
XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 1

© 2007-2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners. PCI, PCI-SIG, PCI EXPRESS, PCIE, PCI-X, PCI HOT PLUG, MINI PCI, EXPRESSMODULE, and the
PCI, PCI-X, PCI HOT PLUG, and MINI PC design marks are trademarks, registered trademarks, and/or service marks of PCI-SIG.

Summary This application note discusses using the provided Memory Endpoint Test (MET)
demonstration driver to exercise the Programmed Input/Output (PIO) design that is delivered
with all Xilinx solutions for PCI Express®. Instructions for installing this driver on a typical
Windows XP operating system are provided, along with how to access the I/O and memory
space of the design.

Important Notice

The MET driver is provided as is with no implied warranty or support. This driver is not
guaranteed to work on all systems. While there are no known issues with using the driver
application, no technical support will be provided for problems that might arise. Source code for
the MET driver is not available.

Overview Xilinx offers cores for PCI Express to be used in endpoint applications. The appropriate core
choice is based on the target device and design requirements. Table 1 shows a summary of the
cores and supported devices.

More information about the current versions of these cores is available in the product data
sheets located in the Xilinx online Documentation Center. The specific product pages are linked
by the Core Name column in Table 1. Visit the Xilinx solutions for PCI Express page for more
information about the cores for PCI Express.

The cores for PCI Express are delivered by the Xilinx CORE Generator™ software. This
software allows users to customize various parameters of the core such as Device and Vendor
ID, BAR requirements, and power management settings. Detailed instructions for generating
the core using the CORE Generator software can be found in the Getting Started Guide or User
Guide for the core. This document is delivered with the core, but can also be downloaded from
the Xilinx online Documentation Center.

Application Note: Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3A, Spartan-3E, Spartan-3 FPGAs

XAPP1022 (v2.0) November 20, 2009

Using the Memory Endpoint Test Driver (MET)
with the Programmed Input/Output Example
Design for PCI Express Endpoint Cores
Author: John Ayer Jr.

Table 1: Cores for PCI Express

Core Name Device(s) Supported Comments

Integrated Block for PCI
Express

Virtex®-6 Utilizes the Virtex-6 built in
block for PCI Express.

Endpoint Block Plus
Wrapper for PCI Express

Virtex-5 Utilizes the Virtex-5 Built-in
Endpoint Block for PCI Express

Endpoint for PCI Express Virtex-5 and Virtex-4 Soft-IP Implementation

Integrated Block for PCI
Express

Spartan®-6 Utilizes the Spartan-6 built in
block for PCI Express.

Endpoint PIPE for PCI
Express

Spartan-3, Spartan-3A, and
Spartan-3E

Soft-IP implementation utilizing
an external physical layer from
NXP Semiconductors

http://www.xilinx.com/products/ipcenter/V5_PCI_Express_Block_Plus.htm
http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/V6_PCI_Express_Block.htm
http://www.xilinx.com/products/ipcenter/S6_PCI_Express_Block.htm
http://www.xilinx.com/products/ipcenter/DO-DI-PCIEXP.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/pciexpress
http://www.xilinx.com/products/ipcenter/DO-DI-PCIE-PIPE.htm

Overview

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 2

Setting Up the PIO Example Design

By default, the endpoint core includes a working example called the PIO design that can be
downloaded to an add-in card and inserted into any PCI Express system. The Getting Started
Guide and User Guide contain detailed information about generating a core. This application
note has less detailed instructions to allow the user to generate a core and download it to a
board.

To use the PIO design with the MET driver, changes need to be made to some of the CORE
Generator software customization parameters. See steps 6 and 7 under “Generating the Core”.

Generating the Core
1. Install the latest version of the ISE Design Suite tools. Updates can be found at:

http://www.xilinx.com/tools/designtools.htm

2. Start the CORE Generator software and create a new project.

3. Select the appropriate part.

4. In the taxonomy tree, select Standard Bus Interface > PCI Express.

5. Select the appropriate core for PCI Express and click Customize.

6. Change the BAR settings to implement a single Memory BAR. The recommended size is 8
Kilobytes, but this value is user configurable. An example is shown in Figure 1.

7. Click Next to continue.

http://www.xilinx.com/tools/designtools.htm
http://www.xilinx.com

Overview

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 3

Note: If the Virtex-5 Block Plus Wrapper for PCI Express is selected, the panel to select the class code
will be first followed by the panel to customize the BARs.
X-Ref Target - Figure 1

Figure 1: Class Code Settings for PIO Design

http://www.xilinx.com

Overview

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 4

8. Change the Sub-Class code to 80 to indicate an “Other Memory Controller” to the system.
An example is shown in Figure 2.

9. Accept the default settings for all other fields. Click Finish.

Implementing the Core
1. Navigate to the output directory and browse to the implement folder.

2. Double-click or source the implementation script provided.

The PIO example design is synthesized and implemented. A results directory is created
containing a routed.bit file. This file is to be downloaded to the board. Note that the
implementation script might need to be modified to point to the correct UCF file for the board
used.

Programming the Board

For a system to recognize a PCI Express add-in card, the card must be present during bus
enumeration. Enumeration is performed by the BIOS during the boot process. For this reason,
the FPGA must be programmed in one of two ways:

• Through an on-board PROM, so that when the system is powered on, the FPGA is
programmed in time to be enumerated by the BIOS.

• Through the JTAG interface after the OS has started. However, for the card to be
recognized, a “warm reset” must be performed. In Windows, this equates to performing a

X-Ref Target - Figure 2

Figure 2: Memory BAR Settings for PIO Design

http://www.xilinx.com

Overview

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 5

Restart. Note that sometimes re-programming the FPGA after the OS has started can
cause the system to hang.

Exploring the PIO Design

The PIO design implements an 8192 byte target space in FPGA block RAM, behind the
PCI Express Endpoint core. This 32-bit target space is accessible through single DWORD
I/O Read, I/O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write
32 TLPs.

The PIO design generates a completion with 1 DWORD of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or IO Read TLP request presented to it by the
PCI Express Endpoint Core. In addition, the PIO design returns a completion without data with
successful status for I/O Write TLP request.

The PIO design processes a Memory or I/O Write TLP with 1 DWORD payload by updating the
payload into the target address in the FPGA block RAM space.

By default, the PIO design supports four discrete target spaces, each consisting of a 2 kB block
of memory represented by a separate Base Address Register (BAR). Using the default
parameters produces a core configured to work with the PIO design defined in this section, and
consists of the following:

• One IO Space BAR

• One 64-bit Addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

• One Expansion ROM BAR

The MET driver application described in this document is mainly used to interface with memory
space. It is recommended that the user modify the PIO design to use the entire 8 kB of block
RAM space for 32-bit addressable memory accesses. This modification can be done in many
ways, but the simplest method is to modify the PIO_128_RX_ENGINE.v[hd],
PIO_64_RX_ENGINE.v[hd], or PIO_32_RX_ENGINE.v[hd] file by searching and modifying
assignments to the "req_addr_0" and "wr_addr_o" buses.

Depending on the file, there will be assignments made to these buses in various states of the
RX Engine state machine. Each time an assignment is made, it will be a concatenation of the
following terms: region_select[1:0], trn_rd[##:##], and "00" if its "req_addr_o" bus. In each
case, remove the region_select[1:0] and increase the upper index of the trn_rd bus by 2. For
example:

• Change:

req_addr_o <= #`TCQ {region_select[1:0],trn_rd[42:34], 2'b00};

To:

req_addr_o <= #`TCQ {trn_rd[44:34], 2'b00};

• Change:

wr_addr_o <= #`TCQ {region_select[1:0], trn_rd[42:34]};

To:

wr_addr_o <= #`TCQ {trn_rd[44:34]};

Carry out this modification each time an assignment to req_addr_o and wr_addr_o is found.
Note that the MET driver will still work without this modification, but it will only be able to access
2 KB of space in the device.

See the applicable core User Guide for more information about the PIO design.

Users can write and read the address space using any available software that will recognize the
PCI Express design and access its BAR space. One such tool is the PCItree shareware tool
available from http://www.pcitree.de for Windows XP operating systems.

http://www.pcitree.de
http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 6

Using the MET
Driver with
Windows XP

MET Driver and Application

The MET driver and application are available in xapp1022.zip. Unzip this file to any directory
and follow the instructions in “Installing the Driver,” page 6. Currently, the driver is set to
recognize cards with a Vendor ID of 10EEh and a Device ID of 0007h. To change this setting,
open xilinx_pcie_block.inf and modify the line:

Xilinx Endpoint for PCI Express = XILINXPCIe,PCI\VEN_10EE&DEV_0007

For example, to use a Vendor ID of 1234 and a Device ID of 0101, change this line to read:

Xilinx Endpoint for PCI Express = XILINXPCIe,PCI\VEN_1234&DEV_0101

Also, more than one Device and Vendor ID can be recognized by adding multiple lines. For
example:

Xilinx Endpoint for PCI Express = XILINXPCIe,PCI\VEN_10EE&DEV_0007
Xilinx Endpoint for PCI Express = XILINXPCIe,PCI\VEN_1234&DEV_0101

Note that if xilinx_pcie_block.inf is modified, the driver must be re-installed.

Installing the Driver

When the card with the PIO design for PCI Express is first installed, Windows attempts to locate
a device driver for the card. Using the PIO example design with the CORE Generator defaults,
the Vendor ID is “0x10EE” and the device ID is “0x0007”. Windows searches the driver
database for the card found. Initially, a driver will not be found, and the Found New Hardware
Wizard is launched.

Installing the Driver

To install the driver, follow these steps:

1. Select No, not at this time, and click Next.

2. Select Install from a list or specific location (Advanced) and click Next.

X-Ref Target - Figure 3

Figure 3: Welcome to the Found New Hardware Wizard

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 7

This is because the driver is being provided as a ZIP file instead of on a CD.
X-Ref Target - Figure 4

3. Select Don't search, I will choose the driver to install and click Next.

4. Click Have Disk, and then click Next.

Figure 4: Install from a List or Specific Location (Advanced)

X-Ref Target - Figure 5

Figure 5: Change Search and Installation Options

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 8

5. Browse to the location of the driver (Figure 7). The driver is provided as a ZIP file with this
document. Unzip it to any location on the machine and browse to the filename
“xlinx_pcie_block.inf.” Select this file, click Open, and then click OK.

X-Ref Target - Figure 6

Figure 6: Select the Device Driver

X-Ref Target - Figure 7

Figure 7: Locate the Driver File

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 9

6. After clicking OK to choose the “.inf” file, click Next to install the driver (Figure 8).

7. Progress of the installation is displayed.

X-Ref Target - Figure 8

Figure 8: Install the Driver

X-Ref Target - Figure 9

Figure 9: Wizard Installs the Software

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 10

8. After successful installation, you are instructed to reboot. Click Finish to exit the Wizard.
X-Ref Target - Figure 10

Figure 10: Hardware Update Complete

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 11

9. After the reboot, the device will appear in the Device Manager under “System Devices”
(Figure 11).

Using MET in Command Line Mode

The MET application can be executed with the arguments shown in Table 2.

X-Ref Target - Figure 11

Figure 11: Device Manager—System Devices

Table 2: MET Application Arguments

Argument Definition Example

--log <LogFile> [OPTIONAL] Logs all test
results and non-prompt output
to the given log file. For safety,
it will not overwrite an existing
log file.

MET -log log1.txt

--script <ScriptFile> [OPTIONAL] Accepts and
executes interactive “monitor”
commands from the given file.

MET --script cmds.txt

<TestSpec> [OPTIONAL] Executes the
tests specified in the given file,
in the “.ini” format documented
below.

MET Memtest1.ini

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 12

The ScriptFile and TestSpec file options are mutually exclusive, meaning only one can be used
at a time. However, a test specification can be combined with the scripting method by calling it
through the interactive test specification command. Following are usage examples:

• C:\>MET

Runs the MET application in interactive mode.

• C:\>MET --log log1.txt

Runs the MET application in interactive mode and logs the results.

• C:\>MET --log log1.txt --script my_script.txt

Runs the MET application with script file inputs and logs the results.

• C:\>MET --log log1.txt memtest.ini

Runs the MET with the test file specified and logs the results.

Running in Interactive Mode

The driver is run by either double-clicking the “MET.exe” file or typing MET.exe at the command
prompt.

When launched, the driver displays configuration space information, as shown in Figure 12.

When first launched, the following prompt is displayed:

MEM:32:Hex:00000000>

The fields displayed in the prompt are defined in Table 3.

X-Ref Target - Figure 12

Figure 12: Running Driver in Interactive Mode

Table 3: MET Application Prompt Definition

Field Definition

1 - MEM The current PCI™ space; one of: MEM (memory space), I/O (I/O or “port”
space), CNF (config space).

2 - 32 The default bit-width for reads/writes and input data (currently 8, 16, and 32
are supported).

3 - HEX The default radix for display and input; one of: Oct (base 8), Dec (base 10),
or Hex (base 16).

4 - 00000000 The current address offset in the current space, displayed in the current
radix.

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 13

Table 4 shows the supported commands that can be used to access the memory space of the
PIO design. Commands are not case-sensitive. Only the first 255 characters are parsed.

Table 4: MET Application Commands

Syntax Description Example

Access { C | I | M} Changes the current space to Config,
I/O, or Memory, respectively. Only
memory space accesses are currently
supported.

A M

Change to Memory Space

Width {B | W | D} Changes width to byte, word (16-bit),
or doubleword (32-bit), respectively.

W D

Change width to 32-bit
Radix {O | D | H} Changes radix to octal, decimal, or

hex, respectively.
R D

change radix to decimal
Location <Offset> Changes the current address offset to

that given. By default, offset is parsed
per current radix, but “C” notation is
also accepted.

L 0x40

Change offset to 40 (hex)
regardless of current radix

Dump <Count> Dumps data, starting at the current
address offset, for the given number of
bytes and updates the current address
offset.

D 40

Dump 40 (current radix) bytes

Next Advances the dump; i.e., dumps the
same number of bytes as given in the
last dump command.

N

Assuming above, dump 40
bytes

Set <Datum> […
<Datum>]

Writes the given data starting at the
current address offset. Data is parsed
assuming the current radix and bit-
width. Shortcuts are provided, which
override the current bit-width: sb for
byte, sw for word, sd for doubleword.

S A5 88 F00F

Assuming 16-bit and hex, write
the 3 words at the current
offset.

SD AAAA5555

Write the 32-bit datum
Config Performs an annotated dump of the

PCI and PCI Express config space.
C

Analyze config space
Test <TestSpecFile> Runs the test suite from the given file

(only once, vs. the continuous mode).
T memtest.ini

Run the test suite in
memtest.ini

Exit Exits the program. E

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 14

Interactive Mode User Examples

Example 1:

Dump 0x80 bytes (128 bytes decimal) of memory space at the current offset of 0x000000.

Example 2:

1. Dump 0x40 bytes of memory space (d 40).

2. Change the address offset back to the beginning (l 0x0).

3. Write one DWord at address offset 0x00000000 (s 12345678).

4. Change the address offset to 0x28 (l 0x28).

5. Write one DWord at address offset 0x00000028 (s 12345678).

6. Change the address offset back to the beginning (l 0x0).

7. Display what was written (d 40).

X-Ref Target - Figure 13

Figure 13: Displaying Memory Space Contents

X-Ref Target - Figure 14

Figure 14: Accessing Memory Space

http://www.xilinx.com

Using the MET Driver with Windows XP

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 15

Running a Test Suite from an “ini” File

The MET driver allows testing from a specified file using the format outlined in this section. The
test file can be executed as an argument, or it can be run in the interactive mode using the “T”
command.

• C:\>MET memtest.ini

• MEM:32:Hex:00000000>T memtest.ini

Contents of the Test Specification File

[Suite]

TestCount=4; how many tests are specified in the sections below

TestGap=2 ; how many seconds to delay between tests
; (i.e. between Test1 and Test2, etc.)

TestMode=List; optional, use to run entire suite in kernel mode,
; uninterrupted by app requests

[Test1]

Count=200 ; how many times to repeat this test before moving to next one
; the starting data pattern is rotated at each

; iteration, so a different set
; of data is used each iteration

Delay=10;optional microsecond delay between iterations of this test
;(iteration means the 200 iterations here since
; Count=200)

Space=M ; space (M=memory, I=I/O, C=config)

Length=0x10000 ; how many bytes to transfer (fixed) or the most to transfer
(random)

RandomLength=TRUE ; TRUE for random length; FALSE or omitted for fixed-
length

Offset=0x28000 ; offset within device's resource

Test=W ; R=read "Count" times (just a loop of reads for a
; "scope-loop" test)

; W=write "Count" times and read/verify at the end
; WI=write w/ immediate readback (i.e. to force bus
; bridge to perform
; small writes)

WriteWidth=2 ; optional; write using word (16-bit) accesses (default is
byte)
; this also controls the data pattern's wrapping

ReadWidth=4 ; optional
; read using double-word (32-bit) accesses
;(default=byte)

Pattern=W1 ; W0=walking 0s (all 1 bits except one 0, pattern
; rotates at every write)
; W1=walking 1s (inverse of W0)
; A0=all 0s
; A1=all 1s
; L=alternating 1/0 pattern
; R=random

http://www.xilinx.com

Using the MET Driver for Linux

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 16

; in absence of a pre-defined pattern, parses as a
; numeric value
; to use throughout

[Test3]
…

[Test4]
…

MET GUI

Included in xapp1022.zip is a GUI application that will write and read packets to the endpoint
application and note any errors that occurred. This application is located in a sub-directory of
the ZIP file called MET_GUI. To launch the GUI shown in Figure 15, double-click the
MET_GUI.bat file.

Using the MET
Driver for Linux

All Linux software was built and tested on Fedora core 10. It is likely to work on different
variations of Linux, but none have been tested. The driver source and application are provided
as is with no implied support or warranty. Xilinx appreciates any feedback regarding problems
and solutions found with different versions of Linux and will try to incorporate these in future
updates. To provide feedback, open a webcase and include details about:

• Linux distribution

• Version

• Description of the problem

• Work around, if found

X-Ref Target - Figure 15

Figure 15: MET GUI for Windows XP

http://www.xilinx.com

Using the MET Driver for Linux

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 17

Linux Driver Contents

The Linux driver is included in the xapp1022.zip in the directory called Linux_Driver. The
contents of this folder needed to install and run the driver are:

• README : Describes loading the driver.

• xpcie.c : XPCIE device driver.

• met.cpp : Example memory endpoint test. Modify this file to run other test.

• make_device : Script that creates the xpcie device on the system. Must be run before
loading the device driver.

• Makefile : Makefile.

♦ Compiles xpcie.c into a loadable xpcie.ko.

♦ Compiles met.cpp into MET executable.

Compiling and Installing on Fedora Linux

The Vendor ID of the driver is set to 10EEh, and the Device ID is set to 0007h by default. If this
is different from the generated core, edit the xpcie.c file and change these two lines to match
the Vendor and Device ID in use:

#define PCI_VENDOR_ID_XILINX 0x10ee
#define PCI_DEVICE_ID_XILINX_PCIE 0x0007

http://www.xilinx.com

Using the MET Driver for Linux

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 18

Installation of the driver requires root privileges. To install the driver and run the test, go to the
directory containing the driver files and type the following commands:

1. make

The expected output is shown in Figure 16.

2. ./make_device

The expected output is highlighted in Figure 17.

3. insmod xpcie.ko

There is no noticeable output after running insmod. Note that without root privileges
insmod will fail to load the driver.

X-Ref Target - Figure 16

Figure 16: Make Command Output

X-Ref Target - Figure 17

Figure 17: Make_device Command Output

http://www.xilinx.com

Using the MET Driver for Linux

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 19

4. ./met

This runs the application and expected output is shown in Figure 18.

Debugging Problems

If problems are encountered, use the following commands to determine what is happening.

1. Verify the card is recognized by the system by using lspci. At the prompt type:

lspci

Look for the output highlighted in Figure 19.

To see more details of the device and verify the BAR is set type:

lspci -d 10EE:0007 -v -x

X-Ref Target - Figure 18

Figure 18: MET Command Output

X-Ref Target - Figure 19

Figure 19: LSPCI Command Output

http://www.xilinx.com

Bitstreams

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 20

This will give the output shown in Figure 20.

2. Type dmesg to see the kernel message output. If a problem occurs while trying to load the
driver, this command may provide helpful messages.

3. Use the lsmod command to verify the device is loaded on the system. You should see an
output similar to Figure 21.

Bitstreams Included in xapp1022.zip are bitstreams for the Virtex-6 ML605, Spartan-6 SP605, and
Virtex-5 ML555 development boards that will support the MET driver application. These
bitstreams are located in a subdirectory of the ZIP file called bitstreams.

Conclusion The MET driver and application provide a simple interface to read and write to the PIO example
design included with Xilinx Endpoint solutions for PCI Express. Instructions for installing and
exercising the driver on a Windows XP operating system are provided in this document.

X-Ref Target - Figure 20

Figure 20: Detailed LSPCI Output

X-Ref Target - Figure 21

Figure 21: LSMOD Command Output

http://www.xilinx.com

Revision History

XAPP1022 (v2.0) November 20, 2009 www.xilinx.com 21

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of
any kind, express or implied. Xilinx makes no representation that the Information, or any particular
implementation thereof, is free from any claims of infringement. You are responsible for obtaining any
rights you may require for any implementation based on the Information. All specifications are subject to
change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH
RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED
THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as
stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded,
displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.

Date Version Revision

09/19/07 1.0 Initial Xilinx release.

11/20/09 2.0 Added support for Virtex-6 and Spartan-6 FPGA Endpoint cores.

http://www.xilinx.com

	Using the Memory Endpoint Test Driver (MET) with the Programmed Input/Output Example Design for PCI Express Endpoint Cores
	Summary
	Important Notice

	Overview
	Setting Up the PIO Example Design
	Generating the Core
	Implementing the Core
	Programming the Board
	Exploring the PIO Design

	Using the MET Driver with Windows XP
	MET Driver and Application
	Note that if xilinx_pcie_block.inf is modified, the driver must be re-installed.
	Installing the Driver
	Installing the Driver

	Using MET in Command Line Mode
	Running in Interactive Mode
	Running a Test Suite from an “ini” File

	MET GUI

	Using the MET Driver for Linux
	Linux Driver Contents
	Compiling and Installing on Fedora Linux
	Debugging Problems

	Bitstreams
	Conclusion
	Revision History
	Notice of Disclaimer

