
© Copyright 2021 Xilinx

Xilinx Storage Services

Jamon Bowen
Product Marketing Director

© Copyright 2021 Xilinx

SmartSSD® CSD

From the outside it looks
just like a standard NVMe
SSD

© Copyright 2021 Xilinx

SmartSSD® CSD

4 TB
5th Generation
Samsung V-NAND

4 GBs accelerator
memory

Xilinx FPGA with
customizable
accelerator

© Copyright 2021 Xilinx

SmartSSD® CSD

A data processing command is sent

The data is locally processed

Only the processed results are returned

© Copyright 2021 Xilinx

Computational Storage API

>> 5

© Copyright 2021 Xilinx

Runtime Stack

>> 6

› Storage Accessed via NVMe
Stack

› Computational Storage /
Accelerator Discovered,
Managed, Orchestrated by XRT
Stack

› Shared Memory Space in the
Compute Function Glues the
Datapaths together

User apps

VFS

Ext4

Block driver

User
Kernel

PCIe
NVME Driver

Linux Storage Stack

Accel Lib
(e.g gzip, CNN)

OpenCL / XRT APIs

Libxrt-light.so

Drivers

User apps

PCIe

Accelerator Stack

User
Kernel

NVMe PF OpenCL PF

© Copyright 2021 Xilinx

P2P example (Open CL)

7

https://xilinx.github.io/XRT/master/html/p2p.html#p2p-data-transfer-between-fpga-card-and-nvme-device
OpenCL coding style
Typical coding style
1.Create P2P buffer
2.Map P2P buffer to the host space
3.Access the SSD location through Linux File System, the file needs to be opened with O_DIRECT.
4.Read/Write through Linux pread/pwrite function

// Creating P2P buffer

cl_mem_ext_ptr_t p2pBOExt = {0};
p2pBOExt.flags = XCL_MEM_EXT_P2P_BUFFER;
p2pBO = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_EXT_PTR_XILINX, chunk_size, &p2pBOExt, NULL);
clSetKernelArg(kernel, 0, sizeof(cl_mem), p2pBO);

// Map P2P Buffer into the host space
p2pPtr = (char *) clEnqueueMapBuffer(command_queue, p2pBO, CL_TRUE, CL_MAP_WRITE | CL_MAP_READ, 0, chunk_size, 0, NULL, NULL,NULL);
filename = <full path to SSD>
fd = open(filename, O_RDWR | O_DIRECT);

// Read chunk_size bytes starting at offset 0 from fd into p2pPtr
pread(fd, p2pPtr, chunk_size, 0);

// Write chunk_size bytes starting at offset 0 from p2pPtr into fd
pwrite(fd, p2pPtr, chunk_size, 0)

© Copyright 2021 Xilinx

Xilinx Storage Services Reference Design

>> 8

© Copyright 2021 Xilinx

The standard API is unaware of accelerator and SSD colocation
 Requires application to map NVMe and Accelerators to one another.

Many Linux Software tools run in kernel space and need to call kernel
libraries
Memory allocation overhead and FPGA program times create challenges
for storage block level applications

Page 9

Xilinx Storage Services – Introduction

Xilinx Storage Services provide an easy-to-use API solution to accelerate
storage kernel applications

© Copyright 2021 XilinxPage 10

XSS Example: Accelerating device mapper

• The device mapper is a framework provided by the Linux kernel for mapping physical block devices onto
higher-level virtual block devices.

• Device mapper works by passing data from a virtual block device, which is provided by the device mapper
itself, to another block device. Data can be also modified/processed in transition, which is performed, for
example, in the case of device mapper providing disk encryption.

Block Device
Layer

Kernel Space

User Space
/dev/sda(hda, nvme0n1)

Block Devices
(HDD, SSD, etc)

Block Device (Direct/Raw)

Block Device Layer

Kernel Space

User Space/dev/sda(hda, nvme0n1)

Block Devices
(HDD, SSD, etc)

Block Device (Raw)

Device Mapper Layer

IO Processing

/dev/mapper/dm-dev

Virtual Block Device

Block Devices
(HDD, SSD, etc)

© Copyright 2021 Xilinx

XSS API

xss.h

Provides an API to kernel
applications to leverage
XSS

Can be Extended to create
new kernel storage
applications

>> 11

© Copyright 2021 Xilinx

Acceleration Example: XSS/dm-crypt

12

Linux kernel

Hardware

Encrypted
Vol. 1

DM-Crypt

XRT Driver

Smart
SSD 1

Smart
SSD 2

Smart
SSD 3

Smart
SSD 4

xss_util

NVMe Driver

Encrypted
Vol. 2

Encrypted
Vol. 3

Encrypted
Vol. 4

XSS Driver
DMACompute

Cmds

Userspace

Linux Crypto
Framework

xcrypt

• DM-Crypt is an existing Linux solution that
• Provides inline full disk encryption (FDE)
• leverages Linux device-mapper layer and

Linux Crypto Framework to accomplish FDE.

• XSS Driver
• Provides easy to use APIs for kernel

applications matching kernel storage library
interfaces.

• Creates accelerator contexts for
applications and manages P2P buffers.

• Manages complexity from typical in
mult-accelerator SmartSSD
deployments.

• Contains services Xilinx developed.
• xss_util

• Programs the xclbin and passes
configuration information to the XSS Driver.

• xcrypt
• Linux crypto framework module that

leverages a HW accelerator on the
SmartSSD using XSS.

• DM-Crypt
• Updated to use P2P Buffers for IO using

XSS.

© Copyright 2021 XilinxPage 13

Xilinx Storage Services : XSS/dm-crypt Example

Dm-crypt VBD Creation
1. Using dmsetup

2. Using Cryptsetup

XSS Configuration:
1. Update /etc/xss.conf

2. Load xss configuration on device

#<bdf_address> <xclbin_path>
0000:05:00.1 /home/xss/fa_aes_xts2_rtl_enc_dec.xclbin

xss_util load-config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reading configuration from /etc/xss.conf:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Configuring device 0000:05:00.1... Loaded xclbin:/home/xss/fa_aes_xts2_rtl_enc_dec.xclbin, Added device info to XSS.

dmsetup create xss-dev --table "0 $(blockdev --getsz /dev/nvme0n1) crypt capi:xss_aes_xts_async-plain64 <128-byte-key> 0 /dev/nvme0n1 0 1
sector_size:4096"

cryptsetup --type luks2 --cipher capi:xss_aes_xts_async-plain64 --key-size 512 --sector-size 4096 luksFormat /dev/nvme0n1

cryptsetup luksOpen /dev/nvme0n1 xss-dev

Use VBD with a file-system
mkfs.ext4 /dev/mapper/xss-dev

mount /dev/mapper/xss-dev /mnt

© Copyright 2021 Xilinx

Kernel application modification

14

Dm-crypt – Updated to allocate buffers from P2P region of SmartSSD CSD.

Modified to have the bio buffers
allocated in the P2P address space.
Once that is done the reads/ writes
to NVMe device happen via P2P –
automatically!

© Copyright 2021 Xilinx

Life of a Block: Write

15

Application Writes to storage:
filename = <full path dm-crypt block device>
fd = open(filename, O_RDWR);
// Write chunk_size bytes starting at offset 0 from p2pPtr into fd
pwrite(fd, data_pointer, size, offset)

BIO Layer in Linux forwards the IO to DM-crypt.

DM-Crypt creates a crypto work item to encrypt the write data

In dm-crypt-5.4.c:

No modifications – calls the HW accelerated crypto
based on the dm-crypt VBD specifying that module under
the linux crypto framework

© Copyright 2021 Xilinx

Write to Linux Crypt

16

Linux kernel

Hardware

Encrypted
Vol. 1

DM-Crypt

XRT Driver

Smart
SSD 1

Smart
SSD 3

xss_util

NVMe Driver

Encrypted
Vol. 2

XSS Driver
DMACompute

Cmds

Userspace

Linux Crypto
Framework

xcrypt

Accel Accel

data

© Copyright 2021 Xilinx

Life of a Block: Write

17

Xcrypt.c – accelerated linux crypto framework module. Provides all of the linux
crypto framework interfaces. Actual hw accelerated work done by xss_crypt() in
XSS.

© Copyright 2021 Xilinx

Life of a Block: Write
xss_crypt:

Get the Compute unit from XSS

Submit the encryption request
to XSS with the P2P buffers.

© Copyright 2021 Xilinx

Write to Linux Crypt

19

Linux kernel

Hardware

Encrypted
Vol. 1

DM-Crypt

XRT Driver

Smart
SSD 1

Smart
SSD 3

xss_util

NVMe Driver

Encrypted
Vol. 2

XSS Driver
DMACompute

Cmds

Userspace

Linux Crypto
Framework

xcrypt

Accel Accel

data

eData

© Copyright 2021 Xilinx

Dm-crypt

20

Encrypted data written by Dm-crypt to backing storage via the BIO layer

 BIO Layer forwards the IO to NVMe device.

No modifications – The encrypted data input is already in
a P2P buffer, so that when the write goes to the NVMe
DMA it is pulled from the buffer and written to disk
automatically.

© Copyright 2021 Xilinx

Write to Linux Crypt

21

Linux kernel

Hardware

Encrypted
Vol. 1

DM-Crypt

XRT Driver

Smart
SSD 1

Smart
SSD 3

xss_util

NVMe Driver

Encrypted
Vol. 2

XSS Driver
DMACompute

Cmds

Userspace

Linux Crypto
Framework

xcrypt

Accel Accel
eData

© Copyright 2021 Xilinx

Next steps

22

Build accelerated storage applications!

Register for access to the Xilinx Storage Services reference design:

https://www.xilinx.com/products/intellectual-property/xss.html

https://www.xilinx.com/products/intellectual-property/xss.html

© Copyright 2021 Xilinx

Thank You

	Xilinx Storage Services
	SmartSSD® CSD
	SmartSSD® CSD
	SmartSSD® CSD
	Computational Storage API
	Runtime Stack
	P2P example (Open CL)
	Xilinx Storage Services Reference Design
	Xilinx Storage Services – Introduction
	XSS Example: Accelerating device mapper
	XSS API
	Acceleration Example: XSS/dm-crypt
	Xilinx Storage Services : XSS/dm-crypt Example
	Kernel application modification
	Life of a Block: Write
	Write to Linux Crypt
	Life of a Block: Write
	Life of a Block: Write
	Write to Linux Crypt
	Dm-crypt
	Write to Linux Crypt
	Next steps
	Slide Number 23

