sinh-cosh
	Floating-Point CORDIC Power
	Floating-Point CORDIC atan
	Floating-Point CORDIC log

	System Generator Implementation
	Setting Up the Library
	Library Usage
	Implementation Details

	Library Interface Specifications
	Results and Discussion
	Trade-offs in the Current Approach
	Reference Design
	Conclusion
	References
	Revision History
	Notice of Disclaimer

