
XAPP1283 (v1.2) July 31, 2020 1
www.xilinx.com

Summary
UltraScale™ and UltraScale+™ FPGAs feature a built-in primitive named MASTER_JTAG that
provides the same functionality as the external JTAG port. The internal FPGA logic can use
MASTER_JTAG to load the AES decryption key into the battery-backed RAM (BBRAM). It can also
use the MASTER_JTAG primitive to program various one-time programmable (OTP) eFUSEs from
within the device, instead of using the external JTAG port. This application note abstracts the
low-level commands needed to communicate with the MASTER_JTAG primitive by providing the
necessary Xilinx® supplied HDL and C library functions for a MicroBlaze™-based Soft Processor
Core [Ref 1] design. These designs can be modified and enhanced for various use cases.

You can download the reference design files for this application note from the Xilinx website.
For detailed information about the design files, see Reference Design.

Introduction
Xilinx devices have featured both BBRAM and eFUSE non-volatile (NVM) memory since
Virtex®-6 FPGAs. The primary use of a BBRAM in UltraScale and UltraScale+ devices is to store
the 256-bit AES bitstream decryption key. This AES key can also be stored in the eFUSEs with the
important difference that it can neither be modified nor erased. A 32-bit FUSE_USER register
that can be programmed for custom use cases is also available.

UltraScale and UltraScale+ FPGAs have introduced an additional programmable 128-bit
register, FUSE_USER_128. It is used as a maintenance log, a tamper activity log, or for a custom
use case. A 384-bit eFUSE register that can be programmed with the hash of a RSA-2048 public
key as a part of the device's authentication scheme is also available. The eFUSE-based control
bits including read/write disables, decryption disable, external JTAG disable, and RSA enable
can also be programmed. Refer to the UltraScale Architecture Configuration User Guide (UG570)
[Ref 2] and Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 3] for
more information.

Note: For larger UltraScale and UltraScale+ FPGAs that use stacked silicon interconnect technology
(SSIT) there are some differences in procedure from monolithic devices which will be described in this
application note. Additionally, see the UltraScale Architecture Configuration User Guide (UG570) [Ref 2]
for a list of UltraScale and UltraScale+ FPGA devices that employ SSIT.
Note: This application note also applies to eFUSEs located in the programmable logic (PL) area of Zynq
UltraScale+ MPSoC/RFSoC devices. Only the PL FUSE_USER_128 and FUSE_USER eFUSEs are supported in
the application note. For details on programming the eFUSEs within the processor system (PS) section of
Zynq UltraScale+ devices, see (XAPP1319) [Ref 22].

Application Note: UltraScale and UltraScale+ FPGAs

XAPP1283 (v1.2) July 31, 2020

Internal Programming of
BBRAM and eFUSEs
Author: Ed Peterson

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c4fd97fa-a5ac-4052-b186-a501d8f4c7fe;d=xapp1283-internalprogramming-bbram-efuses.zip

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c4fd97fa-a5ac-4052-b186-a501d8f4c7fe;d=xapp1283-internalprogramming-bbram-efuses.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c4fd97fa-a5ac-4052-b186-a501d8f4c7fe;d=xapp1283-internalprogramming-bbram-efuses.zip

Introduction

XAPP1283 (v1.2) July 31, 2020 2
www.xilinx.com

Traditionally, BBRAM and eFUSEs are programmed through the external JTAG port using the
Xilinx ISE iMPACT or Vivado® Hardware Manager. Starting with UltraScale and UltraScale+
FPGAs, BBRAM and eFUSEs can also be programmed using the internal MASTER_JTAG port.

The ability to program using an internal path has a number of advantages in security
applications. For instance, it is possible to perform a field update of the BBRAM key remotely
and securely by instantiating a secure key exchange function in the FPGA logic. The new key can
travel safely over an unsecured network because it is encrypted (black), decrypted in the FPGA
logic (red), and then stored in the BBRAM from within the device. Other security use cases are
internal programming of eFUSEs such as tamper log information, AES decryptor disable, and
JTAG disable as responses to a tamper event. Refer to the Developing Tamper-Resistant Designs
with UltraScale and UltraScale+ FPGAs Application Note (XAPP1098) [Ref 7].

A MicroBlaze Soft Processor Core [Ref 1] is instantiated in the FPGA logic to interface with the
internal MASTER_JTAG port. The Xilinx-supplied XILSKEY library provides an application
programming interface (API) to simplify and abstract the necessary low-level JTAG commands.
The hardware and software development required to use the XILSKEY library is outlined in
Hardware and Software Development Overview. Refer to the LibXil SKey for Zynq-7000
UltraScale and Zynq UltraScale+ MPSoC Devices User Guide [Ref 8] for more information about
the XILSKEY library.

Specifically, one Vivado hardware project and three different SDK/Vitis™ applications are
created from the design flow described in this application note. These SDK/Vitis™ applications
perform the following tasks:

• Program the BBRAM AES key internally.
• Create a Hello World design with an encrypted bitstream to verify the BBRAM key.
• Program eFUSE bits internally. The internal eFUSE programming is verified by the SDK

application as well as by the Vivado Hardware Manager.

This application note assumes that you are familiar with the Vivado tools flow methodology
(including IP integrator), and are experienced with building simple SDK and/or Vitis projects.
See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 3], Vivado
Design Suite User Guide: Design Flows Overview (UG892) [Ref 4], Vivado Design Suite User Guide:
Using the Vivado IDE (UG893) [Ref 5], Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994) [Ref 6], and Vitis Unified Software Platform [Ref 23] for more
information.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=2

Hardware and Software Requirements

XAPP1283 (v1.2) July 31, 2020 3
www.xilinx.com

Hardware and Software Requirements
The hardware and software requirements for the internal programming of BBRAM and eFUSEs
memory are as follows.

For UltraScale FPGAs:

• KCU105 Kintex® UltraScale FPGA evaluation kit [Ref 9] based on the XCKU040-2FFVA1156E
FPGA (if using a different evaluation kit or a custom board, the specific steps outlined in
this application note will somewhat differ)

• AC to DC power adapter (12 VDC)
• USB type-A to micro-B USB cable for JTAG
• USB type-A to micro-B USB cable for UART
• Xilinx Vivado design suite version 2016.3 or later [Ref 10]
• Xilinx Software Development Kit (XSDK) version 2016.3 or later for non-SSIT UltraScale

FPGA devices. Vitis version 2019.2 or later is required for SSIT UltraScale FPGA devices
[Ref 11] [Ref 23]

• Serial communications terminal application such as Tera Term [Ref 12]

For UltraScale+ FPGAs:

• KCU116 Kintex UltraScale+ FPGA evaluation kit [Ref 13] based on the XCKU5P-2FFVB676E
FPGA (if using a different evaluation kit or a custom board the specific steps outlined in
this application note will somewhat differ)

• AC to DC power adapter (12 VDC)
• USB type-A to micro-B USB cable for JTAG
• USB type-A to micro-B USB cable for UART
• Xilinx Vivado design suite version 2017.3 or later for non-SSIT UltraScale+ FPGA devices.

Version 2019.2 or later is required for SSIT UltraScale+ FPGA device and for Zynq
UltraScale+ devices (PL only) [Ref 10].

• Xilinx Software Development Kit (XSDK) version 2017.3 or later for non-SSIT UltraScale+
FPGA devices. Vitis version 2019.2 or later is required for SSIT UltraScale+ FPGA devices
and for Zynq UltraScale+ devices (PL only) [Ref 11] [Ref 23].

• Serial communications terminal application such as Tera Term [Ref 12]

IMPORTANT: The BBRAM key cannot be used if the EFUSE_KEY_ONLY control eFUSE is already programmed
on the FPGA. Refer to the UltraScale Architecture Configuration User Guide (UG570) [Ref 2] for more
information.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=3

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 4
www.xilinx.com

Special Considerations When Using MASTER_JTAG to Internally Program eFUSEs

Certain special considerations must be taken to ensure reliability when MASTER_JTAG is used to
internally program eFUSEs.

1. The configuration memory must not be accessed during internal programming. This
includes activities such as a single-event upset (SEU) scan, readback capture, and partial
reconfiguration (PR). For example, the Xilinx Soft Error Mitigation (SEM) IP core [Ref 14]
should not be operational during eFUSE programming.

2. The board/system design must take into consideration the additional current required for
programming eFUSEs. The programming current is available in the appropriate UltraScale
device data sheets [Ref 15].

Hardware and Software Development Overview
This application note outlines the steps to create a MicroBlaze processor-based Vivado tools
design that indirectly interfaces the MASTER_JTAG primitive using the general purpose I/O
(GPIO). A Vivado hardware project is created and exported to SDK/Vitis. The SDK/Vitis tool is
launched with the MicroBlaze processor-based Vivado tools design as its hardware platform.
Three different software applications based on the available software libraries and example
code are then created. After these SDK/Vitis applications are compiled and built into executable
and linkable format (ELF) files, they are brought back into the Vivado tools. Three separate
FPGA bitstreams are then generated to perform and verify the functions described in this
application note.

In addition to the MicroBlaze processor, two VHDL files are included in this project (see
Reference Design for more information):

• int_prog_ctl_us.vhd

• jtag_monitor.vhd

INT_PROG_CTL_US Module

Most of the time, the JTAG signaling can come directly from the MicroBlaze processor’s GPIO
interface. However, to provide precise control over the duration of the actual eFUSE
programming pulse, the INT_PROG_CTL_US module is required. This module instantiates the
MASTER_JTAG primitive.

Note: For FPGAs that are SSIT devices, there will be multiple MASTER_JTAG instantiations - one for each
SLR. Instructions with examples will be provided in the comments section of the int_prog_ctl.vhd
file.

The INT_PROG_CTL_US module passes the MicroBlaze processor’s GPIO signals directly to and
from the MASTER_JTAG primitive, except when it enters the actual eFUSE programming phase.
Upon entering this phase, the XILSKEY software polls for the INT_PROG_CTL_US module using a
READY signal. After the software detects that the module is READY, it asserts the START_PROG
input to command the module to take control of the JTAG signaling (TCK and TMS) to get a
precise 5 µs programming pulse. When the eFUSE programming is complete, the

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=4

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 5
www.xilinx.com

INT_PROG_CTL_US module asserts the END_PROG signal and allows the software to regain
control of the JTAG signals. This interface is illustrated in Figure 1.

If you want to internally program just the BBRAM and not the eFUSE, then you can ignore this
module. Xilinx recommends including this module because it consumes few resources and
allows future internal eFUSE programming. However, if you decide to ignore it, then you must
instantiate the MASTER_JTAG primitive and connect it directly to the MicroBlaze processor’s
GPIO.

If your design is also instantiating the Xilinx Security Monitor IP Core (see the Security Monitor
IP Core Product Brief [Ref °]), the INT_PROG_CTL_US module must be modified, because the
Security Monitor instantiates the MASTER_JTAG primitive. The MASTER_JTAG primitive must be
removed from the INT_PROG_CTL_US module and the corresponding JTAG signals brought up
to the module's port list to connect to the Security Monitor’s MASTER_JTAG interface.

JTAG_MONITOR Module

The optional JTAG_MONITOR module provides an EFUSE_PROG_PULSE output that can be
routed up to an external header pin on the KCU105 board or KCU116 board to measure the
eFUSE programming pulse width (this signal mirrors the amount of time the JTAG controller is
in the programming phase).

The JTAG_MONITOR can also be used for debugging/monitoring signals and display the current
JTAG state. When using the Vivado Integrated Logic Analyzer (ILA) IP core to monitor the JTAG
states, the INT_PROG_CTL_US module must have its TEST_MODE generic set to TRUE
(MASTER_JTAG is not instantiated) to allow the ILA to communicate using external JTAG.
Otherwise, the ILA does not work, because external JTAG is disconnected when MASTER_JTAG is
instantiated within a design. When TEST_MODE is set to TRUE it can only be used to debug the
startup of the xilskey software eFUSE functionality. This is because in TEST_MODE the software
will not be able to detect the MASTER_JTAG primitive. Therefore, it only has limited usefulness.

Note: In order to perform more comprehensive hardware debug (when MASTER_JTAG is instantiated),
there are two options. The first option is to map MASTER_JTAG I/O to user I/O and make external JTAG
connections using those user I/O. The second (and easier) option is to use the Xilinx Debug Bridge IP
which bridges user I/O JTAG to BSCAN peripherals such as ILA and MicroBlaze MDM. This bridge will
allow for full debug without having to loop external signals (which is necessary for the first option). For
either option, the TEST_MODE generic is set to FALSE.

X-Ref Target - Figure 1

Figure 1: MicroBlaze Interface to MASTER_JTAG using INT_PROG_CTL_US Module

INT_PROG_CTL_US

MASTER_JTAG

CLOCK

READY

START_PROG

END_PROG

TDI, TCK, TMS

TDO

M
ic

ro
Bl

az
e

G
PI

O

X18313-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/intellectual-property/debug-bridge.htm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=5

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 6
www.xilinx.com

The JTAG_MONITOR module is useful for development and debugging. It is optional and can be
removed in a field deployed system.

Building the Vivado Hardware Project
One common Vivado project is the hardware required for this application note. It is based upon
a MicroBlaze soft processor using GPIO to indirectly interface with the MASTER_JTAG primitive
through the INT_PROG_CTL_US Module. The following steps are used to create the Vivado
hardware project.

Note: Some of the figures can vary slightly from the actual tool. This depends on which version of the
Vivado tools are being used.
1. Open the Vivado tools (version 2016.3 or later for UltraScale FPGAs and version 2017.3 or

later for UltraScale+ FPGAs) in graphical user interface (GUI) mode.
2. From the welcome screen under Quick Start, select Open Example Project (Figure 2).
X-Ref Target - Figure 2

Figure 2: Vivado Example Project
X18314-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=6

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 7
www.xilinx.com

3. Click Next, select Base MicroBlaze, and click Next (Figure 3).

4. Enter the project name: internal_prog_proj.
5. Enter the appropriate project location and (optionally) keep the create project subdirectory

checkbox selected.
Note: The maximum allowed path length on Windows is 260 bytes.

X-Ref Target - Figure 3

Figure 3: Project Template Base MicroBlaze
X18315-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=7

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 8
www.xilinx.com

6. Click Next, select Kintex-UltraScale KCU105 Evaluation Platform or Kintex UltraScale+
KCU116 Evaluation Platform, and click Next (Figure 4).

X-Ref Target - Figure 4

Figure 4: Project Evaluation Platform

Text

X18316-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=8

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 9
www.xilinx.com

7. Click Finish. The Vivado tools create the base MicroBlaze processor project (Figure 5 and
Figure 6).

X-Ref Target - Figure 5

Figure 5: Project Summary
X18317-011117

X-Ref Target - Figure 6

Figure 6: Example MicroBlaze Design in IP Integrator
X18319-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=9

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 10
www.xilinx.com

8. Double-click the Clocking Wizard IP block, select the Output Clocks tab, verify clk_out1 is
selected, and the requested and actual frequency is 100 MHz. Click OK. This is the main
clock for the MicroBlaze core.

9. Check the box next to clk_out2 under the Output Clock column and type in 8.000. Verify
that the actual column reports back 8.000 MHz. This is the clock used by the
INT_PROG_CTL_US Module to provide precise time during the actual programming of the
eFUSEs. Click OK (Figure 7).

IMPORTANT: For eFUSE programming, the 8.000 MHz clock feeds into the INT_PROG_CTL_US block. This is
critical for generating the required programming pulses. The JTAG TAP machine must transition using an
accurate clock during this phase to provide a 5 µs pulse for each eFUSE programmed. If the programming
pulses are not accurate, eFUSE programming and reliability can be adversely affected.

X-Ref Target - Figure 7

Figure 7: Clocking Wizard
X18318-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=10

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 11
www.xilinx.com

10. Right-click clk_out2 port of the Clocking Wizard IP block, select Create Port, set Port
Name to CLK_8MHZ, and click OK (Figure 8).

11. From within the IP integrator block diagram window, search and add the following IP blocks
by selecting the Add IP icon on the left (or top) side of the IP integrator window.
a. System Management Wizard (monitors on-chip temperature and voltage prior to

reading and writing eFUSEs).
b. AXI Timer (tracks the eFUSE programming code section as a watchdog).

12. Click Run Connection Automation at the top of the IP integrator window, next to the
Designer Assistance available.

X-Ref Target - Figure 8

Figure 8: Create Port
X18320-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=11

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 12
www.xilinx.com

13. Select the All Automation checkbox to select all the checkboxes, and click OK to
automatically connect up the recently added IP blocks (Figure 9).

14. Right-click on the External Interface: led_8bits connected to the AXI GPIO IP
block, and click Delete.

15. Double-click the AXI GPIO IP block to re-customize the IP.

X-Ref Target - Figure 9

Figure 9: Run Connection Automation
X18321-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=12

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 13
www.xilinx.com

16. Using the drop-down boxes, ensure that both the IP Interfaces GPIO and GPIO2 are set to
Custom Board Interface (Figure 10).

X-Ref Target - Figure 10

Figure 10: Re-customize IP Interfaces
X18322-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=13

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 14
www.xilinx.com

17. Select the IP Configuration tab, check the All Outputs checkbox for GPIO, set GPIO Width
to 4, check the Enable Dual Channel checkbox, check the All Inputs checkbox for GPIO 2,
set GPIO Width to 3, and click OK (Figure 11).

X-Ref Target - Figure 11

Figure 11: Re-customize IP GPIO Width
X18323-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=14

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 15
www.xilinx.com

18. Right-click the GPIO port of the AXI GPIO IP block, select Create Interface Port, set the
Interface Name to GPO, and click OK (Figure 12).

19. Right-click the GPIO2 port of the AXI GPIO IP block, select Create Interface Port, set the
Interface Name to GPI, and click OK (Figure 13).

20. Right-click the Vp_Vn port of the System Management Wizard IP block, and select Make
External.

X-Ref Target - Figure 12

Figure 12: Create Interface Port (GPIO)

X-Ref Target - Figure 13

Figure 13: Create Interface Port (GPIO2)

X18324-011117

X18325-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=15

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 16
www.xilinx.com

21. Select the Address Editor tab at the top of the IP integrator window, set the Range for
microblaze_0_local_memory/dlmd_bram_if_cntlr to 256K using the drop-down box, and
set the Range for microblaze_0_local_memory/ilmd_bram_if_cntlr to 256K using the
drop-down box (Figure 14).

22. Select the Diagram tab at the top of the IP integrator window to return to the block
diagram.

23. Click the Validate Design icon on the left (or top) side of the IP integrator window and
correct any issues if the validation does not pass.

24. The large text labels on the block diagram can be moved and/or renamed.
25. Click the Regenerate Layout icon on the top left side of the IP integrator window to

clean up the block diagram display. It looks similar to Figure 15. Complete the edits and
save the block diagram.

26. From the top-level Vivado tools menu, select Tools > Project Settings or Settings > Target
Language VHDL > OK.

X-Ref Target - Figure 14

Figure 14: Address Editor
X18326-011117

X-Ref Target - Figure 15

Figure 15: MicroBlaze-based Internal BBRAM/eFUSE Programming Project Layout
X18327-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=16

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 17
www.xilinx.com

27. Select the Sources tab in the center window, select the Hierarchy tab, right-click
base_mb_i, select Create HDL Wrapper, choose Copy generated wrapper to allow user
edits, and click OK (Figure 16 and Figure 17).

X-Ref Target - Figure 16

Figure 16: Sources
X-Ref Target - Figure 17

Figure 17: Create HDL Wrapper

X18328-011117

X18329-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=17

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 18
www.xilinx.com

28. Double-click base_mb_wrapper in the center window under Design Sources to bring up the
HDL file in the text editor and make the following changes:
a. Remove the GPIO ports from the top-level port list and assign as internal signals.
b. Instantiate and connect the INT_PROG_CTL_US component (this block instantiates the

MASTER_JTAG primitive). See the INT_PROG_CTL_US Module for more information.
c. Instantiate and connect the JTAG_MONITOR component (optional). See the

JTAG_MONITOR Module for more information.
29. The following VHDL code sample demonstrates these changes (the VHDL wrapper file can

also be downloaded from www.xilinx.com). See Reference Design for more information.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

entity base_mb_wrapper is
 port (
 Vp_Vn_v_n : in std_logic;
 Vp_Vn_v_p : in std_logic;
 default_sysclk_300_clk_n : in std_logic;
 default_sysclk_300_clk_p : in std_logic;
 reset : in std_logic;
 rs232_uart_rxd : in std_logic;
 rs232_uart_txd : out std_logic;
 EFUSE_PROG_PULSE : out std_logic
);
end base_mb_wrapper;

architecture STRUCTURE of base_mb_wrapper is

 signal clk_8mhz : std_logic;
 signal gpi_tri_i : std_logic_vector(2 downto 0);
 signal gpo_tri_o : std_logic_vector(3 downto 0);
 signal jtag_mon : std_logic_vector(3 downto 0);

 component base_mb is
 port (
 default_sysclk_300_clk_n : in std_logic;
 default_sysclk_300_clk_p : in std_logic;
 rs232_uart_rxd : in std_logic;
 rs232_uart_txd : out std_logic;
 Vp_Vn_v_n : in std_logic;
 Vp_Vn_v_p : in std_logic;
 reset : in std_logic;
 CLK_8MHZ : out std_logic;
 GPI_tri_i : in std_logic_vector(2 downto 0);
 GPO_tri_o : out std_logic_vector(3 downto 0)
);
 end component base_mb;

 component INT_PROG_CTL_US is
 generic (
 TEST_MODE : boolean := FALSE
);
 port (

RESET : in std_logic;

Send Feedback

https://www.xilinx.com
https://www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=18

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 19
www.xilinx.com

CLK_8MHZ : in std_logic; -- accuracy of the 5µs efuse prog pulse depends on this 8MHz
clock

GPIO_IN : in std_logic_vector(3 downto 0); -- from software using gpio output
GPIO_OUT : out std_logic_vector(2 downto 0); -- to software using gpio input
JTAG_OUT : out std_logic_vector(3 downto 0) -- for monitoring jtag signals

);
 end component INT_PROG_CTL_US;

 component JTAG_MONITOR is
 port (
 JTAG_MON : in std_logic_vector(3 downto 0); -- tdi=0, tms=1, tck=2, tdo=3
 EFUSE_PROG_PULSE : out std_logic
);
 end component JTAG_MONITOR;

begin

 base_mb_i: base_mb
 port map (
 CLK_8MHZ => clk_8mhz,
 GPI_tri_i => GPI_tri_i,
 GPO_tri_o => GPO_tri_o,
 Vp_Vn_v_n => Vp_Vn_v_n,
 Vp_Vn_v_p => Vp_Vn_v_p,
 default_sysclk_300_clk_n => default_sysclk_300_clk_n,
 default_sysclk_300_clk_p => default_sysclk_300_clk_p,
 reset => reset,
 rs232_uart_rxd => rs232_uart_rxd,
 rs232_uart_txd => rs232_uart_txd
);

 INT_PROG_CTL_US_i : INT_PROG_CTL_US
 generic map (
 TEST_MODE => FALSE
)
 port map (
 RESET => reset,
 CLK_8MHZ => clk_8mhz,
 GPIO_IN => GPO_tri_o,
 GPIO_OUT => GPI_tri_i,
 JTAG_OUT => jtag_mon
);

 JTAG_MONITOR_i : JTAG_MONITOR
 port map (
 JTAG_MON => jtag_mon,
 EFUSE_PROG_PULSE => EFUSE_PROG_PULSE
);

end STRUCTURE; -- base_mb_wrapper

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=19

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 20
www.xilinx.com

30. Download the project VHDL files int_prog_ctl_us.vhd and jtag_monitor.vhd to
your local computer. See Reference Design for more information.

31. Right-click Design Sources in the center Sources window, select Add Sources, click Next,
select Add or create design sources, and click Add Files. Navigate to and add
int_prog_ctl_us.vhd and jtag_monitor.vhd (files downloaded in step 30), check
Copy Sources into project, and click Finish (Figure 18).

32. Download the project constraint file xapp1283.xdc (for UltraScale FPGAs) or
xapp1283_usp.xdc (for UltraScale+ FPGAs) to your local computer (see Reference Design
for more information). The constraint file sets up the external reset pin input and the
EFUSE_PROG_PULSE monitor output pin.
Note: If using a different evaluation kit or custom board, you will need to customize the constraint
file appropriately (e.g., for specific physical pin locations). Also, if using SSIT FPGA devices there will
be examples in the comment on how to include the MASTER_JTAG components for each SLR.

X-Ref Target - Figure 18

Figure 18: Add or Create Design Sources
X18331-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=20

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 21
www.xilinx.com

33. Right-click Design Sources in the center Sources window, select Add Sources, select Add
or create constraints, click Next, and click Add Files. Navigate to and add the
xapp1283.xdc or xapp1283_usp.xdc (file downloaded in step 32), check Copy
constraints files into project, and click Finish (Figure 19).

34. Select Run Implementation from the left flow navigator window
under the Implementation section and click Yes, to automatically launch synthesis prior to
implementation.
Note: Any critical synthesis or implementation warnings associated with the board's dip switch can
be safely ignored because it is not being used in this application note.
Note: Interface port names can be slightly different than those in the provided reference design.
Ensure the port names match prior to synthesis.

35. Click Cancel after the implementation is successfully completed.

X-Ref Target - Figure 19

Figure 19: Add or Create Constraints
X18332-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=21

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 22
www.xilinx.com

36. Select File from the top-level Vivado tools menu, select Export, choose Export Hardware,
and leave Include bitstream unchecked. Click OK to export Local to Project (Figure 20).

37. Select File > Launch SDK from the top-level Vivado tools menu. Click OK to launch Local to
Project (Figure 21). If using Vitis, select Tools > Launch Vitis IDE.

X-Ref Target - Figure 20

Figure 20: Export Hardware

X-Ref Target - Figure 21

Figure 21: Launch SDK

X18333-011117

X18334-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=22

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 23
www.xilinx.com

Building the SDK/Vitis Applications
The method to create three different SDK applications is explained in this section. In step 37 of
the Vivado hardware section the SDK tool is launched with the MicroBlaze processor design as
its hardware platform. The following steps are required for the creation of the SDK software
applications. If using Vitis, the steps and filenames are similar to SDK. However there are some
differences; see the Vitis references for details on building applications with that tool [Ref 23].

1. Select File > New > Board Support Package from the top-level SDK menu.
2. Set the project name to internal_prog_bsp, check the Use default location checkbox,

select the standalone Board Support Package OS, and click Finish (Figure 22).
X-Ref Target - Figure 22

Figure 22: Board Support Package Project
X18335-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=23

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 24
www.xilinx.com

3. Select xilskey from the Board Support Package Settings popup window (6.0 or later for
UltraScale FPGAs, 6.3 or later for UltraScale+ FPGAs, 6.8 or later for SSIT FPGAs, or Zynq
UltraScale+) Xilinx Secure Key Library and click OK (Figure 23).

4. Select the system.mss tab in the center window and select Import Examples under the
Libraries section at the bottom.
Note: If using Vitis version 2019.2 or later, it is necessary to modify the following xilskey library
parameters: JTAG IDCODE, instruction register (IR) length (6), master SLR number and the number of
SLRs. For FPGA devices, the JTAG IDCODE can be found in UG570 [Ref 2]. For Zynq UltraScale+
devices, the JTAG IDCODE in the PL is different than the published IDCODE for the PS. Contact your
local Xilinx FAE or send an e-mail to secure.solutions@xilinx.com to get the appropriate PL JTAG
IDCODE for your Zynq UltraScale+ device. The following figure (Figure 24) shows an example of these
xilskey settings (your settings will differ depending on the device you are using).

X-Ref Target - Figure 23

Figure 23: Board Support Package Settings
X18336-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=24

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 25
www.xilinx.com

X-Ref Target - Figure 24

Figure 24: Examples for xilskey (1)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=25

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 26
www.xilinx.com

5. Check the xilskey_bbram_ultrascale_example checkbox, check the
xilskey_efuse_example checkbox, and click OK (Figure 25).

6. Expand the internal_prog_bsp_xilskey_bbram_ultrascale_example_1 project on the left
side of the SDK project explorer window, expand src, and double-click
xilskey_bbram_ultrascale_input.h to open up the header file in the SDK text
editor.

7. Scroll down the header file to find the #define statement for XSK_BBRAM_AES_KEY, note
and record the key value in quotations. Save any changes. The default value can be used in
this example or you can enter your own value using exactly 64 hexadecimal characters. For
this project, the obfuscated key (XSK_BBRAM_OBFUSCATED_KEY) is not used and can be
ignored (Figure 26).

8. Expand the internal_prog_bsp_xilskey_efuse_example_1 project on the left side of the
SDK project explorer window, expand src, and double-click xilskey_input.h to open up
the header file in the SDK text editor.

X-Ref Target - Figure 25

Figure 25: Examples for xilskey (2)

X-Ref Target - Figure 26

Figure 26: XSK_BBRAM_AES_KEY Value

X18337-011117

X18338-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=26

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 27
www.xilinx.com

9. Scroll down the header file to find the #define statement for XSK_EFUSEPS_DRIVER and
comment it out (this is only used for Zynq® SoC designs). Save the changes (Figure 27).

10. Scroll through the xilskey_input.h file to see the different options (commands and
values) for programming eFUSEs. For programming details refer to LibXil SKey for Zynq-7000
UltraScale and Zynq UltraScale+ MPSoC Devices User Guide [Ref 8]. In this example a value is
programmed into the 32-bit FUSE_USER register.
Note: If using Vitis version 2019.2 or later, there will be multiple #define macro statements that will
have the suffix “_CONFIG_ORDER_n" where n corresponds to the super logic region (SRL)
configuration order when using SSIT devices. On some devices the Master SLR is SLR0, while on
others the Master SLR is SLR1. It is important to note that all Master SLRs have a
CONFIG_ORDER_INDEX value of 0. Consult the UltraScale Architecture Configuration User Guide
(UG570) [Ref 2] to identify the Master SLR for the device being used. There is also a Tcl file included
with this application note (slr_report.tcl) that can be sourced on an open Vivado
implementation and provides a report on the device's SLRs.

As an example, Vivado orders the BBRAM AES keys provided in the .nky key file as SLR0, SLR1, SLR2,
etc. If UG570 states that the device's master is SLR0, then map the keys in the .nky file to the #define
macros in that same order (1st key to _CONFIG_ORDER_0, 2nd key to _CONFIG_ORDER_1, 3rd key to
_CONFIG_ORDER_2, etc.).

However, if UG570 states that the device's master is SLR1, ensure that you provide the 2nd key in the
.nky file at #define macro _CONFIG_ORDER_0, 1st key in the .nky file at #define macro
_CONFIG_ORDER_1, the 3rd key at _CONFIG_ORDER_2, etc.

This ordering scheme not only applies to BBRAM AES keys, it also applies to eFUSE AES keys, user
fuses, and RSA PPK hashes. The target value to be programmed on the master is typically provided
across the first #define macro (_CONFIG_ORDER_0), followed by the slave values (_CONFIG_ORDER_1,
_CONFIG_ORDER_2, etc.).

See the comments in the associated int_prog_ctl_us.vhd file and constraint (.xdc)
files for SSIT usage examples.

IMPORTANT: eFUSEs are OTP and the programming is irreversible. Use caution to choose eFUSEs that are
programmed because they can affect the configuration and operation of the device. Also, the order in which
eFUSEs are programmed should follow the guidelines shown in Using Encryption and Authentication to
Secure an UltraScale/UltraScale+ FPGA Bitstream (XAPP1267) [Ref 24]. See the section named eFUSE
Programming General Recommendations which describes the proper order in which the eFUSEs should be
programmed.

IMPORTANT: Do not enable XSK_EFUSEPL_ENABLE_RSA_AUTH (PL RSA authentication eFUSE bit) for the
XCKU040-2FFVA1156E FPGA device located on the KCU105 evaluation platform. UltraScale devices have a
minimum configuration width when RSA is enabled and the KCU105 evaluation board does not conform to
this requirement. Enabling the PL RSA authentication eFUSE bit makes the device on this board
permanently unconfigurable.

X-Ref Target - Figure 27

Figure 27: XSK_EFUSEPS_DRIVER
X18339-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=27

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 28
www.xilinx.com

11. Find the #define statement for XSK_EFUSEPL_PROGRAM_USER_KEY and set its value to
TRUE to program the 32-bit FUSE_USER register. Save the changes (Figure 28).

12. Find the #define statement for XSK_EFUSEPL_READ_USER_KEY and set its value to TRUE in
order to read the 32-bit FUSE_USER register. Save the changes (Figure 29).

13. Find the #define statement for 32-bit FUSE_USER register value XSK_EFUSEPL_USER_KEY
(this is not the AES decryption key) and set its value using exactly eight hexadecimal
characters. All hexadecimal combinations are permitted with the exception of 0x00000000.
Note and record this value. Save the changes (see the example value in Figure 30).

14. Select File, select New, select Application Project, and set the project name to
hello_encrypted, from the top-level SDK menu. Under Board Support Package, check Use
existing, click Next, select Hello World template, and click Finish (Figure 31 and
Figure 32).

X-Ref Target - Figure 28

Figure 28: XSK_EFUSEPL_PROGRAM_USER_KEY Value

X-Ref Target - Figure 29

Figure 29: XSK_EFUSEPL_READ_USER_KEY Value

X-Ref Target - Figure 30

Figure 30: XSK_EFUSEPL_USER_KEY Value

X18340-011117

X18341-011117

X18342-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=28

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 29
www.xilinx.com

X-Ref Target - Figure 31

Figure 31: Create an Application Project
X18343-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=29

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 30
www.xilinx.com

Note: Before building the projects, inspect the loader scripts (lscript.ld) for the BBRAM and eFUSE
examples and ensure the heap size is at least 0xF00 and the stack size is at least 0xC00.

15. Select Project > Clean > Clean all projects, and click OK from the top-level SDK menu.
16. Select Project and click Build All from the top-level SDK menu. This generates the

necessary binary ELF files for each of the three application projects.

X-Ref Target - Figure 32

Figure 32: Application Project Template
X18344-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=30

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 31
www.xilinx.com

Bitstream Generation
The three ELF files created in the SDK are imported back into the Vivado tools to merge the
associated MicroBlaze processor instructions and data into each of the bitstreams. The
bitstreams for programming the BBRAM AES key and the 32-bit user eFUSE register are
unencrypted and the Hello application is encrypted (using the same key value from the C
header file). The following steps outline the generation of these bitstreams:

1. Return to the Vivado tools GUI with the recently built internal_prog_proj project loaded.
2. Select the Sources tab in the center window, and then select the Hierarchy tab.
3. Right-click Design Sources > Add Sources > Add or create design sources > Next > Add

Files.
4. Browse to <project_path>/internal_prog_proj/internal_prog_proj.sdk.

From this location point to each of the following ELF files and add them to the project:
a. hello_encrypted/<Debug or Release>/hello_encrypted.elf
b. internal_prog_xilskey_bbram_ultrascale_example_1/<Debug or Release>/

internal_prog_bsp_xilskey_bbram_ultrascale_example_1.elf

c. internal_prog_xilskey_efuse_example_1/<Debug or Release>/
internal_prog_bsp_xilskey_efuse_example_1.elf

5. Do not check Copy sources into project.
6. Click Finish (Figure 33).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=31

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 32
www.xilinx.com

X-Ref Target - Figure 33

Figure 33: Add Sources
X18345-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=32

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 33
www.xilinx.com

7. The three ELF files are now visible under Design Sources and ELF in the following figure
(Figure 34).

8. Under Design Sources right-click on
internal_prog_bsp_xilskey_bbram_ultrascale_example_1.elf > Associate ELF Files. Under
Associated ELF File for Design Sources browse , select
internal_prog_bsp_xilskey_bbram_ultrascale_example_1.elf, click OK, and click OK
(Figure 35).

X-Ref Target - Figure 34

Figure 34: Block Design

X-Ref Target - Figure 35

Figure 35: Associate ELF Files (BBRAM)

X18346-011117

X18347-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=33

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 34
www.xilinx.com

9. Select Generate Bitstream from the flow navigator window on the
left of the Vivado tools screen, under Program and Debug.

10. Click Cancel when the bitstream generation is completed.
11. Using a file browser, navigate to

project_path>/ internal_prog_proj/internal_prog_proj.runs/impl_1 (this path is used
again when the bitstreams are programmed into the device).

12. Rename base_mb_wrapper.bit to prog_bbram.bit. Copy prog_bbram.bit to a
temporary folder for later use.

13. Right-click on internal_prog_bsp_xilskey_efuse_example_1.elf under Design Sources and
select Associate ELF Files. Under Associated ELF File for Design Sources, browse , select
internal_prog_bsp_xilskey_efuse_example_1.elf, click OK, and click OK (Figure 36).

14. From the flow navigator window on the left of the Vivado tools screen, under Program and
Debug, select Generate Bitstream .

15. When the bitstream generation is completed, click Cancel.
16. Using a file browser, navigate to

<project_path>/ internal_prog_proj/internal_prog_proj.runs/impl_1.
17. Rename base_mb_wrapper.bit to prog_efuse.bit. Copy prog_efuse.bit to the same

temporary folder as prog_bbram.bit.

X-Ref Target - Figure 36

Figure 36: Associate ELF Files (eFUSE)
X18349-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=34

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 35
www.xilinx.com

18. Under Design Sources, right-click on hello_encrypted.elf > Associate ELF Files.
Under Associated ELF File for Design Sources, browse , select hello_encrypted.elf,
click OK, and click OK (Figure 37).

19. From the flow navigator window on the left of the Vivado tools screen, under
Implementation, select Open Implemented Design .

20. Ignore any warning messages that appear and click OK.
21. From the flow navigator window on the left of the Vivado tools screen, under Program and

Debug, select Bitstream Settings or right-click on Generate
Bitstream, and select Bitstream Settings.

22. Select Configure additional bitstream settings, on the left, select Encryption, set Enable
Bitstream Encryption: Yes, and Select location of encryption key: BBRAM.

23. Copy and paste the 256-bit AES key (the XSK_BBRAM_AES_KEY value from
xilskey_bbram_ultrascale_input.h) from Building the SDK/Vitis Applications
section into the Starting AES encryption key (key0) text box.

X-Ref Target - Figure 37

Figure 37: Associate ELF Files (hello)
X18350-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=35

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 36
www.xilinx.com

24. Set Number of encryption blocks per key: 256, click OK, and click OK (Figure 38). For
more information on encryption block selection, refer to the UltraScale Architecture
Configuration User Guide (UG570) [Ref 2]. For more information on key rolling, refer to the
Developing Tamper-Resistant Designs with UltraScale and UltraScale+ FPGAs Application
Note (XAPP1098) [Ref 7].

X-Ref Target - Figure 38

Figure 38: Edit Device Properties
X18353-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=36

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 37
www.xilinx.com

25. From the flow navigator window on the left of the Vivado tools screen, under Program and
Debug, select Generate Bitstream , select Save, check Select an
existing file, set the filename as xapp1283.xdc (for UltraScale FPGAs) or
xapp1283_usp.xdc (for UltraScale+ FPGAs), click OK, and click Overwrite (Figure 39 and
Figure 40). This adds the encryption options and key value to the constraints file.

26. Click Cancel when the bitstream generation is completed.
27. Using a file browser, navigate to

<project_path>/ internal_prog_proj/internal_prog_proj.runs/impl_1.
28. Rename base_mb_wrapper.bit to hello_encrypted.bit. Copy

hello_encrypted.bit to the same temporary folder as prog_bbram.bit and
prog_efuse.bit.

X-Ref Target - Figure 39

Figure 39: Save Project
X-Ref Target - Figure 40

Figure 40: set_property

X18354-011117

X18412-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=37

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 38
www.xilinx.com

Verification
After the three bitstreams prog_bbram.bit, prog_efuse.bit, and
hello_encrypted.bit are successfully generated, you can load each onto the Kintex
UltraScale or UltraScale+ device located on the KCU105 or KCU116 evaluation kit respectively
and verify their functionality. The following steps outline the verification of each of these
bitstreams:

1. Power up and connect the KCU105 (or KCU116) evaluation board to a computer using the
USB JTAG and USB UART cables. For more information when using the UltraScale device,
refer to the KCU105 Quick Start Guide (XTP391) [Ref 16] and KCU105 Board User Guide
(UG917) [Ref 18]. For more information when using the UltraScale+ device, refer to the
KCU116 Evaluation Kit Quick Start Guide (XTP471) [Ref 19] and KCU116 Evaluation Board
User Guide (UG1239) [Ref 20].

2. On the KCU105 evaluation board, set dip switch SW15 to the following settings for the JTAG
configuration mode:

° Positions 1 through 5 = OFF

° Position 6 = ON

On the KCU116 evaluation board, set dip switch SW21 to the following settings for the JTAG
configuration mode:

° Position 6 = ON
3. Determine the COM port that connects to the MicroBlaze processor’s UART using Windows

device manager. The USB UART connection establishes two COM ports (standard and
enhanced) on the computer (the Silicon Labs serial driver must be installed on the system).
The computer COM port associated with the Silicon Labs Standard COM port connects to
the MicroBlaze processor’s UART.

4. Start up the serial communications terminal program. Following is the serial port settings:

° COM Port = Silicon Labs Standard COM Port

° Baud rate: 115200

° Data: 8

° Parity: none

° Stop: none

° Flow control: none
5. Press and release the PROGRAM_B switch SW4 on the KCU105 board (or switch SW5 on the

KCU116 board).

IMPORTANT: The PROGRAM_B switch must be pressed between each bitstream load because the design
contains the MASTER_JTAG primitive. Failure to do so blocks the external JTAG path and the computer's USB
JTAG communications fail.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=38

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 39
www.xilinx.com

6. Select Hardware Manager in the Vivado tools from the flow
navigator window on the left of the screen, under Program and Debug. Select Open Target

, and click Auto Connect.
7. Right-click the xcku040_0 device (or xcku5p_0 device) in the center hardware window and

select Clear BBR Key. Click OK (Figure 41).
X-Ref Target - Figure 41

Figure 41: Hardware Manager BBR Key
X18357-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=39

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 40
www.xilinx.com

8. Right-click the xcku040_0 device (or xcku5p_0 device) in the center hardware window, and
select Program Device (Figure 42).

9. Set Bitstream file: <path_to_bitstreams>/hello_encrypted.bit, and click Program
(Figure 43).

10. The hardware manager attempts to program the device. However, because there is no
BBRAM key, the configuration fails. When the bitstream finishes loading, verify that the
DONE LED (DS34 for the KCU105 evaluation board and DS32 for the KCU116 evaluation
board) is OFF.

11. Power cycle the board with the main power switch SW1. Then press and release the
PROGRAM_B switch SW4 on the KCU105 board (SW5 on the KCU116 board).

X-Ref Target - Figure 42

Figure 42: Hardware Manager Program Device

X-Ref Target - Figure 43

Figure 43: Program Device (hello_encrypted.bit)

X18358-011117

X18359-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=40

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 41
www.xilinx.com

12. Right-click the xcku040_0 device (or xcku5p_0 device) in the center hardware window.
Select Program Device, set Bitstream file: <path_to_bitstreams>/prog_bbram.bit,
and click Program (Figure 44).

13. When the bitstream finishes loading, the DONE LED (DS34 for the KCU105 board and DS32
for the KCU116 board) turns ON. It blocks the FPGA's external JTAG port and causes
communication errors in the Vivado Tcl console because the MASTER _JTAG is instantiated in
the design.These errors are expected and can be safely ignored.

14. The serial terminal window displays a message for a successfully programmed and verified
BBRAM (Figure 45).

15. Press and release the PROGRAM_B switch SW4 on the KCU105 board (SW5 on the KCU116
board).

16. Right-click the xcku040_0 device (or xcku5p_0 device) in the center hardware window.
Select Program Device, set Bitstream file:
<path_to_bitstreams>/hello_encrypted.bit, and click Program.

17. When the bitstream finishes loading, the DONE LED (DS34 for the KCU105 board and DS32
for the KCU116 board) turns ON because the BBRAM key is loaded internally by the last
bitstream (ignore the errors in the Vivado Tcl console).

X-Ref Target - Figure 44

Figure 44: Program Device (prog_bbram.bit)

X-Ref Target - Figure 45

Figure 45: Programmed and Verified BBRAM Key

X18360-011117

X18361-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=41

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 42
www.xilinx.com

18. The serial terminal window displays a Hello World message that is appended to the last
message. This indicates that the prog_bbram.bit bitstream (loaded earlier), wrote the
BBRAM key successfully (Figure 46).

19. Press and release the PROGRAM_B switch SW4 on the KCU105 board (SW5 on the KCU116
board).

20. Clear the serial terminal program screen.
21. If you instantiated the optional JTAG_MONITOR Module, connect an oscilloscope probe to

J53-2 (PACKAGE_PIN AM16) for the KCU105 board and J87-1 (PACKAGE_PIN D13) for the
KCU116 board. This is the EFUSE_PROG_PULSE signal that mirrors the actual eFUSE
programming phase. You will see a 5 µs pulse for each eFUSE bit that is programmed from
a 0 to a 1.

22. Right-click on the xcku040_0 device (or xcku5p_0 device) in the center hardware window.
Select Program Device, set Bitstream file: <path_to_bitstreams>/prog_efuse.bit,
and click Program.
Note: The prog_efuse.bit file is not encrypted. It can be encrypted (if required) using the
BBRAM key because the key is already loaded in the device.

23. When the bitstream finishes loading, the DONE LED (DS34 for the KCU105 board and DS32
for the KCU116 board) turns ON (ignore the errors in the Vivado Tcl console).

X-Ref Target - Figure 46

Figure 46: Hello World
X18362-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=42

Hardware and Software Development Overview

XAPP1283 (v1.2) July 31, 2020 43
www.xilinx.com

24. The serial terminal window displays a message for a successfully programmed eFUSE. The
32-bit FUSE_USER register contains the value that you entered earlier in the header file for
XSK_EFUSEPL_USER_KEY (Figure 47).

25. The eFUSE can be further verified using the Vivado Hardware Manager.
26. Press and release the PROGRAM_B switch SW4 on the KCU105 board (SW5 on the KCU116

board).
27. In the center hardware window, right-click the xcku040_0 device (or xcku5p_0 device) >

Refresh Device.
28. In the center hardware window, right-click the xcku040_0 device (or xcku5p_0 device) >

Hardware Device Properties.

X-Ref Target - Figure 47

Figure 47: Programmed eFUSE
X18363-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=43

Conclusion

XAPP1283 (v1.2) July 31, 2020 44
www.xilinx.com

29. Click the Properties tab in the hardware device properties window (directly below the
hardware window), expand the properties tree at REGISTER, and EFUSE. The FUSE_USER
field contains the recently programmed eFUSE value (Figure 48).

Conclusion
This application note describes a procedure to internally program the BBRAM and eFUSE
memory of an UltraScale and UltraScale+ FPGA. Internal programmability is valuable, especially
in the context of security-critical applications. The method presented takes advantage of the
MASTER_JTAG primitive, an existing MicroBlaze-based hardware example design,
Xilinx-supplied HDL modules, a software library (XILSKEY), and software examples that are used
to create functional applications. The procedure explained in this application note modifies and
enhances examples to fit various use models including a tamper event driven model to impose
penalties and a field update of a BBRAM AES key over a secure link.

X-Ref Target - Figure 48

Figure 48: FUSE_USER
X18364-011117

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=44

Reference Design

XAPP1283 (v1.2) July 31, 2020 45
www.xilinx.com

Reference Design
You can download the reference design files for this application note from the Xilinx website.

Table 1 shows the reference design matrix.

Table 1: Reference Design Matrix
Parameter Description

General
Developer name Ed Peterson
Target devices UltraScale and UltraScale+ FPGAs
Source code provided Yes
Source code format VHDL
Design uses code and IP from existing Xilinx
application note and reference designs or third
party

No

Simulation
Functional simulation performed No
Timing simulation performed No
Test bench used for functional and timing
simulations

No (Verification using ILA debugger)

Test bench format N/A
Simulator software/version used N/A
SPICE/IBIS simulations N/A
Implementation
Synthesis software tools/versions used Vivado design suite 2016.3 for UltraScale FPGAs

Vivado design suite 2017.3 for UltraScale+ FPGAs
Implementation software tools/versions used Vivado design suite 2016.3 for UltraScale FPGAs

Vivado design suite 2017.3 for UltraScale+ FPGAs
Static timing analysis performed Yes
Hardware Verification
Hardware verified Yes
Hardware platform used for verification KCU105 Evaluation Board for UltraScale FPGAs

KCU116 Evaluation Board for UltraScale+ FPGAs

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c4fd97fa-a5ac-4052-b186-a501d8f4c7fe;d=xapp1283-internalprogramming-bbram-efuses.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=45

References

XAPP1283 (v1.2) July 31, 2020 46
www.xilinx.com

References
1. MicroBlaze Soft Processor Core
2. UltraScale Architecture Configuration User Guide (UG570)
3. Vivado Design Suite User Guide: Programming and Debugging (UG908)
4. Vivado Design Suite User Guide: Design Flows Overview (UG892)
5. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
6. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
7. Developing Tamper-Resistant Designs with UltraScale and UltraScale+ FPGAs Application

Note (XAPP1098)
8. LibXil SKey for Zynq-7000 UltraScale and Zynq UltraScale+ MPSoC Devices User Guide

(UG643)
9. Xilinx Kintex UltraScale FPGA KCU105 Evaluation Kit
10. Vivado Design Suite
11. Xilinx Software Development Kit
12. Tera Term http://ttssh2.osdn.jp/index.html.en
13. Xilinx Kintex UltraScale+ FPGA KCU116 Evaluation Kit
14. Soft Error Mitigation Core
15. UltraScale device data sheets:

° UltraScale Architecture and Products Overview (DS890)

° Kintex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics (DS892)

° Virtex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics (DS893)
16. Security Monitor IP Core Product Brief
17. KCU105 Quick Start Guide (XTP391)
18. KCU105 Board User Guide (UG917)
19. KCU116 Evaluation Kit Quick Start Guide (XTP471)
20. KCU116 Evaluation Board User Guide (UG1239)
21. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953)
22. Programming BBRAM and eFUSEs in Zynq UltraScale+ Devices Application Note (XAPP1319)
23. Vitis Unified Software Platform
24. Using Encryption and Authentication to Secure an UltraScale/UltraScale+ FPGA Bitstream

(XAPP1267)

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1098-tamper-resist-designs.pdf
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
http://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/product-briefs/security-monitor-ip-core-product-brief.pdf
http://ttssh2.osdn.jp/index.html.en
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/product-briefs/security-monitor-ip-core-product-brief.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/products/intellectual-property/sem.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug893-vivado-ide.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-bd.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/xtp391-kcu105-quickstart.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://www.xilinx.com/support/documentation/data_sheets/ds892-kintex-ultrascale-data-sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=kcu116;d=xtp471-kcu116-quickstart.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=kcu116;d=ug1239-kcu116-eval-bd.pdf
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/design-tools/vitis.html

https://www.xilinx.com/products/design-tools/Vitis.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-kcu116-g.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=46

Revision History

XAPP1283 (v1.2) July 31, 2020 47
www.xilinx.com

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”).
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2017-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and
otherdesignated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express
aretrademarks of PCI-SIG and used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and
MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are the property of their respective owners.

Date Version Revision
07/31/2020 1.2 Added support for Stacked-Silicon Interconnect Technology (SSIT) devices and

the Zynq UltraScale+ programmable logic (PL). Added new link for Using
Encryption and Authentication to Secure an UltraScale + FPGA Bitstream
XAPP1267. Added Figure 24 that exemplifies xilskey settings.

02/15/2018 1.1 Added support for UltraScale+ FPGAs.

03/08/2017 1.0 Initial Xilinx release.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1283&Title=Internal%20Programming%20of%20BBRAM%20and%20eFUSEs&releaseVersion=1.2&docPage=47

	Internal Programming of BBRAM and eFUSEs
	Summary
	Introduction
	Hardware and Software Requirements
	For UltraScale FPGAs:
	For UltraScale+ FPGAs:
	Special Considerations When Using MASTER_JTAG to Internally Program eFUSEs

	Hardware and Software Development Overview
	INT_PROG_CTL_US Module
	JTAG_MONITOR Module
	Building the Vivado Hardware Project
	Building the SDK/Vitis Applications
	Bitstream Generation
	Verification

	Conclusion
	Reference Design
	References
	Revision History
	Please Read: Important Legal Notices

