
Issue 2 © Copyright 2019 Xilinx, Inc i

Cloud Onload® NGINX Web Server Cookbook

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer
to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
A list of patents associated with this product is at http://www.solarflare.com/patent
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”).
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK
OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
Copyright
© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.
SF-122073-CD
Issue 2

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://www.solarflare.com/patent

Cloud Onload NGINX Web Server Cookbook
 Table of Contents

1 Introduction. 1
1.1 About this document .1
1.2 Intended audience. .1
1.3 Registration and support .2
1.4 Download access .2
1.5 Further reading .2

2 Overview . 3
2.1 NGINX Plus overview. .3
2.2 Wrk overview. .4
2.3 Cloud Onload overview. .4

3 Summary of benchmarking . 6
3.1 Architecture for NGINX Plus benchmarking .7
3.2 NGINX Plus benchmarking process .8

4 Installation and configuration . 9
4.1 Installing NGINX Plus. .9

Installation .9
Configuration .10

4.2 Installing wrk .11
Installation .11
Issue 2 © Copyright 2019 Xilinx, Inc ii

Cloud Onload NGINX Web Server Cookbook

Table of Contents
5 Evaluation . 12
5.1 Configuring NGINX Plus for benchmarking .12

Operating System recommendations .12
Set up filesystem for static NGINX Plus files for benchmarking

performance .13
The nginx.conf configuration file .14

5.2 Starting NGINX Plus for kernel benchmarking .16
Testing methodology. .16
Starting nginx. .16

5.3 Running wrk for kernel benchmarking .17
Performance metrics. .17
wrk options .18
Example run and output of wrk .19
Onloading wrk (via Cloud Onload + namespaces).19
Example wrk run w/ Cloud Onload + namespace + taskset20
Prepare namespace on client node (wrk node) 21
Requests per second (RPS) .21
Transactions Per Second .21
Throughput .21
Running wrk in kernel .22

5.4 Graphing the kernel benchmarking results .24
5.5 Cloud Onload benchmarking .25

The nginx-balanced profile .25
The nginx-performance profile. .28
Use Cloud Onload to accelerate the software. .28
Accelerating NGINX Plus .28

6 Benchmark results. 29
6.1 Results .30

Transactions per second (TPS) at 25Gb/s .30
Requests per second (RPS) at 25Gb/s .31
Throughput at 25Gb/s. .34
Transactions per second (TPS) at 100Gb/s .37
Requests per second (RPS) at 100Gb/s .38
Throughput at 100Gb/s. .41

6.2 Analysis. .43
Transactions per second .43
Requests per second .43
Throughput .44
Issue 2 © Copyright 2019 Xilinx, Inc iii

Cloud Onload NGINX Web Server Cookbook
 1 Introduction

This chapter introduces you to this document. See:

• About this document on page 1

• Intended audience on page 1

• Registration and support on page 2

• Download access on page 2

• Further reading on page 2.

1.1 About this document
This document is the NGINX Web Server Cookbook for Cloud Onload. It gives
procedures for technical staff to configure and run tests, to benchmark NGINX Plus
as a web server utilizing Solarflare's Cloud Onload and Solarflare NICs.

This document contains the following chapters:

• Introduction on page 1 (this chapter) introduces you to this document.

• Overview on page 3 gives an overviews of the software distributions used for
this benchmarking.

• Summary of benchmarking on page 6 summarizes how the performance of
NGINX Plus has been benchmarked, both with and without Cloud Onload, to
determine what benefits might be seen.

• Installation and configuration on page 9 describes how to install and configure
the software distributions used for this benchmarking.

• Evaluation on page 12 describes how the performance of the test system is
evaluated.

• Benchmark results on page 29 presents the benchmark results that are
achieved.

1.2 Intended audience
The intended audience for this NGINX Web Server Cookbook are:

• software installation and configuration engineers responsible for
commissioning and evaluating this system

• system administrators responsible for subsequently deploying this system for
production use.
Issue 2 © Copyright 2019 Xilinx, Inc 1

Cloud Onload NGINX Web Server Cookbook

Introduction
1.3 Registration and support
Support is available from support@solarflare.com.

1.4 Download access
Cloud Onload can be downloaded from: https://support.solarflare.com/.

Solarflare drivers, utilities packages, application software packages and user
documentation can be downloaded from: https://support.solarflare.com/.

Please contact your Solarflare sales channel to obtain download site access.

1.5 Further reading
For advice on tuning the performance of Solarflare network adapters, see the
following:

• Solarflare Server Adapter User Guide (SF-103837-CD).
This is available from: https://support.solarflare.com/.

For more information about Cloud Onload, see the following:

• Onload User Guide (SF-104474-CD).
This is available from: https://support.solarflare.com/.
Issue 2 © Copyright 2019 Xilinx, Inc 2

mailto:support@solarflare.com?subject=NGINX%20with%20Cloud%20Onload:%20support%20request
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/
https://support.solarflare.com/

Cloud Onload NGINX Web Server Cookbook
 2 Overview

This chapter gives an overview of the software distributions used for this
benchmarking. See:

• NGINX Plus overview on page 3

• Wrk overview on page 4

• Cloud Onload overview on page 4.

2.1 NGINX Plus overview
Open source NGINX [engine x] is an HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server.

NGINX Plus is a software load balancer, web server, and content cache built on top
of open source NGINX. NGINX Plus has exclusive enterprise-grade features beyond
what's available in the open source offering, including session persistence,
configuration via API, and active health checks.

NGINX Plus is heavily network dependent by design, so its performance can be
significantly improved through enhancements to the underlying networking layer.
Issue 2 © Copyright 2019 Xilinx, Inc 3

Cloud Onload NGINX Web Server Cookbook

Overview
2.2 Wrk overview
Wrk is a modern HTTP benchmarking tool capable of generating significant load
when run on a single multi-core CPU. It combines a multithreaded design with
scalable event notification systems such as epoll and kqueue.

Figure 1: Wrk architecture

2.3 Cloud Onload overview
Cloud Onload is a high performance network stack from Solarflare
(https://www.solarflare.com/) that dramatically reduces latency, improves CPU
utilization, eliminates jitter, and increases both message rates and bandwidth. Cloud
Onload runs on Linux and supports the TCP network protocol with a POSIX
compliant sockets API and requires no application modifications to use. Cloud
Onload achieves performance improvements in part by performing network
processing at user-level, bypassing the OS kernel entirely on the data path.

Cloud Onload is a shared library implementation of TCP, which is dynamically linked
into the address space of the application. Using Solarflare network adapters, Cloud
Onload is granted direct (but safe) access to the network. The result is that the
application can transmit and receive data directly to and from the network, without
any involvement of the operating system. This technique is known as “kernel
bypass”.
Issue 2 © Copyright 2019 Xilinx, Inc 4

https://www.solarflare.com/

Cloud Onload NGINX Web Server Cookbook

Overview
When an application is accelerated using Cloud Onload it sends or receives data
without access to the operating system, and it can directly access a partition on the
network adapter.

Figure 2: Cloud Onload architecture
Issue 2 © Copyright 2019 Xilinx, Inc 5

Cloud Onload NGINX Web Server Cookbook
 3 Summary of benchmarking

This chapter summarizes how the performance of NGINX Plus as a web server has
been benchmarked, both with and without Cloud Onload, to determine what
benefits might be seen. See:

• Architecture for NGINX Plus benchmarking on page 7

• NGINX Plus benchmarking process on page 8.
Issue 2 © Copyright 2019 Xilinx, Inc 6

Cloud Onload NGINX Web Server Cookbook

Summary of benchmarking
3.1 Architecture for NGINX Plus benchmarking
Benchmarking was performed with two Dell R740 servers, with the following
specification:

Each server is configured to leave as many CPUs as possible available for the
application being benchmarked.

All high-volume test traffic is routed through a dedicated switch that provides 10, 25,
and 100GbE ports.

This enables testing at three different network speeds (10GbE, 25GbE and 100GbE)
to determine when applications become bottlenecked as a result of network traffic.

Figure 3: Architecture for NGINX Plus benchmarking

Server Dell R740XD

Memory 192GB (12 × 16384 MB)

NICs SFN8522 (dual port 10G)

X2522-25G (dual port 25G)

X2541 (single port 100G)

CPU sfocr740a (used for wrk):
2 × Intel® Xeon® Platinum 8153 CPU @ 2.00GHz

sfocr740b (used for nginx):
Intel® Xeon® Gold 5120 CPU @ 2.20GHz

OS Red Hat Enterprise Linux Server release 7.5 (Maipo)

Software NGINX 1.15.7 (NGINX Plus r17)

wrk 4.1.0
Issue 2 © Copyright 2019 Xilinx, Inc 7

Cloud Onload NGINX Web Server Cookbook

Summary of benchmarking
3.2 NGINX Plus benchmarking process
These are the high-level steps we followed to complete benchmarking with NGINX
Plus:

• Install and test NGINX Plus on one server (sfoc740b).

• Install wrk on the other server (sfoc740a).

• Start an NGINX web server on one node (sfoc740b).
The first iteration of the test uses a single worker process.

• Start wrk on the other node (sfoc740a).
All iterations of the test use the same configuration for consistency:
- One wrk process is assigned to each CPU.

For the server used (sfoc740a), this is 32 wrk processes
- Each wrk process is accelerated by Cloud Onload, to maximize the

throughput of each connection going to the NGINX Plus web server.

• Record the response rate of the NGINX server, as the number of requests per
second.

• Increment the number of NGINX worker processes, and repeat the test.
Continue doing this until one NGINX worker process is assigned to each CPU.
For the server used (sfoc740b), this is 28 processes.

Figure 4: NGINX Plus software usage

• Repeat the test across all interfaces available on the server.

• Repeat all tests, accelerating NGINX Plus with Cloud Onload.

These steps are detailed in the remaining chapters of this Cookbook.
Issue 2 © Copyright 2019 Xilinx, Inc 8

Cloud Onload NGINX Web Server Cookbook
 4 Installation and configuration

This chapter describes how to install and configure the software distributions used
for this benchmarking. See:

• Installing NGINX Plus on page 9

• Installing wrk on page 11.

4.1 Installing NGINX Plus
This section describes how to install and configure NGINX Plus.

Installation
NOTE: For a reference description of how to install NGINX Plus, see
https://cs.nginx.com/repo_setup.

In summary:

1 If you already have old NGINX packages in your system, back up your configs
and logs:
cp -a /etc/nginx /etc/nginx-plus-backup
cp -a /var/log/nginx /var/log/nginx-plus-backup

2 Create the /etc/ssl/nginx/ directory:
mkdir -p /etc/ssl/nginx

3 Log in to NGINX Customer Portal and download the following two files:
- nginx-repo.key

- nginx-repo.crt

4 Copy the above two files to the RHEL/CentOS/Oracle Linux server into
/etc/ssl/nginx/ directory. Use your SCP client or other secure file transfer
tools.
cp <path>/nginx-repo.* /etc/ssl/nginx/.

5 Install prerequisite packages:
yum install ca-certificates

6 Add the NGINX Plus repository by downloading the file nginx-plus-7.4.repo
to /etc/yum.repos.d:
wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/nginx-plus-7.4.repo

7 Install the NGINX Plus package:
yum install nginx-plus
Issue 2 © Copyright 2019 Xilinx, Inc 9

https://cs.nginx.com/repo_setup

Cloud Onload NGINX Web Server Cookbook

Installation and configuration
8 Check the NGINX binary version to ensure that you have NGINX Plus installed
correctly:
nginx -v
nginx version: nginx/1.15.7 (nginx-plus-r17)

9 Start NGINX:
systemctl start nginx

or just:
nginx

10 Verify access to Web Server

Configuration
The NGINX configuration file is /etc/nginx/nginx.conf.

To define the number of worker processes that will get instantiated by NGINX,
modify the worker_processes variable.
vi /etc/nginx/nginx.conf
…
user nginx;
#worker_processes auto;
worker_processes 28;
Issue 2 © Copyright 2019 Xilinx, Inc 10

Cloud Onload NGINX Web Server Cookbook

Installation and configuration
4.2 Installing wrk
This section describes how to install and configure wrk.

Installation
NOTE: For a reference description of how to install wrk, see:
https://github.com/wg/wrk/wiki/Installing-Wrk-on-Linux.

In summary:

1 If the build tools are not already installed, install them:
yum groupinstall 'Development Tools'

2 If the OpenSSL dev libs are not already installed, install them:
yum install -y openssl-devel

3 If git is not already installed, install it:
yum install -y git

4 Create a directory to hold wrk:
mkdir -p Onload_Testing/WRK
cd Onload_Testing/WRK

5 Use git to download wrk:
git clone https://github.com/wg/wrk.git wrk

6 Build wrk:
cd wrk
make

7 Copy the wrk executable to a location on your PATH. For example:
cp wrk /usr/local/bin
Issue 2 © Copyright 2019 Xilinx, Inc 11

https://github.com/wg/wrk/wiki/Installing-Wrk-on-Linux

Cloud Onload NGINX Web Server Cookbook
 5 Evaluation

This chapter describes how the performance of the test system is evaluated. See:

• Starting NGINX Plus for kernel benchmarking on page 16

• Running wrk for kernel benchmarking on page 17

• Graphing the kernel benchmarking results on page 24

• Cloud Onload benchmarking on page 25.

5.1 Configuring NGINX Plus for benchmarking

Operating System recommendations
To configure NGINX we first set up our Linux environment.

• Increase the local port range:
sysctl -w net.ipv4.ip_local_port_range='9000 65000';

This is so that the server can open lots of outgoing network connections.

• Set HugePages:
sysctl -w vm.nr_hugepages=10000

HugePages is a method to have larger pages, and is useful for working with very
large memory.

• Increase the maximum number of open files by setting new limits for open files
and file descriptors:
sysctl -w fs.file-max=8388608;
ulimit -n 8388608;

Many application such as database or web server need a large amount of open
files.

• Increase the number of files that a process can open.
sysctl -w fs.nr_open=8388608;
Issue 2 © Copyright 2019 Xilinx, Inc 12

Cloud Onload NGINX Web Server Cookbook

Evaluation
• To start NGINX Plus with these settings, run the start script (start_nginx):
cat start_nginx
#!/bin/bash

killall nginx

set -x;
 sysctl -w net.ipv4.ip_local_port_range='9000 65000';
 sysctl -w vm.nr_hugepages=10000;
 sysctl -w fs.file-max=8388608;
 sysctl -w fs.nr_open=8388608;
 ulimit -n 8388608;

Start Nginx

nginx

Set up filesystem for static NGINX Plus files for benchmarking
performance

NGINX Plus Web Server Configuration - The configuration below was used on the
NGINX Plus Web Server. It serves static files from /var/www/html/, as configured by
the root directive. The static files were generated using dd; this example creates a
1 KB file of zeroes:
dd if=/dev/zero of=1kb.bin bs=1KB count=1

The files used range from 0KB to 100MB files and reside in the /var/www/html
directory.
ls -lh /var/www/html/
total 107M
-rw-r--r-- 1 root root 0 Mar 27 21:14 0kb.bin
-rw-r--r-- 1 root root 98K Mar 27 19:43 100kb.bin
-rw-r--r-- 1 root root 96M Mar 27 19:44 100Mb.bin
-rw-r--r-- 1 root root 9.8K Mar 27 19:40 10kb.bin
-rw-r--r-- 1 root root 9.6M Mar 27 19:44 10Mb.bin
-rw-r--r-- 1 root root 1000 Mar 27 19:40 1kb.bin
-rw-r--r-- 1 root root 977K Mar 27 19:43 1Mb.bin

Filesystem where content is located needs to be mounted with noatime (otherwise
each access generate disk write)
mount -t tmpfs -o size=512m,noatime tmpfs <...>/html

ls /root/Onload_Testing/NGINXPlus/nginx_webserver/html/
0kb.bin 100kb.bin 100Mb.bin 10kb.bin 10Mb.bin 1kb.bin 1Mb.bin

cat mount_tmpfs
mount -t tmpfs -o size=512m,noatime tmpfs /var/www/html

cp -a /root/Onload_Testing/NGINXPlus/nginx_webserver/html/*
/var/www/html/.
Issue 2 © Copyright 2019 Xilinx, Inc 13

Cloud Onload NGINX Web Server Cookbook

Evaluation
The nginx.conf configuration file
In order to start up X number of NGINX workers we have 28 different nginx.conf
files. Each file represents the number of worker processes that will be run.

• nginx-webserver_X.conf list
ls -ls nginx-webserver_*.conf
4 -rw-r--r-- 1 root root 1027 Apr 4 19:51 nginx-webserver_1.conf
…
4 -rw-r--r-- 1 root root 1488 Apr 4 20:04 nginx-webserver_28.conf

The key changes to the nginx.conf files are show below.

• Choose the number of worker processes
worker_processes 28;

• Enable worker CPU affinity, Binds worker processes to the sets of CPUs.
worker_cpu_affinity 01 010 0100 01000 …

• Enable file descriptor cache
open_file_cache max=1000 inactive=20s;
open_file_cache_valid 30s;
open_file_cache_errors off;

• Increase number of open files for worker processes
Changes the limit on the maximum number of open files (RLIMIT_NOFILE) for
worker processes. Used to increase the limit without restarting the main
process.
worker_rlimit_nofile 8388608;

• Enable reuseport directive
This enables the kernel to have more socket listeners for each socket (ip:port).
Without it, when new connection arrives, kernel notified all nginx workers
about it and all of them try to accept it.
With this option enabled, each worker has its own listening socket and on each
new connection, kernel chooses one of them which will receive it - so there is
no contention.
listen 80 reuseport;
Issue 2 © Copyright 2019 Xilinx, Inc 14

Cloud Onload NGINX Web Server Cookbook

Evaluation
• nginx.conf file for 28 worker processes
cat nginx-webserver_28.conf
user nginx;
worker_processes 28;
#worker_processes auto;
#worker_rlimit_nofile 10240;
worker_rlimit_nofile 8388608;
worker_cpu_affinity 01 010 0100 01000 010000 0100000 01000000
010000000 0100000000 01000000000 010000000000 0100000000000
01000000000000 010000000000000 0100000000000000 01000000000000000
010000000000000000 0100000000000000000 01000000000000000000
010000000000000000000 0100000000000000000000 01000000000000000000000
010000000000000000000000 0100000000000000000000000
01000000000000000000000000 010000000000000000000000000
0100000000000000000000000000 01000000000000000000000000000;

pid /var/run/nginx_28.pid;

events {
worker_connections 10240;
 worker_connections 200000;
 accept_mutex off;
 multi_accept off;
}

http {
 access_log off;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local]
"$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"
"$ssl_cipher" '
 '"$ssl_protocol" ';

 sendfile on;

 keepalive_timeout 300s;
 keepalive_requests 1000000;

 server {
#########
 listen 80 reuseport;
#########
 root /var/www/html;

#########
 open_file_cache max=1000 inactive=20s;
 open_file_cache_valid 30s;
 open_file_cache_errors off;
#########
 }
}

Issue 2 © Copyright 2019 Xilinx, Inc 15

Cloud Onload NGINX Web Server Cookbook

Evaluation
5.2 Starting NGINX Plus for kernel benchmarking

Testing methodology
We tested the performance of NGINX Plus web server with different numbers of
CPUs. One NGINX Plus worker process consumes a single CPU, so to measure the
performance of different numbers of CPUs we varied the number of NGINX worker
processes, repeating the tests with one worker processes, two, four, eight, sixteen
and the maximum number of CPUs on our server, 28.

NOTE: To set the number of NGINX worker processes manually, use the
worker_processes directive. The default value is auto, which tells NGINX Plus to
detect the number of CPUs and run one worker process per CPU.

Starting nginx
The following start_nginx file is called by the client node sfocr740a.

• go_namespace (run on client)
less go_namespace
#!/bin/bash
for i in `seq 1 28`
do
 ssh sfocr740b \
"/root/Onload_Testing/NGINXPlus/start_nginx $i"
..
done

• start_nginx
cat start_nginx
#!/bin/bash
killall -9 nginx
NPROCS=$1

sysctl -w net.ipv4.ip_local_port_range='9000 65000';
sysctl -w vm.nr_hugepages=10000;
sysctl -w fs.file-max=8388608;
sysctl -w fs.nr_open=8388608;
ulimit -n 8388608;

nginx -c /root/Onload_Testing/NGINXPlus/nginx_webserver/nginx-
webserver_"$NPROCS".conf
Issue 2 © Copyright 2019 Xilinx, Inc 16

Cloud Onload NGINX Web Server Cookbook

Evaluation
5.3 Running wrk for kernel benchmarking

Performance metrics
We measured the following metrics:

• Requests per second (RPS)
Measures the ability to process HTTP requests. In our tests, each client sends
requests for a 0KB, 1KB, 10KB, and 100KB files over a keepalive connection.

• Transactions per second (TPS)
Measures the ability to process new connections. In our tests, each client sends
a series of HTTP requests, each on a new connection. The Web Server sends
back a 0 byte response for each request.

• Throughput
Measures the throughput that NGINX Plus can sustain when serving 100KB -
100MB files over HTTP.
Issue 2 © Copyright 2019 Xilinx, Inc 17

Cloud Onload NGINX Web Server Cookbook

Evaluation
wrk options
The following options are available for running wrk.

Of the above options, the following have been changed:

• -t: Threads.
A value of 1 was used for testing.

• -c: Connections.
A value of 50 was used for testing.

• -d: Duration.
A value of 180s was used for testing.

• -H: Header.
When used for TPS measurements, -H 'Connection: close' was used to ensure
that a new connection is always created.

Table 1: Redis-benchmark options

Option Description Default
value

-t
--threads

Total number of threads to use. 2

-c
--connections

Total number of HTTP connections to keep open.
Each thread handles N connections, where N =
(total connections / total threads).

10

-d
--duration

Duration of the test, e.g. 2s, 2m, 2h. 10s

-s
---script

LuaJIT script. See the SCRIPTING file in the
source code.

—

-H
--header

HTTP header to add to request, e.g.
"User-Agent: wrk"

—

--latency Print detailed latency statistics. False

--timeout Record a timeout if a response is not received
within this amount of time.

Socket
timeout
Issue 2 © Copyright 2019 Xilinx, Inc 18

Cloud Onload NGINX Web Server Cookbook

Evaluation
Example run and output of wrk
./wrk -t 1 -c 50 -d 180s -H 'Connection: close' http://192.168.105.35/0kb.bin
Running 3m test @ http://192.168.105.35/0kb.bin
 1 threads and 50 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 22.08ms 63.83ms 1.61s 95.43%
 Req/Sec 1.40k 0.91k 33.39k 98.55%
 250247 requests in 3.00m, 58.23MB read
Requests/sec: 1390.17
Transfer/sec: .33125MB

Onloading wrk (via Cloud Onload + namespaces)
In order to saturate the NGINX Plus server worker processes over the various NIC
speeds, the number of wrk thread connections needs to be accelerated. This can be
done by running multiple wrk threads on multiple client servers, or using Cloud
Onload to accelerate the individual connections per thread. We use Cloud Onload
plus network namespace to accelerate the individual connections per thread.

A network namespace is logically another copy of the network stack, with its own
routes, firewall rules, and network devices. By default, a process inherits its network
namespace from its parent. Initially all the processes share the same default
network namespace from the init process.

We pin a single wrk process to a single CPU and run wrk via Cloud Onload using
namespaces:
Issue 2 © Copyright 2019 Xilinx, Inc 19

Cloud Onload NGINX Web Server Cookbook

Evaluation
Example wrk run w/ Cloud Onload + namespace + taskset
EF_MAX_ENDPOINTS=400000 \
EF_UL_EPOLL=3 \
EF_DYNAMIC_ACK_THRESH=4 \
EF_TCP_TCONST_MSL=1 \
EF_SCALABLE_FILTERS=any=rss:active:passive \
EF_TCP_SHARED_LOCAL_PORTS_MAX=570000 CI_TP_LOG=7 \
EF_EPOLL_SPIN=1 \
EF_LOAD_ENV=1 \
EF_USE_HUGE_PAGES=2 \
EF_ACCEPTQ_MIN_BACKLOG=400 \
EF_CLUSTER_RESTART=1 \
EF_TCP_FIN_TIMEOUT=15 \
EF_MAX_PACKETS=205000 \
EF_TCP_SYNRECV_MAX=90000 \
EF_TCP_BACKLOG_MAX=400 \
EF_TCP_INITIAL_CWND=14600 \
EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST=1 \
EF_PIO=0 \
EF_SLEEP_SPIN_USEC=50 LD_PRELOAD=libonload.so \
EF_CLUSTER_SIZE=1 \
EF_POLL_USEC=100000 \
EF_UDP=0 \
EF_SOCKET_CACHE_MAX=40000 \
EF_FDTABLE_SIZE=8388608 \
EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX=570000 \
EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK=1 \
EF_TAIL_DROP_PROBE=1 \
EF_EPOLL_MT_SAFE=1 \
EF_HIGH_THROUGHPUT_MODE=1 \
EF_TCP_SHARED_LOCAL_PORTS=1000 \
EF_LOG_VIA_IOCTL=1 \
EF_TCP_SHARED_LOCAL_PORTS_PER_IP=1 \
EF_NO_FAIL=1 \
EF_CLUSTER_NAME=load \
EF_MIN_FREE_PACKETS=50000 \
EF_TX_PUSH=0 \
EF_SCALABLE_FILTERS_ENABLE=1 \
taskset -c $i ip netns exec net$i ./wrk -t $THREAD -c $CONNECTIONS \
 -d $TIME -H 'Connection: close' http://$IPADDR/0kb.bin \
 >> results/wrk_"$TEST"_"$INTERFACE"_"$i" &
Issue 2 © Copyright 2019 Xilinx, Inc 20

Cloud Onload NGINX Web Server Cookbook

Evaluation
Prepare namespace on client node (wrk node)
For each NIC IP prepare namespaces and macvlan interfaces for each one with an
IP address
[root@sfocr740a WebServer]# cat prepare_namespaces_p4p1
#!/bin/bash

for i in $(seq 0 31); do
 ip netns add net$i
 # p4p1 is a SFC interface
 ip link add link p4p1 name mvl type macvlan
 ip link set netns net$i dev mvl
 # assuming 192.168.105.0/24 network is used for tests
 ip netns exec net$i ifconfig mvl 192.168.105.1$i/24 up
 ip netns exec net$i ifconfig lo up
done

Requests per second (RPS)
To measure requests per second (RPS), we ran the following script:
./run_wrk_namespace rps0k
./run_wrk_namespace rps1k
./run_wrk_namespace rps10k
./run_wrk_namespace rps100k

Transactions Per Second
To measure SSL/TLS transactions per second (TLS), we ran the following script:
./run_wrk_namespace tps

Throughput
To measure throughput, we ran the following script:
./run_wrk_namespace rps0k
./run_wrk_namespace rps1k
./run_wrk_namespace rps10k
./run_wrk_namespace rps100k

The only difference from the Throughput test and the RPS test is the larger file size
of 100KB - 100MB. We also calculate the throughput from the transfers/sec output.

x Bytes per second = 8* bites per second
Issue 2 © Copyright 2019 Xilinx, Inc 21

Cloud Onload NGINX Web Server Cookbook

Evaluation
Running wrk in kernel
cat go_namespace
#!/bin/bash

for MODE in kernel
do
 for i in `seq 1 28`
 do
 echo $MODE $i
 ssh sfocr740b "/root/Onload_Testing/NGINXPlus/start_nginx $MODE $i"
 sleep 20
 for TEST in tps rps0k rps1k rps10k rps100k thr1M thr10M thr100M
 do
 ./run_wrk_namespace $TEST
 sleep 210
 done
done

cat run_wrk_namespace
#!/bin/bash
sysctl -w vm.nr_hugepages=2000
sysctl -w fs.file-max=8388608
sysctl -w fs.nr_open=8388608
ulimit -n 8388608

HOST=sfocr740b
TIME=180s
THREAD=1
CONNECTIONS=50
CPUS=`nproc`
let " CPUS = `nproc` - 1 "

INTERFACE=p2p1
IPADDR="192.168.102.35"

MODE=$1

case $MODE in
 tps)
 for i in `seq 0 $CPUS`
 do
 EF_MAX_ENDPOINTS=400000 \
 EF_UL_EPOLL=3 \
 EF_DYNAMIC_ACK_THRESH=4 \
 EF_TCP_TCONST_MSL=1 \
 EF_SCALABLE_FILTERS=any=rss:active:passive \
 EF_TCP_SHARED_LOCAL_PORTS_MAX=570000 CI_TP_LOG=7 \
 EF_EPOLL_SPIN=1 \
 EF_LOAD_ENV=1 \
 EF_USE_HUGE_PAGES=2 \
 EF_ACCEPTQ_MIN_BACKLOG=400 \
 EF_CLUSTER_RESTART=1 \
 EF_TCP_FIN_TIMEOUT=15 \
 EF_MAX_PACKETS=205000 \
 EF_TCP_SYNRECV_MAX=90000 \
 EF_TCP_BACKLOG_MAX=400 \
Issue 2 © Copyright 2019 Xilinx, Inc 22

Cloud Onload NGINX Web Server Cookbook

Evaluation
 EF_TCP_INITIAL_CWND=14600 \
 EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST=1 \
 EF_PIO=0 \
 EF_SLEEP_SPIN_USEC=50 LD_PRELOAD=libonload.so \
 EF_CLUSTER_SIZE=1 \
 EF_POLL_USEC=100000 \
 EF_UDP=0 \
 EF_SOCKET_CACHE_MAX=40000 \
 EF_FDTABLE_SIZE=8388608 \
 EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX=570000 \
 EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK=1 \
 EF_TAIL_DROP_PROBE=1 \
 EF_EPOLL_MT_SAFE=1 \
 EF_HIGH_THROUGHPUT_MODE=1 \
 EF_TCP_SHARED_LOCAL_PORTS=1000 \
 EF_LOG_VIA_IOCTL=1 \
 EF_TCP_SHARED_LOCAL_PORTS_PER_IP=1 \
 EF_NO_FAIL=1 \
 EF_CLUSTER_NAME=load \
 EF_MIN_FREE_PACKETS=50000 \
 EF_TX_PUSH=0 \
 EF_SCALABLE_FILTERS_ENABLE=1 \
 taskset -c $i ip netns exec net$i ./wrk -t $THREAD -c $CONNECTIONS \
 -d $TIME -H 'Connection: close' http://$IPADDR/0kb.bin \
 >> results/wrk_"$TEST"_"$INTERFACE"_"$i" &
 done

 # for rps[0,1,10,100]K and thr[1,10.100]M, changed the file being called
 # i.e. http://$IPADDR/0kb.bin
 rps0k)
 #Requests per second
 echo "=============================="
 echo "REQUESTS per SEC"
 echo "------------------------------"
 echo
 TEST="RPS0k"
 for i in `seq 0 $CPUS`
 do
 EF_MAX_ENDPOINTS=400000 \
 EF_UL_EPOLL=3 \
 EF_DYNAMIC_ACK_THRESH=4 \
 EF_TCP_TCONST_MSL=1 \
 EF_SCALABLE_FILTERS=any=rss:active:passive \
 EF_TCP_SHARED_LOCAL_PORTS_MAX=570000 CI_TP_LOG=7 \
 EF_EPOLL_SPIN=1 \
 EF_LOAD_ENV=1 \
 EF_USE_HUGE_PAGES=2 \
 EF_ACCEPTQ_MIN_BACKLOG=400 \
 EF_CLUSTER_RESTART=1 \
 EF_TCP_FIN_TIMEOUT=15 \
 EF_MAX_PACKETS=205000 \
 EF_TCP_SYNRECV_MAX=90000 \
 EF_TCP_BACKLOG_MAX=400 \
 EF_TCP_INITIAL_CWND=14600 \
 EF_TCP_SHARED_LOCAL_PORTS_REUSE_FAST=1 \
 EF_PIO=0 \
 EF_SLEEP_SPIN_USEC=50 LD_PRELOAD=libonload.so \
Issue 2 © Copyright 2019 Xilinx, Inc 23

Cloud Onload NGINX Web Server Cookbook

Evaluation
 EF_CLUSTER_SIZE=1 \
 EF_POLL_USEC=100000 \
 EF_UDP=0 \
 EF_SOCKET_CACHE_MAX=40000 \
 EF_FDTABLE_SIZE=8388608 \
 EF_TCP_SHARED_LOCAL_PORTS_PER_IP_MAX=570000 \
 EF_TCP_SHARED_LOCAL_PORTS_NO_FALLBACK=1 \
 EF_TAIL_DROP_PROBE=1 \
 EF_EPOLL_MT_SAFE=1 \
 EF_HIGH_THROUGHPUT_MODE=1 \
 EF_TCP_SHARED_LOCAL_PORTS=1000 \
 EF_LOG_VIA_IOCTL=1 \
 EF_TCP_SHARED_LOCAL_PORTS_PER_IP=1 \
 EF_NO_FAIL=1 \
 EF_CLUSTER_NAME=load \
 EF_MIN_FREE_PACKETS=50000 \
 EF_TX_PUSH=0 \
 EF_SCALABLE_FILTERS_ENABLE=1 \
 taskset -c $i ip netns exec net$i ./wrk -t $THREAD -c $CONNECTIONS \
 -d $TIME http://$IPADDR/0kb.bin
 done
esac

5.4 Graphing the kernel benchmarking results
The results from each pass of wrk are now gathered and summed, so that they can
be further analyzed. They are then transferred into an Excel spreadsheet, to create
graphs from the data.
Issue 2 © Copyright 2019 Xilinx, Inc 24

Cloud Onload NGINX Web Server Cookbook

Evaluation
5.5 Cloud Onload benchmarking
The benchmarking is then repeated using Cloud Onload to accelerate NGINX Plus.
To do so:

• create an Onload profile for NGINX, based on the supplied latency-best
profile

• use Cloud Onload to accelerate nginx and wrk.

The nginx-balanced profile
cat nginx_webserver_balanced.opf

Tuning profile for nginx in reverse-proxy configuration with OpenOnload
acceleration.

User may supply the following environment variables:

NGINX_NUM_WORKERS - the number of workers that nginx is
configured to use. Overrides value
automatically detected from nginx
configuration

set -o pipefail

For diagnostic output
module="nginx profile"

Regular expressions to match nginx config directives
worker_processes_pattern="/(^|;)\s*worker_processes\s+(\w+)\s*;/"
include_pattern="/(^|;)\s*include\s+(\S+)\s*;/"

Identify the config file that nginx would use
identify_config_file() {
 local file

 # Look for a -c option
 local state="IDLE"
 for option in "$@"
 do
 if ["$state" = "MINUS_C"]
 then
 file=$option
 state="FOUND"
 elif ["$option" = "-c"]
 then
 state="MINUS_C"
 fi
 done

 # Extract the compile-time default if config not specified on command
line
 if ["$state" != "FOUND"]
 then
Issue 2 © Copyright 2019 Xilinx, Inc 25

Cloud Onload NGINX Web Server Cookbook

Evaluation
 file=$($1 -h 2>&1 | perl -ne 'print $1 if
'"$worker_processes_pattern")
 fi

 [-f "$file"] && echo $file
}

Recursively look in included config files for a setting of
worker_processes.
NB If this quantity is set in more than one place then the wrong setting
might
be found, but this would be invalid anyway and is rejected by Nginx.
read_config_file() {
 local setting
 local worker_values=$(perl -ne 'print "$2 " if
'"$worker_processes_pattern" $1)
 local include_values=$(perl -ne 'print "$2 " if '"$include_pattern" $1)

 # First look in included files
 for file in $include_values
 do
 local possible=$(read_config_file $file)
 if [-n "$possible"]
 then
 setting=$possible
 fi
 done

 # Then look in explicit settings at this level
 for workers in $worker_values
 do
 setting=$workers
 done
 echo $setting
}

Method to parse configuration files directly
try_config_files() {
 local config_file=$(identify_config_file "$@")
 [-n "$config_file"] && read_config_file $config_file
}

Method to parse configuration via nginx, if supported
try_nginx_minus_t() {
 "$@" -T | perl -ne 'print "$2" if '"$worker_processes_pattern"
}

Method to parse configuration via tengine, if supported
try_tengine_minus_d() {
 "$@" -d | perl -ne 'print "$2" if '"$worker_processes_pattern"
}

Determine the number of workers nginx will use
determine_worker_processes() {
 # Prefer nginx's own parser, if available, for robustness
 local workers=$(try_nginx_minus_t "$@" || try_tengine_minus_d "$@" ||
try_config_files "$@")
Issue 2 © Copyright 2019 Xilinx, Inc 26

Cloud Onload NGINX Web Server Cookbook

Evaluation
 if ["$workers" = "auto"]
 then
 # Default to the number of process cores
 workers=$(nproc)
 fi
 echo $workers
}

Define the number of workers
num_workers=${NGINX_NUM_WORKERS:-$(determine_worker_processes "$@")}
if ! [-n "$num_workers"]; then
 fail "ERROR: Environment variable NGINX_NUM_WORKERS is not set and
worker count cannot be determined from nginx configuration"
fi
log "$module: configuring for $num_workers workers"

nginx uses epoll within one process only
onload_set EF_EPOLL_MT_SAFE 1

Enable clustering to spread connections over workers.
onload_set EF_CLUSTER_SIZE "$num_workers"
onload_set EF_CLUSTER_NAME webs
onload_set EF_CLUSTER_RESTART 1
onload_set EF_CLUSTER_HOT_RESTART 1

Enable spinning and sleep-spin mode.
onload_set EF_POLL_USEC 1000000
onload_set EF_SLEEP_SPIN_USEC 50

onload_import throughput
onload_import wan-traffic

In case invocation tries to send signal to existing instance of nginx
omit stack checking.
if echo "$@" | perl -n -e 'if(/\s-s/) {exit 1}'; then
 # In case of cold restart make sure previous instance (of the same name)
has
 # ceased to exist and in case references to onload stacks are still
being
 # released - wait.

 ITER=0
 while onload_stackdump --nopids stacks | grep "\s${EF_CLUSTER_NAME}-c"
>/dev/null; do
 if (($ITER % 20 == 19)); then
 echo Onload stacks of name ${EF_CLUSTER_NAME}-c## still present. >&2
 echo Verify that previous instance of Nginx has been killed. >&2
 onload_stackdump --nopids stacks >&2
 if (($ITER > 50)); then
 exit 16
 fi
 fi
 ITER=$(($ITER + 1))
 sleep 0.2;
 done
fi
Issue 2 © Copyright 2019 Xilinx, Inc 27

Cloud Onload NGINX Web Server Cookbook

Evaluation
The nginx-performance profile
The nginx-performance profile is almost identical to the nginx-balanced profile:
diff nginx_webserver_balanced.opf nginx_webserver_spinning.opf
121d120
< onload_set EF_SLEEP_SPIN_USEC 50

Use Cloud Onload to accelerate the software
Repeat the testing using Cloud Onload to accelerate NGINX Plus. Precede each
command with:
onload --profile=nginx-balanced

or:
onload --profile=nginx-performance

Accelerating NGINX Plus
To accelerate NGINX Plus, edit the start script:

• uncomment the line that uses Cloud Onload

• comment out the line that runs unaccelerated NGINX Plus.
cat start_nginx
#!/bin/bash

#PROFILE="nginx_webserver_balanced.opf"
PROFILE="nginx_webserver_performance.opf"

killall -9 nginx
NPROCS=$2
sysctl -w vm.nr_hugepages=10000;
sysctl -w fs.file-max=8388608;
sysctl -w fs.nr_open=8388608;
ulimit -n 8388608;

onload -p $PROFILE nginx \
 -c /root/Onload_Testing/NGINXPlus/nginx_webserver/nginx-webserver_"$NPROCS".conf

echo "PID of nginx"
pidof nginx
echo "Stackdump"
onload_stackdump
echo "Stackdump clusters size"
onload_stackdump clusters | grep size
Issue 2 © Copyright 2019 Xilinx, Inc 28

Cloud Onload NGINX Web Server Cookbook
 6 Benchmark results

This chapter presents the benchmark results that are achieved. See:

• Results on page 30

• Analysis on page 43.
Issue 2 © Copyright 2019 Xilinx, Inc 29

Cloud Onload NGINX Web Server Cookbook

Benchmark results
6.1 Results

Transactions per second (TPS) at 25Gb/s
The following command line was used:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s -H 'Connection: close' \
 https://192.168.105.35/0kb.bin

Figure 5: NGINX Plus transactions per second at 25Gb/s

Table 2 below shows the results that were used to plot the graph in Figure 5 above.

Table 2: Transactions per second at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 35890.70 126007.00 125273.00 251.09% 249.04%

2 73226.10 198366.00 201056.00 170.90% 174.57%

4 128555.00 404713.00 407412.00 214.82% 216.92%

8 209513.00 755081.00 779808.00 260.40% 272.20%

16 278366.00 1454320.00 1434150.00 422.45% 415.20%

28 288632.00 2334780.00 2302380.00 708.91% 697.69%
Issue 2 © Copyright 2019 Xilinx, Inc 30

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Requests per second (RPS) at 25Gb/s
The following command lines were used:

• RPS using a 0KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/0kb.bin

• RPS using a 1KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/1kb.bin

• RPS using a 10KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/10kb.bin

• RPS using a 100KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/100kb.bin

Figure 6: NGINX Plus requests per second at 25Gb/s

Table 3 to Table 6 inclusive below show the results that were used to plot the graph
in Figure 6 above.
Issue 2 © Copyright 2019 Xilinx, Inc 31

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 3: Requests per second for 0KB at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 86004.50 306892.00 308000.00 256.83% 258.12%

2 194653.00 521760.00 531806.00 168.05% 173.21%

4 373281.00 1064170.00 1027180.00 185.09% 175.18%

8 698718.00 1979270.00 1981920.00 183.27% 183.65%

16 1153630.00 3488740.00 3516600.00 202.41% 204.83%

28 1608500.00 4592430.00 4420920.00 185.51% 174.85%

Table 4: Requests per second for 1KB at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 52367.50 165584.00 167565.00 216.20% 219.98%

2 136150.00 277197.00 288077.00 103.60% 111.59%

4 258389.00 573284.00 570791.00 121.87% 120.90%

8 474954.00 1120850.00 1149680.00 135.99% 142.06%

16 791130.00 2080510.00 2075420.00 162.98% 162.34%

28 1084600.00 2196410.00 2196730.00 102.51% 102.54%

Table 5: Requests per second for 10KB at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 48694.90 113308.00 114581.00 132.69% 135.30%

2 112563.00 208214.00 211525.00 84.98% 87.92%

4 209280.00 286513.00 286615.00 36.90% 36.95%

8 287472.00 286772.00 286721.00 -0.24% -0.26%

16 287469.00 286660.00 286597.00 -0.28% -0.30%

28 287497.00 287355.00 287409.00 -0.05% -0.03%
Issue 2 © Copyright 2019 Xilinx, Inc 32

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 6: Requests per second for 100KB at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 27083.30 27266.10 26967.30 0.67% -0.43%

2 29723.50 29529.20 29521.00 -0.65% -0.68%

4 29584.00 29518.40 29505.00 -0.22% -0.27%

8 29577.60 29520.40 29505.00 -0.19% -0.25%

16 29574.20 29515.80 29492.00 -0.20% -0.28%

28 29571.40 29559.00 29567.60 -0.04% -0.01%
Issue 2 © Copyright 2019 Xilinx, Inc 33

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Throughput at 25Gb/s
The following command lines were used:

• Throughput using a 100K:B file
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/100kb.bin

• Throughput using a 1MB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/1Mb.bin

• Throughput using a 10MB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/10Mb.bin

• Throughput using a 100MB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/100Mb.bin

Figure 7: NGINX Plus throughput at 25Gb/s

Table 7 to Table 10 inclusive below show the results that were used to plot the graph
in Figure 7 above.
Issue 2 © Copyright 2019 Xilinx, Inc 34

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 7: Throughput for 100K at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 20.72 20.86 20.63 0.67% -0.43%

2 22.74 22.59 22.58 -0.67% -0.69%

4 22.63 22.58 22.57 -0.24% -0.28%

8 22.63 22.58 22.57 -0.21% -0.26%

16 22.62 22.58 22.56 -0.21% -0.29%

28 22.62 22.61 22.62 -0.05% -0.02%

Table 8: Throughput for 1M at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 22.68 20.26 19.94 -10.69% -12.10%

2 22.65 22.62 22.61 -0.16% -0.18%

4 22.64 22.63 22.62 -0.06% -0.10%

8 22.65 22.63 22.61 -0.07% -0.15%

16 22.64 22.62 22.58 -0.10% -0.31%

28 22.64 22.65 22.66 0.04% 0.08%

Table 9: Throughput for 10M at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 22.66 20.31 20.20 -10.34% -10.85%

2 22.66 22.62 22.62 -0.16% -0.17%

4 22.65 22.64 22.63 -0.04% -0.09%

8 22.65 22.64 22.62 -0.07% -0.15%

16 22.65 22.63 22.61 -0.10% -0.17%

28 22.65 22.67 22.67 0.06% 0.07%
Issue 2 © Copyright 2019 Xilinx, Inc 35

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 10: Throughput for 100M at 25Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 22.66 20.31 18.29 -10.36% -19.25%
2 22.66 22.62 22.62 -0.21% -0.20%
4 22.66 22.64 22.63 -0.07% -0.12%
8 22.66 22.52 22.63 -0.63% -0.13%
16 22.66 22.63 22.61 -0.12% -0.21%
28 22.66 22.67 22.67 0.02% 0.05%
Issue 2 © Copyright 2019 Xilinx, Inc 36

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Transactions per second (TPS) at 100Gb/s
The following command line was used:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s -H 'Connection: close' \
 https://192.168.105.35/0kb.bin

Figure 8: NGINX Plus transactions per second

Table 11 below shows the results that were used to plot the graph in Figure 8 above.

Table 11: Transactions per second at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 42836.30 103569.00 106688.00 141.78% 149.06%

2 70545.40 180855.00 180235.00 156.37% 155.49%

4 125168.00 381044.00 385242.00 204.43% 207.78%

8 200622.00 763533.00 749029.00 280.58% 273.35%

16 280856.00 1359440.00 1444500.00 384.03% 414.32%

28 289087.00 2310860.00 2244150.00 699.36% 676.29%
Issue 2 © Copyright 2019 Xilinx, Inc 37

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Requests per second (RPS) at 100Gb/s
The following command lines were used:

• RPS using a 0KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/0kb.bin

• RPS using a 1KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/1kb.bin

• RPS using a 10KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/10kb.bin

• RPS using a 100KB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/100kb.bin

Figure 9: NGINX Plus requests per second at 100Gb/s

Table 12 to Table 15 inclusive below show the results that were used to plot the
graph in Figure 9 above.
Issue 2 © Copyright 2019 Xilinx, Inc 38

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 12: Requests per second for 0KB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 119808.00 265043.00 271094.00 121.22% 126.27%

2 191987.00 470043.00 446627.00 144.83% 132.63%

4 363522.00 1014400.00 1009430.00 179.05% 177.68%

8 672968.00 1993100.00 1980210.00 196.17% 194.25%

16 1143940.00 3326530.00 3453830.00 190.80% 201.92%

28 1650560.00 4564640.00 4441240.00 176.55% 169.07%

Table 13: Requests per second for 1KB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 89494.20 148669.00 152095.00 66.12% 69.95%

2 135374.00 266472.00 260857.00 96.84% 92.69%

4 252477.00 537498.00 549391.00 112.89% 117.60%

8 466750.00 1099630.00 1105430.00 135.59% 136.84%

16 796606.00 2005890.00 2030280.00 151.80% 154.87%

28 1108940.00 2838660.00 2799480.00 155.98% 152.45%

Table 14: Requests per second for 10KB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 68673.70 105066.00 105900.00 52.99% 54.21%
2 109814.00 193849.00 194762.00 76.52% 77.36%
4 205417.00 392281.00 396857.00 90.97% 93.20%
8 368371.00 752507.00 744910.00 104.28% 102.22%
16 583840.00 815065.00 781134.00 39.60% 33.79%
28 583526.00 809674.00 769008.00 38.76% 31.79%
Issue 2 © Copyright 2019 Xilinx, Inc 39

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 15: Requests per second for 100KB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 36765.10 25497.70 25453.70 -30.65% -30.77%
2 60136.30 49940.20 50734.70 -16.95% -15.63%
4 71832.30 91516.00 91158.30 27.40% 26.90%
8 71611.10 83745.50 84585.30 16.94% 18.12%
16 70994.80 83947.20 80096.20 18.24% 12.82%
28 70588.20 84595.90 82335.20 19.84% 16.64%
Issue 2 © Copyright 2019 Xilinx, Inc 40

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Throughput at 100Gb/s
The following command lines were used:

• Throughput using a 100K:B file
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/100kb.bin

• Throughput using a 1MB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/1Mb.bin

• Throughput using a 10MB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/10Mb.bin

• Throughput using a 100MB file:
taskset -c [0-31] ./wrk -t 1 -c 50 -d 180s \
 http://192.168.105.35/100Mb.bin

Figure 10: NGINX Plus throughput at 100Gb/s

Table 16 to Table 19 inclusive below show the results that were used to plot the
graph in Figure 10 above.
Issue 2 © Copyright 2019 Xilinx, Inc 41

Cloud Onload NGINX Web Server Cookbook

Benchmark results
Table 16: Throughput for 100KB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 28.12 19.50 19.47 -30.65% -30.77%
2 46.00 38.20 38.81 -16.95% -15.63%
4 54.95 70.00 69.73 27.40% 26.90%
8 54.78 64.06 64.70 16.94% 18.11%
16 54.31 64.21 61.27 18.24% 12.82%
28 54.00 64.71 62.98 19.84% 16.64%

Table 17: Throughput for 1MB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 46.51 20.16 20.31 -56.65% -56.33%
2 55.02 40.26 40.65 -26.82% -26.11%
4 55.81 71.75 70.05 28.56% 25.51%
8 55.46 63.92 65.21 15.25% 17.57%
16 54.54 63.70 60.71 16.80% 11.31%
28 54.60 64.55 62.92 18.23% 15.23%

Table 18: Throughput for 10MB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 55.05 19.75 20.00 -64.12% -63.67%
2 55.14 39.49 39.67 -28.39% -28.06%
4 55.75 72.64 69.97 30.29% 25.51%
8 55.51 64.28 65.02 15.80% 17.13%
16 54.95 63.25 60.79 15.10% 10.61%
28 54.72 64.00 62.76 16.97% 14.69%
Issue 2 © Copyright 2019 Xilinx, Inc 42

Cloud Onload NGINX Web Server Cookbook

Benchmark results
6.2 Analysis

Transactions per second
For 100GbE and 25GbE at 16-28× worker processes we see a flattening out for kernel
processes. While Cloud Onload shows a significant linear scaling to at least 676%
gain, at both speeds, and with both balanced and performance profiles.

Both 100GbE and 25GbE show that for the current configuration (1× NGINX server
plus 1× wrk generator server), when the NGINX server uses Cloud Onload we cannot
saturate it with enough wrk connections.

Requests per second
Large HTTP requests (such as the 10KB and 100 KB sizes in the test) are fragmented
and take longer to process. As a result, the lines in the graph for larger requests have
flatter slopes.

• For 100KB files at 100GbE, Cloud Onload delivers its greatest gains of over 26%
with 4× NGINX worker processes. Gains then flatten out at 12% or above with
more than 8× worker processes.

• For 100KB files at 25GbE, there is no difference between kernel and Cloud
Onload.

• For 10KB files at 100GbE, Cloud Onload delivers gains increasing from 52% to
102% as NGINX worker processes increase from 1× to 8×, at which point Cloud
Onload flattens out. The kernel worker processes do not saturate until there
are 16× worker processes, after which Cloud Onload still shows gains of greater
that 31%.

Table 19: Throughput for 100MB at 100Gb/s

Worker
processes

Kernel Onload
balanced

Onload
performance

Onload
balanced gain

Onload
performance
gain

1 55.04 17.78 17.57 -67.71% -68.08%
2 55.30 33.80 33.94 -38.87% -38.63%
4 55.71 65.11 63.26 16.88% 13.56%
8 55.53 63.86 64.90 14.99% 16.87%
16 55.08 62.94 60.35 14.28% 9.58%
28 54.41 63.49 62.65 16.70% 15.15%
Issue 2 © Copyright 2019 Xilinx, Inc 43

Cloud Onload NGINX Web Server Cookbook

Benchmark results
• For 10KB files at 25GbE, Cloud Onload delivers gains of more than132% for a
single worker process, and gains of greater than 36% with up to 4× NGINX
worker processes. With 8× NGINX worker processes or more, the processes are
saturated, and the kernel and Cloud Onload show similar results.

• For 0KB to 1KB files at 100GbE, we see peak gains of greater than 201% and
154% respectively. These peaks occur between 8× and 16× worker processes
for 0K files, and between 16× to 28× worker processes for 1K files. Note that we
do not see saturation of the kernel or Cloud Onload worker processes.

• For 0KB to 1KB files at 25GbE, we saturate at 16× worker processes for 1K files.
Peak gains at 16× worker processes are greater than 202% and 162%
respectively.

Throughput
For extra large files (100KB to 100MB) at 100GbE, Cloud Onload gets peak
performance gains with 4× worker processes, delivering 30.29% gain for 10MB files
and 16.88% gain for 100MB files. The worker processes are saturated around
54 Gbps for the kernel and 64 Gbps for Cloud Onload.

For extra large files (100KB to 100MB) at 25GbE, the NGINX worker processes are
saturated by 2× worker processes for both Cloud Onload and the kernel.
Issue 2 © Copyright 2019 Xilinx, Inc 44

	Table of Contents
	1 Introduction
	1.1 About this document
	1.2 Intended audience
	1.3 Registration and support
	1.4 Download access
	1.5 Further reading

	2 Overview
	2.1 NGINX Plus overview
	2.2 Wrk overview
	2.3 Cloud Onload overview

	3 Summary of benchmarking
	3.1 Architecture for NGINX Plus benchmarking
	3.2 NGINX Plus benchmarking process

	4 Installation and configuration
	4.1 Installing NGINX Plus
	Installation
	Configuration

	4.2 Installing wrk
	Installation

	5 Evaluation
	5.1 Configuring NGINX Plus for benchmarking
	Operating System recommendations
	Set up filesystem for static NGINX Plus files for benchmarking performance
	The nginx.conf configuration file

	5.2 Starting NGINX Plus for kernel benchmarking
	Testing methodology
	Starting nginx

	5.3 Running wrk for kernel benchmarking
	Performance metrics
	wrk options
	Example run and output of wrk
	Onloading wrk (via Cloud Onload + namespaces)
	Example wrk run w/ Cloud Onload + namespace + taskset
	Prepare namespace on client node (wrk node)
	Requests per second (RPS)
	Transactions Per Second
	Throughput
	Running wrk in kernel

	5.4 Graphing the kernel benchmarking results
	5.5 Cloud Onload benchmarking
	The nginx-balanced profile
	The nginx-performance profile
	Use Cloud Onload to accelerate the software
	Accelerating NGINX Plus

	6 Benchmark results
	6.1 Results
	Transactions per second (TPS) at 25Gb/s
	Requests per second (RPS) at 25Gb/s
	Throughput at 25Gb/s
	Transactions per second (TPS) at 100Gb/s
	Requests per second (RPS) at 100Gb/s
	Throughput at 100Gb/s

	6.2 Analysis
	Transactions per second
	Requests per second
	Throughput

