
XAPP1333 (v1.1) May 28, 2021 1
www.xilinx.com

Summary
To store data in non-volatile memory (NVM) using a Zynq® UltraScale+™ device, data must be
stored externally and should be encrypted if it is confidential. All Zynq UltraScale+ devices have
a built-in physically unclonable function (PUF), which can generate a cryptographically strong,
device-unique encryption key that can be used in combination with the built-in advanced
encryption standard (AES) cryptographic core. This key cannot be read by a user, allowing for a
heightened level of key security. Only if a Zynq UltraScale+ device is provisioned to store the
PUF configuration information in eFUSEs and if Rivest-Shamir-Adleman (RSA) Authentication is
registered and enabled in eFUSEs, then the PUF’s device-unique encryption key can be used to
encrypt and decrypt user data, which can then be stored and read from external non-volatile
memory.

Download the reference design files for this application note from the Xilinx® website. For
detailed information about the design files, see Reference Design.

Introduction
The PUF takes advantage of silicon variations unique to Zynq UltraScale+ devices to generate a
device-unique encryption key that cannot be read by anyone, including the user. Along with
generating a unique encryption key, the PUF also generates the required helper data so that the
PUF can exactly regenerate the encryption key later. The details of the PUF are described in the
Zynq UltraScale+ MPSoC: Technical Reference Manual (UG1085) [Ref 1]. Normally, the PUF’s
encryption key, referred to as the Key Encryption Key (KEK), is used for encrypting a user’s
plain-text red key so that a user’s red key can be stored encrypted in black key form in either
eFUSES or the boot header. The black encryption key is then decrypted using the PUF’s KEK to
generate the red key, which in turn is used for decrypting the boot information during secure
boot. This use of the PUF is shown in Figure 1.

Application Note: Zynq UltraScale+ Devices

XAPP1333 (v1.1) May 28, 2021

External Secure Storage Using the PUF
Author: Nathan Menhorn

https://secure.xilinx.com/webreg/clickthrough.do?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://www.xilinx.com

Introduction

XAPP1333 (v1.1) May 28, 2021 2
www.xilinx.com

When the PUF is registered in eFUSEs and RSA authentication is enabled in eFUSEs,
documented in Programming BBRAM and eFUSEs (XAPP1319) [Ref 2], the PUF’s device-unique
encryption key can be used to encrypt and decrypt any user data. This encrypted data can then
be stored externally to the Zynq UltraScale+ device, which is the focus of this application note.
The RSA authentication settings cannot be stored in the boot header when using the PUF to
encrypt and decrypt user data.

IMPORTANT: When the RSA_ENABLE eFUSEs are programmed, boot header authentication is no longer
permitted.

The process of using the PUF to encrypt user data is shown in Figure 2 and works as follows: a
user generates data that must be encrypted and appends an optional ID. This optional ID can
be used to validate that the correct version of data that is being used, such as when the data
consists of encryption key information or configuration data, and is useful in preventing replay
attacks. Even though the ID is optional, Xilinx highly recommends using it to ensure a more
secure system. The optional ID enables key/data revocation as the user data packet can be
revoked by burning one of the 256-bit user eFUSEs. Each of the 256-bit user eFUSEs can be
mapped to 256 different 8-bit user IDs. Keep in mind that user eFUSEs are a shared resource as
the fuses could be used for Enhanced Key Revocation software, a tamper log (see Developing
Tamper-Resistant Designs with Zynq UltraScale+ Devices (XAPP1323) [Ref 3]), or any other user
function.

Next, the PUF is enabled to regenerate the PUF’s device-unique encryption key, which is loaded
into the AES cryptographic core to encrypt the data. Xilinx recommends minimizing the use of
the PUF’s key by keeping the user data small or implementing an advanced key-rolling

X-Ref Target - Figure 1

Figure 1: Encrypting and Decrypting the Device Key Using PUF

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=2

Introduction

XAPP1333 (v1.1) May 28, 2021 3
www.xilinx.com

architecture where the PUF’s device-unique key is only used to encrypt the first portion of a
larger sized data, thereby minimizing its exposure. This helps to avoid differential power
analysis (DPA) attacks. After the encrypted data is written to external memory, the data is read
back and decrypted to verify the process using the GCM authentication tag. If the data is
authenticated, the user selected ID is safe to use. Conversely, if the data verification fails, a
revocation penalty can take place, such as burning an associated user eFUSE.

Decrypting external data using the PUF is shown in Figure 3 and works as follows: the encrypted
data packet is read from the external memory location followed by regeneration of the PUF
decryption key. The data is then decrypted and authenticated via the GCM tag. If authentication
passes and if the ID from the decrypted data has not been revoked in user eFUSEs, then the data
is valid and can be used. Conversely, if the GCM tag authentication fails, then a penalty can be
invoked and the decryption process could be stopped to avoid side channel attacks such as
DPA. Furthermore, if the decryption process authenticates but the data’s ID has been revoked in
user eFUSEs, the data is invalid and should not be used.

IMPORTANT: The PUF KEK isn’t a FIPS legal key for storing data outside a cryptographic boundary.
However, you can create a FIPS-legal KEK, encrypt the FIPS-legal KEK with the PUF KEK, store the encrypted
FIPS-legal KEK in eFUSEs, and subsequently use the FIPS-legal KEK to store data outside the cryptographic
boundary.

X-Ref Target - Figure 2

Figure 2: Normal Encryption Process Using PUF

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=3

Hardware and Software Requirements

XAPP1333 (v1.1) May 28, 2021 4
www.xilinx.com

Hardware and Software Requirements
The hardware and software requirements for the reference systems are as follows:

• ZCU102 Evaluation Board
• AC power adapter (12 VDC)
• USB type-A to USB mini-B cable x2
• Optional Platform JTAG hardware and associated cables
• Secure Digital (SD) card formatted using the FAT file system
• Xilinx Software Development Kit (SDK) 2018.1
• Required design files, which can be downloaded here.

IMPORTANT: Programming any of the noted eFUSE settings preclude Xilinx test access. Consequently, Xilinx
may not accept return material authorization (RMA) requests.

X-Ref Target - Figure 3

Figure 3: Using the PUF for Decryption

Send Feedback

https://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=4

Create a New Embedded Project for the Zynq UltraScale+ MPSoC

XAPP1333 (v1.1) May 28, 2021 5
www.xilinx.com

Create a New Embedded Project for the Zynq UltraScale+
MPSoC

Perform the following steps to create a new embedded project for the Zynq UltraScale+ MPSoC.
A brief description is covered in this section. Step-by-step instructions can be found in
Appendix A. For detailed elaboration on each step, refer to the UltraScale+ MPSoC: Embedded
Design Tutorial (UG1209) [Ref 4] for further details.

1. Open up Vivado® Design Suite and create the hardware design required for the Zynq
UltraScale+ ZCU102 Evaluation Board. The PL is not required for this lab so all the PS-PL
interfaces are disabled and no bitstream is exported.

2. Export the hardware and launch Xilinx SDK from within the Vivado Design Suite.
3. Create a first stage boot loader project called FSBL and its associated Board Support

Package named A53_BSP running on the ARM Cortex-A53 processor.
4. Build the FSBL project by right-clicking on the project and select Build Project. This may

have already been completed if the Build Automatically setting is enabled in Xilinx SDK.
5. Create a HelloWorld project to verify the hardware and software setup before proceeding.

Key Generation
Key generation is covered in detail in the UltraScale+ MPSoC: Embedded Design Tutorial
(UG1209) [Ref 4] so only a summary pertaining to this application note is documented here.

AES Key Generation
Create a new directory in Xilinx SDK's workspace root directory called Keys. The SDK root
directory can be found the same level as the HelloWorld folder. Generate a device key and its
associated IV, an operational key, and one partition block key and its associated IV. Combine
these keys and IVs into a file named multiple_keys.nky. Alternatively, copy the Keys folder
found in the reference design documents to use for this lab or, if desired, use them as a
template and insert your own key and IV values.

Device zcu9eg;
Key 0 0123456789012345678901234567890123456789012345678901234567890123;
IV 01DBD60260A7EC34DE5F6A494;
Key Opt E070C542B6680A855724793A75222391E663CBD35F45D070F22F703A5CA31B45;
Key 1 0000000100000001000000010000000100000001000000010000000100000001;
IV 1 000000010000000100000001;

Encrypting the boot image is not required to use the PUF for encrypting user data. However,
Xilinx highly recommends doing so, which is used throughout this application note.

IMPORTANT: Be sure to use your own AES keys and associated IVs for operational devices. The keys
provided in this lab are for demonstration purposes and are not cryptographically strong.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=5

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 6
www.xilinx.com

RSA Asymmetric Key Generation
For this application note, generate a pair of RSA keys called psk0.pem and ssk0.pem.
Alternatively, these keys are provided in the design documents in the Keys folder. RSA
authentication is required to use the PUF for encrypting and decrypting user data. While this
application note does not require the use of a secondary key set, Xilinx highly recommends
doing so in an operational application.

IMPORTANT: Be sure to use your own RSA key pairs in an operational device. The keys provided in this lab
are for demonstration purposes and are not cryptographically strong.

Generate SHA3 of Public RSA Asymmetric Key
Generate the associated SHA3 hash of the RSA PPK and name the output file sha3.txt.
Alternatively, this hash can be found in the design documents in the Keys folder.

PUF eFUSE Configuration
IMPORTANT: THESE INSTRUCTIONS MODIFY THE EFUSES ON THE ZCU102 DEVELOPMENT BOARD AND
MAY LIMIT FUTURE USE OF THE DEVELOPMENT BOARD FOR NON-SECURE TESTING AND DEBUGGING!

IMPORTANT: Programming any of the noted eFUSE settings preclude Xilinx test access. Consequently, Xilinx
might not accept return material authorization (RMA) requests.

PUF eFUSE Settings
PUF registration is covered in detail in Using the PUF in the UltraScale+ MPSoC: Embedded
Design Tutorial (UG1209) [Ref 4] so only a summary pertaining to this application note is
documented here.

1. Right-click the A53_BSP project and click Board Support Package Settings.
2. Click Overview.
3. In the Supported Libraries, select xilsecure and xilskey.
4. Click OK to close the window.
5. Right-click the A53_BSP project and click Re-generate BSP Sources.
6. Expand the A53_BSP project and double-click the system.mss file to open it.
7. Scroll to the bottom of the file and click Import Examples for the xilskey library.
8. Check the xilskey_puf_registration example and click OK. This adds the associated project

to your workspace.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=6

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 7
www.xilinx.com

9. Open the xilskey_puf_registration.h file in the src folder under
A53_BSP_xilskey_puf_registration_1 in the Project Explorer tab.

10. Change the definition of XSK_PUF_INFO_ON_UART to TRUE. This setting is extremely
important to verify the PUF registration completed successfully.

11. Ensure the definition of XSK_PUF_PROGRAM_EFUSE is set to TRUE.
12. Change the definition of XSK_PUF_PROGRAM_SECUREBITS to TRUE.
13. Change the definition of XSK_PUF_SYN_WRLK to TRUE.
14. Set the XSK_PUF_AES_KEY to the Key 0 value in the aes_key.nky file.
15. Set the XSK_PUF_IV to a value that is user choice. This IV is not related to the IV created in

aes_key.nky and can be any user generated value. This IV is used by encryption when
encrypting the red key with the PUF’s KEK.

16. Create a file named puf_iv.txt with the ASCII-HEX string of the PUF IV used in XSK_PUF_IV
as this is needed during boot. Alternatively, use the one provided in the design documents
in the Keys folder.

17. Verify all the required changes are made before continuing as shown in Figure 4. The
xilskey_puf_registration.h file with the example keys, shown in Figure 4, is included in the
reference design in the puf_registration folder.

X-Ref Target - Figure 4

Figure 4: PUF Registration File Required for eFUSE

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=7

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 8
www.xilinx.com

PUF Registration into eFUSEs
To register the PUF into the eFuse, perform the following steps:

1. Right-click the A53_BSP project and click Board Support Package Settings.
2. In the Board Support Package Settings window, expand the Overview tree, then click

standalone as shown in Figure 5.

3. Ensure the stdin and stdout functions are mapped to psu_uart_0 and click OK.
4. In Xilinx SDK, right-click A53_BSP_xilskey_puf_registration_1 and select Build Project.

This may have already been completed if your SDK environment is set up to build
automatically.

5. Turn power off to the ZCU102 board.
6. Connect either the USB JTAG connector J2 to the ZCU102 development board and then a

computer or connect the Platform JTAG to the ZCU102 and the associated hardware to a
computer.

7. Connect a USB cable from the USB Serial port connector J83 on the ZCU102 board to a
computer and note which COM port was enumerated with the Silicon Labs Quad CP2108
USB to UART Bridge: Interface 0.

X-Ref Target - Figure 5

Figure 5: Setting Up the UART Output Using the BSP Settings

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=8

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 9
www.xilinx.com

8. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed
above at 115,200 baud. Enable terminal logging and select a file name and location.

9. On the ZCU102 development board, set the dip switch SW6 to configure the board for JTAG
boot mode as shown in Figure 6.

10. Power on the ZCU102 board using switch SW1.

X-Ref Target - Figure 6

Figure 6: ZCU102 JTAG Boot Mode Switch

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=9

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 10
www.xilinx.com

11. Right-click A53_BSP_xilskey_puf_registration_1 > Run As > Launch on Hardware
(System Debugger) as shown in Figure 7.

X-Ref Target - Figure 7

Figure 7: Running the PUF Registration on the ZCU102 Board

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=10

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 11
www.xilinx.com

The PUF registration application starts running and outputs information to the terminal as
shown in Figure 8 and Figure 9. An example log of the PUF registration is included in the
design files in the Logs folder called puf_registration_log.log.

X-Ref Target - Figure 8

Figure 8: Terminal Output Registering PUF to eFUSEs - 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=11

PUF eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 12
www.xilinx.com

12. Verify line 46 of the UART output is the Red Key that was configured in XSK_PUF_AES_KEY
in xilskey_puf_registration.h.

13. Verify line 47 of the UART output is the Black Key IV that was configured in XSK_PUF_IV in
xilskey_puf_registration.h.

Line 54 of the UART output is the Black Key generated by the AES encryption engine using
the PUF as a KEK.

X-Ref Target - Figure 9

Figure 9: Terminal Output Registering PUF to eFUSEs - 2

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=12

RSA eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 13
www.xilinx.com

Line 55 shows that the Black Key was burned into eFUSEs.

Line 57 of the UART output is the required syndrome data that the PUF uses to regenerate
its device-unique encryption key. It is the data that is being programmed into the eFUSEs.

Lines 65 shows that the PUF information has been burned into eFUSEs.

14. Power off the ZCU102 development board.

RSA eFUSE Configuration
IMPORTANT: THESE INSTRUCTIONS MODIFY THE EFUSES ON THE ZCU102 DEVELOPMENT BOARD AND
MIGHT LIMIT FUTURE USE OF THE DEVELOPMENT BOARD FOR NON-SECURE TESTING AND DEBUGGING!

IMPORTANT: Programming any of the noted eFUSE settings preclude Xilinx test access. Consequently, Xilinx
might not accept return material authorization (RMA) requests.

RSA eFUSE Settings
RSA eFUSE registration is covered in detail in Programming eFUSEs for AES and RSA
Cryptographic Functions in the Programming BBRAM and eFUSEs [Ref 2], so only a summary
pertaining to this application note is covered here.

1. Expand the A53_BSP project and double-click the system.mss file.
2. Scroll to the bottom of the file and click Import Examples for the xilskey library.
3. Check the xilskey_efuseps_zynqmp_example project and click OK. This adds the

associated project to your workspace.
4. Open the xilskey_efuseps_zynqmp_input.h file in the src folder under

A53_BSP_xilskey_efuseps_zynqmp_example_1 in the Project Explorer tab.
5. Change the definition of XSK_EFUSEPS_RSA_ENABLE to TRUE. This permanently forces the

use of RSA authentication.
6. Change the definition of XSK_EFUSEPS_PPK0_WR_LOCK to TRUE. This prevents any

modifications to the PPK0 hash stored in eFUSEs.

The first set of settings are shown in Figure 10.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=13

RSA eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 14
www.xilinx.com

7. In the next section of the configuration, change the definition of
XSK_EFUSEPS_WRITE_PPK0_HASH to TRUE.

8. Change the definition of XSK_EFUSEPS_PPK0_HASH to the value stored in sha3.txt that
was created by bootgen (or copied form the Keys directory) from the previous section.

The second set of settings are shown in Figure 11. These settings using the examples keys
are included in the design files in the xilskey_efuseps_zynqmp_input.h file in the
rsa_registration folder. The second RSA authentication key (PPK1) is not written for
this application note but it can be done by changing the value of
XSK_EFUSEPS_PPK1_WR_LOCK and XSK_EFUSEPS_PPK1_HASH.

X-Ref Target - Figure 10

Figure 10: Settings for RSA Authentication When Using eFUSEs - 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=14

RSA eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 15
www.xilinx.com

Programming RSA eFUSEs
Program the RSA eFUSEs by performing the following steps:

1. Right-click A53_BSP project and click Board Support Package Settings.
2. In the Board Support Package Settings window, expand the Overview tree and then click

standalone, as shown in Figure 5 in step 2 of PUF Registration into eFUSEs.
3. Ensure the stdin and stdout functions are still mapped to psu_uart_0 and click OK.
4. In Xilinx SDK, right-click A53_BSP_xilskey_efuseps_zynqmp_example_1 and select the

Build Project option. This may have already been completed if your SDK environment is set
up to build automatically.

5. Power off the ZCU102 board.
6. Connect either the USB JTAG connector J2 to the ZCU102 development board and then a

computer or connect the Platform JTAG to the ZCU102 and the associated hardware to a
computer.

7. Connect a USB cable from the USB Serial port connector J83 on the ZCU102 board to a
computer and make note of which COM port was enumerated with the Silicon Labs Quad
CP2108 USB to UART Bridge: Interface 0.

X-Ref Target - Figure 11

Figure 11: Settings for RSA Authentication When Using eFUSEs - 2

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=15

RSA eFUSE Configuration

XAPP1333 (v1.1) May 28, 2021 16
www.xilinx.com

8. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed
above at 115,200 baud. Enable terminal logging and select a file name and location.

9. On the ZCU102 development board, set the dip switch SW6 to configure the board for JTAG
boot mode as shown in Figure 6.

10. Power on the ZCU102 board using switch SW1.
11. Right-click A53_BSP_xilskey_efuseps_zynqmp_example_1 > Run As > Launch on

Hardware (System Debugger).
12. The RSA eFUSE application starts running and outputs information to the terminal as shown

in Figure 12. An example log of the writing the RSA eFUSEs is included in the design files in
the Logs folder called write_rsa_enable_log.log.

13. Verify line 12 from the output terminal matches the SHA3 output that was generated and
stored in the sha3.txt file.

14. Notice in line 18 from the terminal output that the “AES CRC check failed.” This is because
the Black Key was programmed during the PUF registration and the definition
XSK_EFUSE_PS_WRITE_AES_KEY was set to false in the xilskey_efuseps_zynqmp_input.h
file.

Line 31 confirms that RSA authentication is enabled and now required for use because this
was burned into the eFUSEs.

Line 32 shows that the PPK0 eFUSE has been programed and the PPK0 SHA3 value cannot be
changed.

15. Power off the ZCU102 development board.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=16

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 17
www.xilinx.com

PUF Encryption and Decryption
PUF Encryption Decryption Demo Application
The PUF can now be used for encrypting and decrypting user data because the ZCU102
development board has been provisioned. Specifically, this section uses a reference design to
show how to encrypt and decrypt user generated AES keys that are stored on an SD card.

X-Ref Target - Figure 12

Figure 12: Terminal Output While Writing the RSA Settings to eFUSEs.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=17

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 18
www.xilinx.com

IMPORTANT: Although the user generated encryption keys are being written to an external SD card, any
type of user data can be encrypted/decrypted and written/read to any type of external non-volatile memory
accessible by the Zynq UltraScale+ device.

1. To write to the SD card, modifications of the xparameters.h file located in A53_BSP >
psu_cortexa53_0 > include is necessary. Comment out line 1406, #define
FILE_SYSTEM_READ_ONLY, shown in Figure 13. This modification is required to make the
SD card writable and readable.

2. In Xilinx SDK, click File > New > Application Project.
3. Type in ExternalKeyStorage in the Project name:
4. Select Use default location.
5. Leave the OS Platform as standalone.
6. Leave the Hardware Platform to the name of the hardware exported from Vivado Design

Suite.
7. Leave the Processor as psu_cortexa53_0.
8. Leave the Language selected to C.
9. Leave the Compiler set at 64-bit.
10. Leave the Hypervisor Guest as No.
11. Change the Board Support Package to Use existing: A53_BSP.

These settings are shown in Figure 14.

12. Select Next.
13. Select Empty Application.
14. Click Finish.
15. Expand the src folder in ExternalKeyStorage of the Project explorer window.
16. Right-click src and select Import.
17. Expand General, select File System, and click Next.
18. Navigate to the ExternalKeyStorage/src folder in the reference design file directory

and check all “.c” and “.h” files and then click Finish as shown in Figure 15.

X-Ref Target - Figure 13

Figure 13: Modifying xparameters.h File to Make the SD Readable and Writable

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=18

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 19
www.xilinx.com

X-Ref Target - Figure 14

Figure 14: Creating the ExternalKeyStorage Project in Xilinx SDK

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=19

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 20
www.xilinx.com

19. Create a new file called ExternalKeyStorage.bif in the ExternalKeyStorage folder. This
file is also included with the design files and can be copied into the project folder but the
paths must be updated to point to the correct folders. Manual creation of the BIF file is
necessary to use the Black Key during boot as the Create Boot Image tool within Xilinx SDK
does not currently support this feature. Future revisions of Xilinx SDK may support this
feature.

20. Update the contents of the file to the contents shown in Figure 16 using the correct paths.

X-Ref Target - Figure 15

Figure 15: Importing Files from the Reference Design into the ExternalKeyStorage Project

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=20

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 21
www.xilinx.com

21. Build the ExternalKeyStorage project in Xilinx SDK.
22. From the command prompt in the ExternalKeyStorage folder run the following

command:
bootgen –p zcu9eg –arch zynqmp –image ExternalKeyStorage.bif –w –o BOOT.bin

23. Power off the ZCU102 board.
24. Copy BOOT.bin to a blank SD card.
25. Load the SD card into the J100 SD slot on the ZCU102 development board.
26. Connect a USB cable from the USB Serial port J83 on the ZCU102 board to a computer and

make note of which COM port was enumerated with the Silicon Labs Quad CP2108 USB to
UART Bridge: Interface 0.

27. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed
above at 115,200 baud. Enable terminal logging and select a file name and location.

X-Ref Target - Figure 16

Figure 16: ExternalKeyStorage.bif File

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=21

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 22
www.xilinx.com

28. On the ZCU102 development board, set the dip switch SW6 to configure the board for SD
boot mode as shown in Figure 17.

29. Load the SD card into the J100 SD slot on the ZCU102 development board.
30. Power on the ZCU102 board using switch SW1.

In the terminal program, a menu appears as shown in Figure 18.

31. Press 1 to encrypt a user key and to save the encrypted key to the external SD card and
follow the prompts, as illustrated in Figure 19.
a. Enter a 96-bit IV.
b. Enter an 8-bit key ID. Use an ID of 42 for this key.

An ID of 0 is mapped to user eFUSE 0 bit 0, an ID of 1 is mapped to user eFUSE 0 bit 1,
… , an ID of 255 is mapped to user eFUSE 7 bit 31.

X-Ref Target - Figure 17

Figure 17: ZCU102 SD Boot Mode Switch Setting

X-Ref Target - Figure 18

Figure 18: Main Menu of External Key Storage Demo

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=22

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 23
www.xilinx.com

c. Enter a 256-bit AES key.
d. Enter a file name including a file extension (for example, Key1.key) for the key up to 16

characters long and then press enter when complete.
32. After entering the file name, the program displays the unencrypted key blob which consists

of the IV, Key’s ID, and the key itself. Afterwards, the ID and AES key are encrypted using the
PUF’s device-unique KEK, the entire 61 byte encrypted key blob is displayed, and the entire
encrypted key blob is written to the SD card.

33. Repeat the entire encryption process and encrypt another key and IV, using step 31.
However, select an ID that is equal to 0xFF and create a unique key file name (e.g., Key2.key).

34. Power off the ZCU102 board.
35. Remove the SD card and insert the card into a SD card reader on a computer.
36. Using a browser or the command line, display the contents of the SD card.
37. Make sure both key files generated in step 31 and step 33 appear on the SD card as shown

in Figure 20.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=23

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 24
www.xilinx.com

38. Open both keys in a hex editor and confirm that they match the encrypted key blobs
displayed in the user application. KEY1.KEY is shown in Figure 21 and matches the output
generated in Figure 19.

X-Ref Target - Figure 19

Figure 19: External Key Storage Encryption
X-Ref Target - Figure 20

Figure 20: Directory Contents of the SD Card after Writing the Encrypted Key

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=24

PUF Encryption and Decryption

XAPP1333 (v1.1) May 28, 2021 25
www.xilinx.com

39. Remove the SD card from the computer and insert the card into the ZCU102 development
board.

40. Apply power to the ZCU102 development board.

The menu shown in Figure 18 appears.

41. Press 2 to decrypt the data that is stored externally on the SD card.
42. Type in the name of the key and the file extension used in step 31 (Key1.key).

The key is read from the SD card and placed into OCM for processing.

The encrypted key blob is displayed.

The decryption process of the key blob takes place and the decrypted information is
displayed showing the IV, key ID, and key.

The decrypted GCM tag is compared to the GCM tag stored in the encrypted key blob and
the software indicates if they match.

Lastly, the key ID is mapped to and compared to the associated bit stored in the user eFUSEs
and the software indicates if the IDs match. In this case, the IDs match. An ID of 0 is mapped
to user eFUSE 0 bit 0, an ID of 1 is mapped to user eFUSE 0 bit 1, … , an ID of 255 is mapped
to user eFUSE 7 bit 31.

43. Repeat the process and decrypt the second key that was created in step 33.
44. All of the same information from step 42 is displayed and the key is decrypted and passes

authentication. However, the software simulates ID 255 being revoked and should not be
used. When ID 255 is read from a decrypted key file, the software replaces the actual value
read in from User eFUSE Seven, 0x0000,0000, with a simulated value of 0x8000,0000. Since
bit 31 of User eFUSE Seven is now set and appears to be burned, this simulates ID 255 as
being revoked. Refer to Figure 3. Decrypting the two test keys is shown in Figure 22.

X-Ref Target - Figure 21

Figure 21: Encrypted Key Data Stored in KEY1.KEY Read from the SD Card

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=25

Ordering

XAPP1333 (v1.1) May 28, 2021 26
www.xilinx.com

Ordering
Because of the additional screening required to ensure entropy, Xilinx offers two versions of the
PUF, a 128-bit and a 256-bit. In both cases, the KEK length is 256 bits. These devices require
special ordering codes (SCD). The PUF is not supported for the standard ordering codes, except
for development and evaluation, as there is no assurance that there is sufficient entropy in the
KEK. Entropy is measured as described in Zynq UltraScale+ MPSoC PUF Characterization Report
(RPT236) [Ref 5] which is a Xilinx proprietary report. Contact your local Xilinx FAE or sales
person to obtain a copy of the report. Use of the PUF does not require additional licensing fees.

X-Ref Target - Figure 22

Figure 22: External Key Storage Decryption - Decrypting Two Keys and Simulating a Revocation of
Key with ID 255

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=26

Conclusion

XAPP1333 (v1.1) May 28, 2021 27
www.xilinx.com

Conclusion
This application note guides a user on how to use the PUF’s device-unique encryption key in
conjunction with the AES-GCM hardware in order to encrypt user generated data and store the
encrypted data externally. The encrypted data can then be read from external storage and
decrypted using the AES-GCM hardware in conjunction with the PUF’s device-unique key. In
addition, this application note shows how to perform data validation of decrypted data packets
by utilizing values stored in the user programmable section of eFUSEs.

Reference Design
Download the reference design files for this application note from the Xilinx website.

Table 1 shows the reference design matrix.

Table 1: Reference Design Checklist
Parameter Description

General
Developer Name(s) Jim Wesselkamper, Nathan Menhorn

Target Devices Zynq UltraScale+ devices
Source code provided? Yes
Source code format (if provided) C
Design uses code or IP from existing reference
design, application note, 3rd party or Vivado
software? If yes, list.

Simulation
Functional simulation performed No
Timing simulation performed? No
Testbench provided for functional and timing
simulation?

No

Testbench format N/A
Simulator software and version N/A
SPICE/IBIS simulations N/A
Implementation software tool(s) and version SDK 2018.1
Static timing analysis performed? No
Hardware Verification
Hardware verified? Yes
Platform used for verification ZCU102 evaluation board

Send Feedback

https://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=27

Appendix A

XAPP1333 (v1.1) May 28, 2021 28
www.xilinx.com

Appendix A
Creating the Zynq UltraScale+ ZCU102 Evaluation Board Hardware
Design
1. Open Vivado Design Suite.
2. In the Quick Start tab click Create Project.
3. Click Next in the Create a New Vivado Project page.
4. Enter ZCU102 in the Project name.
5. Enter or select an appropriate working directory in the Project location.
6. Click Next on the Project Name page.
7. In Project Type, select RTL Project and uncheck Do not specify sources at this time.
8. Click Next on the Project Type page.
9. Click Next on the Add Sources page.
10. Click Next on the Add Constraints (optional) page.
11. On the Default Part page, click the Boards tab.
12. Type in ZCU in the Search.
13. Click the Zynq UltraScale+ ZCU102 Evalulation Board.
14. Click Next on the Default Part page.
15. Click Finish on the New Project Summary Page and wait while the project is being created.
16. In the Project Manager tab located on the left of the Vivado workspace, click IP

INTEGRATOR > Create Block Design.
17. When the Create Block Design window appears, type in ZCU102 in Design. Leave

everything else set to default.
18. Click OK and wait while the design is created.
19. In the Diagram section of the workspace, located on the top right, click the + button to add

IP.
20. When the Search box appears, type in ZYNQ.
21. Double-click Zynq UltraScale+ MPSoC and wait while the part is added to the design.
22. Click Run Block Automation at the top of the Diagram window.
23. After the Run Block Automation window appears, select All Automation and Apply Board

Preset, click OK and wait while the automation takes place.
24. Double-click the Zynq UltraScale+ part in the Diagram window.
25. Click Page Navigator > PS-PL Configuration located on the left of the Zynq UltraScale+

(3.2) window.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=28

Appendix A

XAPP1333 (v1.1) May 28, 2021 29
www.xilinx.com

26. Click PS-PL Interfaces located in the PS-PL Configuration window.
27. Click Master Interface and uncheck the AXI HPM0 FPD and AXI HPM1 FPD parameters.
28. Click OK to close the window.
29. Pres F6 to validate the design.
30. Click OK when the Validate Design window opens indicating the validation was successful.
31. In the BLOCK DESIGN window, click the Sources tab in the upper left-hand corner.
32. Right-click ZCU102 and select Create HDL Wrapper.
33. When the Create HDL Wrapper window opens, let Vivado manage wrapper and

auto-update, then click OK and wait while the design sources is created.
34. In the BLOCK DESIGN window in the upper left corner on the Sources tab, expand the

ZCU102_wrapper.
35. Right-click ZCU102_i: ZCU102 and select Generate Output Products.
36. Leave the default settings in the Generate Output Products window. Click Generate and

wait while the IP is being generated.
37. Click OK when the Generate Output Products window displays Out-of-context module

run was launched for generating output products.

Exporting the ZCU102 Hardware and Launching Xilinx SDK
1. In the main Vivado Design Suite toolbar select File > Export > Export Hardware.
2. When the Export Hardware window opens, leave the Include bitstream option unchecked

and the <Local to Project> selected in the Export to option.
3. Click OK.
4. In the main Vivado Design Suite toolbar select File > Launch SDK.
5. When the Launch SDK window opens, leave Exported location set to <Local to

Project> and choose a location for where the SDK workspace is created or leave the
setting <Local to Project>.

6. Xilinx SDK is launched and wait while the hardware gets imported.

After importing the hardware, you should see a project named
ZCU102_wrapper_hw_platform_0 that was automatically created based upon the ZCU102
evaluation board.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=29

Appendix A

XAPP1333 (v1.1) May 28, 2021 30
www.xilinx.com

Creating the First Stage Boot Loader (FSBL) and Board Support
Package (BSP)
1. In the main Xilinx SDK toolbar, select File > New > Application Project.
2. In the Application Project window, change the following three configuration items:

a. Project name: FSBL
b. Processor: psu_cortexa53_0
c. Board Support Package: Create New: A53_BSP

3. Click Next.
4. On the Template page of the New Project window, select Zynq MP FSBL.
5. Click Finish.

The workspace is now updated with the FSBL project and the A53_BSP board support
package.

6. By default, in Xilinx SDK all the projects are built automatically. You can disable this from the
main toolbar by selecting Project > Build Automatically to disable this feature.

Validate the Hardware and Software with the Hello World
Application
1. In the main Xilinx SDK toolbar, select File > New > Application Project.
2. In the Application Project window change the following three configuration items:

a. Project name: HelloWorld
b. Processor: psu_cortexa53_0
c. Board Support Package: Use Existing: A53_BSP

3. Click Next.
4. On the Template page of the New Project window, select Hello World.
5. Click Finish.
6. Right-click the A53_BSP project and click Board Support Package Settings.
7. In the Board Support Package Settings window expand the Overview tree and then click

standalone.
8. Make sure the stdin and stdout functions are mapped to psu_uart_0 and click OK.
9. Right-click the HelloWorld project and select Build Project.
10. Connect either the USB JTAG connector J2 to the ZCU102 development board and then to a

computer or connect the Platform JTAG to the ZCU102 via J8 and the associated hardware to
a computer.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=30

Documentation Navigator and Design Hubs

XAPP1333 (v1.1) May 28, 2021 31
www.xilinx.com

11. Connect a USB cable from the USB Serial port connector J83 on the ZCU102 board to a
computer and make note of which COM port was enumerated with the Silicon Labs Quad
CP2108 USB to UART Bridge: Interface 0.

12. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed
above at 115,200 baud.

13. On the ZCU102 development board set the dip switch to configure the board for JTAG boot
mode as shown in Figure 6.

14. Right-click the HelloWorld project and select Run As > Launch on Hardware (System
Debugger).

15. Verify that “Hello World” is output on the terminal screen. The hardware and software is
properly configured and is now ready for use.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page on
the Xilinx website.

References
1. Zynq UltraScale+ MPSoC Device: Technical Reference Manual (UG1085)
2. Programming BBRAM and eFUSEs (XAPP1319)
3. Developing Tamper-Resistant Designs with Zynq UltraScale+ Devices (XAPP1323)
4. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)
5. Zynq UltraScale+ MPSoC PUF Characterization Report (RPT236)

Send Feedback

https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/support/documentation/application_notes/xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=31

Revision History

XAPP1333 (v1.1) May 28, 2021 32
www.xilinx.com

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or public ly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN").
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2018–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other designated
brands included here in are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are
the property of their respective owners.

Section Revision Summary
05/28/2021 Version 1.1

Introduction • Added a note for further clarity about boot header
permissibility

• Added a note about the PUF Key
06/26/2018 Version 1.0

Initial Xilinx release. N/A

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.1&docPage=32

	External Secure Storage Using the PUF
	Summary
	Introduction
	Hardware and Software Requirements
	Create a New Embedded Project for the Zynq UltraScale+ MPSoC
	Key Generation
	AES Key Generation
	RSA Asymmetric Key Generation
	Generate SHA3 of Public RSA Asymmetric Key

	PUF eFUSE Configuration
	PUF eFUSE Settings
	PUF Registration into eFUSEs

	RSA eFUSE Configuration
	RSA eFUSE Settings
	Programming RSA eFUSEs

	PUF Encryption and Decryption
	PUF Encryption Decryption Demo Application

	Ordering
	Conclusion
	Reference Design
	Appendix A
	Creating the Zynq UltraScale+ ZCU102 Evaluation Board Hardware Design
	Exporting the ZCU102 Hardware and Launching Xilinx SDK
	Creating the First Stage Boot Loader (FSBL) and Board Support Package (BSP)
	Validate the Hardware and Software with the Hello World Application

	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

