
Summary
This application note focuses on the design of a Digital Down-Converter (DDC) chain using AI
Engine technology in Xilinx® Versal™ AI Core devices. The AI Engine is designed for high-density
multiply-and-accumulate (MAC) computation that is typically seen in high-performance signal
processing applications. The DDC chain is responsible for the extraction of carriers from a
composite signal at a high sample rate, which requires intense computation as well as high
flexibility to support various carrier configurations. This application note shows an innovative
method of mapping the DDC functions to the AI Engine array by leveraging the unique
architecture of Versal devices to deliver high performance and efficiency with a small memory
footprint. The design methodology illustrated by this application note is applicable to a wide
range of use cases including but not limited to wireless signal processing.

Download the reference design files for this application note from the Xilinx website. For detailed
information about the design files, see Reference Design.

Introduction
The DDC chain is a key component in wireless communication systems. It is part of the receive
path that links the baseband processing and radio front end. A DDC performs down-conversion
on the input signal to the baseband sample rate. For instance, in a 100 MHz 5G New Radio (NR)
system the sample rate of the radio front end is 245.76 Mega samples per second (MSPS),
whereas the nominal sample rate of the baseband signal is 122.88 MSPS. For these cases, sample
rate conversion from 245.76 MSPS to 122.88 MSPS must be performed in the DDC.
Furthermore, 5G NR signals have a narrow transition band which calls for a long channel filter to
offer good passband flatness and steep stop band attenuation. The following figure shows a
typical DDC implementation for a 100 MHz 5G NR system which can support 5G NR or Long-
Term-Evolution (LTE) carriers. Because the nominal sample rates of 20 MHz LTE and 100 MHz
5G NR carriers differ by a factor of four, two filter chains have to be instantiated as shown in the
following figure.
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Figure 1: DDC Implementation for 5G NR and 4G LTE
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The Versal AI Core series has an array of AI Engines that are optimized for wireless radio
applications supporting multiple numerologies and carrier configurations. The array consists of a
number of AI Engines, each comprising a 32-bit scalar RISC processor, fixed and floating-point
vector units, data memory, and interconnect. In each AI Engine the vector unit is capable of 32
real-by-real 16-bit MAC operations in one 1 GHz+ clock cycle, and memory load and store units
that can read 512 bits data from and write 256 bits into local memory every clock cycle. There
are hundreds of such AI Engines in one single chip that are suitable for compute-intensive
applications such as wireless radio.

Figure 2: Block Diagram of One AI Engine Tile
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This application note provides a method to design a flexible, scalable, and resource-efficient filter
chain that runs on AI Engine in Versal AI Core devices. It also shows advanced techniques for
mapping complex functions to the AI Engine array by leveraging the unique architecture of Versal
devices for high performance and efficiency. This application note uses digital down-conversion
as an example for illustration purpose, but this methodology is applicable to a wide range of
applications including but not limited to wireless signal processing.

DDC Chain Architecture
This section explains the architecture of the DDC chain and how it works. The input to the DDC
chain is a composite signal comprising of one or more radio or intermediate frequency (RF or IF)
carriers and the output is one or more carriers at the baseband sample rate for further
processing. The following procedures are performed in the DDC chain.

1. Mixing to shift the signal spectrum from the selected carrier frequencies to the baseband
frequency.

2. Decimation to reduce the sample rate.

3. Filtering to remove adjacent channels, minimize aliasing, and maximize the received signal-to-
noise ratio (SNR).

An example architecture for a DDC chain is shown in the following figure. An analog-to-digital
converter (ADC) samples the analog signal and feeds it into the DDC processing chain.
Optionally, there is an initial frequency translation (to shift the center frequency from passband
to baseband), RF processing, and additional filters (decimation) that can be performed prior to the
DDC function, shown in the following figure as the Digital RF Processing block.

This application note covers the functions of the main mixer and filters shown in the Digital
Down Converter block in the following figure. The half band filter (HBF47) decimates the input
signal by two. If it is a 4G five carrier (5c) LTE 20 MHz signal, then five channels are extracted by
mixers with selected carrier frequencies and followed by a filter chain (HBF11/HBF23/FIR89) to
reduce the sample rate to 30.72 MSPS. If it is a 5G NR one carrier (1c) 100 MHz signal, then the
signal coming from the mixer goes to FIR199 directly. Because 5G NR has a much narrower
transition band than that of LTE, the 5G NR channel filter has longer taps. In this case study, a
channel filter with 199 taps is employed for the 5G NR 100 MHz carrier.

Figure 3: DDC Block Diagram Example
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AI Engine Utilization Estimation
The AI Engine processes data block by block and uses a data structure called window to describe
one block of input or output data. The window size, which is the number of samples in each
block of input or output data, represents a tradeoff between efficiency and processing latency.
Long windows lead to high efficiency, but the latency increases proportionally to the window
size. Sometimes a short latency is preferable at a loss of a 5-10% AI Engine processing efficiency.

For example, in this application note, the input window size is set to 512 samples to limit the
latency to within 2.1 μs. The window sizes and sample rates of DDC filters are listed in the
following table.

Table 1: Window Size and Sample Rate of DDC Filters

Filter Input Sample Rate
(MSPS)

Output Sample
Rate (MSPS) Input Window Output Window

HB47 245.76 122.88 512 256

HB11 122.88 61.44 256 128

FIR199 122.88 122.88 256 256

HB23 61.44 30.72 128 64

FIR89 30.72 30.72 64 64

Mixer 122.88 122.88 256 1280/5x carriers

A cycle budget is the number of instruction cycles a function can take to compute a block of
output data, given by:

At a 1 GHz AI Engine clock in the lowest speed-grade device, the processing of 512 samples at
245.76 MSPS has a cycle budget of 2083 cycles.

Suppose every output needs P 16-bit-real by 16-bit-real multiplications. The AI Engine can
compute 32 such real-by-real multiplications every cycle. For an ideal implementation, the
utilization lower boundary is given by:

Take FIR199 as an example. FIR199 has 199 real symmetric filter taps and it takes 100 16 bit-
complex by 16 bit-real multiplications to compute each output. Therefore, every output of
FIR199 needs 200 16-bit-real by 16-bit-real multiplications at 122.88 MSPS, and the utilization
lower boundary is given by 200 cycles × 256 samples / (32 × 2083 cycle budget) = 76.8%.
Similarly, the utilization lower bounds of other DDC filters are calculated and listed in the
following table.
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Table 2: AI Engine Utilization Lower Bound Analysis

Filter
Input

Window
Size

Output
Window

Size
Number of

Taps
Number of

MACs/
Output

Utilization
/ Instance

Number of
Inst

Utilization
Lower
Bound

FIR199 256 256 199 200 76.8% 1 76.8%

FIR89 64 64 89 96 9.3% 5 46.5%

HB47 512 256 47 32 12.3% 1 12.3%

HB11 256 128 11 8 1.6% 5 8%

HB23 128 64 23 16 1.6% 5 8%

Mixer1 256 1280 - 8 23% 1 23%

Total 174.6%

Notes:
1. To support configurable carrier frequency at run time, an on-line DDS calculation consumes extra 180 cycles in each

mixer kernel execution.

Although in theory this DDC can be implemented on two AI Engines with 87.3% utilization each,
such high utilization requires very long windows and undesirable latency. One method to reduce
the utilization is to take advantage of the fact that 5G NR and 4G LTE carriers do not co-exist in
this case and the filters for unused carriers can be disabled during run time, depending on the
carrier configuration. Detailed analysis and explanation is provided in the following sections.

Design Challenges
In this section, a traditional method of filter design on the AI Engine is reviewed and the
challenges to the DDC chain implementation are analyzed.

In a traditional AI Engine design, the input window contains the incoming data block and the
Vitis™ unified software platform automatically puts an overlap in front of it. For example, a filter
with 89 taps might need an overlap of 88 samples as shown in the following figure. In this case,
the physical buffer size is assigned to 88 + 64 samples. The following figure shows the pointer
movement during the processing of the data. Note that a prerequisite for the traditional filter to
work is that the overlap has to be placed directly in front of the data in a circular buffer.
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Figure 4: Traditional FIR89 Pointers Behavior
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When the data comes from another AI Engine or the PL, a ping-pong buffer is implemented for
the input window of the kernel, and the overlap is automatically copied to the front of the data
before each run of the filter function. This memory copy operation is illustrated in the following
figure. When a filter has many taps that are more than the size of data window, copying the
overlap for every execution of the filter function can consume a considerable amount of time.
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Figure 5: Conventional Filter Kernel Behavior
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Note that the overlap is determined by the filter taps and its size must be a multiple of 256 bits
for maximum memory access efficiency. The size of overlap is subject to the following equation:

The size of overlap and window must be specified at compilation time, which means that filters
of different taps cannot share data buffers. Using traditional filter architecture, it is necessary to
partition the DDC into three AI Engines for each antenna as shown in the following figure.

Figure 6: DDC System Partition (Three AI Engines)
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Though it is possible to bypass some DDC filters depending on the carrier configuration, the
traditional filter design approach under consideration has the following challenges:

1. The memory footprint is very high because every filter of every channel needs a buffer for
input samples + overlap.

2. The number of output windows is high because they cannot be shared by multiple filters.

3. The copying overlap of long channel filters, that is, FIR89 and FIR199, leads to considerable
efficiency loss.

4. The AI Engine efficiency of the long half-band decimation filter is low because of the
difficulty in achieving a perfect inner loop.
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Though it is possible to design the filter chain using the traditional method, the design will have a
large foot-print and require at least three AI Engines instead of two for each DDC. This 50%
increase in AI Engines is significant when the number of antennas is high.

This application note proposes an innovative design approach for the stated carrier configuration
to reduce AI Engine resource utilization by 30% by leveraging adaptable and scalable compute
capabilities designed into the Versal AI Engine. The savings will be even higher in 5G NR wireless
radio systems supporting a larger number of carrier configurations. The proposed approach is
also applicable to digital up-conversion chain (DUC) and other modules in the system.

Novel Filter Design on AI Engine
It is observed that the 5G NR and LTE carriers do not co-exist in the system. Also, the maximum
utilization between the 5G NR channel filter and the 5c LTE channel filter is less than 80% of the
AI Engine capacity. (As shown in the previous figure, the utilization of AI Engine #0 is about 55%
and the utilization of AI Engine #1 is about 77%). This allows packing the FIR89 and FIR199 filter
chain on a single AI Engine, resulting in one antenna design using two AI Engines instead of
three. The proposed design partitioning is illustrated in the following figure.

Figure 7: DDC System Partition (Two AI Engines)
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A header at the front of the input window, which can change on a block-by-block basis, indicates
the carrier configuration. The output window has a fixed size but can contain the data for one 5G
NR 100 MHz carrier or five LTE carriers. A diagram of input/output data format is shown in the
following figure.
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Figure 8: DDC Interface Format
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The optimized design implementation is explained step by step in the following.

First, the memory footprint has to be reduced by manually managing filter overlaps. Consider the
buffer allocated to one filter kernel; only the overlap portion of the buffer is unique to the filter
and the data portion can be shared by multiple filters. Especially for short filters, the saving in
memory is large. The following figure shows the new approach where each kernel is assigned a
pair of ping-pong buffers without overlap, and a separate memory is allocated for overlap only.
The separation of data and overlap makes it possible for filters of different taps and sample rates
to share a single data buffer.

Figure 9: Novel Filter Kernel Behavior
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The following figure illustrates how a half band filter (HBF23) works with such an overlap buffer
scheme, which differs from the traditional method in the removal of the overlap buffer in the
input window to eliminate the automatic overlap copy. During the first three cycles, the kernel
initializes the register by loading data from the overlap buffer rather than the input window. The
main loop starts from the fourth to the Nth cycle, during which the kernel reads data from the
input window, shuffles them, and performs MAC operations. Before the end of the function, the
data from the last few cycles (three in this case) are stored back into the overlap buffer.

Figure 10: Concept of Manually Managed Overlap
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The separation of overlap and data buffers leads to an implementation challenge. If the overlap is
short enough to be loaded into registers without the need for reloading, which is the case for
HBF11 and HBF23, then it is easy to handle, in that the overlap can be loaded into register space
at the beginning as shown in the preceding figure. However, when the filter is long, a memory
copy is required to merge the memory space. FIR89 and FIR199 are such cases. This application
note proposes to use the overlap memory buffer for filtering and parallelize the data copy
process with computation to maximize throughput.
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The Versal ACAP AI Engine is a very long instruction word (VLIW) vector engine. The VLIW
based instruction level parallelism implemented in the AI Engine allows execution of up to seven
different operations in one cycle. The AI Engine can support two loads, one store, one vector
MAC, one scalar ALU operation, and two data move instructions in a single cycle. This
application note proposes a method that can use the AI Engine VLIW instruction bundling to find
spare cycles to write data into an internal overlap from the input window in parallel with other
operations. Refer to the following figure which uses a 64-sample input window. The first two
cycles are used to load data into register files (left and right buffer, 16 samples each). The third to
the Nth cycle is the main body of the for loop which is the key part of the filter design. The idea is
to find the spare cycle to write the internal buffer with new data from the input window. Here
the fourth or fifth cycle can be the spare cycle. From the sixth cycle the new data is overwritten
by another load operation. In this way the costly overlap copy is perfectly merged with the MAC
operation without using any extra cycles.

Figure 11: Spare Cycle
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Implementation Details
Interfaces
A diagram of the input interface is shown in Figure 8. The input window size to the DDC of one
antenna is set to 512 samples long with eight extra words reserved for the configuration which
specifies the carrier configuration ID and central frequencies of the carriers. The 512 input
sample is stored in natural order to minimize buffering on the programmable logic side; however,
interleaving is performed by the AI Engine to improve the efficiency of the HBF47 decimation
filter.
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Internal Overlap Buffer
The overlap buffer behaves like a shift-register chain of a traditional filter. The key difference is
that the data in the overlap buffer does not shift but the pointers do after every iteration. The
initial value of the overlap buffer should be all zeros. To simplify the manipulation of the overlap
buffer, the depth of the overlap buffer is set to an integer power of two. The depth of overlap
buffer is given by the following equation.

For example, an 89-tap filter has an overlap buffer of 128 samples.

Pointer Locations
One major difference between the novel filter design and the traditional method is that samples
for MAC operations are read from the overlap buffer instead of the data buffer. For every eight
output results, it only takes one read operation in the input window, and all the other data are
from the overlap buffer. During the MAC operations, the newly read eight input data are written
to the overlap memory for the next iteration. Every overlap buffer has three pointers, a read
pointer, a symmetry pointer, and a write pointer. The starting locations of the overlap buffer
pointers can be different in each iteration depending on the size of input window.

In the case of FIR89, an overlap of 80 samples depth is needed. The following figure illustrates
the behavior of each pointer. At first the read pointer points to address 0, the symmetry pointer
points to the address, overlap-depth - 8, the write pointer points to address, overlap-
size, and the input window pointer points to the beginning of the input widow. In each
iteration, the read pointer and symmetry pointer move against each other in step sizes of eight
samples until all the data in the delay line is processed. At the beginning of the next iteration all
the pointers are reset to their initial locations with an offset of eight samples relative to the initial
location of the previous iteration.
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Figure 12: Novel FIR89 Pointers

Overlap=80 samples
time

Read pointer

Symmetry pointer

+8 samples

Data=64 samples

Overlap=80 samples

Data=64 samples

Overlap=80 samples

Data=64 samples

Overlap=80 samples

Data=64 samples

Overlap=80 samples

Data=64 samples

Overlap=80 samples

Data=64 samples

Write pointer

Input Window pointer

+8 samples +8 samples

1st for-loop iteration

2nd for-loop 
iteration

Overlap size = 128 samples

X24324-080720

Digital Down-conversion Chain Implementation on AI Engine

XAPP1351 (v1.0) February 15, 2021  www.xilinx.com
Application Note  13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1351&Title=Digital%20Down-conversion%20Chain%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=13


When an overlap pointer reaches the bottom of the overlap, roll-over occurs. As illustrated in the
following figure, the write pointer reaches the bottom and it rolls over to the beginning of the
overlap buffer. This is implemented by the cyclic_add() function for the pointer update.

Figure 13: Write Pointer Rolls Over
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The following figure is an example of pointer movement from the kernel execution point of view
for FIR89. Each kernel execution contains several inner loop (for loop) iterations. Assuming the
size of the input window is 64 samples, each inner loop consumes eight samples, and then one
kernel execution has 64/8=8 inner loops. At first, the read pointer points to #0 (*v8cint16), the
symmetry pointer points to #10 (*v8cint16) and the write pointer points to #11 (*v8cint16). Each
pointer increases by a step of 8 samples (8 × 32 bits = 256 bits for maximum memory access
efficiency). As shown in the following figure, at the beginning of the second inner loop iteration,
the read pointer points to #1 (*v8cint16), the symmetry pointer points to #11 (*v8cint16) and the
write pointer points to #12 (*v8cint16) respectively. If any of the pointers reaches the bottom of
the overlap, it will roll over to the beginning of the overlap.

Figure 14: Overlap Buffer Pointer Movement
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At the beginning of the second kernel execution, the pointer locations should be initialized to
8/2/3 respectively and then the locations will be 0/10/11 again at the beginning of the third
execution. This pattern keeps repeating as the data processing continues.

The Versal AI Engine software tools support a function called cyclic_add in cardano.h. It
can be used to implement the cyclic roll-over of the pointers for when the pointers reach the end
of the buffer. For example, the following code defines an inline function of cyclic increase to
construct a buffer of depth, 16 × v8cint16.

struct buffer_internal
{
  buffer_datatype * restrict head;
  buffer_datatype * restrict ptr
}
inline __attribute__((always_inline)) void 
buffer128_incr_v8(buffer_internal * w, int count) {
  w->ptr=cyclic_add(w->ptr, count, w->head, 16);
 }
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where
• w represents the overlap structure instance.
• w->ptr is the current pointer to the overlap.
• w->head refers to the starting address of the overlap.
• count means how many steps(v8cint16) to increase.
• The constant, 16, means it is an overlap with a fixed 128 sample depth (16 × v8cint16).

The following figure shows the microcode of FIR89. It is observed that the inner loop is perfect,
and every cycle of the inner loop contains a MAC operation as indicated in the green box. As
indicated in the blue box, the overlap buffer update operation (VST in microcode) is absorbed by
the cycle that also performs the MAC operation.

Figure 15: FIR89 Kernel Compile Result

Shared Window and Data Buffer
Manually managed overlap allows multiple carriers and filters to share the same input and output
windows as shown in the following figure. When there are five carriers of 20 MHz LTE, the
window can be logically divided into five buffers, one for each carrier. When there is only one
carrier of 100 MHz 5G NR, the first four fifths of memory space will be allocated to the 100 MHz
carrier alone and leaving the remaining one fifth of memory space unused. One single kernel with
manually managed overlap can serve all the carriers of the same type with correctly specified
input, overlap, and output pointer locations.
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Figure 16: 5x HBF Sharing the Windows
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AI Engine kernels with manually managed overlap can share the intermediate results memory
among the channels, because samples are executed sequentially in the AI Engine. The following
two figures illustrate the method to save AI Engine memory by sharing the intermediate result
memory between HBF23 and FIR89/FIR199. The size of the intermediate result memory, shown
in the orange block in the following figure, is only one fifth of the original non-sharing method
(see Figure 18).

Figure 17: DDC Data Buffers With Data Memory Sharing (Proposed)
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Figure 18: DDC Data Buffers Without Data Memory Sharing (Original)
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Data Interleaving
The half-band decimation filter is symmetric and needs two input samples to compute each
output. This turns out to be difficult for the kernel design to achieve a perfect loop when the
filter has many taps. A solution to the problem is to put an even/odd interleaver in front of the
half-band filter to avoid the odd samples being loaded into the registers multiple times. The
following figure is an example of an HBF47 implementation result that achieves a perfect inner
loop.

Figure 19: HBF47 Compiling Result

Kernel And Memory Constraints
To build a scalable and compact design, it is a good practice to place the kernels, buffers, and
windows carefully within a set of AI Engine tiles. The following figure shows a possible placement
of two AI Engine tiles for the DDC of one antenna.
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Figure 20: Two AI Engine Tiles
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32 such tile pairs can be stacked in the AI Engine array of eight columns by eight rows to support
32 antennas. As shown in the following figure, each column has four input and four output 32-bit
wide AXI4 streams.

Figure 21: AI Engine Array of 8x8=64 AI Engine Tiles
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Implementation Result
The DDC kernels of this application note are profiled and the results are listed in the following
table. The actual utilization is measured by:

Digital Down-conversion Chain Implementation on AI Engine

XAPP1351 (v1.0) February 15, 2021  www.xilinx.com
Application Note  19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1351&Title=Digital%20Down-conversion%20Chain%20Implementation%20on%20AI%20Engine&releaseVersion=1.0&docPage=19


Table 3: DDC Kernel Profile

Kernel Name Interface
Format

Function
Counts

Utilization
Lower

Boundary
Actual

Utilization
Implementation

Loss

FIR199 Nature in
Nature out

1705 cycles 76.9% 81.9% 5%

FIR89 Nature in
Nature out

238 cycles 9.3% 11.5% 2.2%

HBF47_2D Interleaved in
Nature out

266 cycles 12.3% 12.8% 0.5%

HBF23_2D Nature in
Nature out

65 cycles 1.6% 3.2% 1.6%

HBF11_2D Interleaved in
Nature out

54 cycles 1.6% 2.6% 1%

Mixer Nature in
Interleaved out

571 cycles 23% 27.5% 4.5%

The profiling results show a small implementation loss compared to the utilization lower bound.

The data flow and interconnects among the AI Engines are described in a graph file and the
compilation result of a 32-antenna DDC design is shown in the following figure. Bubbles with
same color are mapped and executed in the same AI Engine. The light gray boxes are DMAs and
buffers automatically generated by the Xilinx tools depending on the data flow specified by the
user.
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Figure 22: Compilation Result of a 1 out of 32 Antenna DDC Design
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Design Validation
MATLAB® scripts are used to generate random test vectors as inputs and corresponding
reference outputs. The completed AI Engine design is validated against the MATLAB reference
model to confirm the correct behavior. For the DDC design, there are 32 output AXI streams for
32 antennas. A make file script is included in the reference design to compare all the outputs of
the AI Engine SystemC simulation results with the golden test vectors generated by MATLAB. 
Figure 23 (a) and Figure 24 (a) show the bit-accurate comparison of the SystemC simulation and
the reference MATLAB model of the example design, where the outputs bit-true match those of
the reference model.

Figure 23: 1c 100 MHz 5G NR Result
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Figure 24: 5c LTE 20 MHz Result

The time stamps in the Versal SystemC Simulation (ESS) output can be used to measure the time
duration from the first output sample to the last. Also because the number of output samples can
be counted in the output file too, an estimate of throughput can be computed; that is, the
throughput can be calculated by dividing the total number of outputs by the time interval
between first sample and the last sample. The reference design comes with a Makefile that
measures the throughput. As shown in Figure 23 (b) and Figure 24 (b), the ESS simulation of the
AI Engine DDC design indicates that the DDC design throughput is about 207 MSPS for the 5c
LTE case, much higher than the nominal sample rate of five LTE carriers at 153.6 MSPS. The
throughput for the 5G NR configuration is about 180 MSPS, much higher than the nominal
sample rate of 122.88 MSPS. There is sufficient margin in the DDC design based on the
computed throughput.

When the AI Engine DDC module passes ESS simulation validation, it is ready for integration in a
complete system that consists of programmable logic, processor sub-system, memory controller,
and other blocks in Versal AI Core devices.
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Reference Design
Download the reference design files for this application note from the Xilinx® website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 4: Reference Design Matrix

Parameter Description
General

Developer name Xilinx

Target devices Versal ACAP

Source code provided? Yes

Source code format (if provided) MATLAB script, AI Engine C code, and Makefile script

Design uses code or IP from existing reference design,
application note, 3rd party or Vivado software? If yes, list.

No

Simulation

Functional simulation performed Yes

Timing simulation performed? No

Test bench provided for functional and timing simulation? No

Test bench format C code

Simulator software and version AI Engine Simulator in Vitis 2020.2

SPICE/IBIS simulations No

Hardware Verification

Hardware verified? Yes

Platform used for verification VCK190

Conclusion
This application note demonstrates an innovative method of designing adaptable, scalable, and
resource-efficient DDCs on Versal AI Engine technology. The kernels and graphs are designed in
C/C++, which is easy to maintain and reuse on various Versal ACAPs. The example design
provided as part of the application note serves as a template for quick generation of customized
DDC filter chains. The methodology introduced by this application note has a wide application to
filter designs and is applicable to many use cases including but not limited to wireless signal
processing.

References
These documents provide supplemental material useful with this guide:

1. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

2. Xilinx AI Engine and Their Applications (WP506)
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