
XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 1

© Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All
other trademarks are the property of their respective owners.

Summary This application note describes the eXecute-in-place (XIP) feature introduced in the AXI Quad
SPI v3.0 IP core, released in the Vivado® Design Suite v2013.2. It provides information about
the required connections to configure the FPGA from an SPI serial flash device, as well as the
configuration flow for the SPI mode. It is designed for use with the Kintex®-7 (KC705) board
with Numonyx SPI flash memory, but modifications in the software example file can be
implemented for use on any Xilinx board.

Many factors are involved in selecting the code execution method for a given embedded
system, including materials cost, processor features, operating system capability and more.
Most of the embedded application designs do not need a memory management unit, as the
primary requirements might not be performance-oriented. XIP is a method of executing
programs directly from long-term storage rather than copying it into block RAM. It is an
extension of using shared memory to reduce the total amount of memory required.

There are several criteria for using this mechanism. From the processor point of view, the
storage should mimic regular memory that is operated at a faster rate. The program should be
independent of location, and should not modify the image stored in the memory. If measured
across all available memory sources, flash memory is preferred over Double Data Rate (DDR)
or SRAM memories in embedded systems. Low power and a smaller pin interface count are
additional benefits of flash memory.

The aforementioned criteria are suited for parallel/serial flash memory. For 'boot from flash'
operation, SPI-based flash memory is preferred due to advances in SPI flash technology,
improved density, improved operating speed, and other vendor-based support. The executable
code residing in the SPI flash is loaded into DDR through an XIP configured Quad SPI IP core
to demonstrate the store and load feature of the XIP mode implemented. Along with this, two
modes of XIP (Dual and Quad) are demonstrated to show the improvement in the data transfer
in Quad mode.

Structure

This application note is designed to demonstrate the XIP mode capability of the AXI Quad SPI
core. The XIP mode systems are built using Xilinx Vivado IP Integrator, version 2013.2, which
is part of Vivado® Design Suite. Vivado IP Integrator is a tool through which you can create
systems by instantiating and interfacing the processor, interconnect, and interrupt controller,
peripheral IPs, memory controller, and UARTs. See Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994) [Ref 1] for more information about the
Vivado IP Integrator.

The design also includes software built using the Xilinx Software Development Kit (SDK). The
software runs on a MicroBlaze™ processor subsystem and implements control, status, and
monitoring functions. Complete Vivado and SDK project files are provided with the associated
design files and can be downloaded using the following links:

• Dual XIP Mode

• Quad XIP Mode

These design files allow you to examine and rebuild the design or to use it as a template for
starting a new design.

Application Note: AXI Quad SPI IP Core, Kintex-7 Devices

XAPP1176 (v1.0) July 26, 2013

Execute-in-Place (XIP) with AXI Quad SPI
Using Vivado IP Integrator
Author: Sanjay Kulkarni, Prasad Gutti

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?t=application+note;d=xapp1176-axi-quad-spi-dual-xip-mode.zip
http://www.xilinx.com/cgi-bin/docs/ndoc?t=application+note;d=xapp1176-axi-quad-spi-quad-xip-mode.zip

Introduction

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 2

Recommended Design Experience

This application note assumes that the user has some general knowledge of the Xilinx Vivado
Design Suite. See the Vivado Design Suite Quick Reference Guide (UG975) [Ref 2] for more
information about the Vivado tools. For information on EDK see EDK Concepts, Tools, and
Techniques: A Hands-On Guide to Effective Embedded System Design (UG683) [Ref 3].

Introduction The AXI Quad SPI IP core has upgraded functionality to support Legacy, Enhanced, and XIP
modes. These three modes are further subcategorized into the three SPI modes, Standard,
Dual and Quad modes. Standard mode commands use a single line (IO1) to exchange data,
and the dual mode uses two lines (IO0, IO1). Quad mode uses a four line interface to exchange
data (IO0, IO1, IO2, IO3). Legacy mode supports applications that are based on the earlier
(v2.0) version of the core. Enhanced mode supports the AXI4 Memory Mapped Interface
which, in turn, supports the fixed burst capability at the transmit and receive FIFO. The
Enhanced mode reduces the AXI interface time required to fill or read the DTR or DRR FIFO.
These FIFOs are configurable at compile time and can be either 16 or 256 deep.

XIP mode is the new feature which is used in the 'boot from flash' type of application. XIP mode
enables execution of code from serial SPI flash instead of the more traditional way of executing
the code from memories such as DDR/SRAM. This application note demonstrates the XIP
feature using one of the operating modes of the Xilinx AXI Quad SPI IP core.

Table 1 shows the AXI4 interfaces used for each supported mode.

Based on the type of SPI slave used, the core is further categorized into three SPI modes.
Table 2 shows the operating modes as well as the supported SPI clock frequency and the I/O
interfaces.

For the best possible bandwidth on the SPI side, it is recommended that the core be used in
Quad mode where the data transactions are occurring on all four lines. The SPI bandwidth is
best utilized in this mode because the commands supported in this mode is Fast Read Quad
I/O (0xEB h) which support reading of the SPI flash on all I/O lines.

XIP Basics In the XIP mode, the executable code is stored in the SPI flash memory. In FPGA-based
systems, the configurable bitstream is stored in a different region of the SPI flash in a
continuous memory location. The FPGA secures a configurable bitstream after
power-on-reset. When the complete bitstream is downloaded in the FPGA and the system
moves into an active state, the boot loop program starts executing. A small boot loop code is

Table 1: AXI Quad SPI Configuration Mode – AXI4 Interfaces

Mode AXI4 Lite Interface AXI4 Full Interface

Legacy Mode Yes –

Enhanced Mode – Yes

XIP Mode Yes Yes

Table 2: SPI Mode, SCK Ratio and I/O Interfaces

SPI Modes SPI Clock Division Ratio I/O Interface
(CS and SCK Always Present)

Standard 2, 4, 8, 16, 16xn Where n = 1 … 128 IO0, IO1

Dual 2 IO0, IO1

Quad 2 IO0, IO1, IO2, IO3

http://www.xilinx.com

XIP Basics

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 3

stored in the local block RAM memory, which guides the processor to jump to the different
region of SPI flash memory for further execution.

During this initialization, writable memory is not available, and all computations must be
performed within the processor registers. For this reason, first stage boot loaders tend to be
written in assembler language and only do the minimum to provide a normal execution
environment for the next program. The SPI flash memories are byte addressable. The
Executable Link Format (ELF) file is stored in consecutive memory locations so that the
processor continuously reads the SPI flash. The boot loop program facilitates reading the
complete ELF file from the SPI flash and stores it in external memory (such as DDR or local
on-chip memory) before the processor begins execution. Most of the embedded systems
RTOS do not include demand paging, and therefore are limited to Fully Shadowed or the XIP
mechanism. The code execution methods are further classified into XIP, Fully Shadowed,
Demand Paging and Balanced XIP modes. The program can also be executed directly from
flash.

For the purposes of this application note, this particular mode comes under Store and
Download. This is a memory system where the executable code is stored in Non-Volatile
Memory (NVM) and copied to RAM at boot-up. At boot-up a small piece of NVM, usually within
the micro-processor, runs code to copy the contents of the NVM memory (NAND or NOR) to
the RAM and jumps to the RAM location. From that point the code and data are executed out
of RAM.

Using the AXI Quad SPI Core in XIP Mode

The XIP mode of the core operates purely in a read-only mode. There are two AXI interfaces on
the core; AXI4-Lite for local register configuration, and AXI4 memory mapped for memory
access. For the processor, the AXI Quad SPI memory mapped address range is like any other
memory, so the processor can simply provide the address, length and size of the data to be
read from memory. The SPI flash must be loaded with executable code before the FPGA is
configured with a bit stream.

There are two ways to use this mode:

• In the first case, both the configuration bitstream as well as the executable file are stored
in SPI flash.

• In the second case, only the executable file is stored in SPI flash while the core is
configured through the iMPACT tool.

In the first case, the SPI flash memory address range should be divided in two sections, one
each for bitstream and executable file. Usually the FPGA configuration file is stored starting
from location 0x000000 (considering SPI flash is 24-bit addressable memory) as this would be
default address provided by the FPGA while booting from SPI flash. The software must be
configured so that when the FPGA is configured, the processor jumps to the SPI memory
location where the executable file is stored. The boot code should be designed to be part of the
configuration bitstream that is stored on the flash. After the FPGA is loaded with the
configuration memory from flash, the processor executes boot code which is stored in the
on-chip block RAM. The boot code is also a part of configuration bitstream. This boot code has
information about the ELF file location in the flash. The processor then jumps to the SPI flash
location to retrieve the next command(s).

There are two ways the processor can execute the code. One way is that the processor boot
code reads the entire SPI ELF location and copies data in the local DDR memory and then
starts executing. In other method, the processor uses the on-chip block RAM as scratch pad
memory while executing the main code directly from the flash. As the flash access is slower
(less than 50 MHz), this approach is best when the system operating expectations are not high.

In the second case, when only the executable file is stored in SPI flash, the iMPACT tool is used
to configure the FPGA. The MicroBlaze™ boot loop application should be written in such a way
that the processor jumps to the memory location where executable it stored. The executable

http://www.xilinx.com

XIP Basics

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 4

will be stored in contiguous format or page formats. As the SPI flash is byte accessible, it is
preferable to store the executable code in contiguous format. The sample structure of SPI flash
memory is shown in Figure 1. The addresses can be changed as required.

Table 3 lists the AXI Quad SPI core variables that are used in different configurations.

X-Ref Target - Figure 1

Figure 1: SPI Flash Memory Address Space

Table 3: Core Parameters

Feature/ Description
Core Configuration Required In

XIP TestCore Parameters XGUI variables

AXI4 memory mapped
base address C_S_AXI4_BASEADDR

These variables are
system configurable

Cacheable
Address

AXI4 memory mapped
high address C_S_AXI4_HIGHADDR Cacheable

Address

AXI4-Lite base address C_BASEADDR AXI Lite Address

AXI4-Lite high address C_HIGHADDR AXI Lite Address

Choice of AXI interface C_TYPE_OF_AXI4_
INTERFACE

Enhanced
Performance Mode 1

Choice of Non-XIP and
XIP mode C_XIP_MODE Enable XIP Mode 1

SPI clock frequency ratio C_SCK_RATIO SPI Frequency Ratio Default 2

SPI modes C_SPI_MODE

SPI Mode
0 = Standard
1 = Dual
2 = Quad

2

SPI memory device used
as SPI slave

C_SPI_MEMORY
1= Winbond
2 = Numonyx

SPI Slave Device 2

http://www.xilinx.com

Hardware Requirements

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 5

Hardware
Requirements

The hardware board required for this system is:

• Xilinx KC705 evaluation board (Rev. C, D, 1.0 or 1.1)

The software design tool requirements for building and downloading the reference system are:

• Vivado 2013.2

• SDK 2013.2

System
Diagram

The system for the XIP mode of the AXI Quad SPI core is shown in Figure 2.

System Details

This system is based upon AXI interface, which is the standardized IP interface protocol based
on the Advanced Micro-controller Bus Architecture (AMBA®) specification. The AXI interfaces
used in the reference design consist of AXI4 memory mapped and AXI4-Lite interfaces. A clock
generator and processor system reset block supplies clocks and resets throughout the system.
High-level control of the system is provided by an embedded MicroBlaze processor subsystem
containing I/O peripherals and processor support IP.

To optimize the system to balance performance and area, multiple AXI interconnect blocks are
used to implement segmented/hierarchical AXI interconnect networks with each AXI
interconnect block individually tuned and optimized. Table 4 shows the cores, versions and
addresses for the system used for the XIP mode demonstration.

X-Ref Target - Figure 2

Figure 2: XIP Mode – Typical System

Table 4: Demonstration System Cores and Addresses

IP Core Version Base Address High Address

MicroBlaze 9.0 N/A N/A

MIG 7 Series 2.0 0x80000000 0xBFFFFFFF

AXI Quad SPI (AXI4 Full) 3.0 0xC4000000 0xC4FFFFFF

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 6

Configuring the IP Core in Vivado IP Integrator

The Vivado IP Integrator provides configuration options through XGUI after the desired core is
added in the system. The options are shown in the following screen captures and explained
below.

AXI Quad SPI (AXI4 Lite) 3.0 0x44A10000 0x44A1FFFF

AXI BRAM Controller 3.0 0xC0000000 0xC001FFFF

AXI UARTLITE 2.0 0x40600000 0x4060FFFF

LMB BRAM IF Controller 4.0 0x00000000 0x0000FFFF

AXI Interrupt Controller (INTC) 3.0 0x41200000 0x4120FFFF

AXI BRAM Controller 3.0 0xC2000000 0xC201FFFF

AXI Timer 2.0 0x41C00000 0x41C0FFFF

Processor System Reset 5.0 N/A N/A

Clock Generator 5.0 N/A N/A

AXI Interconnect - Lite 2.0 N/A N/A

AXI Interconnect - Full 2.0 N/A N/A

AXI CDMA 4.0 0x44A00000 0x44A0FFFF

UTIL Reduced Logic 1.0 N/A N/A

Table 4: Demonstration System Cores and Addresses (Cont’d)

IP Core Version Base Address High Address

X-Ref Target - Figure 3

Figure 3: Vivado IP Integrator Configuration

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 7

iMPACT and SPI Flash Programming

Xilinx Devices can boot from SPI flash. Before booting, the SPI flash must be configured with
the bitstream and the boot-loop code. For this, it is necessary to merge the top.bit file
(hardware information) and the boot-loop (software information) file into a single
download.bit file. The iMPACT tool can convert the bit file into the MCS format file. bitstream
to MCS Conversion explains how to covert the bit file into an MCS file which is used by iMPACT
to program the downstream SPI flash device.

Bitstream to MCS Conversion

The following steps show how to convert the bitstream into an MCS file, merge the two MCS
files and download to SPI flash.

1. Open the iMPACT tool, perform a boundary-scan, initialize the JTAG chain, and select your
device.

2. Double-click Create PROM File.

a. Select Configure Single FPGA and click the arrow between Step 1 and Step 2.

b. In Add Storage Device set the size of the storage device, and click the arrow between
Step 2 and Step 3.

c. The size of storage device can be found in the storage device data sheet.

d. Enter the Output File Name and the Output File Location (directory location of your
application.elf file) and select OK.

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 8

3. In the following window, select OK and select the bitfile that you want to convert.

4. iMPACT adds the bitfile and in the following window, select No to finish.

X-Ref Target - Figure 4

X-Ref Target - Figure 5

X-Ref Target - Figure 6

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 9

5. The message is displayed as shown:

6. Select OK to continue, and double-click Generate File to generate the MCS file.

7. After generation of the MCS file, a Generate Succeeded message appears.

Merging Two MCS Files

SPI Flash programming through iMPACT can only be done using the MCS file format. You can
use utilities to convert ELF files into MCS files. One of the MCS utilities can be downloaded
from Xilinx by visiting this web page and downloading xapp1053.zip. Extract the zip file and
go to the FLASH_BURN folder. Get the flash programming windows executable utilities, XIP
and XMCSUTIL. Copy these files into the same folder that contains the application.elf
file.

In addition to this utility, there is a batch file bit_and_appl_to_mcs.bat provided in this
application zip file. Copy this file to the same folder that contains the application.elf file.
Use the following steps to convert ELF files to MCS format.

1. Ensure that bitfile.mcs, application.elf, batch file, XIP and XMCSUTIL are
located in the same folder.

2. To convert the application.elf file to binary use the following command at the XMD
prompt:

mb-objcopy -O binary -R .vectors.reset -R .vectors.sw_exception -R
.vectors.interrupt -R .vectors.debug_sw_break -R .vectors.hw_exception
<application_name.elf> <application_name.b>

X-Ref Target - Figure 7

http://www.xilinx.com/cgi-bin/docs/ndoc?t=application+note;d=xapp1053.pdf
http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 10

For example:

Note: In this command, if you do not use -R .vectors.reset -R .vectors.sw_exception -R
.vectors.interrupt -R .vectors.debug_sw_break -R .vectors.hw_exception, then the binary file size will
be too big.

3. This command generates the binary file. Use this binary file to convert it to an MCS file
using the following command:

XMCSUTIL -accept_notice -i <application_name.b> -o <application_name.mcs> -29

An example of the use of this command follows:

4. The application.mcs and bitfile.mcs files have now been created. Use the
following command to merge both MCS files into a single MCS file.

XMCSUTIL -accept_notice -i <system_bitstream.mcs> <application_name.mcs>
-o <combined.mcs> -16 -segaddr 0x00 <start of SPI flash address where elf
to be stored> -usedataaddr -padff

For example:

XMCSUTIL -accept_notice -i download_btld_quad.mcs xip_led_app.mcs -o
combined.mcs -16 -segaddr 0x00 0xC00000 -usedataaddr -padff

XMD%
XMD% mb-objcopy -O binary -R .vectors.reset -R .vectors.sw_exception -R
.vectors.interrupt -R .vectors.debug_sw_break -R .vectors.hw_exception
xip_led_app.elf xip_led_app.b
XMD%

XMD%
XMD% XMCSUTL -accept_notice -i xip_led_app.b -o xip_led_app.mcs -29

=> Checking filenames
- input/output/log filenames valid

xmcsutil<tm> Version 1.24
Copyright (c) 2001-2007 Xilinx, Inc. All rights reserved
Xilinx MCS/HEX Data Processing Utility
**
//==
|| NOTICE: FOR XILINX PROTOTYPE USE ONLY ||
|| ||
|| SOFTWARE PROVIDED “AS IS”. ALL WARRANTIES, EXPRESS OR IMPLIED,||
|| ARE HEREBY DISCLAIMED. SOFTWARE NOT AUTHORIZED FOR USE IN ||
|| PRODUCTION ENVIRONMENTS OR FOR USE IN OR WITH LIFE-SUPPORT OR ||
|| MISSION-CRITICAL APPLIANCES, SYSTEMS, OR DEVICES. ||
|| ||
|| This software is for use with Xilinx devices only. Please send||
|| all technical questions and comments to: ||
|| ||
|| xspi@xilinx.com ||
|| ||
\\==//
**
===[Program notice/license accepted via -accept_notice command option]==
**
Mon May 20 17:10:53 2013
Converting bin file [xip_led_app.b] to MCS format [xip_led_app.mcs]
Converted [7900] bytes

- max MCS byte addr [0x00001EDB] in file [xip_led_app.mcs]

Elapsed clock time = 0 seconds
XMD%

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 11

In this example, the xip_led_app.mcs file is stored at 0xC00000 SPI flash address. You
can choose any other address as required. See the Flash Memory Bootloading Using SPI
with Spartan®-3A DSP 1800A Starter Platform Application Note [Ref 5] for more
information on how to configure the SPI addresses.

5. This procedure can also be executed using the batch file provided in this application zip file
to avoid any errors while executing the commands.

Edit the batch file with the correct bitfile name, application name and ‘start of SPI flash
address’ and execute the following command at the XMD prompt:

bit_and_appl_to_mcs.bat

This gives the combined.mcs file.

XMD%
XMD% XMCSUTL -accept_notice -i download_btld_quad.mcs xip_led_app.mcs -o
combined_quad.mcs -16 -segaddr 0x00 0xC00000 -usedataaddr -padff

=> Checking filenames
- input/output/log filenames valid

xmcsutil<tm> Version 1.24
Copyright (c) 2001-2007 Xilinx, Inc. All rights reserved
Xilinx MCS/HEX Data Processing Utility
**
//==
|| NOTICE: FOR XILINX PROTOTYPE USE ONLY ||
|| ||
|| SOFTWARE PROVIDED “AS IS”. ALL WARRANTIES, EXPRESS OR IMPLIED,||
|| ARE HEREBY DISCLAIMED. SOFTWARE NOT AUTHORIZED FOR USE IN ||
|| PRODUCTION ENVIRONMENTS OR FOR USE IN OR WITH LIFE-SUPPORT OR ||
|| MISSION-CRITICAL APPLIANCES, SYSTEMS, OR DEVICES. ||
|| ||
|| This software is for use with Xilinx devices only. Please send||
|| all technical questions and comments to: ||
|| ||
|| xspi@xilinx.com ||
|| ||
\\==//
**
===[Program notice/license accepted via -accept_notice command option]===

Mon May 20 17:11:06 2013

Combining [2] MCS files
-[2] MCS files will be combined into a single MCS file [combined_quad.mcs]
-> adding bytes from MCS files [download_btld_quad.mcs]; relocating to addr
[0x0]

=>added [download_btld_quad.mcs] = 11443612 bytes | 91548896 bits
-> adding bytes from MCS file [xip_led_app.mcs]; relocating to addr [0xC00000]

* added [1139300] 0xFF bytes at addr range [0x00AE9D9C : 0x00BFFFFF]
=> added [xip_led_app.mcs] = 1147200 bytes | 9177600 bits

=> Total bytes written = [12590812 | 100726496 bits]
- to output file [combined_quad.mcs]
- max hex byte addr [0x00C01EDC]

Elapsed clock time = 183 seconds
XMD%

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 12

6. The following command provides the number of bytes in the MCS file:

XMCSUTIL -bytecount -i <application_name.mcs> -o count.log

count.log can be used to get the number of bytes present in this file. This command should
be executable from the directory where the application.elf (xip_led_app.elf) and
the other two utilities are stored.

Programming Flash Device with MCS File and Execution
1. Select the Boundary-scan window on the iMPACT tool. Right-click the SPI/BPI button. Click

the Add SPI/BPI Flash button, and select the file to be programmed.

XMD%
XMD% XMCSUTL -byte_count -i xip_led_app.mcs -o count.log

=> Checking filenames
- input/output/log filenames valid

xmcsutil<tm> Version 1.24
Copyright (c) 2001-2007 Xilinx, Inc. All rights reserved
Xilinx MCS/HEX Data Processing Utility
**
//==
|| NOTICE: FOR XILINX PROTOTYPE USE ONLY ||
|| ||
|| SOFTWARE PROVIDED “AS IS”. ALL WARRANTIES, EXPRESS OR IMPLIED,||
|| ARE HEREBY DISCLAIMED. SOFTWARE NOT AUTHORIZED FOR USE IN ||
|| PRODUCTION ENVIRONMENTS OR FOR USE IN OR WITH LIFE-SUPPORT OR ||
|| MISSION-CRITICAL APPLIANCES, SYSTEMS, OR DEVICES. ||
|| ||
|| This software is for use with Xilinx devices only. Please send||
|| all technical questions and comments to: ||
|| ||
|| xspi@xilinx.com ||
|| ||
\\==//
**
==> Use “-accept_notice” option to accept notice automatically
-++< Press ENTER to accecpt notice and continue >==-
**
Mon May 20 17:30:18 2013
==> MCS file 1 [xip_led_app.mcs] has [7900] bytes <63200 bits.

Elapsed clock time = 0 seconds
XMD%

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 13

2. In the next window, select the correct flash device, and set the Data Width to 4 for Quad
mode, if the flash device supports this. Select OK to select the flash. (In XIP mode, in the
Data Width field, select 4, 2 or 1 for Quad, Dual or Standard mode respectively).

http://www.xilinx.com

System Diagram

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 14

3. Right-click the FLASH button. Select Program. It shows Generate Succeeded when
complete.

Note: Programming SPI flash through iMPACT can take up to 20 minutes.

4. After programming, switch off the board and then switch it back on. The FPGA is configured
by the SPI Flash and the boot loader is executed. It copies application.elf from the
SPI flash to the DDR memory and the program counter is set with the address of the DDR
memory.

5. Make sure that hyperTerminal is ready before the FPGA is configured, otherwise no output
is displayed on hyperTerminal.

http://www.xilinx.com

Hardware Systems Provided

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 15

6. The application is now executed. A representation of a sample output is shown:

7. To execute the booting application without resetting the board, press the RESET/ CPU RST
push button on the board. The same application is executed again and you should see the
same result.

Note: In the sample test output Appl loading from SPI Flash to DDR is the actual read time of the
application from SPI flash to the DDR memory, when the chip select is active. Processor starts execution
from DDR is the actual time taken by boot loader to load the application into DDR memory and start the
application to be executed. Throughput Measured gives the actual throughput of the QSPI to read the
application from flash in MB/s. The application size in this application note is ~8 KB.

Hardware
Systems
Provided

This section provides details about the hardware systems that are supported by this reference
design and application note.

XIP Mode Test System - Quad Mode
1. In the XIP mode test system, the application provides the references for the procedure

outlined in iMPACT and SPI Flash Programming, already completed for XIP mode.
Download the MCS file in the SPI Numonyx flash from the folder and allow the FPGA to
boot from SPI flash.

Booting from SPI Flash in XIP DUAL IO Mode on Jun 7 2013 at 13:41:55

Axi Quad SPI Version: V3.0
Board used : KC705 Rev 1.0
FPGA Device used : xc7k325tffg900-2
Tool Used : Vivado IPI
Tool Version : 2013.2

Clearing the DDR ... @ 0x80000000
Loading ELF from SPI Flash (0xC4C00000) to DDR (0x80000000)

**
* Hello World ... Using DUAL IO Mode (‘,’) *
* Booted from DDR ... *
* Time taken for *
* Appl loading from SPI Flash to DDR -> 837 us *
* Processor starts execution from DDR -> 463404 us *
* Throughput Measured (Appl Size)/(Appl load time) : 9.9 MB/s *
**

Starting LED Test
LEDs glow for 5 times

Memory RD/WR test @ 0x80001F6C
Memory Test PASSED

Execution is Finished

http://www.xilinx.com

Hardware Systems Provided

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 16

2. The zip file, kc705_xip_quad_mode, contains the following folders:

• HW – Contains the basic system files.

• ready_for_download – contains the MCS file, and the bit_and_appl_to_mcs.bat
file. The bit_and_appl_to_mcs.bat file is used to get the combined MCS file for
both the bitstream and application files.

To obtain the combined MCS file, place the .bat file in the same location as the
download.mcs and <application_name>.elf files.

For convenience, Xilinx has provided a combined MCS file
(boot_from_flash_quad_mode.mcs) that can be used directly for testing. This file
should be programmed in SPI flash through iMPACT.

• SW – this folder contains the individual files for applications.

- bootloader and xip_quad_app which is executed after booting.

XIP Mode Test System - Dual Mode
1. In the XIP mode test system, the application provides the references for the procedure

outlined in iMPACT and SPI Flash Programming, already completed for XIP mode.
Download the MCS file in the SPI Numonyx flash from the folder and allow the FPGA to
boot from SPI flash.

Booting from SPI Flash in XIP QUAD IO Mode on Jun 7 2013 at 12:32:28

Axi Quad SPI Version: V3.0
Board used : KC705 Rev 1.0
FPGA Device used : xc7k325tffg900-2
Tool Used : Vivado IPI
Tool Version : 2013.2

Clearing the DDR ... @ 0x80000000
Loading ELF from SPI Flash (0xC4C00000) to DDR (0x80000000)

**
* Hello World ... Using QUAD IO Mode (‘,’) *
* Booted from DDR ... *
* Time taken for *
* Appl loading from SPI Flash to DDR -> 421 us *
* Processor starts execution from DDR -> 462988 us *
* Throughput Measured (Appl Size)/(Appl load time) : 19.7 MB/s *
**

Starting LED Test
LEDs glow for 5 times

Memory RD/WR test @ 0x80001F6C
Memory Test PASSED

Execution is Finished

http://www.xilinx.com

Conclusion

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 17

2. The zip file, kc705_xip_dual_mode, contains the following folders:

• HW – Contains the basic system files.

• ready_for_download – contains the MCS file, and the bit_and_appl_to_mcs.bat
file. The bit_and_appl_to_mcs.bat file is used to get the combined MCS file for
both the bitstream and application files.

To obtain the combined MCS file, place the .bat file in the same location as the
download.mcs and <application_name>.elf files.

For convenience, Xilinx has provided a combined MCS file
(boot_from_flash_dual_mode.mcs) that can be used directly for testing. This file
should be programmed in SPI flash through iMPACT.

• SW – this folder contains the individual files for applications such as:

- bootloader and xip_dual_app which is executed after booting.

Conclusion This application note demonstrates the XIP mode where executable data is loaded from SPI
flash to DDR memory before the processor starts execution. The AXI Quad SPI core provides
this capability when configured in XIP mode. Quad mode always provides better performance
than any other SPI mode. This application note is intended to demonstrate the use of the AXI
Quad SPI IP and the mechanism used to write bootable applications.

Booting from SPI Flash in XIP DUAL IO Mode on Jun 7 2013 at 13:41:55

Axi Quad SPI Version: V3.0
Board used : KC705 Rev 1.0
FPGA Device used : xc7k325tffg900-2
Tool Used : Vivado IPI
Tool Version : 2013.2

Clearing the DDR ... @ 0x80000000
Loading ELF from SPI Flash (0xC4C00000) to DDR (0x80000000)

**
* Hello World ... Using DUAL IO Mode (‘,’) *
* Booted from DDR ... *
* Time taken for *
* Appl loading from SPI Flash to DDR -> 837 us *
* Processor starts execution from DDR -> 463404 us *
* Throughput Measured (Appl Size)/(Appl load time) : 9.9 MB/s *
**

Starting LED Test
LEDs glow for 5 times

Memory RD/WR test @ 0x80001F6C
Memory Test PASSED

Execution is Finished

http://www.xilinx.com

Reference Design Details

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 18

Reference
Design Details

Table 5 describes the contents of the reference design that accompanies this application note.

Device
Utilization and
Performance

This section provides the device resource usage estimates for both setups described in this
application note.Table 6 describes the supported device.

Table 5: Reference Design Contents

Parameters Description

General

Developer Name Sanjay Kulkarni, Prasad Gutti

Target devices (stepping level, ES, production,
speed grades)

Kintex7

Source code provided Yes

Source code format VHDL/Verilog (Some cores are encrypted)

Design uses code/IP from existing Xilinx
application note/reference designs, CORE
Generator™ software, or third party

Reference designs provided for Vivado and
video cores generated from the CORE
Generator tool

Simulation

Design uses code/IP from existing Xilinx
application note/reference designs, CORE
Generator software, or third party

Reference designs provided for Vivado and
video cores generated from the CORE
Generator tool simulation

Functional simulation performed N/A

Timing simulation performed N/A

Test bench used for functional and timing
simulations

N/A

Test bench format N/A

Simulator software/version used N/A

SPICE/IBIS simulations N/A

Implementation

Synthesis software tools/version used

Implementation software tools/versions Vivado Design Suit 2013.2

Implementation software tools/versions used Vivado Design Suit 2013.2

Static timing analysis performed Yes (Passing timing in PAR/TRCE)

Hardware Verification

Hardware verified? Yes

Hardware Platform used for verification KC705 board

Table 6: Device Utilization

Device Speed
Grade Package Slice

Registers
Occupied

Slices
Slice
LUTs I/Os RAMB36/

FIFO36
RAMB18/
FIFO18

xc7l235t –2 ffg900 15965 7190 19065 130 90 0

http://www.xilinx.com

References

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 19

XIP System Utilization

Table 7 shows the module level utilization for the IP cores listed.

References 1. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator,
(UG994)

2. Vivado Design Suite Quick Reference Guide, (UG975)

3. EDK Concepts, Tools, and Techniques: A Hands-On Guide to Effective Embedded System
Design (UG683)

4. LogiCORE IP AXI Quad Serial Peripheral Interface Product Guide, (PG153)

5. Flash Memory Bootloading Using SPI with Spartan-3A DSP 1800A Starter Platform
(XAPP1053)

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Revision
History

The following table shows the revision history for this document.

Table 7: Module-level Utilization

IP Core Instance Name Slices Slice
Registers LUTs LUT

RAM
Block
RAM

DSP
Slice

BUFG
CTRL BUFR

axi_quad_spi axi_quad_spi_1 1533 577 508 44 N/A N/A N/A N/A

axi_intc axi_intc_1 352 112 148 N/A N/A N/A N/A N/A

microblaze microblaze_1 4467 1407 1700 198 11 3 N/A N/A

mdm mdm_1 125 76 31 04 N/A N/A 1 N/A

mig_7series mig_1 34380 10931 13183 2325 N/A N/A 2 N/A

axi_bram_ctrl axi_bram_ctrl_1 922 316 326 2 N/A N/A N/A N/A

axi_bram_ctrl axi_bram_ctrl_2 907 316 234 2 N/A N/A N/A N/A

axi_cdma axi_cdma_1 2361 1040 878 81 N/A N/A N/A N/A

axi_timer axi_timer_1 659 216 266 N/A N/A N/A N/A N/A

axi_gpio axi_gpio_1 201 92 76 N/A N/A N/A N/A N/A

axi_uartlite axi_uartlite_1 232 86 96 10 N/A N/A N/A N/A

axi_interconnect_lite axi_interconnect_1 567 120 231 N/A N/A N/A N/A N/A

axi_interconnect_full axi_interconnect_2 2521 639 976 14 N/A N/A N/A N/A

proc_sys_reset proc_sys_reset_1 52 32 90 1 N/A N/A N/A N/A

Date Version Description of Revisions

07/26/2013 1.0 Initial Xilinx release.

http://www.xilinx.com/support/documentation/application_notes/xapp1053.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug975-vivado-quick-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=edk_ctt.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_quad_spi;v=latest;d=pg153-axi-quad-spi.pdf
http://www.xilinx.com/company/terms.htm

Notice of Disclaimer

XAPP1176 (v1.0) July 26, 2013 www.xilinx.com 20

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Execute-in-Place (XIP) with AXI Quad SPI Using Vivado IP Integrator
	Summary
	Structure
	Recommended Design Experience

	Introduction
	XIP Basics
	Using the AXI Quad SPI Core in XIP Mode

	Hardware Requirements
	System Diagram
	System Details
	Configuring the IP Core in Vivado IP Integrator
	iMPACT and SPI Flash Programming
	Merging Two MCS Files
	Programming Flash Device with MCS File and Execution

	Hardware Systems Provided
	XIP Mode Test System - Quad Mode
	XIP Mode Test System - Dual Mode

	Conclusion
	Reference Design Details
	Device Utilization and Performance
	XIP System Utilization

	References
	Revision History
	Notice of Disclaimer

